ADAPTIVELY NETWORKED EXTENDABLE
MULTIPROCESSOR ARCHITECTURE

A Design Project Report
Presented to the Engineering Division of the Graduate School
Cornell University
in Partial Fulfillment of the Requirements of the Degree of
Master of Engineering (Electrical)

by
Idan Beck
Project Advisor: Bruce Land
Degree Date: January 2008



Abstract

Master of Electrical Engineering Program
Cornell University
Design Project Report

Project Title:
Adaptively Network Extendible Multiprocessor Architecture

Author:
Idan Beck

Abstract:

This project consisted of the design of a fully integrated extendible multi-
processor architecture and system. This included the design of the compiler,
assembler, linker, boot loader, and handshake interfacing protocols for
peripheral modules which all may or may not lie on differing clock domains.
The architecture is a single simple cycle RISC CPU with independent data
and instruction memories such that it is as close to pure RISC as possible.
The network layer works under the CPU transparently in a self-timed
fashion utilizing a handshake. Network communication is solely based on
instruction dispatching where each CPU is essentially capable of writing to
another CPU’s instruction memory. The network is also adaptive utilizing
a unique register-thru design and message passing algorithm which allows
each node on the network to behave either as a packet switched network or
an evolved circuit switched network and a broadcast can be used to reset
the network.

Report Approved by
Project Advisor: Date:_________________




Executive Summary

This project aims to try and provide a new approach to multiprocessor
systems, which are known to be hard to design as well as program. One of the
biggest problems with multiprocessor systems is the "memory wall” where
multiple processors must share a certain amount of bandwidth to memory.
My project provides a viable alternative to distributed shared memory models
with a more cluster oriented design where each node in a multiprocessor
network owns its own data and instruction memory.

Additionally a different approach was provided to the network through
the design of a self optimizing asynchronous network, which can operate
transparently below a synchronous CPU through a handshake. This same
handshake protocol is also implemented in the system on a whole where it
would be possible to interface any of the different modules designed for this
project through this interface and it would work correctly. The network
additionally implements a message passing algorithm, which sends out a
message in the same fashion as a wave "crest” and in this way the network
optimizations actually will burn in the paths over time to optimize commonly
used path ways.

The design of a complete system on chip integration chain was accom-
plished. A new CPU architecture was designed, which implements all of the
above as well as being as RISC as possible. The compiler, assembler/linker
and bootloader software and hardware was designed for the CPU as well.
Although minor bugs still exist in the system it was demonstrated to operate
for significantly complex programs and test the functionality of the whole
system including the CPU, 10, and software supporting systems.

A large portion of this project was oriented around making programming
of multiprocessor environments easier by utilizing this new architecture and
system topology. This involved the design of new programming conventions
and methodologies that had to be supported both on the hardware and soft-
ware side.

The design was then implemented in simulation first to validate the func-
tionality and claims but also it was implemented onto an Altera Cyclonell
FPGA on a Terasic DE2 board. This configuration allowed access to the
crucial hardware needed to validate the design, such as a VGA monitor, PS2
keyboard, and RS232 serial connection. The design also included modules
that would have enabled the use of the LCD display and audio codec.



CONTENTS

Contents
1 Introduction
1.1 Project Overview and Specifications . . . . . . .. .. ... ..
1.2 Rationale and Motivations . . . . . . . ... .. ... .. ...
2 Hardware
2.1 NDMA CPU Architecture . . . . ... ... ... ... ....
2.1.1 First Pass . . . . ... ...
2.1.2  Memory Hierarchy . . . .. .. ... ... .......
2.1.3 Datapath . . . .. ... .. ... 000
2.1.4 Instruction Set . . . . . .. ... ... ... ...
2.2 Network Layer. . . . . . . .. ... . ... ... ... ...,
2.2.1 Message Passing . . . . . ... ... ... ... ...
2.2.2 Adaptive Network . . . . . .. ... ... ... ..
2.2.3 Network Driven Operation CPU Side . . . . . . .. ..
2.2.4  Network Driven Operation Network Side . . . . . . ..
2.2.5 Network Programming Conventions . . . . . . . .. ..
3 Software
3.1 LCC NDMACompiler Backend . . . .. ... ... ......
3.1.1 Pseudo Instructions . . . . . . .. ... ... .. .. ..
3.1.2 String Resources . . . . . . ... ... ... ... ..
3.1.3 Unsupported Instructions . . . ... ... ... ....
3.1.4 Stack Pointer . . . . .. ... ... ... ...
3.1.5 Usage . . . . o .o
3.2 NDMA Assembler-Linker . . . . . . . ... .. ... .. ....
3.2.1 Linker . . . . . . . ...
3.22 Assembler . . . . .. ...
3.2.3 Directives . . . . ...
3.2.4 Normal Type Instructions . . . . ... ... ... ...
3.2.5 JType Instructions . . . . . .. . ... ...
3.2.6 Special J Type Instructions . . . ... ... ... ...
3.2.7 Network Instructions . . . . . . ... ... ... ....
3.2.8 Pseudolnstructions . . . . .. . ... ... ... ...
3.29 Conventions . . . . . .. . . ...
3.3 NDMA Bootloader . . . . ... ... ... ... .. ......

3.3.1 Usage . . . . . . .



CONTENTS

8

9

34 NDMA Merge . . . . . . . ...
3.5 NDMA Suite . . ... ... ... ... ...
3.5.1 Usage . . . . .. .

Results and Analysis

4.1 NDMA System Single Core . . . . .. ... ... ...
411 Openlssues . . ... ... ... ... .. ....
4.2 NDMA Multi-core and Network Layer . . . ... ...

Conclusion
Acknowledgments

Appendix A: Visual Nodes, Project Simulation

71 Quad-List . . . ... .. ...

Appendix B: NDMA Test Programs

Appendix C: NDMA ISA

10 Appendix D: Index of Figures

11 Appendix E: Project Facts and Statistics

54

55

55
o6

57

69

72

72



1 INTRODUCTION 3

1 Introduction

1.1 Project Overview and Specifications

This project consisted of the design of several components which, when put
together, constitute a complete computer system. The approach used was
modular in such a way that it could be possible to replicate these components
to design a scalable system. Each component employs a uniform set of pro-
tocols which then allows the components to be connected in any assortment
and allow the system to be scalable and parallel.

This was done through a new RISC CPU architecture complete with the
compiler and assembler-linker required to run decently complex programs
on the CPU. Also a boot loader was designed as to allow the CPU to be
programmed and used in a variety of situations. However, security was not
a main focus since this was beyond the scope of my project.

The CPU design is a new network driven architecture (NDMA) which
allows each CPU to network with others in such a way that allows scalable
multiprocessing. This would allow systems to be designed with parallelism
in mind. The architecture was designed in such a way that the network
component could then be used to drive the CPU itself. Many designs use a
network by passing messages which are then interpreted by the CPU. This has
the advantage of seamlessly passing data quickly between different processors.
However, send a packet of data to a CPU which doesn’t know what to do
with it and it will simply look like noise. The design implemented in this
project does not send data but rather sends instructions where all data must
be encoded in pieces of code which the receiving CPU will then execute
allowing increased flexibility in how parallel programs are designed.

Several other systems had to be designed for it to be possible for the ob-
servation that the project is actually working. This included the integration
chain for the NDMA processor which I called the NDMA Suite. The Suite
consists of the NDMA compiler back end for LCC, NDMA Merge which al-
lows multiple assembly files to be integrated, the NDMA Assembler-Linker,
and the NDMA Bootloader. Also some APIs were written for the GPU, PS2
Input Buffer, and network layer. Throughout the system interfaces must be
upheld for asynchronous operation since many of the systems lived in differ-
ent clock domains. In fact, the network layer was designed in such a way
that it was self timed while the data that it received would be put through
a controller which would clock the data so that it could be correctly passed



1 INTRODUCTION 4

to the CPU. This was possible through the use of the same handshaking
protocol utilized system wide.

It can be noticed in the design that over time the design tended to evolve.
This resulted in some redundancy in the design but it was deemed negligible
and if needed this could be very quickly cleaned up. Cleaning up this redun-
dancy would simplify the hardware design and make the design quicker to
implement on an FPGA or increased simplicity of this design ever went to
layout.

Since most of this design project was original there were not many alter-
natives to the design choices I made and their implementation details. On
the other hand it would have been best if I could have found an open CPU
core that provided the integration chain as well (such as bootloader, assem-
bler etc). This was not easy to find and I justified my original design by the
fact that I am in fact creating open source intellectual property through this
project which is potentially useful for others.

With the above said I did not go ahead and write the compiler from
scratch but rather used LCC which is an open source retargetable ANSI C
compiler. Since this was open source the decision was valid. The other option
would have been to write my own compiler and this combined with all of the
other work I had to do with not a realistic goal even in the time that I had
to work on this project.

Overall looking back at the design decisions I think that considering the
scope and size of this project that it was very well planned out and that all
of the requirements and specifications were met that I originally set out to
accomplish. The hardware and simulations very much agree while the only
thing that was not achieved in hardware was not originally speculated in the
original design and only realized in simulation. This is explained more in the
following report and specifically in the last part of the Results and Analysis.

1.2 Rationale and Motivations

The original idea behind this project originated in the realization that current
computer models today do not take much advantage of parallelism yet being
parallel systems. The truth is that a common computer system consists of
a main CPU but many of the other components and ASICs in a computer
system also have a certain amount of computing power that is not utilized
during the normal average operation of the machine.

One of the best examples of this is of a theoretical system that consists



2 HARDWARE )

of a video card, a sound card, and a central CPU. If the demands of the
system are such that the sound card or the video card are only being used to
their full potential half of the time then we can clearly see that there could
be a similar system designed that could somehow parallelize the resources
such that when the system does not require the video card for its designated
purpose it could then the resource can be shifted and used for a different
purpose. For example, using this scheme, it would be possible to design audio
cards that expose their DSP capabilities and video cards that expose their
SIMD capabilities through some kind of interface which allows the system to
reconfigure itself on the fly.

With this kind of system in mind I designed a CPU Architecture that
was network driven. This CPU is then capable of either executing it’s in-
struction memory as is initialized by a standard boot loader or it can also
dispatch instructions to other CPUs and likewise receive instructions from
other CPUs. The idea behind this is that a CPU can then be ”"told” what
to do and then reply with actions as well. These capabilities were also built
into the assembler such that through standard coding practice these capabil-
ities can be accessed although most of the APIs must be written in assembly
since the data sent through the pipes should be instruction based since the
network layer and the CPU are completely transparent to one another and
the only way communication can occur is through full 32 bit instructions.

2 Hardware

2.1 NDMA CPU Architecture

The project did not require a completely new architecture however it was
noticed that the amount of changes required to a currently existing would
warrant the development of a new CPU architecture and the design of the
CPU from scratch. Also it was exciting to be able to decide on the design
and to be able to integrate the network driven operation all the way into the
design instead of a surface based approach. Another advantage of this was
to be able to call the CPU original intellectual property. While the initial
design of the CPU was motivated by the MIPS architecture only the OP code
pairings are really preserved. There is no branch or load delay slot but the
register designations are also preserved since it simplified the development
of the compiler. These design decisions are also supported by the assembler



2 HARDWARE 6

although these changes are minimal from the assembler’s perspective.

2.1.1 First Pass

The NDMA CPU Architecture is a 32 bit MIPS motivated single cycle CPU
with individual data and instruction memories. The instruction memory is
a dual port memory to allow for reading and writing on the same cycle and
the data memory is single port. Also no cache is designed.

The most noticeable thing about this design is that it is a single cycle
CPU. The idea behind this was to design a CPU that was as close to RISC
as possible. For this reason there exists the individual data and instruction
memories. The point of the architecture was not to make it fast but rather to
make it RISC and easy to manipulate as to demonstrate the network side of
things. However it was seen that this design, from an embedded standpoint,
was rather sufficiently well performing.

2.1.2 Memory Hierarchy

There were a few issues that arose regarding the memory hierarchy. First of
all it can be noticed that there is no cache. The scope of this project did not
require the design of a full cache as the design of one is non-trivial and would
have required a large amount of debugging and development. Regardless of
this fact since the CPU was going to be implemented on an FPGA where it
was likely that the memory would be able to be clocked faster than the CPU
itself it was unnecessary to develop a cache.

There was a large issue regarding the memory as well regarding the block
sizes of the memory. The CPU designed was a 32 bit architecture and in turn
required 32 bit memory line sizes. The way that these were implemented
was through Altera M4K blocks of 32 bit width. This meant that it was
impossible to allow unaligned memory access and required a good amount of
compiler/assembler cooperation which is explained below. The reason that 8
bit width was not used, which would have enabled unaligned memory access,
was because only 8 bits per cycle could have been accessed. It would have
been possible to design a more complex memory module that would have
consisted of 4 8 bit memory banks which would be striped but it was deemed
enough to have 32 bit blocks and revisit and fix the inefficiencies at a later
time.

A large difference in the memory hierarchy of this CPU and a MIPS CPU



2 HARDWARE 7

for example is that there are independent data and instruction memories.
The reason for this lies in a concept of resource redistribution over a network
and system on chip design methodology. Also this was an idea motivated
by finding a different approach to distributed shared memory. Each CPU
has it’s own instruction memory that can be manipulated by external CPUs
as well as it’s own data memory that only it can manipulate. Otherwise
external CPUs may destroy data unknowingly by overwriting it. In this way
each CPU has at least one resource that it owns exclusively.

2.1.3 Datapath

Below is shown a simplified datapath diagram of the NDMA architecture.
Figure 1 is more for reference than an accurate design diagram (since it is
missing many of the signal names) but it shows how this is a general single
cycle CPU datapath. This looks very much like a normal single cycle CPU
datapath except for the Input / Output module and the network driven side.
It is not completely shown in this diagram how the network side is integrated
into the instruction memory using an network instruction memory controller
and how this is also integrated into the register file. These design details are
described in the network portion of this section.

This is a single cycle CPU for the reasons mentioned above. At any
moment the network side can interrupt the operation of the CPU and instead
of focusing this project on how to properly manage the pipeline when dealing
with such collisions I thought it would be better to focus on the systems
development (compiler, assembler, bootloader) and on the network driven
operation. It was also decided that the implementation of pipelining could
always be done later and would be easier to integrate once the network driven
architecture was more set in stone.

2.1.4 Instruction Set

There is nothing revolutionary or new about the basis of the core design.
The instruction set and core architecture was at first based on the MIPS
instruction set. Not to mention that most of the core instructions in a CPU
look very similar such as the ADD instruction. For this reason I used the
MIPS base set as a launching point since I had some supporting examples
that were a nice reference. However, there are many outstanding differences
between the NDMA architecture and the MIPS architecture which qualify it



2 HARDWARE

Network Pointer.

Program
Countar [

iMemAgdr | [ Memin

Instruction Memory

IWAddr
IWrite:
IData

Metwork Side

Metwork Layer

Figure 1: Network Driven Microprocessor Architecture Datapath

|| Instruction

Decode

e [

r

Instruetion
Feaich

Cuick
Compare

[ L

2

I RT Reg

Register File

P~ RDReg

= rWite
'~ WriteData [E

Ak

AL

8
daddr | | diemin
Data Memorny
dWrite
WD

L Write Data

Mux

S

(e

T ROWrite

RegAddr | |OData

RegWD

Input /- Output

as a different architecture.

First of all it can be noticed that there are no branch delay slots. The
reason behind eliminating branch delay slots was the fact that network based
CPUs would need to strictly control the operation of the dispatched code on
a different CPU and that collisions between branch delay slot instructions
and network driven instructions may become an issue. It is likely possible
to reintroduce the branch delay slot but the compiler/assembler would need
to be smarter in this regard and since most of the network driven code is
being hand written in assembly at this time it seemed better to get rid of

the branch delay slot completely.

Another similar difference is the lack of load delay slots. There is some




2 HARDWARE 9

redundant hardware currently that forces a NOP after a load but removing
this does not affect the operation what so ever. The lack of load delay slots is
motivated by a similar reason to the lack of branch delay slots. However it is
also a result of independent instruction and data memories. The motivation
of the independent data / instruction memories was an idea motivated by
resource distribution on a network. This is explained above in the memory
hierarchy section. This actually ends up being a positive effect of the memory
hierarchy which simplifies the compiler design.

At first the instruction set was very similar to the core MIPS instruction
set but over time new instructions were introduced and old ones taken out
to make way for network oriented instructions. I wanted to make sure that
although network and CPU instructions should never be decoded in the same
space they should still not overlap as much as possible. This was more for
debugging purposes but since there are so few exclusively network driven
instructions there was not much issue with this.

Of the new instructions introduced into the ISA are the input / output
instructions: IN, OUT, and OUTI. Also the CPU side network instructions:
SID, BCST, SMSG, BCSTR, SMSGR. Also there are the network side net-
work instructions: SNIP, JALNET, and NDJR. There exist two network
driven instructions that were never implemented completely as well: NACK
and RMSG. These were planned for originally but deemed redundant espe-
cially since their operation proved somewhat complex as well. The multiple
and divide instructions were deprecated since they were implemented brute
force with Altera megafunctions for a brief time. They were tested and work-
ing fine but were not too great for timing. They were taken out with the plans
to implement a dedicated multiply and divide unit when time was available.

2.2 Network Layer

The Figure 2 below shows the basic overview of the Network Layer structure.

The idea behind the network layer is that it should function transparently
to the CPU. This means that if the network layer is passing a message it will
not affect the functionality of the CPU. The network layer is not clocked
except for the send portion. It will correctly react to incoming messages
regardless of the time at which those messages are received. The send portion,
since it is triggered by a send message or broadcast message instruction from
the CPU, must be clocked however. This is not clocked by an actual clock
but rather self-timed due to the send flag, dxFlag, which is clocked by the



2 HARDWARE 10

CPU
oy IF
Register File
r T Instruction
Memo
Y .
[ Metwork Layer Controller I Metwork Memory Controlier }—
frrssmsszssssssman
H
North East
Bus MNetwork Layar Bus
In f Out In { Ot
Wesl South
Bus Bus
In f Ot I f Ot

Figure 2: Network Layer Architecture Overview

network controller module.

The network layer is driven by a network controller which decodes the
CPU side network instructions such as set ID, and send message. For the
case of a send message instruction the network controller module will then
decode the instruction on the negative edge of the clock and set the dxFlag
to high. The dxFlag then is used by the network layer to set the output
busses to the correct values. This is done on the positive edge of the clock to
allow all of the send values to be correctly set before the message is set out
on the network layer busses. The dxFlag is pipelined into a register to avoid
from sending the same message twice or in the case that the same message
is required to be sent twice and ensure that there will be a NULL message
on the bus between messages.

2.2.1 Message Passing

The messages are sent out on a 32 bit bus and each message contains the 7
bit destination CPU’s ID, 8 bits of the message data, the 7 bit origination
CPU’s ID, a 4 bit message age, a 2 bit origination direction, and a 2 bit last
taken direction. Each one of these values is used to help navigate the message
to its correct destination. Figure 3 shows the composition of a message.



2 HARDWARE 11

2 Bit & Bit & Bit 4 Bit 2 Bit 2 Bit Last
Destination Message | Ongination | Massage | Origination Taken
[ 5} Data 1o Age Direction Direction

Figure 3: Message Composition

The way that the network layer propagates a messages gets its motivation
from wave propagation. This was demonstrated with a C++ based simula-
tion before implementation to prove that this algorithm will work correctly
since it is much harder to debug and prove in Verilog. The overview of the
algorithm is shown in Figure 4.

Figure 4: Message Passing Algorithm

The idea behind this algorithm is to always maintain a wave ”crest” of
the message and try to keep this crest as coherent as possible. A big problem
is when multiple message crests collide and this must be dealt with by using
a message buffer. This was not yet implemented in the hardware design but
it was simulated in the simulation program.

The algorithm works by the original message source sending out the mes-
sage in all directions setting the appropriate data values to the different fields
of the message. In the case that the message is a broadcast message (which
should be received by everyone) then the message’s destination ID field is
replaced with OxFF which when read by the Network Layer will be seen as a
broadcast message. Note that the IDs OxFF and 0x00 are reserved for spe-
cial cases such as broadcast and null IDs. This is important for the correct



2 HARDWARE 12

operation of the network layer and also disallows an ID to be changed once
it is set.

When a message is received by a node first the destination ID is compared
to the ID of that node. This is why it is extremely important to provide a
ROM image initially in a CPU node’s memory that will set the ID to the
correct ID. The conventions of how to use this system regarding writing actual
programs is described in the Results and Analysis section. After checking the
destination ID the network layer then decodes the origination direction and
deals with the message in different ways based on the bus that the message
was incoming on.

The general idea is that "horizontally” traveling messages will produce
new messages on in the same direction as they were originally traveling as
well as the directions perpendicular to their originating direction. However,
messages traveling in ”vertical” directions will simply continue to propagate
in the vertical directions. This can be compared to dragging one’s finger
across the face of water.

This was shown to correctly work in the Visual Nodes simulation program.
This program is further discussed in Appendix A. Figure 5 shows two blue
nodes sitting on an arbitrary network of other CPU nodes. These nodes’
CPUs have received instructions to send messages to two other nodes on the
network. Notice that these nodes have no idea where the destination node
is in the network. This constitutes a packet switched network where the
message propagated contains very simple routing information.

M 0penGL Framework

Figure 5: CPU Nodal Network at Initial State



2 HARDWARE 13

Next we see how the algorithm described before effectively creates two
message crests. Each message is identified by it’s own individual color as to
differentiate between the two and show that no lossiness of message occurs
since each node has a message queue in the network layer. Simulation shows
this but this was not implemented in hardware. Figure 6 shows the simu-
lation of this scenario. Notice that when the messages reach the boundary
of the network they are lost. This is OK to do since we know that the mes-
sage must have arrived if all the connections were made correctly and the
messages passed according to the algorithm.

| M8 OpenGL Framework

Figure 6: Message crests formed after two nodes send out a message to an
unknown ID on the network

Eventually the messages are received by the destination CPUs as shown
by the neon green node in Figure 7. Notice that we do not need to worry
about the rest of the messages on the network since we know that only one
CPU on the network has the unique ID being sent to. So once the message
arrives we no longer need to worry about the coherency of the wave. Notice
there is a hole "horizontally” behind the receiver node. This is because at
this node the message is not propagated.



2 HARDWARE 14

B OpenGL Framework

Figure 7: The messages are received by the correct CPU nodes on the network

In the simulation the node will initially pend for a few cycles. Then to
prove that the data was received correctly, as encoded by color, it will send
back the same message to the original sender of the message. This is shown
in Figure 8. In the real implementation of this the way that CPUs would
communicate is much different as will be explained in further detail. Notice
that the origination direction of the message is taken into account went the
reply is sent. This was never done for the hardware as well but could be in
the future with some expanded instructions.

The only current open issue is that in the real implementation the mes-
sage queue has not been implemented so that collisions are a real threat to
the system. Collisions can only truly occur when multiple nodes are commu-
nicating on the network at the same time. It was decided that to prove the
validity of the system the message queue would be something extra to strive
for. It would be relatively easy to implement especially considering that the
functional model has already been outlined in the Visual Nodes simulation.

2.2.2 Adaptive Network

The network layer explained up until now has been a packet switching net-
work. However, it is obvious that this can be rather inefficient if two nodes
on the network tend to communicate much more often than other nodes on
the network. It would be much more efficient if the network could somehow
evolve to treat commonly used paths as circuit switched networks rather than



2 HARDWARE 15

M OpenGL Framework

Figure 8: Message replied to original sender with same data

packet switched networks so that routing occurs automatically after a certain
fitness threshold.

Exactly this was done in the network layer through the implementation
of what I call a register-thru design. FEssentially each directional bus also
owns a certain threshold counter which is initialized to zero. Each time that
a network message passes through the node this counter is incremented by
one while each time a message is received this counter is decremented by one.
If the counter reaches a certain threshold value it is no longer incremented
but at this point the node begins to pass messages along this bus without
holding on to them. However, the node does catch a glimpse of the values so
it is possible for the CPU to still receive messages on this connection while
the message will still pass through the node. This has no real consequences,
however, since nodes need to have unique IDs. When a message is passed
with matching destination ID the cut off node will ”awaken” but needs to
continue to get multiple messages as to not shut off once it receives a different
message of mismatched ID. Also a broadcast message will reset this counter
to zero.

The way that the register-thru design is implemented is by multiplexing
a wire and register design. When the counter is below the threshold value
the bus will first pass the message by setting the output register to the input
value. This requires a certain delay and is less optimal than a pure wire.
When the counter reaches a certain value the output is multiplexed to the



2 HARDWARE 16

input and hardwired so that the input is seen on the output at the same time
neglecting the actual delay of the wire. Using this register-thru design we
can extremely optimize a network which may have an arbitrary node delay.
The register-thru design is shown in Figure 9.

Register
—
21 Mux  f—

Wire »

Adaptive Threshold Valus
Threshaold
Counter

Figure 9: Register-Thru Design Implementation

To demonstrate some of the functionality of this register thru design the
following print out of a command line simulation is shown in Figure 10.
A more conclusive result is shown in the Results section but this is a quick
demonstration in simulation of the design in action. Notice that messages are
being passed back and forth with a certain delay. Once the threshold count
is arrived at for a few nodes the connection is cut and adaptively converted
to circuit based connections. The delay is then reduced to a delay of two
units where the original delay was 5 delay units. Note, however, that this is
a nodal network of only 9 nodes. The potential improvement can be rather
scalable.

2.2.3 Network Driven Operation CPU Side

There are two sides to the network driven operation of the CPU. The CPU
side which is dictated by instructions coming out of the instruction memory
and Network side which is dictated by the network literally driving the CPU
through instructions dispatched to it through the network. This section deals
with the CPU side of sending and broadcasting messages.

You will notice that in the design there are remnants of other instructions
and other such issues that need to be re factored. Due to time constraints
these are being ignored since they are not affecting anything but they will be
described and considered here since they may in the future be implemented.



2 HARDWARE 17

k|

Figure 10: Adaptive network command line simulation

The receive message instruction RMSG was originally going to be used to
allow a CPU to pend on a receive. However, with the way that the project
has shifted since the original introduction of this instruction this never had to
be implemented. The only place this instruction is seen is in the ndmaref.h
file which defines the OP-Codes for the CPU. Another instruction that falls
into the same category is the NACK instructions (although Network Side).
In the end a different approach was taken to the NACK functionality instead
of a dedicated instruction which would have been somewhat inefficient.

The only CPU side instructions that occur consist of send message (SMSG),
broadcast (BCST) and their register based counter parts. The usage of these
instructions is as follows:

smsg $destination_ID, message

smsgr $destination, $message, byte_offset
bcst message

bcstr $message, byte_offset

The normal versions of SMSG uses the value inside of the register $desti-
nation as the destination ID of the message being sent. The message is then
sent as described at the beginning of this section. The normal version works
the same way, however it requires no ID since the ID sent in the message is



2 HARDWARE 18

OxFF which notifies the network layer that this is a broadcast message. A
broadcast message will also ”"wake” up all nodes in it’s path.

After the BCST and SMSG instructions were implemented and some of
the system had been implemented it was obvious that it would be needed
to have the same instructions except register based. This would allow the
sending of the whole contents of a register. Since the message sent can only
be 8 bits 4 messages must be used to send a full 32 bit package. Doing
this by hand through the use of hexadecimal digits or decimal digits would
be extremely cumbersome. Instead register versions of the instructions were
designed which allow you to send an 8 bit piece of a 32 bit register through
the use of the byte offset. The byte offset designates 3 as the most significant
byte. In this was the following series of instructions can be used to broadcast
an instruction to another CPU:

ori $a0, $0, O
lui $a0, Instruction First Half
ori $a0, $a0, Instruction Second Half

bcstr $ald, 3
becstr $a0, 2
bcstr $a0l, 1
bcstr $a0, O

Using this convention it was possible allow a CPU to initialize a register
with an instruction that it would like to dispatch to another CPU and then
utilize the bestr / smsgr instructions to piece wise send the instruction. Note
that the first three instructions above would be commonly repeated often
and complex to program by hand. These were integrated into a pseudo
instruction called SRI or set register instruction. This pseudo instruction is
further explained in the assembler section.

2.2.4 Network Driven Operation Network Side

Once the instruction reaches the point of being in the pipes it is considered a
network side instruction. The basic principles of the system network driven
operation is shown in Figure 11. What is being shown in the diagram is
that CPU 1’s instruction memory is originally initialized through the use of
the NDMA Bootloader. This memory will then drive CPU 1 and allow CPU
1 to dispatch instructions to other CPUs. Only a two CPU system is shown



2 HARDWARE 19

here for simplicity. This is effectively enabling CPU 1 to boot load any of the
other CPUs on the system. The way that this is done will be explained in this
section. Once a different CPU on the network is boot loaded and running it
can then return the favor and replace or re-boot load CPU 1 or any other
CPU on the network. If wanted this can create an infinite chain of CPUs
not only passing data messages but also passing the code required to parse
those messages so that you can design programs with dynamic parallelism.

Bootloader

CPLH Code CPU 2 Cade
= MNetwork Interface

; CPUZ

CRU1

Figure 11: Network side system operation and communication

For this to be possible a few different specialized instructions need to
exist which only manipulate the network layer. These instructions consist of
the following:

snip pointer_value
jalnet
ndjr $target_register

The way that the network layer receives information has two parts. When
a message is received by the network layer it is then saved to a specialized
register in the register file indexed by a network message counter. This
counter is incremented each time a message is received and saves that 8 bit
message into the register indexed by the counter. Once 4 messages have been
received then that constitutes a full 32 bits received.

When the instruction received from the network is valid the register file
sends the instruction to the network memory controller which will then look
at the instruction and either write it to a specific location in instruction
memory or decode it if it is a special instruction. The way this works is
that the network memory controller contains a pointer into memory which
defines the network memory ”"space” in instruction memory. This pointer



2 HARDWARE 20

can be changed with one of the above SNIP instruction which stands for
Set Network Instruction Pointer. It should have been SNIMP since it’s an
Instruction Memory pointer but SNIP tends to have a ring about it’s func-
tionality. When a SNIP instruction is decoded the CPU is not driven with
any specific functionality but rather the instruction memory pointer is set to
the value passed by pointer_value. Notice that when a special instruction is
received by the network instruction memory controller that it is not written
to memory.

There also needs to be a way to have the target CPU start executing the
instructions in the network portion of the instruction memory as well as a
way to force them into their previous operation. The instructions JALNET
and NDJR do exactly that. JALNET is a network driven Jump and Link.
This works the same way a normal JAL would work except the location
to jump to is taken as the instruction memory pointer. When a JALNET
is received it will be decoded by the network instruction memory but also
passed to the Instruction Fetch and Instruction decode modules in the CPU
data path. The CPU will then be driven by this instruction and jump to
the correct location. A NDJR instruction works the same way where all of
the registers initialized by the ID and IF stages in the CPU. The NDJR
instruction stands for Network Driven Jump Register and works exactly the
same as a normal Jump Register instruction except that it has precedence
and is network driven.

One issue regarding network driven instructions was the question of what
of the current instruction? The decision was made to give precedence to the
network driven instructions, or specifically JALNET which should be the
only one that has any problems, since with JALNET the current pointer is
saved into a register and while a normal JAL will save PC + 1 to the register
JALNET was changed to save the pure PC to the register because when a
JALNET occurs we are consistently blocking an instruction that must be
preserved.

2.2.5 Network Programming Conventions

The meat of this topic will be discussed more in the assembler section since
most of the conventions applied will be done on the software side. In fact
the design architecture is good to go as is, however it is rather cumbersome
to program. The way that this is done is through specialized assembler
side instructions which will dispatch instructions through an API. The idea



2 HARDWARE 21

behind this is that a node cannot actually dispatch data to another processor
but rather must send an instruction with that data encoded within it.

Although this may convolute the process of sending data from one proces-
sor to the other it also ensures that the interfaces are standard and that data
is passed in a very interface oriented way. This allows processors to literally
tell each other what to do rather than simply pass data back and forth. If a
node is smart about the code that it dispatches to another processor than it
is quite easy to design a system with rather complex parallelism.

Since for every instruction sent at least 4 instructions must be executed
the instructions sent must be parallelized functions as is. So instead we
could design a system which dispatches out a few different pieces of code
to different processors which loop. These loop until completion at which
point they send back instructions to the dispatcher CPU with their results
where the dispatcher CPU was the one to tell them to do that. Until this
occurs the dispatcher CPU is sitting on a loop waiting for the results from
the dispatched process. Once this occurs the dispatcher executes the network
memory, returns to a point outside of the loop (or sets a branch condition
false) and then retrieves the result out of the point in which it was stored.

This is a simple scenario but imagine multiple CPUs processing different
programs at the same time all the while the dispatcher CPU is sitting on
a useful loop of some sort. As long as the code dispatched will run for at
least 4 iterations on average we can see that this parallelism will benefit us.
Especially as you increase nodes in the system since as soon as you create
code that can create more code each node can then dispatch to three other
nodes (not including the node it received the code from in the first place).
Although my project was more of an infrastructure project this architecture
seems much more realistic for parallel programming than the current meth-
ods which currently use distributed memory sharing with the very serious
memory bandwidth bottleneck.

Another very important possible use of this architecture is to enable re-
source sharing and system reconfiguration. It would be possible to have one
processor connected to one resource and have all processors relay their in-
formation to a centralized processor which would then organize all of the
resources. However, when the resources are not needed it would be possible
to better utilize the CPUs for other uses such as computation. This dy-
namic parallelism could be very useful in consumer type computers where
resource need is very diverse rather than in computationally intensive com-
puters where data is the main thing that matters.



3 SOFTWARE 22

3 Software

Apart from the hardware design of this project a variety of software had to
be written. This section describes these software systems.

3.1 LCC NDMACompiler Back end

The NDMA architecture needed to have a compiler so that decently complex
programs could be written both to test the system as well as make the system
usable. The compiler used was LCC which is a retargetable ANSI compatible
C compiler. The back-end was written such that the assembly language
the compiler generated was specific to the NDMA architecture and would
interface cleanly with the assembler.

A big problem that I encountered while using LCC was build related due
to my Windows XP operating system. I could not quite get LCC to build
correctly and in turn compile my code into NDMA specific assembly. Instead
I discovered RCC which is the program that actually generates the assembly.
In the case of a standard C error RCC will output a message however it will
not stop generating assembly. This, for my purposes, was enough and since
LCC utilizes RCC I am sure that on a system which can build LCC correctly
(e.g. Linux) that LCC would work fine for my compiler back end.

The way that LCC’s back end works is through an interpreted definitions
file which is interpreted by a program named lburg. The file is a long listing of
function calls and instruction definitions. A rather large amount of the file is
standard for all code targets so I started off using a specification for the MIPS
R3000 that is provided along with the source code for LCC. After this I went
through the file changing all of the different instructions so that they will be
compliant with my NDMA assembler as well as compiler conventions. Since
I did not write LCC it was occasionally easier to keep certain conventions
and then deal with them in the assembler.

3.1.1 Pseudo Instructions

There were a few pseudo instructions that were used in the compiler which
I could not completely eliminate from the back-end and had to implement
in the assembler. Most significantly was the pseudo instruction LA which
stands for Load Address. In most cases this instruction would be used as

la $destination, offset($source)



3 SOFTWARE 23

The use of this instruction would be used to load in the effective address
of the offset + $source into the $destination register. It would have then
been very easy to simply replace every LA instruction with

addi $destination, $source, offset

This was not possible since LCC uses the LA instruction in a variety of
ways all the while only having one specification for it. The LA specification
in the lburg file is as such:

reg: addr "la $%c, %0\n" 1

This indicates that the field filled by %0 can be anything as provided by
LCC. This is in fact true and was found to be of any of the following:

offset($source)
offset
Label

The label in the above snippet means that not only is the LA instruc-
tion used to initialize registers with effective addresses as to be used for the
purpose of initializing them with numerical constants but it was also used to
load registers with values designating pointers to instruction memory. This
became especially prevalent when dealing with resource strings in programs
where LA was used as a pointer to instruction memory so that strings could
be read out of the program’s code.

NDMA has an independent instruction and data memory. So changing
the lburg file for LA was an impossibility. Instead the assembler was designed
in a much more clever way as to perceive which form of LA it was receiving
and as such decode and assemble it so that it would work correctly. This be-
came somewhat complex for string resources since it required a collaboration
on both parts of the assembler and compiler as will be described below.

3.1.2 String Resources

As mentioned before the NDMA has a separate instruction and data memory.
This allows for network driven operations as well as maintain more of a
RISC oriented operation. However it has rather big issues regarding how
LCC would process string resources in a program. Traditionally when a
programmer defines a string in a program the string is saved at the top of
the assembly code using .byte directives:



3 SOFTWARE 24

.SetStack 255
.Boot main
.rdata
STR_LABEL1:
.byte 72
.byte 45
.byte 44
.text

.text

main:

. code ...
la $3, STR_LABEL1
1b $4, 0($3)

. code ...

Then when the string was encountered in the code it would use the
STR_LABELI1 to designate a point in memory and load the effective ad-
dress into a register which would then be used to load the memory from.
This would not work using the hardware architecture. Also a big point to
note is that the memory used for the CPU had 32 bit wide blocks as men-
tioned above. It was then important to change the way data was loaded and
stored into memory when it’s size was less than 3 words.

To deal with these issues the code that would load and store data in LCC
was altered to the following:

static void blkfetch(int size, int off, int reg, int tmp) {

int i;
assert(size == || size == 2 || size == 4);
if (size == 1)
print ("lbu $%d,%d($%d)\n", tmp, off, reg);
else if (salign >= size && size == 2)

print ("lhu $%d,%d($%d)\n", tmp, off, reg);
else if (salign >= size)

print ("1w $%d,%d($%d)\n",  tmp, off, reg);
else if (size == 2)
{

// LH for .Byte here

print ("ori $%d, $0, O\n", tmp);



3 SOFTWARE 25

// Second byte

print("lw $1, %d($%d) \n", off + 1, reg);
print("s1l $1, $1, 8\n");

print ("or $%d, $1, $%d\n", tmp, tmp);

// First byte

print("lw $1, %d($%d) \n", off, reg);
print("or $%d, $1, $%d\n", tmp, tmp);

//print ("lhu $%d, %d($%d)\n", tmp, off, reg);

}
else
{
// LW for .Byte here
print("ori $%d, $0, O\n", tmp);
for (i =0; 1< 4; 1i+=1)
{
print("lw $1, %d($%d) \n", off + (3 - i), reg);
print("s11 $1, $1, %d\n", (3 - 1)*8);
print("or $%d, $1, $/%d\n", tmp, tmp);
}
}
}
static void blkstore(int size, int off, int reg, int tmp) {
int i = 0;
if (size == 1)
print("sb $%d,%d($%d)\n", tmp, off, reg);
else if (dalign >= size && size == 2)

print("sh $%d,%d($%d)\n", tmp, off, reg);
else if (dalign >= size)

print("sw $%d,%d($%d)\n", tmp, off, reg);
else if (size == 2)
{

// First

print ("sw $%d, %d($%d)\n", tmp, off, reg);

print("srl $%d, $%d, 8\n", tmp, tmp);

// Second



3 SOFTWARE 26

print("sw $%d, %d($%d)\n", tmp, off + 1, reg);
print("srl $%d, $%d, 8\n", tmp, tmp); // need this??

else
// SW for .Byte Here!
for(i =0; i < 4; i +=1)
{
print("sw $%d, %d($%d)\n", tmp, off + i, reg);
print("srl $%d, $%d, 8\n", tmp, tmp);

What this effectively does is when loading bytes the compiler will put
out assembly instructions that treat each byte as being on an individual line
of memory and then pack them into a register so that when the CPU deals
with the data in the register it would do so as it would normally would. The
same thing is done for stores which will unpack the data and store each byte
on an individual line in memory.

So after this translation the compiler can deal with the bytes as it nor-
mally would since they are packed into the register. The only other issue
is to ensure that when the resource is accessed the data is stored into data
memory correctly. This is done mostly by the assembler as is described in the
next section. However, it was also important to make sure that the correct
data location was used by the .byte directives. This was done by appending
the following after the string label:

print("la $1, 0($0)\n");

This would load 0 into the $1 register which is the temporary compiler
register so that when the .byte directives are "run” and exited that the
correct location in memory is accessed. Notice that this instruction has the
possibility of being used with differential locations in memory. Currently
the code will write only to a specific point in memory opposite to the Stack
Pointer and will hopefully not have problems regarding collisions. I could
not find a way to extract size information from the labels so for the time
being the location must default to 0.

So with these precautions taken and with the assembler dealing correctly
with the LA instruction and the .byte directives, string resources will be dealt



3 SOFTWARE 27

with correctly although through a somewhat convoluted process. They are
first unpacked into memory by running a snippet of code which is derived by
the assembler from the .byte directives. Then the loads will pack the data
memory into registers and when storage is required they are unpacked into
memory. There are a few issues regarding the default locations in memory
since string manipulation may not correctly work, this has not been fully
tested although multiple strings have been tested and work correctly.

3.1.3 Unsupported Instructions

The NDMA supports a variety of instructions but for simplicity of testing
and ensuring that the system worked many of these instructions were dis-
abled. This included more complex instructions like multiply and divide.
However, there were a few instructions that simply required validation time
that have yet to be integrated enabled on the CPU which were not deemed
that important that the difference between them being one instruction or
two mattered.

For one only BNE and BEQ branch instructions were fully tested and so
any form of branch was some permutation of SLT, BNE, or BEQ. This is
shown below:

stmt: EQI4(reg,reg) "beq $%0,$%1,%a\n" 1
stmt: EQU4(reg,reg) ‘"beq $%0,$%1,%a\n" 1
stmt: GEI4(reg,reg) "slt $1, $%0, $%1 \nbeq $1,%0,%a\n" 1
stmt: GEU4(reg,reg) "sltu $1, $%0, $%1 \nbeq $1,$0,%a\n" 1

stmt: GTI4(reg,reg) '"beq $%0, $%1, 2 \nslt $1, $%0, $%1 \nbeq $1,$0, %a\n"
stmt: GTU4(reg,reg) "beq $%0, $%1, 2 \nsltu $1, $%0, $%1 \nbeq $1,%0, %a\n"
stmt: LEI4(reg,reg) "beq $%0, $%1, %a \nslt $1, $%0, $%1 \nbne $1, $0, %a\n"

stmt: LEU4(reg,reg) "bleu $%0,%%1,%a\n" 1
stmt: LTI4(reg,reg) "slt $1, $%0, $%1 \nbne $1, $0, %a\n" 1
stmt: LTU4(reg,reg) "sltu $1, $%0, $%1 \nbeq $1, $0, %a\n" 1
stmt: NEI4(reg,reg) "bne $%0,$%1,%a\n" 1
stmt: NEU4(reg,reg) "bne $7%0,$%1,%a\n" 1

Also NOT instructions were not implemented on the CPU so a NOT was
interpreted as a combination of addi and XOR to first initialize a register to
all ones and then xor that with the register in question.

reg: BCOMI4(reg) "addi $1, $0, -1\nxor $%c, $1, $%0\n" 1

1
1
1



3 SOFTWARE 28

3.1.4 Stack Pointer

As described above the memory is of width 32 bits and thusly when the stack
needed to be manipulated it did not need to be incremented /decremented by
counts of 4. Instead it manipulated by counts of 1 and as such through the
LCC back end this had to be changed. Most of this was done by setting the
argument offsets as 4 rather than 16 and adjusting values in the back end to
ensure of this. Most of the changes were implemented by validation through
the use of simple test programs.

3.1.5 Usage

To use the compiler it must be built. To do so you must run the following in
a Visual Studio 2005 build window or a build environment which has nmake
from Visual Studio 6.0 or later:

...ProjectModules\LCC>set BUILDDIR=\lcc_build_directory
...ProjectModules\LCC>nmake -f makefile.nt all

This will build the compiler into your build directory you specified and
then to compile a program you must run:

...build_dir> rcc -target=ndma/ndma0S filename.c

This will spit out the assembly code which can then be ”cut and paste”
into the assembler code which should include some of the APIs as explained
below. If wanted it is possible to output the rcc output to a file by doing the
following:

...build_dir> rcc -target=ndma/ndma0S filename.c > outfile

This file can then be used by the NDMA Suite as explained below. If you
add the RCC path to the system’s PATH variable (accessed through control
panel-; System-; Advanced-; Environment Variables or the SET command in
the command prompt) then you can utilize the NDMA Suite along with
NDMA Merge to output files that can then directly be assembled and boot
loaded.



3 SOFTWARE 29

3.2 NDMA Assembler-Linker

The NDMA Assembler-Linker is a combination of a linker and assembler to
simplify the integration chain design so that it could be feasibly designed in
the time allotted. The Assembler began development along side the devel-
opment of the NDMA CPU Architecture as to guarantee that the two will
work together in unison from the get go. However, as time progressed and
requirements of the assembler grew the design of the assembler had to be
re factored so that new instructions and functionality could be incorporated
into the program.

The NDMA Assembler-Linker consists of two parts as the name suggests.
The first part is the linker which needs to run before the assembler considering
the design of the program and it’s structure. After the linker runs through
the file one time the assembler is run assembling each instruction and using
the data collected by the linker to set the correct targets for the assembled
instructions.

3.2.1 Linker

The linker needs to know almost as much about each line of the input assem-
bly file as the assembler itself. If not the target locations of jumps will not
correctly be calculated. This means that the linker portion of the assembler
is pretty close to the assembler itself except it does not need to decode the
instructions but only match them up to the data base of accepted instruc-
tions, directives that are translated to instructions, pseudo instructions and
the correct behavior of these pseudo instructions based on differing circum-
stances, and different special instructions. All the while the parsing of the file
will tabulate a data structure with all of the different labels and the correct
PC location of those labels in program code.

The way that the linker does the above is by reading each line of code at
a time. This is done in 100 character pieces since it is assumed that each line
should not exceed this amount in characters. This input is then tokenized
and the first token is compared against a number of conditional statements
in an exclusive order. This is done in such a way that the special instructions
take precedence over the normal ones since all instructions are registered in
the s_ mapOP, which is a map data structure of all of the instructions the
assembler supports.

First the token is compared to the LA instruction. As explained above



3 SOFTWARE 30

the LA instruction is a pseudo instruction that has different functionality
in a number of different circumstances sometimes being translated to 2 in-
structions and other times to only one. The exact way this is done will be
explained more fully in the assembler portion below. There are two different
circumstances for the LA pseudo instruction. Either it is calculating an effec-
tive address and will be translated to one instruction which will be an addi.
Or it will be translated into two instructions when the offset is found to be a
label. Since at this stage we cannot guarantee that the label specified in the
LA offset field will be in our database we must check to see if it is a label in
a different way. This is done by noting that label based LA instruction will
have at least one letter in the offset field. Otherwise this field must be an
immediate type number. If a letter is found in this argument then the LA
instruction increments the PC counter of the linker by two otherwise only by
one.

The next special instruction that is looked at is called SRI or Set Register
Instruction. This instruction is further explained in the later network driven
assembler portion however the basic functionality of it is that it takes a reg-
ister and a normal instruction as two inputs and then loads that instruction
into the register. This requires a register clear with an ORI instruction and
a combination of one LUI and one ORI instruction. This sums to a total
of three instructions and when the linker comes across this instruction it
increments the PC counter of the linker by three.

After these two special instructions the linker checks for an empty line.
If it is not an empty line the linker checks against the directives .Boot, .Set-
Stack, and .byte. The .Boot and .SetStack directives both get translated to
one instruction. The .Byte directive, however, gets translated to two instruc-
tions so in the case of the .Byte directive the linker adds two to the linker’s
PC counter. In the other cases it simply adds one and in the case of an
empty line the linker skips on to the next line. Also at this point the linker
compares the first token to the list of supported assembler instructions. If it
matches then one is added to the linker’s PC counter.

If after all of the checks the first token of the line does not match any of
the above conditions then the first token is checked for consistency with the
format of a label. The way that this is checked is by checking to see if a colon
is found in the token. If yes the token is tokenized and then inserted into the
s_maplLabel map data structure. When this is done it is checked to see that
duplicate labels are not found in the file. If this is the case then an error is
thrown and the program exited showing which label has been repeated.



3 SOFTWARE 31

Once the linker is done the s_mapLabel data structure should contain all
of the information regarding the PC location and names of the labels that are
encountered throughout the assembly file as well as ensure that no duplicate
labels are found in the file.

3.2.2 Assembler

Assembling an instruction requires a few different steps. Assembly is done
slightly differently for different groups of instructions but apart from the
special instructions, directives, and pseudo instructions all of the instructions
are assembled in generally the same manner.

The first phase that the extracted line goes through is a quick and dirty
token counting check. This is useful for a number of quick tricks to get the
pipe going but mainly it provides a way to allocate memory for the correct
number of tokens to be saved and used later. After the quick token check
the input line is actually tokenized and each argument saved for use in the
assembly process later.

After this the first token is run through a number of conditionals to
check to see if the line is empty, a comment, directive, special instruction or
normal instruction. If the line is empty or is a comment the pipe is skipped
and the next line is looked at by the assembler. However in the case of a
normal instruction (the other cases are dealt with below) there can be a few
different cases. If the assembler receives more than 8 tokens it spits out
an error message indicating that the instruction has too many arguments.
If there are between 3 and 8 arguments then the instruction is dealt like a
normal instruction other than J type instructions. If the instruction has 2 or
less arguments then the instruction is dealt with as a J Type instruction.

Notice that if the first argument is found to be SRI this sets a "flag”
for the rest of the program of fSRI to 2. This value is then used to offset
all of the argument values if it is set so that after SRI has been found then
the pipe will only look at the instruction passed to SRI. In this case the
assembly works normally except only on the instruction passed to SRI. The
SRI instruction is explained in more depth below.

3.2.3 Directives

Checking the line to see if is a directive is done by checking the first character
of the line. If this character is a ’.” then that line refers to a directive. The



3 SOFTWARE 32

LCC compiler spits out a good amount of directives that are not used by the
Assembler but these were kept in since they provide good information about
what the assembly code coming out of LCC means. The only directives that
are directly implemented by the assembler are the .SetStack, .Boot and .Byte
directives.

When a directive is encountered the period is stripped off and it is com-
pared to the supported directives. Since this list is not long this is done
manually but it would not be hard to implement a map of all supported
directives with the current model since the period is tokenized away. If the
directive is seen to match the .SetStack directive (which is a very important
directive for the correct functionality of the data memory stack) then this
directive is replaced by an ORI instruction which then sets the stack pointer
to the value specified by the directive. By using this directive it is possible
to designate to the program what the size of the CPU’s data memory is. The
correct setting of this is imperative for correct functionality. Otherwise, the
stack will be placed at zero and the memory may behave unreliably. Note,
however, that when the SetStack directive is used a variable in the assembler
is set and will output statistics regarding the program’s size versus the size
of the data memory. Note that the data memory can be a different size than
the instruction memory and the boot loader will load memory that does not
exist. This debugging message can be double faced in that sense and realize
that the SetStack directive only has to do with the data memory and not the
instruction memory.

The next directive is the .Byte directive which will map to two instruc-
tions. The way that resources work on this architecture is that the .Byte
directives become a small snippet of code which is called whenever the re-
source is needed. In this way each byte is loaded into it’s own specific point in
data memory and then the code snippet will return. The way that the code
gets to this snippet is through the LA instruction which is explained below.
However, each byte must be loaded into it’s own location in memory and
different strings of resource must be independent. This way the cData vari-
able will be reset to zero when no byte directive is encountered to effectively
reset it. Every time a succeeding byte directive is encountered, however, it is
incremented. This way each string gets it’s own space while each byte gets a
succeeding location in memory. The cData variable is used to assemble the
two instructions the .Byte directive gets translated to.

The last directive is less involved. The .Boot directive with be replaced
with a jump instruction to the location of the label provided. The common



3 SOFTWARE 33

use of the .Boot directive is .Boot main which will make sure that the first
code run is the main code since between the .Boot directive and the main
code there may lie a good amount of other code such as APIs or resources.

3.2.4 Normal Type Instructions

For normal type instructions the first token of the instruction is checked up
against the s_ mapOP map data structure. This data structure is initialized
before the running of the assembler by the function:

(void) InitializeOPMap();

This function goes through the OPS enum and assigns an appropriate
string to each correct enum element. These enums are then later used by
the function OpFunctionSADecode() which will go through the map data
structure and find if the token matches. If the token does not match an error
message is output, however, if the token does match then this function will set
the binary OP, and FUNCTION fields to the correct strings to be assembled
together later. This function will also set the instruction type in the variable
ins_type which is then used to group instructions more effectively, although
this generally is not precise enough and specific instructions must be checked
individually as well as the instruction type.

After this stage the only thing left to assemble are the RD, RS, RT,
IMMEDIATE, TARGET, and SHIFT AMOUNT fields. Before this is done
the instruction passes through a number of conditional statements which
ensure that the correct argument is used for the correct field since different
instructions have different structures. This is done for convenience so that
when the fields are assembled we can use a variable index rather than index
constant values differently for different instructions.

After the field indexing stage the RD, RS, and RT are assembled through
a function call RegDecode() which will take in one of the tokenized arguments
and pass back a binary string that represents that argument. This function
can support register arguments in their numerical form of ”$31” or their
symbolic form ”$ra”. This is nice since it provides us flexibility in how
the assembly code is written and makes the code somewhat more readable.
Although the output of the LCC code will still be numerical the APIs which
are generally written in assembler will be somewhat more legible.



3 SOFTWARE 34

At this point the only fields left are the IMMEDIATE, TARGET and
SHIFT AMOUNT. The immediate and target fields are taken care of to-
gether. The normal type instructions only deal with the immediate field
so the target field can be ignored. First the immediate argument is checked
against the map of labels. If the instruction is a branch type instruction then
this label is treated as relative rather than absolute. Whatever the value ends
up it is saved to binary and then to the immediate field. If the immediate
argument is not a label it is first checked to see if it is of hexadecimal format.
Hexadecimal immediates were rather useful for debugging and general low
level programming so that is why this feature was implemented.

If the argument was not of hexadecimal format it had to first be tokenized
to see if there was an operand between two values. The LCC compiler on
occasion would output expressions rather than constants. This was up to
the LCC compiler and not the back end so I had to add this functionality to
the assembler. The expression is tokenized and evaluated and if it is found
that no operand exists or only one value is there then that value is simply
converted to binary and saved into the immediate field. Once the expression
is evaluated it’s result is placed into the immediate field.

The only field left now is the SHIFT AMOUNT. The shift amount field
is passed to the assembler in the immediate argument. This makes it easy
for the assembler to find so it is taken, converted to binary and placed into
the shift amount field. This is only done for SR-'TYPE instructions which
stand for Shift Register instructions.

At this point all of the instruction fields have been correctly set and all
that is left is to assemble them together. This is done differently for different
sets of instructions and different instruction types by adding the different
pieces one after the other into a buffer of length 32. Once this is done it is
copied into the output stream as well as the output file. The output stream
is nice to have since debug messages can be appended to it while the output
file is the one that is sent to the boot loader. There are many different
categories of instruction assembly but they are all done according to the
rules of that specific instruction. This is important to note when adding new
custom instructions to the assembler. Every portion of the process must see
the effect of the new instruction. Occasionally the new instruction will not
fit into a previously made grouping so a new one must be made. This must
be done in an exclusive fashion.



3 SOFTWARE 35

3.2.5 J Type Instructions

The J Type instructions always have two arguments or less and so have their
own special way of being assembled. This way is instruction specific. Since
there were few J Type instructions and all other instructions that fit into
this mold were dealt with in such a diverse way this was the preferred way
to do this. In this section I will only talk about the J Type instructions.

When an instruction is found to only have two arguments or less it is
assembled on an individual basis. The only J Type instructions fitting this
description are the J, JR, and JAL instructions. In each case the appropriate
arguments are decoded and assembled as is done for the normal instructions
but instead of using a pipe it is done on a per instruction basis.

The JAL instruction is followed by either an immediate type target or a
label. When the instruction is assembled first the target is checked against
the label map. Since the JAL address is absolute no relative calculations
need to be made and the PC value of the label is converted to binary and
then is assembled with the rest of the instruction fields. If the target is just
an immediate then it is converted to binary and set into the target field and
assembled with the rest of the instructions.

The JR instruction is done in a similar fashion except the register ar-
gument is decoded using the RegDecode() function and then set into the
appropriate field and the instruction is then assembled. The J instruction is
very much similar to the JAL except for slightly different OP codes. Since
the instructions are done on an individual basis each instruction needs a dif-
ferent conditional block for the OP codes since the function call used in the
regular case is not used.

3.2.6 Special J Type Instructions

There are a few special instructions that register as J Type instructions al-
though they are not jump instructions. For example the BREAK instruction
is a special instruction that tells the CPU to temporarily halt. This is useful
for hardware debugging. Since the instruction is flat when this instruction is
encountered the flat value is assembled. This is the same case for the NOP
instruction. The only exception to this rule is the QUIT instruction which is
not really an instruction but rather more of a debugging assembler directive.
This is useful to halt the assembly of a file for different purposes. This was
put there during debugging and development but never taken out due to its



3 SOFTWARE 36

usefulness.

3.2.7 Network Instructions

There are a few network type instructions that the assembler will parse di-
rectly. These include the SID, BCST, BCSTR, SMSG, and SMSGR. These
are the CPU side network instructions and these are decoded in a particular
way. SID stands for Set ID which allows the initialization of the ID of a
CPU. This ID is extremely important if it is expected for the CPU to receive
any messages or send any messages. SID is parsed as a J Type immediate
instruction. First the number of arguments will identify that this is a J
Type and then SID is processed and the instruction is assembled with the
immediate converted to binary.

The BCST instruction is a broadcast instruction. It will broadcast the
immediate field as a message with destination ID OxFF as described above.
Also the message is not absorbed but passed on in all directions. The way
that this instruction is assembled is similar to SID since it will only have 2
arguments. The number of tokens designates this instruction as a J Type
and in turn will send the assembler to the BCST conditional. Then the
instruction is assembled with the immediate converted to a binary number
in the target field.

SMSG stands for Send Message and is a little different since it will have
three arguments. This instruction is an immediate type instruction and the
way that this instruction is assembled is the same as the LUI instruction.
First the OP code is generated from the OpFunctionSADecode() function
and then the immediate, RS and RT field indexes are set appropriately.
When it is time to assemble the instruction all of the fields will be valid as
has been shown for all of the other instructions.

SMSGR and BCSTR are register counterparts of SMSG and BCST. This
way it is possible to send a specific byte of a specific register as explained
above. The form of these instructions are immediate type instructions since
the form of these instructions are as so:

smsgr $destination_id, $data, byte_offset
bcstr $data, byte_offset

As can be seen for the BCSTR RS and RT should be the same since
the way that it is decoded by the CPU will only look at one of the two.



3 SOFTWARE 37

The way that these instructions are parsed are by setting their correct types
as I Type in the OpFunctionSADecode() function as well as their correct
op codes as well as correctly setting their field indexes as I Type as well.
Once the assembler is done with decoding the rest of the fields and skipping
or skipping them for BCSTR the instruction is assembled where byte offset
should have already been converted into the immediate field correctly.

Then there are the network side network instructions such as NDJR,
JALNET, and SNIP. These must exclusively be used with a SRI pseudo
instruction which is explained below. Otherwise they must be hand coded
with the BCSTR/SMSGR instructions. JALNET is simple to use since it will
only be one argument always. This instruction is the network equivalent of
JAL except the target is designated by the CPU network memory controller.
When this instruction is encountered assembly consists of simply outputting
a constant binary sequence.

NDJR is a little more involved. It stands for Network Driven Jump
Register or the network equivalent of JR. It is passed along with a register
argument. The assembly of this instruction is the same as JR except with
a different OP code. The last network driven instruction, SNIP, stands for
Set Network Instruction Pointer. This allows a remote CPU to set the in-
struction pointer for the network memory and a point at which to jump to
with JALNET. The argument passed to SNIP is an immediate and SNIP is
dealt with exactly like JAL except with a different OP Code. It is important
to note that when SNIP is used the instruction pointer is set as well as the
instruction write point. However, when instructions are dispatched to other
CPUs the pointer does not change, only the write position. This allows the
JALNET to jump to the beginning of the dispatched instructions rather than
the end of them.

3.2.8 Pseudolnstructions

The Assembler had to support two pseudo instructions. This included the
the SRI pseudo instruction that is heavily used with the network instructions
and the LA instruction that is used by LCC for a variety of things mainly
calculating the effective address. However LA also has other functionality as
producing a pointer to a location of memory where a resource is stored.
The SRI pseudo instruction stands for Set Register Instruction and will
set a register to the value of a specific instruction passed to it. This is very
useful to be used along side with the BCSTR or SMSGR network instructions



3 SOFTWARE 38

as it allows for re usability of code and a less cumbersome method of network
programming. SRI had to be built into the assembler on every level since
the SRI pseudo instruction needed to work for all instructions while at the
same time being it’s own instruction.

The way that this was done was first if the instruction was tokenized to
see that it was an SRI instruction an fSRI integer flag is set to the value
of 2. This flag is used to offset all of the argument values throughout the
assembler. If the instruction is not an SRI instruction then the instruction
is dealt with normally since the flag is zero. Otherwise the flag effectively
shifts the arguments over by two and the instruction passed to the SRI pseudo
instruction is passed through the pipe.

When it comes time for the instruction to be assembled it is seen through
the fSRI flag that this was part of an SRI pseudo instruction. The assembled
instruction is then split up into two pieces and then the destination register
given to the SRI instruction is first reset to zero using an ORI instruction
and then the top half of the instruction is set using a LUI and the lower
half using another ORI instruction. Notice that doing this through pure
code would be cumbersome since the assembler does not provide ways of
passing binary immediates and to otherwise do this the instruction would
need to be assembled by the programmer, converted to hexadecimal, and then
split up. Instead this automation provides a much faster way for network
programming.

The other pseudo instruction is the LA instruction. An LA instruction is
dealt with as a normal type instruction for the most part except it’s instruc-
tion type ins_type is set to P_.TYPE which represents a pseudo instruction.
The LA instruction does not take the SRI into consideration since the LA is
a more LCC regarded instruction rather than a network oriented instruction.
The way that LA differentiates between it’s two modes of operation is two
fold. An LA instruction used a a jump to a resource would have a certain
amount of arguments and so the token count is first used to gauge. If the
LA instruction in fact has three tokens then the third argument is checked
to see if it is a label. In this case it is obvious that the LA instruction is a
resource oriented LA instruction.

In the case that the LA is not a resource oriented instruction the LA
instruction is simply replaced with the ADDI instruction and assembled cor-
rectly. In fact when the LA instruction is decoded the default OP code is
copied into the OP field of the ADDI instruction. If the LA instruction is
found to be a resource oriented instruction it must be replaced with two in-



3 SOFTWARE 39

structions. The first is a JAL instruction to the location where the resource
code snippet is located. This will unpack the data into data memory and set
the assembler temporary register $1 to the location in data memory at which
the resource is being saved. Once the code snippet JRs then the second in-
struction of the resource oriented LA instruction is executed which is a ADD
of the assembler temporary register $1 with $0 set to the destination register
originally specified in the original LA instruction. In this way after the code
snippet is run the compiler can pack in the data as described in the LCC
section into registers and unpack it equally back into the data memory. For
resource strings to work both the assembler and compiler must be working
in unison in this regard.

3.2.9 Conventions

The practice of programming complex programs into a highly parallelized
system was not investigated very thoroughly but the design of simple pro-
grams was enough to demonstrate some of the basic conventions that would
be required to effectively design parallel programs with multiple processors
using this architecture. Some of this was touched upon above with the de-
scription of the SRI pseudo instruction but this is useless without a variety
of APIs that would allow a programmer not only to set a register to an
instruction but also to dispatch that instruction.

It is obvious that for a 32 bit instruction to be dispatched 8 bits at a
time it would require 4 cycles and in turn also 4 instructions. In the system
designed memory was very sparse to having to repeat the same 4 instructions
in the code every time an instruction had to be dispatched would have been
highly inefficient. Instead this was pushed into an the following APIs:

BCST_R:
bcstr $a0,
bcstr $a0,
becstr $a0,
bcstr $a0,
jr $ra

O =, N W

BCST_RR:
sri $t0, bcst 5



3 SOFTWARE 40

# Send MSByte in bcst msg

becstr $t0, 3
bcstr $t0, 2
bcstr $t0, 1
bcstr $a0, 3

# Send Second Byte
bcstr $t0, 3
bcstr $t0, 2
becstr $t0, 1
bcstr $a0, 2

# Send Third Byte

bcstr $t0, 3
becstr $t0, 2
bcstr $t0, 1
bcstr $al, 1

# Send Last Byte

becstr $t0, 3
bcstr $t0, 2
bcstr $t0, 1
bcstr $al0, O
jr $ra

The main differences is that BCST_R will dispatch the instruction to
the CPU to be entered into the instruction memory. On the other hand
BCST_RR will dispatch not the instruction but the code to dispatch the
instruction back. An equivalent API has not yet been developed for the
SMSG since debugging was much simpler using the broadcast instructions
however the difference would be simple since all that would be required is to
pass a specific ID into $al and then use this as the destination ID register
in the SMSG instruction.

So using these APIs is rather straight forward although the development
of programs using the architecture that actually utilize the parallelism may
not be completely obvious. Currently the only real convention that I have
conceived is the situation shown by Figure 12. The idea behind this is the



3 SOFTWARE 41

”Master CPU” convention.

“Master’ |
cPU 2= |

Code to CPUZ
Code to CPU4

CPUs dispatch

Code to CPU3 camgiletion code

which establishes
exchisivity

CPU2 CPRU 3 CPU4

Figure 12: Master CPU NDMA Convention

In this scenario there exists some Master CPU on the network that is the
access point for all of the other CPUs. In this way the user can manipulate
this master cpu with resources such as a keyboard and see the results using
a monitor and the other CPUs are used for reconfigurable purposes. This
model is similar to modern PCs where the main CPU will instead manipulate
other systems through the bus.

The way this would work is that the Master CPU will dispatch code to
each of the CPUs sequentially using the SMSG/BCST _R API. The SMSG/BCST_R
function call is designated for code that will then run on the target CPU.
Once all of the _R code has been dispatched for all of the CPUs the _RR code
is dispatched. This is code that will then run on the Master CPU. This code
will usually consist of an infinite loop. The convention now is that when a
CPU is done with it’s dispatched _R code it will then execute the _RR code
which will load up that CPU’s completion loop in the Master CPU. The basic
idea of this is shown in Figure 13.

It is important to make sure that the _RR code must not be running on
multiple CPUs and the easiest way is to use dedicated registers which can be
decided by the Master CPU to check for individual CPU completion. In this
way completion order will be maintained. This should not affect parallelism
if used correctly. In fact a dedicated register can be used that will act like a
mutex.

Once the target CPU is done dispatching it’s completion loop to the
Master then the target will dispatch a JALNET and the Master will then



3 SOFTWARE 42

Master CPU

—| Main Code

Complefion Wait
Leap

Main Code

CRu2

T Complation Loop

CPLU3

[ Completion Loop
CPLU4

Completion Loop

VA,

cPU 2 CPU3 CPU 4

Resource CPU Resource CPL Resource CPU
Loop Loop Loop

e Dispatch Code = Dispatch Code

Lae! Complation code —| L ! Completion code —| Ll Completion code —‘

Figure 13: Master CPU NDMA Code Convention

v

Dispatch Code

enter that conditional loop. This conditional loop can be used to exit back
to the Master code based on other CPU’s completion based on dedicated
registers or it can be another infinite loop which requires the completion of
a different CPU to let it exit. Eventually all the CPUs will complete their
dispatch code and will then dispatch back their completion loops. These
loops will execute and a conditional in them will trigger to let the Master
CPU return to the code directly after the original infinite loop letting normal
operation resume.

Note that this is only one specific way to utilize the Master CPU conven-
tion. It is also possible not to send completion checks and allow the CPUs
to continuously run or to have the Master create other Masters and so on.
This model seemed to be one of the simplest ones to use that could in turn
be aggregated to produce more complex results.

3.3 NDMA Bootloader

The bootloader will take a file from the assembler in the form of a .mem file
and will boat load the CPU with it. The program needs no configuration since



3 SOFTWARE 43

the baud rate of the RS232 module on the FPGA design and the program
match at 115200. However, if the computer does not support this baud rate
for some reason it is easily changed in the program and in the Verilog.

The program simply runs through the file and spits out the location and
instruction on and verifies the receive from the CPU. In the case that the
receive does not match the program will return the two mismatches, and quit.
This will leave the CPU in a state where it must be restarted disallowing for
strange behavior. When the program reaches the final instruction in the file
it will repeat it a few times (which may not be wanted but is useful for the
usual break or jr $31 instructions) and then send a OxFFFFFFFF as the PC
and wait for the reply. The reply will then confirm that the CPU has finished
the boot loading process and received all of the data correctly.

3.3.1 Usage

To run this program copy it into the directory of the assembler or the .mem
file the assembler is outputting and then run it as such:

> NDMABootloader COM# filename.mem

COM# would be the com number and used such as COM4 for the COM4
port. The filename is the name of the file you would like to bootload.

3.4 NDMA Merge

NDMA Merge is a very simple program that will parse through two assembly
files and splice them together. Its a quick and dirty program which opens
each file with the standard input and output library as well as creates a
new file called ndmamerge.asm. The ndmamerge.asm file is a temporary file
and should be dealt with as such. It is the step between the compilation to
assembly code and the assembling and linking of the code.

The way that NDMA Merge will work is that it will copy in instructions
from the first file until it reaches the .BOOT directive. Since between the
.BOOT directive and the label to which the .BOOT directive points the
location of the memory does not matter since it should be referenced with
labels anyways the merge program at this point splices in the other asm file.
The second asm file is usually by convention some form of API. Once the
end of the file is found the rest of the first file is copied into the file and the
program exits.



4 RESULTS AND ANALYSIS 44

This will guarantee that the output of the NDMA Merge program will
have the structure as shown below:

.SetStack 255
.Boot main

. API Code ...

. Other Code ...
main:

. main code ...
jr $ra
.program_end

3.5 NDMA Suite

The NDMA Suite is the combination of the NDMA LCC Backend Compiler,
NDMA Merge, the NDMA Assembler / Linker, and the NDMA Bootloader.
The way that these programs are combined is through the use of a script
called NDMA Make (ndmamake.bat). This is a DOS Shell script file and can
be easily ported to another platform. It simply steps through the process of
making a file from compilation to bootload returning an error at each point
in the case of failure.

3.5.1 Usage

Usage: ndmamake file.c api.asm COM#

This will compile file.c into a asm file with the RCC compiler and then splice
Example:

ndmamake filename.c api.asm COM3 \r

4 Results and Analysis

It is important to note here at the below results and analyses are the results
demonstrated on the FPGA rather than on the behavioral simulation models
of Verilog. The design was rather complex with multiple clock domains and
self timed regions. This meant that although the behavioral models worked
and were tested completely that when they were implemented in the actual
FPGA a fair amount of issues arose usually dealing with the borders between
the domains.



4 RESULTS AND ANALYSIS 45

This is to say that the project was fully tested in Verilog simulation before
it was moved to the FPGA. In that sense it was working and results validated.
In simulation everything worked and validated the design. However, a few
design choices could not be synthesized and made for a difficult transition to
the FPGA since they had to be redone.

4.1 NDMA System Single Core

In this section we will describe the results of the single core system operating
on its own using all of the tools provided by the NDMA Suite with no real
multiprocessing power. The system designed for this section is shown in the
Figure 14.

The results of this were very good and it is possible to write a program in
ANSI compatible C, run it through the NDMA Suite and have the program
run correctly on the CPU. The CPU had to be clocked slower due to timing
issues that arose due to fanning out the clock to the GPU’s PLL. Currently
the CPU is clocked at 3 MHz although faster speeds are likely possible. This
was not very well explored but the method that was used was using a counter
that would flip every so many counts thusly isolating the CPU’s clock from
the master clock. This worked well using the 27 MHz clock and counting to
9. This allowed for a 3 MHz clock but likely could be sped up as long as all
the timing issues are dealt with correctly.

Using the Bootloader it was possible to boot load a program with 521
lines of assembly in 42 seconds. This speed is also dependent on the computer
running it however since the Bootloader program was written using Microsoft
code. This is about a 2Kb program and since the boot loader does such a large
amount of error checking it is expected to go at this slow rate. However, this
is not a terrible speed either since the boot loader was purposefully slowed
down to ensure correct operation and if to ever be more polished could likely
be sped up much more.

The program used to fully test the single core system is shown in Ap-
pendix B. This program is a basic PONG game which ties in all of the
functionality together. Although it does not test the APU it does tie in the
PS2 input buffer with the GPU and is a sufficiently complex program using
multiple string resources. Figures 15, 16, and 17 show a few of the screen
captures demonstrating a win and loss situation. The game is operated by
pressing j/m for up and down for the right player and a/z for up and down
for the left player.



4 RESULTS AND ANALYSIS

Frogram Code

*n-__./‘l”"'

LCC-Coenpllas
MDA, Eackend

MDA Spachic
AssEmoly

KO#LA Assembier
Linker

Boolicaser

FTOCELS
CERERIT
FPGA Side
Ftroction SoEau:
MeEmany
Diata Marnery L el FEZINOUL Bt |g PEZ Kaynaard
[
- BAL o wGAmerar

Figure 14: Single Core System Implemented

46



4 RESULTS AND ANALYSIS 47

Figure 15: PONG game test program screen captures: Start of Game

Figure 16: PONG game test program screen captures: You Win!



4 RESULTS AND ANALYSIS 48

Figure 17: PONG game test program screen captures: You Lose!

Overall this portion of the project was exceedingly successful and would
be a great base for future development to make into a complete open system
for system on chip development. It would be possible for others to integrate
new instructions, build on the current design, integrate new design elements
and further polish the system.

4.1.1 Open Issues

With such a large system it is inevitable to have bugs in the system that
cannot be identified at first glance or during development. This project
consisted of mainly development and hard as I tried to integrate validation
into my development cycles I cannot guarantee that there are no bugs in the
system. Of these bugs I only know of one. This is a strange bug that occurs
with resource strings of length greater than 16 characters. This is surely an
LCC back-end bug and came out late in development. At the time it was
not worth it to fix since it seemed to be a rather deep bug that would require
a large cost to fix. This is noted here so that if it is ever noticed it will
be known that this bug exists in the LCC backend and is not a timing or
architecture issue as well as not an assembler/linker issue either.

There are likely many other bugs as well that I have not discovered but
the one above is the only one that I have experienced. As said before this
system was not very well validated and I would think that it would require
a few months of purely validation with a second development cycle and one



4 RESULTS AND ANALYSIS 49

more validation cycle to truly be water tight. Also a large amount of code
could easily be re factored in the assembler/linker. When implementing the
SRI pseudo instruction it had to be quick since not much time was left and
while most of this project attempts to be as object oriented and reusable as
possible this is an academic project with certain resource and time constraints
which made the decision to make occasional bad design choices OK since it
did not affect speed and functionality. With that said the code at these
points is very ugly and not readable and would obscure aforementioned bugs
so there is a good interest in eventually cleaning up this code.

4.2 NDMA Multi-core and Network Layer

To correctly implement multicore systems using NDMA each core must be
given a unique ID set by a ROM. This ROM should have the following format
as was used in all of the systems described below:

sid ID
nop
nop
j1

The first test to see that a multi-core system was operating on the FPGA
was to simply put two cores onto the FPGA with their own memories and
let them run side by side with no networking at all. To test this the switches
on the DE2 board were used to switch the hexadecimal display to show
the instruction running on the different CPUs as well as using the LEDs to
display the program counter. This seemed to work fine so the Master CPU
convention was used where one CPU was wired up to all of the IO hardware
while the other one was left floating and networked to the first CPU.

The next test also tested all of the multi-core and network layer function-
ality other than the message passing algorithm and the register-thru design.
This consisted of having the Master CPU dispatch a SNIP and JALNET in-
struction to the other CPU and seeing that the other CPU in fact does jump
to the location in memory. This was done successfully and it was demon-
strated by different SNIP locations in memory where it could be seen that
both SNIP and JALNET were working. This only showed the functionality
of the network side instructions for the second CPU so the next test was to
dispatch the following code.



4 RESULTS AND ANALYSIS 50

snip
nop
nop
nop
break
jalnet

The second CPU was then observed to make sure that it reaches the
BREAK which it would not unless it enters the network dispatch code. This
was also done successfully and demonstrated that it was possible to dispatch
and run code on other CPUs using the Master CPU model.

The final test of the two core system was the design of a simple parallel
program. This program is compromised of three different operation states:
dispatch, execution, and completion. The code resides completely in the boot
image of the Master CPU and it is to be noticed that the loop code on the
overall is going to be run more than the amount of effort required to dispatch
the code. The loop is as concise as possible since the shorter the dispatch
code the less instructions required to dispatch it.

This simple program dispatches a counting loop to the CPU which then
counts to 170. Once dispatch is complete the Master CPU enters a wait loop
while the other CPU is executing the code. This is the execution phase of
the program. Once the CPU completes it’s loop it will in turn dispatch back
it’s completion loop. This is a conditional loop that will check a register for
the correct value (170) and let the Master CPU return to it’s point after the
wait loop. The Master code is shown below:

sid 1

nop

# Dispatch Code:

# ori $t0, $0, O

# ori $t1, $0, 170
# addi $t0, $t0, 1
# bne $t0, $t1, -2
# bcst: snip 511

# bcst: j complete
# bcst: jalnet

# break

sri $a0, snip 42



4 RESULTS AND ANALYSIS

jal
sri
jal
sri
jal
sri
jal
sri
jal
sri
jal
sri
jal
sri
jal
sri
jal
sri
jal

BCST_R

$a0, ori $t0, $0, O
BCST_R

$a0, ori $t1, $0, 170
BCST_R

$a0, addi $t0, $t0, 1
BCST_R

$a0, bne $t0, $t1, -2
BCST_R

$a0, snip 511

BCST_RR

$a0, j complete
BCST_RR

$a0, jalnet

BCST_RR

$a0, break

BCST_R

$a0, jalnet

BCST_R

complete:

ori
ori
ori
jal

$a0, $0, 55
$a1, $0, 55
$a2, $0, xFF
plotpixel

break

51

Note that the BCST_RR instructions set will make the Master CPU jump
to a label that the assembler knows about. This is an assembler trick that in
the future may be able to be extended to a deeper degree than used here but
for the time being this demonstrates the ability of this system to respond.
Broadcasts are used here simply because there exist two cores on the network
so IDs are not important.

After a good amount of debugging this program was successfully run and
a pixel plotted on the screen. Since the only way that the Master CPU can
reach the complete label is through the dispatched instructions this shows
that network code was running on both machines. To take a closer look at



4 RESULTS AND ANALYSIS 52

the exact utility of this code we see that the BCST_R function including
the SRI and jump requires a total of 8 instructions each and the BCST_RR
requires 20 instructions. The BCST_R is called 6 times and the BCST R is
called 3 times for a total of 108 cycles. The dispatched loop will run 170
times and average 3 instructions for each loop so we get remote operation
of 510 cycles. This means that we may have 402 cycles on the Master CPU
to do something else in parallel. This program effectively demonstrates the
advantages of this kind of parallel system.

Finally this program was also tested using the multicore test program
shown below. The API is omitted for clarity but here we can see that mes-
sages are being passed back and forth between both CPUs and the IDs are
also being used. Since the broadcast and the send message instructions are
very similar in structure this only required some polishing of the APIs to
allow easy access. Notice that the destination ID is always in $a0 even if we
are calling a SMSG_RR. This is helpful since we do not need to waste in-
structions setting up the destination IDs although we still have the flexibility
of providing different destination IDs for both target and return allowing us
to dispatch code that will then be dispatched to a different CPU.

main:

sid 1

nop

ori $a0, $0, 2

sri $al, snip 42

jal SMSG_R

sri $al, ori $t0, $0, O
jal SMSG_R

sri $al, ori $ti1, $0, 170
jal SMSG_R

sri $al, addi $t0, $t0, 1
jal SMSG_R

sri $al, bne $t0, $t1, -2
jal SMSG_R

ori $al, $0, 1

sri $a2, snip 200

jal SMSG_RR

sri $a2, j complete

jal SMSG_RR



4 RESULTS AND ANALYSIS

sri $a2, jalnet
jal SMSG_RR

sri $al, break
jal SMSG_R

sri $al, jalnet
jal SMSG_R
wait:

nop

j wait
complete:

ori $a0, $0, 55
ori $al, $0, 55
ori $a2, $0, xFF
jal plotpixel
break

93

The only thing to remember about this is that the ID of the other CPUs
must be initialized in their start up ROM which consists of a SID instruction
a few NOPs and a jump instruction. Essentially the same wait loop that we

see occurring in the Master code.

Master CPLU (1)

sBO1

l

nBOG

CPUG

F—eB O —- B2

CPU 2 CRUS
|—w B2 — L ——WBO5——

‘ | ‘
sBO2 nBO3 sBDS5 nB04

ity B B i BO3

CPU 3 CPU 4
B3 —— h—— B 04—

Figure 18: 6 Core System

The last thing to test was the message passing algorithm. This was
verified in the system designed shown in Figure 18. The program was the
same as the program above in the Master CPU example with two cores.
However the messages were routed through intermediate nodes as well. The



5 CONCLUSION 54

master CPU(1) would send to CPU 4 across the network. It was then seen
that CPU 4 would hit the completion of the program as well as that the
Master CPU would then reach the break instruction as well and a pixel
was seen on the screen meaning that the whole system worked correctly.
This means that the system worked 100% all the while utilizing the message
passing algorithm on the FPGA.

The network optimization component was disabled for these tests since
there was no way to verify it and it would cause some bugs during boot load.
However I felt that the simulation results of the network optimizations were
validation enough to prove the concept behind this project and given another
small period of time it could easily be verified on the FPGA as well.

On a whole I think that I verified and validated all sections of the design.
The only thing not fully implemented in hardware was the message queue
for the network layer. It was realized in the simulations that if there exist
two message waves on the network at a given time the intersection of these
message crests will result in strange behavior. Considering the self-timed
nature of the network layer it would not be a very desirable interference. I
thought it would not be necessary to implement this message queue since
the system could be proven without it and only using one message at a time
since I never wrote any "recursive” programs that would utilize a deeper
convention than the Master CPU method. However, it would be rather
simple to integrate a message queue into each bus of the network layer with
minimal complexity.

5 Conclusion

On the whole I believe that I succeeded at achieving the overall goal of this
project as well as a few others. I managed to develop a complete computer
system all the way from the architecture to the software. Although this
was never implemented in layout it was implemented on an FPGA which
proved that the design was validated both in behavior and timing analyses.
Also I succeeded at designing a scalable multiprocessor architecture which
uses a new approach to multiprocessing as well as a new style of network
which is capable of self optimization over time. Although it has been a
time issue to fully validate all of the results of this project it can be clearly
seen that it successfully showed the viability of these new approaches and
demonstrated their correct functionality and advantages. Whether or not



6 ACKNOWLEDGMENTS 55

this design may be applicable for larger applications is not clear but given a
larger resource base and investment of time this project can provide a new
insight to multiprocessor architectures and their networking structures.

I would like to mention a few notes here about future work for this project.
In the above report I make mention of a good amount of improvements and
future work that could be done to make the system run better as whole. Also,
however, it would be possible to design network nodes that are not connected
to CPUs and design more complex network designs for a multicore system.
It would be great to see more work done on this project and I aim to continue
exploring these concepts in the future.

6 Acknowledgments

I would like to acknowledge a few sources for this project. First of all I would
like to credit Altera and Terasic for producing the Cyclone II FPGA and DE2
board respectively. I would like to thank Cornell University for giving me
the facilities and the resources to work on this project. I would like to thank
my Advisor and Professor Bruce Land for his continued support of me and
my project and for his great advice throughout my Cornell career. I would
also like to acknowledge Chris Fraser and Dave Hanson for providing support
regarding general LCC issues. I would also like to dedicate this work to my
grandparents whom were forced to experience the worst and persevered so
that my family could pursue happiness.

7 Appendix A: Visual Nodes, Project Simu-
lation

This master’s project consisted of three semesters. The first semester was
worth 2 credits while the second two worth 4 each for a total of 10 credits.
In the first semester I wanted to make sure that the design would work when
developed so that half way through development it would be seen that there
is no light at the end of the tunnel. One of the things I did was design a
simulation of the nodal network in C++ and demonstrate how messages can
be propagated through the network with a wave like nature. Screen shots of
this program are shown above in the section dealing with message passing
(Section 2.2.1). However it is not obvious that the design of this program



7 APPENDIX A: VISUAL NODES, PROJECT SIMULATION 56

was largely complex as well implementing what ended up being a quadruple-
linked list data structure and then displayed using an OpenGL framework.

7.1 Quad-List

The quad-list data structure is created using a pair of classes. The cpuNet
class creates the actual data structure while the cpuNode class provides the
actual functionality of the node such as sending, receiving, and passing mes-
sages. Since this is a quad list where each node has a pointer to the top,
bottom, left, and right nodes respective to it the creation of the structure is
non-trivial. In fact, while if one was to create a normal linked list of length
N the efficiency would be O(n) but the quad-list has an efficiency of O(n?).

This is because the nodes can only be created in a sequential way and it
would be impossible to link nodes that have not yet been created. The only
way then to create the data structure is to sequentially create the nodes and
link the top and left node since the creation follows the arbitrary convention
that the list is created top to bottom and left to right. Then once the list has
been created we go back to the top left node of the list and parse through
the list now completing the bottom and right node links.

The other purpose the cpuNet class has is also to render the list which
will parse through the quad-list with efficiency O(n) since it is now viewed
as a sequential list. It will then will set the node’s color based on it’s internal
state and then call the node’s render function. Also the cpuNet class has
the very important task of updating the list. This will parse through the list
and "fire” each node. This function will call the cpuNode function for that
node and based on the state of it’s internal message queue it will either send
messages to other CPUs or not. Only after all nodes have been fired does this
function change the state of the node so that we do not have the whole net
sequentially fire. This parallelism is enforced through an ALTERED state
which designates that the node has been updated during this cycle.

The cpuNet class also has functions to get nodes and remove nodes. These
functions are very useful for the purpose of grabbing a node and sending a
message out of it. This is exactly what is happening in the InitGL() function
in the top-level visualNodes.cpp. First the network is being created with a
certain dimension. This dimension is one dimensional so the actual number
of nodes the square of this number. Then we use the getNode() functions
to grab a few nodes and then send messages out on them with destination
IDs and colors representing different data to demonstrate how overlapping



8 APPENDIX B: NDMA TEST PROGRAMS o7

message wave crests are preserved.

The network is rendered during the DrawGLScene() function which should
be called every time through the main program loop. However the up-
dateNet() function is only called in two situations. If the user presses the 'n’
key then the network is updated one time. The other option is if the user
presses 'F2’ then a flag is flipped allowing an update every delay period.

The rest of the functionality lies within the cpuNode class. This class
enables the actual message passing functionality. The first thing that is done
is sendMsg() is called with a destination ID and ”data”. This overloaded
function will then send out the message in all directions. Then at the next
time that updateNet() is called the nodes with the message will run the
q-fireNode() function which will then run through the states and resolve the
ALTERED states. It will check to see if this node is the destination of the
message if not it will call sendMsg() with the message which then implements
the message passing algorithm so that fireNode() is blind to the algorithm. It
will create a state machine for resolved messages so that they do not respond
immediately but wait a few time steps. All of the message manipulation is
done through a queue owned by the cpuNode so that this may happen for
nodes with multiple intersecting messages.

8 Appendix B: NDMA Test Programs

This example NDMA Test Program was designed to truly test all facets of
the functionality of the single core system. This is a simple implementation
of the game PONG in which the keys ’a’; and 'z’ on the PS2 keyboard will
move the left pong paddle up and down respectively where ’j” and 'm’ will do
the same for the right paddle. This program really gives the system a through
test since it requires every possible branch condition, a large amount of non-
blocking input from the keyboard as well as string oriented functionality.

/* Fourth NDMA test program

Build Instructions
rcc -target=ndma/ndma0S ndmaTesté4.c

Note: LCC doesn’t handle single line comments apparently

* ¥ X X X *



8 APPENDIX B: NDMA TEST PROGRAMS

* PONG!
*

*/

void plotpixel(int x, int y, char color);

void drawchar(int x, int y, char c, char color);

void drawline(int x1, int y1, int x2, int y2, char color);
char getchar();

int waitchar();

void main(void)

{
char Lose[] = "You Lose!";
int cLose = 9;
char Win[] = "You Win!";
int cWin = 8;
int 1 = 0;

int playerl_y = 200;
int playerl_inc = 0;
int playerl_pts = 0;
int player2_y = 200;
int player2_inc = O;
int player2_pts = O;

char c;

int ball_x = 250;
int ball_y = 200;
int ball_xi = 1;
int ball_yi = 1;
int k = 0;

int fDone = 0;

drawchar (31, 440, playerl_pts + ’0’, (char)OxFF);
drawchar (591, 440, player2_pts + ’0’, (char)OxFF);



8 APPENDIX B: NDMA TEST PROGRAMS 59

while (fDone == 0)

{
if (waitchar() == 1)
{
c = getchar();
if(c == ’a’) playerl_inc--;
else if(c == ’z’) playerl_inc++;
if(c == ’j’) player2_inc--;
else if(c == ’m’) player2_inc++;
}

/* Draw paddles */
for(i = 0; i < 21; i++ ) plotpixel(30, playerl_y + (i - 10), (char)OxFE
for(i 0; i < 21; i++ ) plotpixel(590, player2_y + (i - 10), (char)OxE

/* Draw Ball x/

plotpixel(ball_x, ball_y, (char)OxFF);
plotpixel(ball_x+1, ball_y, (char)OxFF);
plotpixel(ball_x, ball_y+1, (char)OxFF);
plotpixel(ball_x+1, ball_y+1, (char)OxFF);

for(k=0; k<5000; k++);

plotpixel(ball_x, ball_y, (char)0x00);
plotpixel(ball_x+1, ball_y, (char)O0x00);
plotpixel(ball_x, ball_y+1, (char)O0x00);
plotpixel(ball_x+1, ball_y+1, (char)0x00);
if (playerl_inc != 0)
for(i = 0; 1 < 21; i++ )
plotpixel(30, playerli_y + (i - 10), (char)0x00);
if (player2_inc != 0)
for(i = 0; i < 21; i++ )
plotpixel (590, player2_y + (i - 10), (char)0x00);

/* update ball  */
ball_x += ball_xi;
ball_y += ball_yi;
playerl_y += playerl_inc;



8 APPENDIX B: NDMA TEST PROGRAMS 60

player2_y += player2_inc;

if(ball_x == 30)

{
if(ball_y < playerl_y + 10 && ball_y > playerl_y - 10) ball_xi
}
else if(ball_x == 590)
{
if(ball_y < player2_y + 10 && ball_y > player2_y - 10) ball_xi
+
else if(ball_x == 600)
{
drawchar (31, 440, playerl_pts + ’0’, (char)0x00);
ball_x = 250;
playerl_pts++;
drawchar (31, 440, playerl_pts + ’0’, (char)OxFF);
if (playerl_pts == 9) fDone = 1;
}
else if(ball_x == 10)
{
drawchar (591, 440, player2_pts + ’0’, (char)O0x00);
ball_x = 250;
player2_pts++;
drawchar (591, 440, player2_pts + ’0’, (char)OxFF);
if (player2_pts == 9) fDone = 2;
+
if(ball_y > 440 || ball_y < 20)
{
if(ball_yi == 1) ball_yi = -1;
else ball_yi = 1;
ball_y += ball_yi;
+
}
if (fDone == 2)
{

/* You Lose */
for(i = 0; i < close; i++)



8 APPENDIX B: NDMA TEST PROGRAMS 61

{
drawchar(300 + (i << 3), 200, Losel[i], (char)OxFF);
}
+
else if(fDone == 1)
{
/* You win */
for(i = 0; i < cWin; i++)
{
drawchar(100 + (i << 3), 200, Win[i], (char)OxFF);
}
}

This example Master CPU NDMA program was used to test both the two
and six core NDMA systems. It integrates the GPU and also demonstrates
the message passing functionality of the system. This also shows the GPU

and PS2 API as well as the NDMA API.

.SetStack 1023

.Boot main

# GPUAPI.asm defines the different functions for manipulation of the
GPU interface through the in/out interface on the NDMA CPU

=

NOTE: Connection to the GPU interface will be through one register input port
and one register output port with the following conventions:

Input

Bit O : Complete Flag

Output
Bit 15-0 : Instruction
Bit 16 : Valid Flag

H OH H H OH H HH

# PlotPixel (ppix)
# X - $a0

#Y - $al

# Color - $a2
plotpixel:



8 APPENDIX B: NDMA TEST PROGRAMS

addi $t0, $0, xO

add $t1, $t0, $a0
lui $t2, 1

add $t1, $t1, $t2
out $5, $t1

ppix_while_x:
in $t2, $1
beq $t2, $0, ppix_while_x

out $5, $0

addi $t0, $0, x0400
add $t1, $t0, $al
lui $t2, 1

add $t1, $t1, $t2
out $5, $t1

ppix_while_y:
in $t2, $1
beq $t2, $0, ppix_while_y

out $5, $0

addi $t0, $0, x1C00
add $t1, $t0, $a2
lui $t2, 1

add $t1, $t1, $t2
out $5, $t1

ppix_while_pixel:

in $t2, $1
beq $t2, $0, ppix_while_pixel
jr $ra

# Draw Char (dchar)
# X - $a0
#Y - $al

62



8 APPENDIX B: NDMA TEST PROGRAMS

# Char - $a2
# Color - $a3
drawchar:

addi $t0, $0, x0
add $t1, $t0, $a0
lui $t2, 1
add $t1, $t1, $t2
out $5, $t1

dchar_while_x:
in $t2, $1
beq $t2, $0, dchar_while_x

out $5, $0

addi $t0, $0, x0400
add $t1, $t0, $al
lui $t2, 1

add $t1, $t1, $t2
out $5, $t1

dchar_while_y:
in $t2, $1
beq $t2, $0, dchar_while_y

out $5, $0

addi $t0, $0, x1000
add $t1, $t0, $a2
lui $t2, 1

add $t1, $t1, $t2
out $5, $t1

dchar_while_char:
in $t2, $1
beq $t2, $0, dchar_while_char

out $5, $0

63



8 APPENDIX B: NDMA TEST PROGRAMS

addi $t0, $0, x1400
add $t1, $t0, $a3
lui $t2, 1

add $t1, $t1, $t2
out $5, $t1

dchar_while_draw:

in $t2, $1
beq $t2, $0, dchar_while_draw
jr $ra

# Wait Char (waitchar)

# Returns 1 if char is waiting
# return O if not result in $vO
waitchar:

in $vO0, $2

srl $v0, $vO, 9

xori $vO, $vO, 1

jr $ra

# Get Char (getchar)

# Waits until character written to PS2 Buffer

# then saves it into $vO0 ($2)
# *char - $a0

getchar:

in $t1, $2

srl $t1, $t1, 9

bne $t1, $0, getchar

outi $6, 1

gchar_complete:

in $t1, $2

srl $t1, $t1, 8

andi $t1, $t1, 1

beq $t1, $0, gchar_complete

64



8 APPENDIX B: NDMA TEST PROGRAMS 65

in $v0, $2
andi $v0, $vO, xFF

out $6, $0
jr $ra

# Network Driven API

# Implements quick function calls for bcstr and smsgr
# input instruction to be set is in $a0 which should
# be initialized with the sri pseudo instruction

# Broadcast Register
BCST_R:

bcstr $a0,
bcstr $a0,
bcstr $a0,
becstr $a0,
jr $ra

O = N W

# Broadcast Register Register

# This broadcasts a broadcast from the destination

# CPU ID which will then in turn broadcast the instruction
# in $a0

# Instruction to send in $a0

BCST_RR:

sri $t0, bcst O

# Send MSByte in bcst msg

bcstr $t0, 3
becstr $t0, 2
bcstr $t0, 1
bcstr $ald, 3

# Send Second Byte
becstr $t0, 3
bcstr $t0, 2
becstr $t0, 1



8 APPENDIX B: NDMA TEST PROGRAMS

bcstr $ald, 2

# Send Third Byte
bcstr $t0, 3
becstr $t0, 2
bcstr $t0, 1
bcstr $al, 1

# Send Last Byte
becstr $t0, 3
bcstr $t0, 2
becstr $t0, 1
bcstr $al0, O

jr $ra

# Send Message Register
# Destination ID - $a0

# Register to send - $al
SMSG_R:

smsgr $a0, $al, 3

smsgr $a0, $al, 2

smsgr $a0, $al, 1

smsgr $a0, $al, O

jr $ra

# Send Message Register Register
# Target Destination ID in $a0

# Final Destination ID in $al

# Instruction to send in $a2
SMSG_RR:

sri $t0, smsg $al, O

# Send MSByte in bcst msg
smsgr $a0, $tO,
smsgr $a0, $tO,
smsgr $a0, $tO,
smsgr $a0, $a2,

wWw =, N W

66



8 APPENDIX B: NDMA TEST PROGRAMS

# Send Second Byte
smsgr $a0, $t0, 3
smsgr $a0, $t0, 2
smsgr $a0, $t0, 1
smsgr $a0, $a2, 2

# Send Third Byte
smsgr $al0, $t0, 3
smsgr $a0, $tO,
smsgr $a0, $tO,
smsgr $a0, $a2,

S )

# Send Last Byte
smsgr $a0, $tO,
smsgr $a0, $tO,
smsgr $a0, $tO,
smsgr $a0, $a2,
jr $ra

O = N W

main:

sid 1

nop

# Dispatch Code:

# ori $t0, $0, O

# ori $t1, $0, 170
# addi $t0, $t0, 1
# bne $t0, $t1, -2
# bcst: snip 511

# bcst: j complete
# bcst: jalnet

# break

ori $a0, $0, 4
sri $al, snip 42
jal SMSG_R

sri $al, ori $t0, $0, O
jal SMSG_R



8 APPENDIX B: NDMA TEST PROGRAMS

sri
jal
sri
jal

sri
jal

ori
sri
jal

sri
jal
sri
jal
sri

jal

sri
jal

$al, ori $t1, $0, 170
SMSG_R

$al, addi $t0, $t0, 1
SMSG_R

$al, bne $t0, $t1, -2
SMSG_R

$a1, $0, 1
$a2, snip 200
SMSG_RR

$a2, j complete
SMSG_RR

$a2, jalnet
SMSG_RR

$al, break
SMSG_R

$al, jalnet
SMSG_R

# wait loop
wait:

nop

j wait

complete:
# plot a pixel

ori
ori
ori
jal

$a0, $0, 55
$al, $0, 55
$a2, $0, xFF
plotpixel

68



9 APPENDIX C: NDMA ISA

break

9 Appendix C: NDMA ISA

Instruction Description Instruction Status
Memory Operations
lw Load Word yes
lh Load half word yes
lhu Load half word unsigned yes
Ib Load byte yes
Ibu Load byte unsigned yes
SW Store word yes
sh Store half word yes
sb Store byte yes

Table 1: NDMA Instruction Set Supported Memory Instructions

Immediate Ops
addi Add immediate yes
addiu Add immediate unsigned yes
lui Load upper immediate yes
slti Set less than immediate yes
sltiu | Set less than immediate unsigned | yes
andi And immediate yes
xori Exclusive OR immediate yes
ori OR immediate yes

Table 2: NDMA Instruction Set Supported Immediate Instructions



9 APPENDIX C: NDMA ISA

Network Instructions

smsg Send message to CPU yes
smsgr | Send Register Message to CPU | yes
best Broadcast Message yes
bestr Broadcast Register Message yes
jalnet Jump to network pointer yes

snip | Set Network Instruction Pointer | yes
ndjr Network Driven Jump Register | yes
rmsg Receive message from CPU no
sid Set processor 1D yes

Table 3: NDMA Instruction Set Supported Network Instructions

Register Instructions
add Register add yes
addu Unsigned register add yes
sub Register subtract yes
subu Unsigned register subtract yes
and Register AND yes
or Register OR yes
XOr Register XOR yes
slt Register set less than yes
sltu | Unsigned register set less than | yes
sll Shift left logical yes
srl Shift right logical yes
sra Shift right arithmetic yes

Table 4: NDMA Instruction Set Supported Register Instructions



9 APPENDIX C: NDMA ISA

Branch Instructions

bne
beq
bgtz
bgez
bltz
blez
J

jal
jr

Table 5: NDMA Instruction Set Supported Branch Instructions

Table 6: NDMA Instruction Set Supported In/Out Instructions

Branch on not equal yes

Branch on equal yes

Branch on greater than zero yes
Branch on greater than or equal to zero | yes
Branch on less than zero yes
Branch on less than or equal to zero | yes
Jump yes

Jump and link yes

Jump to register yes

| In / Out Instructions |

in Read input from port yes
outi | Output immediate to port | yes
out Output register to port yes

Mult/Div/Mod

mult
multu
div
divu
mod

Register multiply
Unsigned register multiply
Register divide
Unsigned register divide
Register modulus

yes, but disabled
yes, but disabled
yes, but disabled
yes, but disabled
yes, but disabled

71

Table 7: NDMA Instruction Set Supported Mult/Div/Mod Instructions



10 APPENDIX D: INDEX OF FIGURES 72

‘ Control Operations ‘
nop No Operation yes
break | Temporary Break | yes

Table 8: NDMA Instruction Set Supported Control Instructions

10 Appendix D: Index of Figures

List of Figures

1 Network Driven Microprocessor Architecture Datapath . . . . 8
2 Network Layer Architecture Overview . . . . . . . .. ... .. 10
3 Message Composition . . . . . . . .. .. ... 11
4 Message Passing Algorithm . . . . . ... ... ... .. ... 11
5 CPU Nodal Network at Initial State. . . . . . . ... ... .. 12
6 Message crests formed after two nodes send out a message to

an unknown ID on the network . . . .. .. .. ... ... .. 13
7 The messages are received by the correct CPU nodes on the

network . . . ... 14
8 Message replied to original sender with same data . . . . . . . 15
9 Register-Thru Design Implementation . . . . . . . . . ... .. 16
10 Adaptive network command line simulation . . . . . .. ... 17
11 Network side system operation and communication . . . . . . 19
12 Master CPU NDMA Convention . . . . . . .. ... ... ... 41
13 Master CPU NDMA Code Convention . . . .. .. ... ... 42
14  Single Core System Implemented . . . . ... ... ... ... 46
15 PONG game test program screen captures: Start of Game . . 47
16 PONG game test program screen captures: You Win! . . . . . 47
17  PONG game test program screen captures: You Lose! . . . . . 48
18 6 Core System . . . . . . ... 53

11 Appendix E: Project Facts and Statistics

This project was done in a year and a half through the Masters of Engineering
program at Cornell University. This section is a quick little interesting piece
of information regarding my experience working on this project.



11 APPENDIX E: PROJECT FACTS AND STATISTICS

Number of Semesters: 3
Total Number of Academic Project Credits: 10

Total Number of Lines of Code: 13500
Verilog: ~7500
C/C++: ~6264

Number of Computer Malfunctions / Crashes Requiring a new
install of Windows or a new computer: 4

Number of States Project Was Worked On In: 4

73



