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Abstract

The goal of the project was to design a low-cost digital oscilloscope targeted at students, hobby-
ists, and researchers. The requirements of the oscilloscope were three-fold: 1) cost less than $100,
2) capture frequencies over the range 20Hz–20kHz, and 3) constructable with a basic soldering
iron and limited soldering skills. The primary parts of the oscilloscope are two Atmel ATmega644
microcontrollers, an Analog Device AD7825 ADC, and an NTSC television. One of the microcon-
trollers is used to generate an NTSC television signal, and the other is responsible for acquiring
and processing samples from the ADC.

The oscilloscope implements many of the same operations as a commercial oscilloscope. The
user can start/stop the display, arm a single sequence, adjust the time division, adjust the voltage
division, and adjust the trigger value. When the display is stopped, the user can also control a
cursor which has time and voltage readouts. The supported time divisions are 0.5ms–5s, and the
supported voltage divisions are 156mV–5V.

All the specified requirements were met satisfactorily. The total cost of parts required for the
oscilloscope was only $65.51, well within the specified budget. The oscilloscope can display signals
up to 40kHz with at least 10 samples per cycle, which is better than the requirement of 20Hz–20kHz.
Finally, the oscilloscope was designed entirely with parts that could be soldered by hand.

Report Approved by
Project Advisor: Date:
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Executive Summary

The goal of the project was to design a low-cost digital oscilloscope targeted at students, hobbyists,
and researchers unable to afford a commercial oscilloscope. The requirements of the oscilloscope
were three-fold: 1) cost less than $100, 2) capture frequencies over the range 20Hz–20kHz, and 3)
constructable with a basic soldering iron and limited soldering skills.

To fulfill the requirements, the oscilloscope would need, at bare minimum, a processing unit,
an ADC (Analog-to-Digital Converter), a display device, and a user interface. The best option
for the processing unit was determined to be an Atmel AVR microcontroller due to it’s low cost,
easily soldered package, and availability of high-quality free software development tools. The ADC
was narrowed to any stand-alone ADC capable of at least 200kHz sampling rate and available in
a package that could be soldered by hand. A television was picked as the only display device that
could meet all the requirements. The user interface was specified to be simple push buttons.

Ultimately, two Atmel ATmega644 microcontrollers were used. One (the “video” microcontroller)
was used to generate the NTSC television signal, and the other (the “analog” microcontroller)
was responsible for acquiring and processing samples from the ADC. The two microcontrollers
communicate via an SPI bus with additional hand-shaking lines. The specific ADC chosen was an
AD7825 8-bit parallel unit from Analog Devices.

The incoming analog signal is conditioned in a simple analog frontend. The signal is first amplified
by a programmable gain amplifier controlled by the analog microcontroller. After amplification,
the signal passes through a 1/2 attenuator to adjust for the 2.5V input range of the ADC. The
entire analog frontend is referenced to 2.5V virtual ground.

The samples from the ADC are processed by the analog microcontroller. The analog micro-
controller then passes the processed samples onto to the video microcontroller. The video micro-
controller, in turn, generates the appropriate NTSC video signal to display the samples on the
television. The analog microcontroller can also control the header and footer of the screen. The
header and footer are strings of text along the top and bottom of the screen.

The oscilloscope implements many of the same operations as a commercial oscilloscope. The
user can start/stop the display, arm a single sequence, adjust the time division, adjust the voltage
division, and adjust the trigger value. When the display is stopped, the user can also control a
cursor which has time and voltage readouts. The supported time divisions are 0.5ms–5s, and the
supported voltage divisions are 156mV–5V.

All the specified requirements were met satisfactorily. The total cost of parts required for the
oscilloscope was only $65.51, well within the specified budget. The oscilloscope can display signals
up to 40kHz with at least 10 samples per cycle, which is better than the requirement of 20Hz–
20kHz. Finally, the oscilloscope was designed entirely with parts that could be soldered by hand.
Although not trivial to assemble, anyone with at least a little soldering experience should be able
to build it.
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1. Requirements

Professional quality digital oscilloscopes can cost a thousand dollars or more. Such a high price tag
keeps these units out of the reach of many students, hobbyists, and researchers. However, for these
people, the precision and speed provided by a professional oscilloscope may exceed their needs.
Therefore, the goal of this project is to design a low-cost oscilloscope that could be used by groups
or individuals operating on a low budget.

As indicated, the most important requirement for the oscilloscope is a low price. The target price
for the oscilloscope is $100. Although $100 is decidedly not cheap, it should be well within the
budgetary constraints of most research groups and hobbyists. The $100 budget includes the cost
of all parts needed to assemble the oscilloscope that could not reasonably expected to be on hand.

Following price, the next most important requirement is a broad frequency support. Specifically,
the oscilloscope should be able to display signals over at least the human auditory range. For the
purposes of this project, that range will be defined as 20Hz–20kHz. Moreover, the oscilloscope
must be capable of displaying a minimum of 10 samples per period over that frequency range. This
range is sufficient to capture a number of common analog signals, including those from biological
sensors, electromechanical sensors, and, of course, acoustic sensors.

The third important requirement is ease of assembly. Since the oscilloscope is targeted at students
and hobbyists, it must be constructable without any expensive equipment or special skills. The
only special tool necessary to assemble the board should be a soldering iron, and only a basic one
at that. Although the oscilloscope does not aim to be a first-time soldering project, someone with
only a little soldering experience or determination should be able to solder it.

Requirements Summary

1. Cost less that $100

2. Capture frequencies over the range 20Hz–20kHz

3. Constructable with a basic soldering iron and limited soldering skills
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2. Possible Solutions

From a very high level, there are only two classes of possible solutions: design from scratch or reuse
existing equipment. In the latter category, the most prominent choice is to use a standard PC with
sound card. Using minimal external circuitry, the microphone or line-in jack could be used as a
general purpose ADC (Analog-to-Digital Converter). With appropriate software, the signal could
be captured and plotted on the computer monitor. Several commercial products exist that use this
approach.

The PC solution has a number of drawbacks, however. The most significant is the frequency
range. Since the sound card is specialized for capturing sound, it only samples at standard audio
sampling rates (e.g. 44.1kHz). At 44.1kHz, it would not be able to meet the second requirement
outlined previously. In particular, the sound card would only be able to capture signals up 4.41kHz
at 10 samples per period. A second problem with the PC solution is possible damage. If the
input signal exceeds the voltage tolerances of the sound card, the user risks damaging an expensive
computer.

Besides the PC, no widely available consumer grade equipment exists with an easily accessible
ADC. As such, the oscilloscope will need to be designed from the ground up. However, there
are still a myriad of design options available. Clearly, any design must have at least three basic
components: an ADC, a processing unit, and a display. To allow user interaction, some manner of
input device is also highly desirable.

To meet the cost requirement, the processing unit must be inexpensive. A great many micro-
controllers and embedded microprocessors fit this bill. Although satisfying the cost requirement,
embedded microprocessors (such as ARMs) generally fail the ease of construction requirement.
These devices are invariably available only in small surface-mount packages that are difficult if
not impossible to solder by hand. This leaves microcontrollers as the only viable processing unit.
Among microcontrollers, the two most recognizable lines are the AVRs from Atmel and the PICs
from Microchip. Although either line could probably be used, the AVRs are supported by a wide
variety of high-quality open source (and therefore free) software development tools. In contrast,
quality tools for the PICs are commercial products.

Many AVR microcontrollers include an internal ADC that could, at first glance, provide the
necessary ADC functionality. Unfortunately, further inspection reveals that the internal ADC is
only capable of sampling at about 15kHz. This is decidedly worse than the PC solution described
above. Instead, an external ADC must be used. From a high level design standpoint, a precise ADC
choice is relatively unimportant with the caveat that it meet the design requirements. Specifically,
it should have maximum throughput of at least 200kHz (to meet the second requirement), and be
available in easily soldered package (to meet the third requirement).

The display options are even more varied than the CPU options. Three prominent choices are
a dedicated graphic LCD unit, a computer monitor, or a television. A small graphic LCD would
be the best choice from a usability standpoint. It would allow the oscilloscope to be small and
portable, as well as allow for relatively simple microcontroller graphics software. Unfortunately,
graphic LCDs big enough to be useful (3–4in) are outside the budgetary constraints ($80–150), and
graphic LCDs cheap enough (less than $30) are too small (less than 2in). Computer monitors can
be ruled out immediately because a microcontroller is simply not powerful enough to generate a
VGA graphics signal.

A television is left as the most plausible display. The most significant advantage to using a
television is that it can be considered “on hand” (since most of the target audience will have easy
access to one) and thus excluded from the budget. Televisions also require no assembly, which
is in line with the third requirement. Composite NTSC signals are entirely possible to generate
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on a microcontroller, and thus a television is viable from a software perspective. The biggest
disadvantage of a television is its bulkiness. However, if the size of the television is a problem,
portable televisions with 3–5in screens can be found for less than $50 (although this is not counted
in the budget).

The primary input devices on commercial oscilloscope are knobs and buttons. These provide for a
simple and intuitive interface. Optimally, this project would replicate that interface. Unfortunately,
knobs are relatively expensive (several dollars apiece), bulky, and somewhat more complex to
implement reliably. Buttons, however, are cheap (less than $0.25 apiece), small, robust, and simple
to implement. Furthermore, the user interface requires buttons (e.g. run/stop), but not knobs
(increment and decrement buttons can be used in lieu of knobs). Given the general constraints of
the oscilloscope, the improved user interface offered by knobs does not adequately counteract the
added complexity.

Proposed Solution

• Processing unit: Atmel AVR microcontroller

• ADC: external 200kHz or greater external ADC

• Display: NTSC compatible television

• User interface: buttons
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3. Background

3.1. NTSC Black and White Television Signal

As discussed, the primary output device for the oscilloscope is any standard NTSC television set.
NTSC, originally developped in the 1940’s, is the analog signal used to carry television throughout
North America (as well as a number of other nations). Although the current NTSC standard
incorporates color, it is completely backwards compatible with the older black and white standard:
any television set capable of displaying a color NTSC signal will also display a black and white
NTSC signal.

In NTSC, every frame of video is 525 lines long (of which only 485 contain image data), and
frames are updated at 29.97 frames per second. However, since NTSC is interlaced, each frame
consists of two fields: even and odd, which encode the even and odd lines, respectively. The actual
NTSC signal is therefore a sequence of alternating even and odd fields, with each field encoding
262.5 lines. A special pulse called a horizontal sync separates each line, and complex sequence of
pulses called the vertical sync separates each field.

Despite the seeming complexity of the NTSC standard, it turns out that most television sets are
quite forgiving. Not only is timing flexible (as long as it’s consistent), but the format of the fields is
rarely strictly enforced. Therefore, it is possible to generate a much simpler black and white signal.

The most important simplification is regarding interlacing: simply don’t do it. Instead, produce
identical frames of exactly 262 lines each. Furthermore, the vertical sync can be dramatically
simplified. By inverting the horizontal sync during lines 248–250, a vertical sync interpretable by
the television can be generated.

1.0V

0.3V

0.0V

(white)

(black)

(sync)

Figure 1: Single line of NTSC frame.

3.2. Generating NTSC Video Signal

The simplified NTSC video signal described in the previous section can be generated with an 8-bit
microcontroller. Traditionally, this has been accomplished via “bit-banging”, that is, manually
turning on and off I/O pins on the microcontroller. However, using newer Atmel AVR microcon-
trollers, it is possible to generate the video part of the signal in hardware, leaving only the syncs
to be generated by software.

Since the video signal being generated is strictly black and white, and encoded at one bit-per-
pixel, the signal can be thought of as a stream of bits being “shifted out” of the microcontroller. It
is clear, then, that a shift-register clocked at the pixel frequency would be sufficient for generating
the video signal. Most microcontrollers have such a shift-register built in: the SPI bus. Data
transmission on an SPI bus is accomplished by shifting bytes out at the SPI clock frequency.

Unfortunately, the hardware SPI controller in most microcontrollers is not buffered. This means
that a byte cannot be loaded into the SPI module until the previous byte has been completely
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transmitted. Even with carefully designed software, there must necessarily be a delay between the
end of one byte and the beginning of the next. This delay will show up on the television as a blank
space every eight pixels. Since the pixel clock is usually within an order of magnitude of the CPU
clock, a delay of even a few CPU cycles could result in a blank space a pixel wide!

This problem can be circumvented in the newest AVR microcontrollers. The USART (Univer-
sal Synchronous/Asynchronous Receiver/Transmitter) in these microcontrollers have a new SPI
compatibility mode. By configuring the USART to use this new mode, the USART becomes a
fully-compatible SPI master controller. Unlike the dedicated SPI controller, however, the USART
is buffered. Since the next byte to be transmitted can be loaded before the current byte is complete,
a continuous series of bits can be shifted out uninterrupted.
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4. Hardware Design

4.1. Power

Input power is supplied to the oscilloscope via a standard 2.1mm barrel connector. The oscilloscope
will accept 9-15V DC, tip-positive power. The positive terminal is connected to a single pole, dual
throw (SPDT) switch. When the switch is in the “on” position, the input voltage is connected to
a voltage regulator. The regulator is a D-PAK surface mount version of the ever-popular 7805 5V
regulator. The D-PAK package is large enough to be easily soldered by hand. All other electronics
are powered from the output of the regulator. A green LED with a 330Ω load resistor is also
directly connected to the regulator. This provides clear feedback to the user about whether the
oscilloscope is turned on.

4.2. Microcontrollers

Both microcontrollers used in the oscilloscope are ATmega644’s from Atmel. This microcontroller
was selected based on the constraints of the video microcontroller. In particular, they possess a
USART with the SPI-compatible mode mentioned previously. As indicated, this is exceedingly
useful for generating video because video pixels can be shifted out by hardware rather than bit-
banged in software. Moreover, the ATmega644 sports 4KiB of RAM, enough to hold a 200 × 128
pixel raster image. A raster of that size would not fit in the 2KiB of RAM on the older ATmega32
(also considered).

The ATmega644 also satisfies the first and third (cost and ease of assembly) requirements for
the oscilloscope. At about $8 apiece, the two microcontrollers fit well within the budget. Although
superior to the older ATmega32 in every metric, the ATmega644 actually costs a few cents less
than the older ATmega32. Although the pennies saved are not a major factor, they do eliminate
any incentive to use the ATmega32. The ATmega644 is available in DIP package, which is easy to
solder, even for beginners.

The microcontrollers are connected together via an SPI bus. The MOSI, MISO, and SS pins
of the two microcontrollers are directly connected. The SCK pins are also connected when the
PROG JMP jumper (discussed more later) is set to “Normal”. Pins 2 and 3 on port B of each
microcontroller are also directly connected to the same pins on the other microcontroller. These
lines are used for a simple hand-shaking procedure, and are named ACC and REQ, respectively.

Each microcontroller operates from an independent 20MHz crystal oscillator connected to XTAL1

and XTAL2. Those two pins are also connected to ground through 20pF capacitors. Both micro-
controllers have a green LED connected to pin 7 on port D. The LED’s have 330Ω load resistors to
limit current. These LED’s have no specific meaning, and were intended primarily as a debugging
aid.

The video microcontroller has pin 4 on port D is tied to ground. This was intended as an easy
means to differentiate the microcontrollers in software. The same pin on the analog microcontroller
has a pull-up resistor (as part of the ADC interface). Therefore, that pin will be read as 0 on the
video microcontroller and 1 on the analog microcontroller. Upon initialization, the software can
check that pin and flash a warning on the LED if it is executing on the wrong microcontroller.

4.3. Video DAC

As previously discussed, to generate a black and white NTSC signal, three voltages are required:
0V, 0.3V, and 1V. These voltages can be encoded on two I/O pins on the microcontroller, namely
VIDEO and SYNC. When both pins are low, a sync pulse is being generated, requiring 0V. When
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SYNC is high, then the VIDEO pin determines the color: high should be white (1V) and low should
be black (0.3V). The voltage levels are summarized in Table 1.

VIDEO SYNC Meaning Vout

0 0 sync 0V
1 0 invalid

0 1 black 0.3V
1 1 white 1V

Table 1: VIDEO and SYNC truth table

The voltage levels can be generated using a simple three-resistor DAC (Digital-to-Analog Con-
verter). Resistors R1 and R2 are connected to the VIDEO and SYNC pins on the microcontroller,
respectively, with their other ends tied together. Resistor R3 then connects resistors R1 and R2 to
ground. The value of R3 is chosen to be 75Ω, which is the characteristic impedance of standard
video coaxial cable. Equations 1 and 2 relate the resistor values to Vwhite and Vblack, respectively.

Vwhite =
R3

R1||R2 + R3
VOH (1)

Vblack =
R1||R3

R1||R3 + R2
VOH (2)

Assuming VOH = VDD = 5V, and given that R3 is 75Ω, the above equations yield R1 = 430Ω
and R2 = 1kΩ. However, as with the timing of the NTSC signal, there is some flexibility with the
voltage levels. As such, a value of 330Ω was used for R1 to reduce the number resistor values used
(330Ω is also used as load resistors for the LED’s).

R1

330Ω

R2

1kΩ

R
3

75
Ω

VIDEO

SYNC Vout

Figure 2: Schematic of video DAC.

The sync pin is connected to a normal I/O pin on the microcontroller. This pin is controlled
directly by software: set high normally and low during a horizontal sync (and vice versa during
vertical sync). The video pin, however, is connected via an inverter. This is necessary because
it is connected to the TXD pin on the microcontroller. The TXD pin is the transmit pin for the
microcontroller’s internal USART. As mentioned (and discussed in more depth later), the USART
is configured in SPI mode, which allows it to act as a high-speed shift register. Unfortunately, when
configured as such, the TXD line is pulled high when idle. Since the video pin should be low by
default, the inverter is needed. This has the side effect of also inverting the video color, which is
compensated for in software.
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The resulting analog signal coming from the video DAC is connected to a standard RCA style
connector. Any 75Ω video cable can then be used to connect the oscilloscope to the composite
input on an NTSC television.

4.4. Analog Frontend

The analog signal enters the oscilloscope via a standard 1/8in mono audio jack. The signal is
conditioned in the so-called “analog frontend”. This circuit is responsible for amplifying the signal
as well as providing rudimentary protection. The incoming signal is clamped by a pair of Schottky
diodes. One diode connects the signal to ground, and the other to VDD.

After the diodes, the signal is passed into a programmable gain amplifier. The amplifier is
Microchip MC6S21 PGA that is configurable via SPI. It has gain settings of 1, 2, 4, 5, 8, 10, 16,
and 32 V/V. By using the PGA to amplify the signal in the analog domain, the precision of the
digitization is constant across all V divisions in the oscilloscope.

After passing through the PGA, the signal is passed through a 1/2 attenuator. This is because
the ADC chosen only has an input range of 2.5V, and the oscilloscope’s accepted voltage input
range is 5V. By having an explicit analog attenuator, the oscilloscope can treat the values coming
out of the ADC as if they were on a 0–5V scale. The attenuator is simply a voltage divider followed
by non-inverting buffer. The non-inverting buffer is build from a Microchip MCP601 rail-to-rail
output single-supply op amp

The entire analog frontend is referenced to a 2.5V virtual ground. The virtual ground is generated
by a Microchip MCP1525 precision 2.5V reference. The virtual ground means that incoming signals
in the range of 0–5V referenced to real ground are treated as if they were signals in the range -2.5–
2.5V referenced to virtual ground. Further more, the input signal is DC coupled, which means that
signal must strictly fall within the 0–5V range (referenced to real ground), and should not have a
DC offset.

Vin

MCP6S21

100kΩ

10
0k

Ω

MCP601 AD7825

ADCout

VDD

Figure 3: Schematic of analog front end.

4.5. ADC

After signal conditioning in the analog frontend stage, the signal is passed to the ADC. The ADC
used is the Analog Devices AD7825. This ADC is a high-speed parallel ADC that can operate at
5V. Although able to operate at 5V, the ADC is limited to a 2.5V-wide input range. The range may
appear anywhere within the 5V operating range. The precise input range accepted by the ADC
is Vmid − 1.25V to Vmid + 1.25V. For the oscilloscope, Vmid was set to 2.5V, which is the virtual

9



Morgan D. Jones Low Cost, Audio Speed Digital Oscilloscope

ground generated in the analog frontend. In order to minimize noise, all unused input channels to
the ADC (VIN2–VIN4) are connected to ground.

The ADC has eight data lines and several control lines. The data lines DB8–DB0 are connected
to port C of the analog microcontroller. The PD control line is connected to VDD to ensure that
the ADC never enters power down mode, and the CS line is connected to ground so that the ADC
is always selected. Both channel select lines, A0 and A1, are connected to ground, permanently
selecting channel 1. The remaining control lines, CONVST, RD, and EOC are connected to port B
on the analog microcontroller.

According to the ADC datasheet, it is important that the ADC power up with CONVST pulled
high to ensure proper operation. Since the pin on the microcontroller will remain in Hi-Z state
until explicitly set as an output in software, CONVST will be floating for several milliseconds after
power is connected. Therefore, a 10kΩ pull-up resistor connects CONVST to VDD. This ensures
that the pin is held high until the microcontroller finishes booting.

4.6. In-circuit Programming

During normal operation of the oscilloscope, the two microcontrollers are connected together via
SPI, with the analog microcontroller configured as the master. Since in-circuit serial programming
(ISP) also occurs over the SPI bus, this causes a conflict at the video microcontroller. When
attempting to program the video microcontroller, the programmer would not be able to establish
a connection since the analog microcontroller was controlling the bus.

By connecting the reset pins of the two microcontrollers together, while programming one the
other will be held in reset mode. This causes all of its pins to go into a high-impedance state,
which allows the programmer to take ownership of the SPI bus. Unfortunately, since both micro-
controllers are connected to the SPI bus, their would be no way of programming the microcontrollers
individually.

According to Atmel appnote AVR042 “AVR Hardware Design Considerations”, multiple mi-
crocontrollers connected to the same programming interface can be programmed individually by
selectively connecting the SPI clock. Although both microcontrollers will be held in reset, and both
will receive the data, only the microcontroller receiving the SPI clock will be programmed. On the
board, this functionality is provided by the PROG JMP jumper block. By placing a jumper on
“normal”, the SPI clocks of the two microcontrollers are connected to each other. On “video”, the
SPI clock of the video microcontroller is connected to the ISP clock. On “analog”, it’s the analog
microcontroller’s SPI clock that is connected to the ISP clock.

4.7. Printed Circuit Board

A custom PCB (Printed Circuit Board) was designed to hold all the electronics. The board size
chosen was 3.8in × 2.5in. This size was chosen because it is the size of the ExpressPCB MiniBoard.
The MiniBoard is two-layer board without soldermask or silkscreen. A standard order of three
MiniBoards costs only $51.

Unfortunately, ExpressPCB will not accept MiniBoard orders designed in any software but their
own, which lacks important features (like ratlines) and is otherwise difficult to use. The boards were
therefore designed using the open source tools gEDA and (the aptly, yet unfortunately, named) PCB
to design the schematics and PCB, respectively. Although this rules out using the ExpressPCB
service, the size constraints were maintained in order to allow the possibility of converting the
oscilloscope to a MiniBoard in the future.
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The PCB is arranged for maximum usability. The signal input, video output, and power jacks
are all placed along the back of the board. The power switch is located right next to the power
connector, and the power LED is intuitively located right next to that. The user interface buttons
are spaced evenly across the front of the board for easy access.

The analog frontend is located along the left side of the board. The analog components are
grouped together to minimize the distance the analog signal needed to travel. Separate analog
power and ground rails are used to power the analog circuit. These rails are connected to the main
power and ground rails at only a single point and filtered with a capacitor. The sperate power and
ground rails are intendend to reduce the noise generated by the digital components that reaches the
analog components. Furthermore, an analog ground plane runs under the entire analog frontend
to further minimize noise on the analog signals.

The microcontrollers are adjacent to each other and oriented in the same direction. This allows
their SPI pins to be connected with short, straight traces. The microcontrollers are intendended
to be put into 40-pin DIP sockets. Therefore, the space under the microcontrollers is utilized for
various surface mount resistors and capacitors. The debugging LEDs are placed near their corre-
sponding microcontrollers so that it is obvious which LED corresponds to which microcontroller.

The ISP header and PROG JMP jumper are placed along the back of the board so that pro-
gramming cables would not interfere with the user interface during software development. The ISP
header was oriented such that when the oscilloscope was placed adjacent to an STK-500, it would
be oriented the same as the ISP header on the STK-500. The PROG JMP jumper was oriented
so that the position of the jumper correlated spatially with the microcontroller being programmed.
Placing the jumper on the position closest to the back of the board allows programming of the
microcontroller closest to the back of the board (the video microcontroller).
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5. Software

5.1. Analog Microcontroller

5.1.1. User Interface

In addition to the television, which is handled by the video microcontroller, the user interface
consists of eight buttons. The user can manipulate the oscilloscope’s four operating parameters
(trigger, time division, voltage division, and cursor) using these buttons. The buttons available to
the user are summarized in Table 2.

Button Function

RUN Stops/starts the oscilloscope
SEQ Arms a trigger when stopped
TRIG Sets current parameter to trigger
TIME Sets current parameter to time division
VOLT Sets current parameter to voltage division
CRS Sets current parameter cursor

DOWN Increases value of current parameter
UP Decreases value of current parameter

Table 2: Button descriptions.

The RUN button simply stops the oscilloscope if it is running and starts it if not. When stopped,
the last displayed waveform is left on the screen. Although the trigger, time division, and voltage
division parameters can be adjusted while the oscilloscope is stopped, they do not take effect until
the oscilloscope is started, or a single sequence is armed. In other words, it is impossible to zoom
in on a frozen waveform. The cursor is only available when the oscilloscope is stopped.

The SEQ button arms a trigger when the oscilloscope is stopped. After the trigger is armed, the
oscilloscope will wait for a trigger condition. When a trigger condition occurs, the display will be
updated with a new waveform. The oscilloscope will remain stopped until SEQ is pressed again,
or until it is started again by pressing RUN.

The TRIG, TIME, VOLT, and CRS buttons change the active parameter to trigger, time division,
voltage division, and cursor. The active parameter can then be adjusted using the UP and DOWN
buttons.

Because the buttons bounce when pressed, a software debouncer is needed to prevent a single
button press from being registered multiple times. The debouncer works by periodically polling
the buttons and storing them in a circular buffer. A button is considered “pressed” if and only if
it is pressed in each element of the circular buffer.

The debouncer is run off the timer 2 OC2A interrupt. Timer 2 is configured in CTC (Clear
Timer on Compare math) mode. In that mode, it the counter resets when it reaches the value in
register OCR2A. Additionally, the OC2A interrupt is enabled, which fires whenever the counter
reaches OCR2A. The clock timer is set to fosc/1024 (∼19.5kHz), and the OCR2A register is set to
195. This results in a time base of ∼10ms.

The OC2A ISR reads the current value of PINA (the buttons), and stores it to the current index
of the circular buffer. The buffer index is then incremented. The length of the circular buffer is
a power of 2. This means that the index never needs to be reset to zero manually. Instead, it
is merely masked. For example, if the length of the circular buffer is 4, then the buffer index is
masked by 0x03.
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When the main loop needs the button values, it merely bit-wise ands all the elements of the
circular buffer. A button is pressed if its corresponding bit in the result is 1. Furthermore, the
previous such result is stored. A button has just been pressed if its corresponding bit in the result
is 1 and its corresponding bit in the previous result was 0. The main loop checks to see if each
button in turn has just been pressed, and acts on it accordingly.

5.1.2. Managing Sample Rate

To minimize the workload on the microcontroller, ADC samples are acquired only as needed. This
means that the sample rate varies depending on the current time division setting. Specifically, the
sample rate is T/200 samples/s, where T is the current time division setting. The sampling rates
are divided into three “speed grades”. In the slow speed grade, samples are drawn to the screen
as soon as they are read. This is used for the long time divisions (0.5–5s). In the medium and fast
speed grades, the screen is only updated twice per second maximum. The medium speed grade
is used for the 10ms–0.2s time divisions, and the fast speed grade is used for the 0.5–5ms time
divisions.

The sample rate is controlled by timer 1, which is configured in CTC (Clear Timer on Compare
match) mode. In that mode, the counter resets when it reaches the value in register OCR1A.
Additionally, the OC1A interrupt is enabled, which fires whenever the counter reaches OCR1A.
The timer clock is set to either fosc/1 or fosc/8 depending on the time division setting, since neither
clock divider has sufficient range to cover all time divisions. Therefore, by adjusting OCR1A and
the timer 1 clock appropriately, arbitrary time-bases can be defined. Table 3 summarizes the clock
divider and OCR1A settings for all available time divisions.

Speed Time Clock
Grade Division Divider OCR1A

slow

5s 8 62500
2s 8 25000
1s 8 12500

0.5s 8 6250

medium

0.2s 1 20000
0.1s 1 10000
50ms 1 5000
20ms 1 2000
10ms 1 1000

fast

5ms 1 500
2ms 1 200
1ms 1 100

0.5ms 1 50

Table 3: Clock divider and OCR1A values for each time division.

5.1.3. ADC Conversion

The ADC has three important control lines (CONVST, EOC, and RD) connected to port B (pins
4, 3, and 5, respectively), and eight data lines connected to port C. The microcontroller initiates a
conversion by pulsing CONVST low and waiting until EOC pulses low, indicating that the conversion
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is complete. To read the data the microcontroller sets RD low, reads the data on PINC, and sets
RD high again.

The minimum pulse width for CONVST is 20ns, as specified in the ADC datasheet. At 20MHz,
the clock period for the microcontroller is 50ns. Therefore, the CONVST line needs to be pulled
low for only a single CPU clock cycle. This is trivially accomplished by setting the pin low and
immediately setting it high again.

Upon completion of a conversion, the ADC pulses EOC low for only 70–110ns, equivalent to only
one or two CPU clock cycles. If the software were to simply poll the pin and wait for it to be low,
it would likely miss the pulse entirely. To solve this problem, the EOC pin is connected to external
interrupt 1, which is configured to trigger on a falling edge. External interrupts are detected
asynchronously on the ATmega644, so an EOC pulse will be detected regardless of the software
state. The microcontroller datasheet specifies that the minimum pulse width to be detected by an
external interrupt is 50ns, which is less than the minimum pulse specified by the ADC.

Unless RD is pulled low, the ADC does not drive the data lines in order to allow multiple devices
to share the same data bus. Unlike CONVST and EOC, RD is not pulsed; it must be held low for
the duration of the data read. The data set-up time for the ADC is 10ns, meaning RD needs to be
low for that duration before attempting to read. Given that this is considerably less than the CPU
clock period, the data can be read the cycle immediately after RD is set low. RD need only be held
low for a minimum of 30ns, so it can be set high as soon as the data is read.

As previously discussed, the timer 1 OC1A interrupt is used to set the sample rate. In all speed
grades, conversions are initiated directly by that ISR. Since the OC1A ISR only needs to pulse
CONVST as described above, it is written in assembly for efficiency. In fact, the entire interrupt
routine is only three instructions long:

cbi 0x0B, 4

sbi 0x0B, 4

reti

The first instruction sets pin 4 of port B low, and the second instruction sets the pin high again.
0x0B is the I/O address of the PORTB register. The third instruction returns from the interrupt.
The ISR is defined with the ISR NAKED flag, which instructs the compiler not to generate prologue
or epilogue code. This is safe because no general purpose registers are written, and neither the cbi

nor sbi instructions modify SREG.
The manner in which the data from the ADC is read differs depending on the speed grade. In

the slow and medium speed grades, the sample is read in the external interrupt 1 ISR. When the
ADC pulses EOC, the interrupt fires. The ISR saves the current sample to a global variable, and
sets a global software flag indicating a sample has been acquired. Upon seeing the sample flag set,
the main loop clears the flag and processes the new sample. In the slow speed grade the sample is
immediately and unconditionally sent to the screen.

In the medium speed grade, reading happens in cycles. During a read cycle, the new sample is
checked against the trigger condition. When a trigger condition occurs, samples are stored to a
buffer until 200 samples have been acquired. After the 200th sample, the samples are sent to the
screen. Samples are then ignored for half a second before a new read cycle is initiated.

In the fast speed grade, the aforementioned algorithm is too slow. Instead, the external interrupt
1 hardware flag is polled manually. All interrupts except the timer 1 OC1A interrupt are disabled.
When the ADC pulses EOC, the external interrupt 1 flag is set, but the interrupt does not fire.
The interrupt flag is detected in the main loop, and the sample is read and processed there. From
that point, samples are processed in essentially the same manner as with the medium speed grade:
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after a trigger condition, 200 samples are stored to a buffer and sent to the screen only after all
200 samples have been acquired.

Since the timer 2 OC2A interrupt is disable during a read cycle, the button debouncer is nec-
essarily halted. In the fast speed grade, this is acceptable since an entire read cycle will take less
than 10ms (the rate of the button debouncer). However, if a trigger condition never occurs on the
input signal, then the microcontroller will become unresponsive while waiting for one. To prevent
this and ensure a finite-time read cycle, after 200 samples without a trigger condition, the read
cycle is terminated and restarted a half second later.

Although the medium and fast speed grades are functionally very similar, they are implemented
differently for human-interface reasons. The medium speed grade is interrupt-driven, so the read
cycle does not interfere with the button debouncing state machine. Because the read cycle in the
medium speed grade is 10ms and slower, halting the button debouncer (as in the fast speed grade
algorithm) would interfere with the user interface. For this reason, the fast speed grade algorithm
is not applied to the medium speed grade.

5.1.4. Setting Gain

The voltage division of the oscilloscope is handled entirely by changing the gain of the PGA. The
PGA is connected to and controlled via the SPI bus interface on the microcontroller. The PGA has
two parameters that can be controlled: channel and gain. Since the PGA used on the oscilloscope
only has a single channel, the first parameter can be safely ignored.

The PGA is controlled by sending it two bytes over the SPI bus. The first byte is the instruction,
and the second byte is either the gain or channel. Bits 7:5 in the instruction byte specify the
command. The PGA recognizes only two commands: enter shutdown mode (001) and write to
register (010). Bit 0 of the instruction byte is the address bit. When the command is write to
register, the address bit specifies whether to write to the gain register (0) or the channel register
(1). Bits 2:0 in the second byte are the gain or channel selection, depending on the address bit.
The only command the microcontroller ever needs to send to the PGA is write to gain register.
Therefore, the first byte sent is always 0x40.

The algorithm for sending a gain selection to the PGA is quite simple. First, the PGA’s CS line
is set low. The instruction byte is then loaded into the SPI data register. The software stalls until
the SPI controller indicates that transmission is complete. The gain selection is then loaded into
the SPI data register, and again the software stalls until transmission is complete. Finally, CS is
set high again.

Since sending a command to the PGA blocks execution, it is advantageous to set the SPI clock
as fast as possible. The PGA datasheet specifies the maximum clock frequency as 10MHz. The
maximum SPI clock frequency that the microcontroller can generate is fosc/2, which is also 10MHz.
However, since the SPI bus is also shared with the other microcontroller, the SPI clock frequency
should remain within it’s limits as well. The ATmega644 datasheet specifies that when configured
as slave, the SPI is only guaranteed to work with an SPI clock up to fosc/4 (5MHz). Therefore,
the SPI clock is configured to be fosc/4.

The PGA can operate in SPI modes 00 and 11. Since both microcontrollers can be configured
to any of the four SPI modes, the PGA represents the limiting factor. Therefore, SPI mode 00 was
chosen arbitrarily between the two modes the PGA supports. In SPI mode 00, the first (leading)
edge of each byte is a positive edge. Received data is sampled on the rising edge and transmitted
data is set up on the falling edge. The SPI controller was also set to master mode.

The PGA requires a minimum of 40ns between the falling edge of CS and the first SPI clock
edge. Since this is less than the CPU cycle time of 50ns, data can be loaded into the SPI data
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register in the instruction immediately after CS is set low. The PGA also requires a minimum of
30ns between the last SPI clock edge and the rising edge of CS. Again, since this is less than the
CPU clock period, CS can be set high immediately after the SPI transmission is complete.

5.1.5. Data Transmission to Video Microcontroller

The analog microcontroller is connected to the video microcontroller via the SPI bus. As previously
discussed, the SPI controller was configured as master, SPI mode 00, with a clock of fosc/4. Data
transmission to the video microcontroller is very similar to data transmission to the PGA: the video
microcontroller’s SS pin is pulled low, the data is transmitted, and the SS pin is pulled high again.

However, sending data to the video microcontroller has additional overhead in the form of request
(REQ) and accept (ACC) lines from the video microcontroller. Because video generation is very
time critical, the video microcontroller may not always be able to service the SPI data. The REQ

and ACC lines provide a form of handshaking to allow the two microcontrollers to coordinate.
When the analog microcontroller is ready to send data to the video microcontroller, it must first

wait for the ACC line to be high. It can then request permission to send data by setting REQ

low. When the video microcontroller is ready, it will pull ACC low. At this point, the analog
microcontroller is free to send a single byte to the video microcontroller. When transmission of
that byte is complete, the analog microcontroller will set the REQ line high and continue execution.
Some time after REQ is set high, the video microcontroller will set ACC high.

As noted, unlike communication with the PGA, data is transmitted to the video microcontroller
one byte at a time. This works out well because most of the data sent to the video microcontroller
are samples, which can be packaged in a single byte. Bytes sent to the video microcontroller are
divided into two categories: commands and data. Commands and data are typically distinguished
by bit 7: 1 for commands and 0 for data.

For commands, the high nibble is the op-code, and the low nibble is optional data. The defined
commands are summarized in Table 4. The meaning of data bytes is dependent on the current
data-reception mode in the video microcontroller. The data reception mode can be set using the
MODE command. Mode 0 is normal (samples), 1 is header text, 2 is header text, 3 is cursor, and
4 is trigger.

Op-code Name Function

0x80 ZERO Resets x-counter to 0
0x90 CLR Clears screen and resets x-counter to 0
0xAm MODE Sets data-reception mode to mode m

Table 4: Video command op-code descriptions.

When in mode 0, the video microcontroller interprets data bytes as samples. It maintains its own
x-counter, which it increments with each received data byte. The x-counter will not automatically
reset to 0, and the video microcontroller will ignore further data when the x-counter reaches 200.
To force the x-counter back to 0, the analog microcontroller must send either the ZERO or CLR
commands. ZERO sets the x-counter to 0 without affecting the current waveform. CLR removes
the current waveform before setting the x-counter to 0.

When in modes 1 or 2, the video microcontroller interprets the data bytes as characters. In
mode 1, the characters are stored to the header string, and in mode 2 the characters are stored
to the footer string. In either case, the video microcontroller expects exactly 25 characters. The
analog microcontroller can set the contents of the header or footer by setting the mode to 1 or 2
(respectively), transmitting 25 characters, and setting the mode back to 0.
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When in modes 3 or 4, the video microcontroller waits for a single data byte before returning to
mode 0 automatically. In mode 3, the data byte is interpreted as a cursor position, and in mode 4,
the data byte is interpreted as a trigger level. To set the cursor position, the analog microcontroller
sets the mode to 3 and sends the cursor position. To set the trigger level, the analog microcontroller
sets the mode to 4 and sends the trigger level.

5.2. Video Microcontroller

5.2.1. Character Look-up Table

The target resolution for the oscilloscope video was 200 × 150 pixels. This would have required
3750 bytes of SRAM to hold the raster, leaving a mere 346 bytes for all other data, including the
stack. Since the top and bottom bars of the screen would only display text anyway, it made sense
to save SRAM by not rendering those lines in the raster. If the characters could be generated on
the fly while the scanline was being output, then the top and bottom bars could be stored as simple
character arrays.

In order to successfully generate the characters at scantime, the character symbols must be stored
in an efficient look-up table. Since the screen pixels are pushed out through the USART, it makes
sense that the characters should be 8 bits wide. This means that each byte pushed to the screen
represents a line of a single character. Eight pixel wide characters mean that each byte of a look-up
table represents a different character. If the look-up table is sorted in ASCII order, then the ASCII
code for each character is conveniently also that character’s index into the look-up table.

Each line of the characters is stored in a separate look-up table. For example, the first lines of
the characters are grouped together in one look-up table, and so on. By aligning each look-up table
to a 256 byte boundary, and sorting the look-up tables by the line they represent, the address of
a precise line of a specific character can be computed using simple concatenation. The high byte
of the address is the address of the first character of the first look-up table, and the low byte is
simply the ASCII character code. By adding the line number to the high byte, specific lines can
be addressed.

Line 0

Line 1

Line 7

Line 8

Figure 4: Organization of character look-up table.

5.2.2. Graph Raster

The main part of the oscilloscope screen is the graphing area for the waveform. This is stored as
one bit-per-pixel raster. The graphing area is 200 × 128 pixels, which requires (200 ·128)/8 = 3200
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Figure 5: Entire set of displayable characters.

bytes of RAM. The raster is stored as 1-dimensional array of 3200 elements. Element 0 represents
pixel (0,0) (top left) on the screen, and an increasing index corresponds to pixels across, then down.
Because pixels are packed horizontally, each line of the display requires 25 bytes to store. This part
of the code is derived from Bruce Land’s TV code, altered to support the higher resolution and
ported from the CodeVision compiler to the AVR-GCC compiler.

Because eight pixels are packed in a byte, indexing individual pixels is quite tricky. Setting or
clearing a point (x,y) in the raster requires several steps. First, two indices need to be computed: i,
the index of the byte in the raster array corresponding to pixel (x,y), and j, the bit-index into that
byte corresponding to the pixel. Equations 3 and 4 show the mathematical relationship between i
and j (respectively), and x and y

i = y · 25 +
⌊x

8

⌋

(3)

j = x − 8 ·
⌊x

8

⌋

= x mod 8 (4)

Since the divisor in both equations is a power of 2, the division can be replaced by a shift left,
and the modulo can be replaced by a bit-wise and. Thus, programatically, i = y*25 + x>>3 and
j = x & 7. Once i and j have been computed, byte i in the raster array needs to be loaded and a
bit mask needs to be generated.

The mask is a byte of all zeros except the bit corresponding to the pixel. This could be accom-
plished by shifting a 1 left by j. However, the AVR architecture lacks a barrel shifter, so it can
only shift left by one. Thus, shift left by j would require a control loop to shift left by one j times.
Instead, a simple look-up-table is used. The look-up-table is 8 bytes long, where byte j is 1<<j.
If the pixel is being set, the byte from the raster array is bit-wise or’ed with the mask. If being
inverted, the byte is xor’ed with the mask. If the pixel is being cleared, the byte is and’ed with the
1’s-complement of the mask. The resulting byte is then stored back into index i of the raster array.

5.2.3. Scanline Generation

NTSC scanlines are generated from the timer 1 OC1A interrupt. Timer 1 is configured in CTC
mode with a clock of fosc/1 (20MHz). Both OC1A and OC1B interrupts are enabled. The OCR1A
register is set to 1271. This means timer 1 will reset and the OC1A interrupt will be triggered
once every 1271/20MHz = 63.55µs, which corresponds exactly to the specified line time for NTSC
signals.

The OC1A interrupt first generates a horizontal sync by setting the SYNC pin (port D pin 2)
low for 5µs, and then high again. If the current line is within the visible portion of the screen, the
corresponding line of image data is sent through the VIDEO pin (port D pin 1, TXD). Finally, the
video line number is incremented and the state data for the next line is computed.

The image data is not sent manually, but rather through the USART. The USART is configured
in MSPIM mode, in which it is a fully compliant SPI master controller. In this mode, the USART
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basically acts as buffered shift register. The USART clock is set to fosc/4 (5MHz), which is also the
pixel clock. The 25 bytes making up a line are loaded sequentially into the UDR0 register. After
loading each byte, the software waits for the UDRE0 flag in the UCSR0A to be set, indicating that
the USART transmit buffer is empty and ready for more data. As discussed earlier, a hardware
inverter is necessary on the TXD line. To compensate, all bytes loaded into the UDR0 register must
first be inverted in software. For simplicity, this inversion is implicit in the rest of this discussion.

Although the exact timing of the NTSC signal is flexible, it is imperative that the timing be
consistent. The time between a pair of consecutive horizontal sync pulses must be exactly the same
as between any other pair. Unfortunately, interrupts in the AVR architecture can only be serviced
after the current instruction finishes executing. Since the number of cycles to execute an instruction
varies depending on the instruction, the OC1A interrupt may be delayed by several cycles relative
to previous or subsequent lines. At a 5MHz pixel clock, a single instruction corresponds to one
quarter of a pixel! Since the delay of each line may be different than the other lines, and different
than the same line in the previous frame, the image on the screen will appear to jitter.

To circumvent this problem the OC1A interrupt must always be entered in a consistent number
of cycles. The only way to achieve this is to enter the interrupt from a sleep mode. The number of
cycles the CPU takes to wake up and then service the interrupt is consistent, eliminating the jitter.
The OC1B interrupt of timer 1 takes care of this. Register OCR1B is set to 1250, which causes the
OC1B interrupt to fire about 1µs before OC1A. The OC1B ISR merely sets the global interrupt
enable (which is cleared by hardware upon entering the interrupt) and then puts the CPU to sleep.
Since the sleep is used strictly for timing, the CPU is configured to enter the lightest sleep mode
(“idle”). When the OC1A interrupt fires, the CPU wakes up from sleep and executes the OC1A
ISR.

The screen is divided into seven sections: header, header space, header rule, graph, footer rule,
footer space, and footer. The header and footer sections are the text lines at the top and bottom
of the image. The header and footer spaces are blank lines following the header and preceding the
footer. The header and footer rules are white lines preceding and following the graph. The current
section is part of the state data computed at the end of the preceding line.

The actual image data sent to the TV depends on the current section. The space and rule
sections are the simplest. In the space section, no data at all is sent, resulting in a blank line. In
the rule section, 25 bytes of 0xFF are transmitted, resulting in a white line.

The header and footer sections are the same, except that they refer to different character arrays.
To generate an image line in the header or footer section, the software must know the current
character line n, which is the current scanline minus the start of the header or footer section.
This is used to index the n’th character look-up table as described above. 25 bytes of data are
transmitted corresponding to the 25 characters in the header or footer character array. The ASCII
code of each character is used as the index into the n’th look-up table. The byte from the look-up
table is the byte transmitted.

In the graph section, the image data transmitted to the TV comes from the raster array. The
software must know the raster line y, which is the current scanline minus the start of the graph
section. 25 bytes of data from the raster array are transmitted, starting from index y · 25. If the
trigger level is visible, and y is equal to the trigger level, then 25 bytes of 0xFF are transmitted
instead of the raster data.

5.2.4. Data Reception from Analog Microcontroller

Because the NTSC video signal is generated entirely in the OC1A interrupt, the main loop need only
be responsible for drawing to the graph raster or setting the header and footer. The image on the
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screen is controlled entirely, though indirectly, by the analog microcontroller. Therefore, the image
can only change when the video microcontroller receives data from the analog microcontroller.

Each iteration of the main loop starts by waiting for a request from the analog micrcontroller.
When the REQ line is pulled low, the video microcontroller responds by setting the ACC line low.
It then waits for an SPI transfer to be complete. At that time, it saves the data received from the
analog microcontroller, and waits for REQ to be pulled high again. The video microcontroller then
sets ACC high again before proceeding to process the data.

As previously discussed, the video microcontroller has five data reception modes: sample (0),
header (1), footer (2), cursor (3), and trigger (4). If the reception mode is 0, 1, or 2, and bit 7 of
the received byte is a 1, then the byte is processed as a command. If the reception mode is 3 or 4,
or bit 7 is 0, then the byte is processed as data.

In mode 0, data bytes are samples to be displayed on the screen. The video microcontroller
maintains an x-counter x for incoming sample data, as well as a buffer b of the current sample for
each x-coordinate. If the x is less than 199, then the line from (x, b[x]) to (x+ 1, b[x+ 1]) is erased.
The new sample then is stored to b[x], and if x is greater than 0, the line from (x − 1, b[x − 1]) to
(x, b[x]) is drawn. If the cursor is visible, it is redrawn in case it was damaged during the erasure
of the old line. Finally, x is incremented. If x reaches 200, all further data bytes are ignored until
a CLR or ZERO command resets x to 0.

In modes 1 and 2, data bytes are characters for the header or footer, respectively. Similar to mode
0, the video microcontroller maintains an index i for incoming characters. The index is initialized
to zero upon entering mode 1 or 2. If i is less than 25, then the incoming character is stored to
index i of the header or footer and i is incremented. Because the character image data is generated
on the fly by the OC1A interrupt, simply storing the character to the header or footer is sufficient
to be displayed. If i reaches 25, all further data bytes are ignored until the mode is changed.

In mode 3, the data byte is the cursor position. After receiving the cursor position, the mode is
automatically reset to 0. This is because the cursor position can be greater than 128, which results
in a 1 in bit 7. Therefore, when receiving a cursor position, it would be impossible to differentiate
between a data and command byte. The cursor value 255 is a special case which indicates that the
cursor should be turned off. If the cursor was on, the old cursor is erased from the screen. The
sample segments connecting to the sample under the old cursor are redrawn. Finally, if the new
cursor position is visible, it is drawn to the screen.

In mode 4, the data byte is the trigger value. Like mode 3, after receiving a trigger value, the
mode is automatically reset to 0. Again, the special value 255 is used to turn the trigger display off.
Because the trigger is drawn on the fly in the OC1A interrupt, merely setting the trigger value is
sufficient for it to be displayed. The trigger level is not drawn to the graph raster, so no segments
need to be redrawn.
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6. Results

As discussed in detail in the Requirements section, the oscilloscope had three requirements: 1) cost
less that $100, 2) capture frequencies over the range 20Hz–20kHz, and 3) constructable with a basic
soldering iron and limited soldering skills. All three requirements were satisfactorily reached.

The total cost for all purchased parts for the oscilloscope is only $65.51, well within the target
budget. Because shipping costs vary widely depending on location and shipping options, they are
not included in the cost. However, standard ground shipping should be less than the remaining
$34.49 of budget. As previously discussed, the television is considered “on hand” and not counted
toward the budget. The ADC, PGA, op amp, and voltage reference are also not counted toward
the budget. Free samples of these parts can be acquired directly from the manufacturer (Analog
Devices for the ADC and Microchip for the others). Table 5 summarizes the costs of the various
parts of the oscilloscope.

Parts Cost

Printed circuit board $33.00
Discrete components and IC’s $9.70
Connectors, buttons, and power switch $7.07
Microcontrollers $15.74
ADC, PGA, op amp, and voltage reference –
Televsion –

Total $65.51

Table 5: Summary of oscilloscope cost.

All parts on the oscilloscope were chosen such that they could be soldered by hand. Where space
permitted, through-hole packages were chosen over surface mount packages since the former are
generally much easier to solder. The microcontrollers, PGA, op-amp, voltage reference, buttons,
power switch, and all connectors were through-hole. For surface mount parts, the pins needed to
be big enough and far enough apart that they could be soldered by hand. The resistors, capacitors,
and LEDs are all in 1206 packages, which can be soldered with only minimal practice. The voltage
regulator is in a D-PAK package, which has two large, widely spaced pins and wide solder tab.
The ADC is in a SOIC package. The smallest components are the Schottky diodes and the logic
inverter in SOT-23 and SOT-23-5 packages, respectively. These packages can be frustrating, but
with a steady hand and a little patience can be soldered by hand.

Unfortunately, the boundaries of the ease of assembly requirement are stretched slightly by the
microcontroller programmer. Although the physical oscilloscope can be assembled with just a
soldering iron and a pair of tweezers, programming the microcontrollers requires a special piece
of hardware, namely a programmer. However, given the target audience, it is very likely that if
the user does not already own an Atmel programmer, he or she can likely find one to borrow. If
not, simple programmers can be built or purchased for less than $5. Once the hardware has been
acquired, the firmware can be downloaded to the microcontrollers using one of several free programs
available for that purpose.

In the fastest time division (0.5ms), the oscilloscope samples data at 400kHz. Therefore, signals
up to 40kHz could be displayed at 10 samples per period. 20Hz signals can be seen with at least 10
samples per period at the 1s time division and faster. This means that the frequency requirement
is met completely: frequencies over the audio range (20Hz–20kHz) can be captured and displayed
with at least 10 samples per period.
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Figure 6: The oscilloscope screen with a captured 20kHz waveform.

Although the oscilloscope met or exceeded all stated requirements, it still has room for possible
improvements. The most significant improvement is to add AC coupling. Since the analog frontend
is referenced to a 2.5V virtual ground anyway, adding this feature would be quite trivial: three
discrete components maximum. Specifically, a capacitor would need to be inserted in series between
the input jack and the PGA. Immediately after the capacitor, high-impedance capacitors would
need to connect the signal to ground and VDD in order to center the signal at 2.5V. It is conceivable
that the resistors may not even be needed.

Two other features that would be useful would be an external trigger and a serial terminal to
dump data to a PC. Both of these features were originally planned. Although not discussed, the
hardware for these features is already incorporated into the oscilloscope PCB. Unfortunately, time
constraints prevented the features from being implemented in the microcontroller software. These
features could be implemented with just a software update.

Figure 7: The fully assembled oscilloscope.
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B. PCB Layout

Top copper layer

Bottom copper layer
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C. Bill of Materials

Part Quantity Digikey P/N

Resistors

100kΩ 10 RHM100KFRCT-ND
10kΩ 10 RHM10.0KFRCT-ND
1kΩ 10 RHM1.00KFRCT-ND
330Ω 10 RHM330FCT-ND
75Ω 10 RHM75.0FRCT-ND
0Ω 10 RHM0.0ERCT-ND

Capacitors

1uF 10 PCC2234CT-ND
0.1uF 10 399-1249-1-ND
22pF 10 311-1322-1-ND

Miscellaneous discretes

Green LED 3 160-1188-1-ND
20MHz crystals 2 X1076-ND
Schottky diode 1 BAT54SFSCT-ND
Logic inverter 1 NC7SZ04M5XCT-ND

Buttons, switches, connectors

Buttons 8 P12192S-ND
Analog and trigger connectors 2 CP-3502N-ND
RCA video connector 1 CP-1403-ND
Power connector 1 CP-102A-ND
Male pin-header 1 S2011E-36-ND
On/off switch 1 EG1919-ND
Serial connector 1 A35108-ND

Integrated Circuits

ATmega644 microcontroller 2 ATMEGA644-20PU-ND
MC7805 voltage regulator 1 MC7805BDTRKGOSCT-ND

Sampled Integrated Circuits

AD7825 ADC 1
MCP1525 2.5V reference 1
MCP601 op amp 1
MCP6S21 PGA 1
MAX233 RS-232 level shifter 1
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D. Analog Code Listing

1 #include <avr/io.h>

#include <avr/interrupt .h>

#include <util /delay.h>

#include <stdio.h>

#include <string.h>

// button debouncer parameters

11 #define BUT_NCHECKS 4

#define BUT_IMASK 0x03

// sampling speed grades

#define S_LIGHT 1

#define S_RIDICULOUS 2

#define S_LUDICROUS 3

// buttons

uint8_t but_index ;

21 uint8_t but_state [ BUT_NCHECKS ];

uint8_t but_count ;

uint8_t but_repeat ;

// array of samples

uint8_t samples [200];

// sample acquisition

volatile uint8_t samp_flag ;

volatile uint8_t sample_new ;

31 volatile uint8_t sample_old ;

uint8_t samp_index ;

uint8_t samp_acq_index ;

// time division

uint8_t samp_speed_grade ;

uint8_t samp_rate ;

uint16_t samp_rate_table [13] =

{

62500 , // 5s, fosc /8

41 25000 , // 2s

12500 , // 1s

6250, // 0.5s

20000 , // 0.2s, fosc /1

10000 , // 0.1s

5000, // 50 ms

2000, // 20 ms

1000, // 10 ms

500, // 5ms

200, // 2ms

51 100, // 1ms

50 // 0.5ms

};

// voltage division

uint8_t volt_setting ;
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// capture state

uint8_t running ;

uint8_t triggered ;

61 uint8_t single_seq ;

volatile uint8_t capt_count ;

// parameter being editted

uint8_t edit_mode ;

// trigger and cursor

uint8_t trig_lvl ;

uint8_t x_curs;

71 // voltage divisions in text

char * volt_text [] =

{

"5.0V ",

"2.5V ",

"1.25 V",

"1.0V ",

"625mV",

"500mV",

"313mV",

81 "156mV"

};

// voltage divisions in microvolts

int32_t volt_uv [] =

{

5000000 ,

2500000 ,

1250000 ,

1000000 ,

91 625000 ,

500000 ,

312500 ,

156250

};

// time divisions in text

char * time_text [] =

{

"5.0s ",

101 "2.0s ",

"1.0s ",

"500ms",

"200ms",

"100ms",

"50ms ",

"20ms ",

"10ms ",

"5.0ms",

"2.0ms",

111 "1.0ms",

"0.5ms"

};

// time divisions in microseconds
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int32_t time_us [] =

{

5000000 ,

2000000 ,

1000000 ,

121 500000 ,

200000 ,

100000 ,

50000 ,

20000 ,

10000 ,

5000,

2000,

1000,

500

131 };

// header and footer

char header [26] = ">H: V: R\0";

char footer [26] = " Ct: CV: \0";

// footer trigger and cursor readouts

char footer_trig [25] = "T: \0";

char footer_curs [25] = "Ct: CV: \0";

141 /*

* INT1 : Reads sample from ADC

*/

ISR(INT1_vect )

{

sample_old = sample_new ;

PORTD &= ~( _BV(PD5 ));

sample_new = PINC;

PORTD |= _BV(PD5 );

151 samp_flag = 1;

}

/*

* TIMER2_COMPA : Button debouncer , also generates ~10ms time base

*/

ISR(TIMER2_COMPA_vect , ISR_NOBLOCK )

{

but_state [but_index ++ & BUT_IMASK ] = PINA ;

if ( capt_count > 0) capt_count --;

161 if ( but_repeat > 0) but_repeat --;

}

/*

* TIMER1_COMPA : Starts an ADC conversion

*/

ISR(TIMER1_COMPA_vect , ISR_NAKED )

{

// Start conversion

asm volatile (

171 "cbi 0x0B , 4" "\n\t"

"sbi 0x0B , 4" "\n\t"

"reti "

: :
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);

}

// function prototypes

void verify ();

void initialize ();

181

void sendPGA (uint8_t , uint8_t );

void sendVideoCmnd (uint8_t );

void sendVideoSamp (uint8_t );

void sendHeader ();

void sendFooter ();

void setMode (uint8_t );

void setTriggerReadout (uint8_t );

191 void setCursorReadout (uint8_t );

void setWindow (uint8_t ,uint8_t );

inline void captureLight ();

inline void captureRidiculous ();

inline void captureLudicrous ();

int main ()

{

uint8_t i;

201 uint8_t but = 0, last_but = 0, but_flag = 0, rel_flag = 0;

verify ();

initialize ();

sei ();

sendVideoCmnd (0 xA0 );

setMode (0);

setTriggerReadout ( trig_lvl );

211 setWindow (samp_rate , volt_setting );

while (1)

{

last_but = but;

but = 0xFF;

for (i = 0; i < BUT_NCHECKS ; i++)

but &= ~( but_state [i]);

but_flag = but & ~last_but ;

rel_flag = ~but & last_but ;

221

// UP

if (but_flag & 0x01)

{

if (edit_mode == 0 && samp_rate < 12)

{

// increase time division

setWindow (++ samp_rate , volt_setting );

}

else if ( edit_mode == 1 && volt_setting < 7)

231 {

// increase voltage division

setWindow (samp_rate , ++ volt_setting );
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}

else if ( edit_mode == 2 && x_curs < 199)

{

// increase cursor coordinate

sendVideoCmnd (0 xA3 );

sendVideoCmnd (++ x_curs );

but_repeat = 50;

241 }

else if ( edit_mode == 3 && trig_lvl < 255)

{

// increase trigger level

sendVideoCmnd (0 xA4 );

sendVideoSamp (++ trig_lvl );

setTriggerReadout (trig_lvl );

sendFooter ();

but_repeat = 50;

}

251 }

else if (but & 0x01 && but_repeat == 0)

{

if (edit_mode == 2 && x_curs < 199)

{

// continue increasing cursor coordinate

sendVideoCmnd (0 xA3 );

sendVideoCmnd (++ x_curs );

but_repeat = 5;

}

261 else if ( edit_mode == 3 && trig_lvl < 255)

{

// continue increasing trigger level

sendVideoCmnd (0 xA4 );

sendVideoSamp (++ trig_lvl );

setTriggerReadout (trig_lvl );

sendFooter ();

but_repeat = 5;

}

}

271 else if (rel_flag & 0x01)

{

if (edit_mode == 2)

{

// update cursor readout

setCursorReadout (x_curs );

sendFooter ();

}

else if ( edit_mode == 3)

{

281 // erase trigger indicator on video

sendVideoCmnd (0 xA4 );

sendVideoCmnd (255);

}

}

// DOWN

if (but_flag & 0x02)

{

if (edit_mode == 0 && samp_rate > 0)

291 {

// decrease time division
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setWindow (--samp_rate , volt_setting );

}

else if ( edit_mode == 1 && volt_setting > 0)

{

// decrease voltage division

setWindow (samp_rate , --volt_setting );

}

else if ( edit_mode == 2 && x_curs > 0)

301 {

// decrease cursor coordinate

sendVideoCmnd (0 xA3 );

sendVideoCmnd (--x_curs );

but_repeat = 50;

}

else if ( edit_mode == 3 && trig_lvl > 0)

{

// decrease trigger level

sendVideoCmnd (0 xA4 );

311 sendVideoSamp (--trig_lvl );

setTriggerReadout (trig_lvl );

sendFooter ();

but_repeat = 50;

}

}

else if (but & 0x02 && but_repeat == 0)

{

if (edit_mode == 2 && x_curs > 0)

{

321 // continue decreasing cursor coordinate

sendVideoCmnd (0 xA3 );

sendVideoCmnd (--x_curs );

but_repeat = 5;

}

else if ( edit_mode == 3 && trig_lvl > 0)

{

// continue decreasing trigger level

sendVideoCmnd (0 xA4 );

sendVideoSamp (--trig_lvl );

331 setTriggerReadout (trig_lvl );

sendFooter ();

but_repeat = 5;

}

}

else if (rel_flag & 0x02)

{

if (edit_mode == 2)

{

// update cursor readout

341 setCursorReadout (x_curs );

sendFooter ();

}

else if ( edit_mode == 3)

{

// erase trigger indicator on video

sendVideoCmnd (0 xA4 );

sendVideoCmnd (255);

}

}

351
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// CRS

if (but_flag & 0x04)

{

if (! running )

setMode (2);

}

// VOLT

if (but_flag & 0x08)

361 {

setMode (1);

}

// TIME

if (but_flag & 0x10)

{

setMode (0);

}

371 // TRIG

if (but_flag & 0x20)

{

setMode (3);

}

// SEQ

if (but_flag & 0x40)

{

if (! running )

381 {

// write SEQ in header

header [20] = ’S’;

header [21] = ’E’;

header [22] = ’Q’;

setWindow (samp_rate , volt_setting );

single_seq = 1;

}

}

391 // RUN

if (but_flag & 0x80)

{

if (running )

{

// stop running

running = 0;

header [24] = ’S’;

sendHeader ();

sendFooter ();

401 }

else

{

// start running

running = 1;

header [24] = ’R’;

sendVideoCmnd (0 xA3 );

sendVideoCmnd (255);

if ( edit_mode == 2)

setMode (3);
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411 if ( single_seq )

{

header [20] = ’ ’;

header [21] = ’ ’;

header [22] = ’ ’;

single_seq = 0;

}

setTriggerReadout (trig_lvl );

setWindow (samp_rate , volt_setting );

}

421 }

// capture data

if (running || single_seq )

{

if ( samp_speed_grade == S_LIGHT)

captureLight ();

else if ( samp_speed_grade == S_RIDICULOUS )

captureRidiculous ();

else if ( samp_speed_grade == S_LUDICROUS )

431 captureLudicrous ();

// single sequence complete , erase SEQ

if (! running && !single_seq )

{

header [20] = ’ ’;

header [21] = ’ ’;

header [22] = ’ ’;

sendHeader ();

}

441 }

}

return 0;

}

/*

* SENDPGA : Send instruction inst and value val to PGA

*/

void sendPGA (uint8_t inst , uint8_t val)

451 {

// set CS low

PORTB &= ~( _BV(PB0 ));

// send instruction , wait for transmission to complete

SPDR = inst ;

while (!( SPSR & 0x80 )) ;

// send value , wait for transmission to complete

SPDR = val;

461 while (!( SPSR & 0x80 )) ;

// set CS high

PORTB |= _BV(PB0 );

}

/*

* SENDVIDEO : Send a byte to the video microcontroller

*/
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inline void sendVideo (uint8_t c)

471 {

// wait for ACC high

while (!( PINB & _BV(PINB2 ))) ;

// set REQ low

PORTB &= ~( _BV(PB3 ));

// wait for ACC low

while (PINB & _BV(PINB2)) ;

481 // set CS low

PORTB &= ~( _BV(PB4 ));

// send byte , wait for transmission to complete

SPDR = c;

while (!( SPSR & 0x80 )) ;

// set CS high

PORTB |= _BV(PB4 );

491 // set REQ high

PORTB |= _BV(PB3 );

}

/*

* SENDVIDEOCMND : Send a command to the video microcontroller

*/

void sendVideoCmnd (uint8_t c)

{

sendVideo (c);

501 }

/*

* SENDVIDEOSAMP : Send a sample to the video microcontroller

*/

void sendVideoSamp (uint8_t s)

{

sendVideo (127 -( uint8_t )(((( int8_t )(s -128)) > >1) + 64));

}

511 /*

* SENDHEADER : Send the header string to the video microcontroller

*/

void sendHeader ()

{

uint8_t i;

sendVideoCmnd (0 xA1 );

for (i = 0; i < 25; i++)

sendVideoCmnd (header[i]);

521 sendVideoCmnd (0 xA0 );

}

/*

* SENDFOOTER : Send the footer string to the video microcontroller

*/

void sendFooter ()

{
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uint8_t i;

531 sendVideoCmnd (0 xA2 );

for (i = 0; i < 25; i++)

sendVideoCmnd (footer[i]);

sendVideoCmnd (0 xA0 );

}

/*

* SETMODE : Sets the current edit mode to m

*/

void setMode (uint8_t m)

541 {

// erase mode indicators

header [0] = ’ ’;

header [9] = ’ ’;

footer [0] = ’ ’;

// place mode indicator appropriately

if (m == 0)

header [0] = ’>’;

else if (m == 1)

551 header [9] = ’>’;

else if (m == 2)

{

setCursorReadout (x_curs );

footer [0] = ’>’;

}

else if (m == 3)

{

setTriggerReadout (trig_lvl );

footer [0] = ’>’;

561 }

// send header & footer

sendHeader ();

sendFooter ();

// turn on cursor if entering cursor mode , turn of if exiting

if ( edit_mode == 2 && m != 2)

{

sendVideoCmnd (0 xA3);

571 sendVideoCmnd (255);

}

else if (m == 2)

{

sendVideoCmnd (0 xA3);

sendVideoCmnd (x_curs );

}

// set current mode

edit_mode = m;

581 }

/*

* SETTRIGGERREADOUT : Set the footer string to have the trigger level t

*/

void setTriggerReadout (uint8_t t)

{
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int32_t y = (int32_t )(( int8_t )(t -128));

int32_t v;

int16_t l,r;

591 uint8_t neg = 0;

strcpy(footer+1, footer_trig );

v = (volt_uv[volt_setting ]*y)>>8;

if (v < 0)

{

neg = 1;

v = -v;

}

601

if ( volt_setting < 4)

{

l = (int16_t )(v/1000000);

r = (int16_t )((v%1000000)/1000);

snprintf (footer+4, 8, "%d.%03 dV ", l, r);

}

else

{

l = (int16_t )(v/1000);

611 r = (int16_t )((v%1000)/100);

snprintf (footer+4, 8, "%3d.% dmV", l, r);

}

footer [3] = neg ? ’-’ : ’ ’;

}

/*

* SETCURSORREADOUT : Set the footer string to have the cursor data for

* position x

621 */

void setCursorReadout (uint8_t x)

{

int32_t y = (int32_t )(( int8_t )( samples [x] -128)); // <<8;

int32_t v;

int16_t l,r;

uint8_t neg = 0;

strcpy(footer+1, footer_curs );

631 v = (time_us[samp_rate ]*x)/200;

if ( samp_rate < 3)

{

l = (int16_t )(v/1000000);

r = (int16_t )((v%1000000)/1000);

snprintf (footer+4, 9, "%d.%03 ds ", l, r);

}

else if (samp_rate < 6)

{

641 l = (int16_t )(v/1000);

r = (int16_t )((v%1000)/100);

snprintf (footer+4, 9, "%3d.% dms", l, r);

}

else if (samp_rate < 9)

{
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l = (int16_t )(v/1000);

r = (int16_t )((v%1000)/10);

snprintf (footer+4, 9, "%2d.%02 dms", l, r);

}

651 else if (samp_rate < 12)

{

l = (int16_t )(v/1000);

r = (int16_t )(v%1000);

snprintf (footer+4, 9, "%d.%03 dms", l, r);

}

else

{

l = (int16_t )(v);

snprintf (footer+4, 9, "%3dus ", l);

661 }

v = (volt_uv[volt_setting ]*y)>>8;

if (v < 0)

{

neg = 1;

v = -v;

}

if ( volt_setting < 4)

671 {

l = (int16_t )(v/1000000);

r = (int16_t )((v%1000000)/1000);

snprintf (footer +17, 8, "%d.%03 dV ", l, r);

}

else

{

l = (int16_t )(v/1000);

r = (int16_t )((v%1000)/100);

snprintf (footer +17, 8, "%3d.% dmV", l, r);

681 }

footer [16] = neg ? ’-’ : ’ ’;

}

/*

* SETWINDOW : Set the graphing window , rate is sample rate , volt is voltage

* division

*/

void setWindow (uint8_t rate , uint8_t volt )

691 {

// turn off and reset timer 1

TCCR1B &= ~( _BV(CS12 ) | _BV(CS11 ) | _BV(CS10 ));

TIMSK1 &= ~( _BV(OCIE1A ));

TIFR1 |= _BV(OCF1A);

TCNT1 = 0;

// set sample rate

OCR1A = samp_rate_table [rate ];

701 // disable external interrupt 1

EIMSK &= ~( _BV(INT1 ));

EIFR |= _BV(INTF1);

// re -initialize various variables
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triggered = 0;

samp_flag = 0;

samp_acq_index = 0;

// update header

711 strcpy(header+3, time_text [rate ]);

strcpy(header+12, volt_text [volt ]);

// send header and footer to video

sendHeader ();

sendFooter ();

// send gain to PGA

sendPGA (0x40 , volt );

721 if (rate < 4)

{

// Light speed!

sendVideoCmnd (0 x90);

samp_index = 0;

samp_speed_grade = S_LIGHT;

TCCR1B |= _BV(CS11 ); // turn on timer 1 with clock fosc /8

TIMSK1 |= _BV(OCIE1A ); // turn on OC1A interrupt

EIMSK |= _BV(INT1 ); // turn on external interrupt 1

}

731 else if (rate < 9)

{

// Ridiculous speed!

sendVideoCmnd (0 x80);

samp_index = 200;

sample_old = 255;

samp_speed_grade = S_RIDICULOUS ;

TCCR1B |= _BV(CS10 ); // turn on timer 1 with clock fosc /1

TIMSK1 |= _BV(OCIE1A ); // turn on OC1A interrupt

EIMSK |= _BV(INT1 ); // turn on external interrupt 1

741 }

else

{

// LUDICROUS SPEED !!!

sendVideoCmnd (0 x80);

samp_index = 200;

samp_speed_grade = S_LUDICROUS ;

// leave timer 1 off

// leave OC1A interrupt off

// leave external interrupt 1 off

751 capt_count = 0; // start sampling immediately

}

}

/*

* CAPTURELIGHT : Capture samples at the slow speed grade , immediately

* display samples

*/

inline void captureLight ()

{

761 if ( samp_flag )

{

samp_flag = 0;
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// store sample

samples [samp_index ++] = sample_new ;

// send sample

sendVideoSamp ( sample_new );

771 if (samp_index == 200)

{

sendVideoCmnd (0 x80);

samp_index = 0;

single_seq = 0;

}

}

}

/*

781 * CAPTURERIDICULOUS : Capture samples at the medium speed grade , capture

* 200 samples after trigger and display after all captured

*/

inline void captureRidiculous ()

{

uint8_t curr , prev ;

if ( samp_flag && capt_count == 0)

{

samp_flag = 0;

791

curr = sample_new ;

prev = sample_old ;

// check for trigger

if (prev < trig_lvl && curr >= trig_lvl )

triggered = 1;

if (triggered )

{

801 // store sample

samples[ samp_acq_index ++] = curr ;

if (samp_acq_index == 200)

{

samp_acq_index = 0;

triggered = 0;

// start sample transmission

sendVideoCmnd (0 x80 );

811 samp_index = 0;

// wait for 500 ms before next read cycle

capt_count = 50;

}

}

}

if ( samp_index < 200)

{

821 // send sample

sendVideoSamp (samples [samp_index ++]);

if (samp_index == 200)
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single_seq = 0;

}

}

/*

* CAPTURELUDICROUS : Capture samples at the medium speed grade , capture

* 200 samples after trigger and display after all captured

831 */

inline void captureLudicrous ()

{

uint8_t curr_samp = 255, prev_samp ;

uint8_t * samp_ptr ;

uint8_t timeout = 200;

if ( capt_count == 0)

{

PIND = _BV(PIND7);

841

samp_ptr = samples ;

triggered = 0;

// temporarily shut off button debouncer

TCCR2B &= ~(_BV(CS22 ) | _BV(CS21 ) | _BV(CS20 ));

EIFR |= _BV(INTF1); // make sure INT1 flag is clear

TCNT1 = 0; // reset counter 1

TIFR1 |= _BV(OCF1A); // make sure OC1A flag is clear

851 TCCR1B |= _BV(CS10 ); // start timer 1

TIMSK1 |= _BV(OCIE1A ); // turn on OC1A interrupt

// wait for trigger , then acquire 200 samples

while (samp_ptr < samples +200 && timeout > 0)

{

prev_samp = curr_samp ;

while (!( EIFR & _BV(INTF1 ))) ;

EIFR |= _BV(INTF1);

861 PORTD &= ~( _BV(PD5 ));

curr_samp = PINC ;

PORTD |= _BV(PD5);

if (prev_samp < trig_lvl && curr_samp >= trig_lvl )

triggered = 1;

if (triggered )

*( samp_ptr ++) = curr_samp ;

else

871 timeout --;

}

TIMSK1 &= ~(_BV(OCIE1A )); // turn off OC1A interrupt

TCCR1B &= ~(_BV(CS10 )); // stop timer 1

// restart button debouncer

TCCR2B |= _BV(CS22 ) | _BV(CS21 ) | _BV(CS20 );

if (timeout > 0)

881 {

// start sample transmission
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sendVideoCmnd (0 x80);

samp_index = 0;

// wait for 500ms before next read cycle

capt_count = 50;

}

else

{

891 // timed out , wait for 500 ms before trying again

capt_count = 50;

}

}

if ( samp_index < 200)

{

// send sample

sendVideoSamp (samples [samp_index ++]);

if (samp_index == 200)

901 single_seq = 0;

}

}

/*

* INITIALIZE : Set up the microcontroller registers and initialize global

* variables .

*/

void initialize ()

{

911 uint8_t i;

// PA7: RUN in

// PA6: SEQ in

// PA5: TRIG in

// PA4: TIME in

// PA3: VOLT in

// PA2: CRS in

// PA1: DOWN in

// PA0: UP in

921 DDRA = 0;

PORTA = 0xFF; // internal pull -ups

// PB7: SCK out

// PB6: MISO in

// PB5: MOSI out

// PB4: VIDEO CS out

// PB3: VIDEO REQ out

// PB2: VIDEO ACC in

// PB1: (unused)

931 // PB0: PGA CS out

PORTB = _BV(PB4) | _BV(PB3) | _BV(PB0);

DDRB = _BV(DDB7 ) | _BV(DDB5 ) | _BV(DDB4 ) | _BV(DDB3 ) | _BV(DDB0 );

// PC7 -0: ADC data in

DDRC = 0;

// PD7: LED out

// PD6: (unused)

// PD5: ADC RD out

941 // PD4: ADC CONVST out
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// PD3: ADC EOC in

// PD2: EXT TRIG in

// PD1: RS232 TX

// PD0: RS232 RX

PORTD = _BV(PD5) | _BV(PD4);

DDRD = _BV(DDD7 ) | _BV(DDD5 ) | _BV(DDD4 );

_delay_ms (5);

951 // INT1 : ADC EOC (falling edge )

EICRA = _BV(ISC11);

// don ’t enable external interrupt 1 yet

// SPI: MSB first , master , mode 00, fosc /4 (5 MHz)

SPCR = _BV(SPE) | _BV(MSTR );

// TIMER 1 (sample rate ): OC1* disconnected , CTC mode

TCCR1B = _BV(WGM12); // leave it off for now

961 // TIMER 2 (buttons ): OC2* disconnected , CTC mode , fosc /1024 (~19.5 kHz),

// OC2A interrupt enabled

TCCR2A = _BV(WGM21);

TCCR2B = _BV(CS22) | _BV(CS21 ) | _BV(CS20 );

OCR2A = 195; // ~10 ms time base

TIMSK2 = _BV(OCIE2A );

// Button state

for (i = 0; i < BUT_NCHECKS ; i++)

but_state [i] = 0xFF;

971 but_index = 0;

// Samples

samp_flag = 0;

samp_index = 0;

samp_rate = 0;

samp_acq_index = 0;

running = 1;

981 triggered = 0;

single_seq = 0;

// trigger level at 0V

trig_lvl = 128;

edit_mode = 0;

volt_setting = 0;

991 // cursor in middle

x_curs = 100;

}

/*

* VERIFY: Check to make sure the code is running on the correct

* microcontroller . If not , flash a warning on the LED forever .

*/

void verify ()

{
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1001 uint8_t i;

// if pin 4 on port D is high , everything ’s fine !

if (PIND & _BV(PIND4))

return;

// we’re executing on the wrong microcontroller !

DDRD |= _BV(DDD7 );

while (1)

{

1011 // flash the LED forever

PORTD |= _BV(PD7 );

for (i = 0; i < 20; i++)

_delay_ms (10);

PORTD &= ~( _BV(PD7 ));

for (i = 0; i < 20; i++)

_delay_ms (10);

PORTD |= _BV(PD7 );

for (i = 0; i < 20; i++)

_delay_ms (10);

1021 PORTD &= ~( _BV(PD7 ));

for (i = 0; i < 20; i++)

_delay_ms (10);

PORTD |= _BV(PD7 );

for (i = 0; i < 20; i++)

_delay_ms (10);

PORTD &= ~( _BV(PD7 ));

for (i = 0; i < 100; i++)

_delay_ms (10);

}

1031 }
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E. Video Code Listing

#include <avr/io.h>

#include <avr/interrupt .h>

#include <avr/sleep.h>

#include <avr/pgmspace .h>

#include <util /delay.h>

9 // video timing

#define LINE_TIME 1271

#define SLEEP_TIME 1250

// screen layout

#define V_TOP 55

#define V_HEADER 55

#define V_HEADER_SP 64

#define V_HEADER_R 65

#define V_GRAPH 66

19 #define V_FOOTER_R 194

#define V_FOOTER_SP 195

#define V_FOOTER 196

#define V_BOTTOM 205

// screen sections

#define S_BLANK 0

#define S_TEXT 1

#define S_GRAPH 2

#define S_RULE 3

29

// video generation

uint8_t sync_on , sync_off ;

uint16_t video_line ;

uint8_t char_line ;

uint16_t graph_offset ;

uint8_t section ;

uint8_t* text ;

// cursor and trigger

39 uint8_t x_cursor ;

uint8_t y_trigger ;

// header and footer

uint8_t header [26] = " \0";

uint8_t footer [26] = " \0";

// bitmask for drawing points

uint8_t bitmask [8] PROGMEM = {0x80 ,0x40 ,0x20 ,0x10 ,0x08 ,0x04 ,0x02 ,0 x01};

49 // graph raster

uint8_t graph [3200];

// array of samples

uint8_t samples [200];

/*

* TIMER2_COMPB : Puts the microcontroller to sleep before new scanline
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*/

ISR(TIMER1_COMPB_vect , ISR_NAKED )

59 {

sei ();

sleep_cpu ();

reti ();

}

/*

* TIMER1_COMPA : Generates sync pulses and scanlines . Must be entered from

* sleep mode for consistent timing

*/

69 ISR( TIMER1_COMPA_vect )

{

uint8_t out , x;

// start the horizontal sync pulse

PORTD = (PORTD & ~( _BV(PORTD2 ))) | sync_on;

// begin inverted (vertical ) sync after line 247

if ( video_line ==247)

{

79 sync_on = _BV(PORTD2 );

sync_off = 0;

}

// back to regular sync after line 250

if ( video_line ==250)

{

sync_on = 0;

sync_off = _BV(PORTD2 );

}

89

// adjust to make 5 us pulses

_delay_us (4);

// end sync pulse

PORTD = (PORTD & ~( _BV(PORTD2 ))) | sync_off ;

// don ’t send data to the screen for non -visible portions of the screen ,

// this allows more time for the main loop to execute

if ( video_line < V_BOTTOM && video_line >= V_TOP)

99 {

// adjust to center the image

_delay_us (7);

// send an initial blank byte

if (section != S_BLANK)

UDR0 = 0xFF;

// send data data depending on screen section

switch (section )

109 {

case S_TEXT:

// draw character data

for (x = 0; x < 25; x++)

{

while (!( UCSR0A & _BV(UDRE0 ))) ;

asm volatile (
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"ld r30 , %a1" "\n\t"

"ldi r31 , hi8(chartable )" "\n\t"

"add r31 , %2" "\n\t"

119 "lpm %0, Z"

: "=r" (out)

: "e" (text), "r" (char_line )

: "r30", "r31"

);

UDR0 = ~( out);

text ++;

}

break;

case S_GRAPH:

129 // draw graph data , or white line if at trigger

if (video_line -V_GRAPH == y_trigger )

{

for (x = 0; x < 25; x++)

{

while (!( UCSR0A & _BV(UDRE0))) ;

UDR0 = 0;

}

}

139 else

{

for (x = 0; x < 25; x++)

{

while (!( UCSR0A & _BV(UDRE0))) ;

UDR0 = ~( graph[ graph_offset ++]);

}

}

break;

case S_RULE:

149 // draw a white line across the entire screen

for (x = 0; x < 25; x++)

{

while (!( UCSR0A & _BV(UDRE0 ))) ;

UDR0 = 0x00;

}

break;

case S_BLANK:

// do nothing

break;

159 }

}

// start new frame after line 262

if (++ video_line ==263)

video_line = 1;

// set the screen section for next line

if ( video_line >= V_TOP && video_line < V_BOTTOM )

{

169 if (video_line < V_HEADER_SP )

{

section = S_TEXT;

text = header;

char_line = video_line - V_HEADER ;

}
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else if (video_line < V_HEADER_R )

section = S_BLANK ;

else if (video_line < V_GRAPH )

section = S_RULE;

179 else if (video_line < V_FOOTER_R )

{

section = S_GRAPH ;

graph_offset = (video_line -V_GRAPH )*25;

}

else if (video_line < V_FOOTER_SP )

section = S_RULE;

else if (video_line < V_FOOTER )

section = S_BLANK ;

else

189 {

section = S_TEXT;

text = footer;

char_line = video_line - V_FOOTER ;

}

}

else

{

section = S_BLANK ;

}

199 }

// function prototypes

void verify ();

void initialize ();

void drawPoint (uint8_t x, uint8_t y, uint8_t c);

void drawLine (uint8_t x1 , uint8_t y1 , uint8_t x2 , uint8_t y2 , uint8_t c);

void drawCursor (uint8_t x, uint8_t c);

int main (void )

209 {

uint8_t x = 0;

uint8_t in;

uint8_t mode = 0;

uint8_t char_count = 0;

verify ();

initialize ();

// turn on interrupts

219 sei ();

while (1)

{

// wait for REQ to be pulled low , set ACC low

while (PINB & _BV(PINB3 )) ;

PORTB &= ~( _BV(PORTB2 ));

// wait for reception to be complete , store byte

while (!( SPSR & _BV(SPIF ))) ;

229 in = SPDR ;

// wait for REQ to be pulled high , set ACC high

while (!( PINB & _BV(PINB3))) ;

PORTB |= _BV(PORTB2 );
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// bling LED

PIND = _BV(PIND7);

if (in & 0x80 && mode != 3 && mode != 4)

239 {

// command received

switch (in & 0xF0)

{

case 0x80:

// reset x-counter

x = 0;

break;

case 0x90:

249 // clear screen

for (x = 0; x < 200; x++)

{

if (x < 199)

drawLine (x, samples[x], x+1, samples[x+1], 0);

samples [x] = 0;

}

// redraw cursor , if its visible

259 if (x_cursor != 255)

drawCursor (x_cursor , 1);

// reset x-counter

x = 0;

break;

case 0xA0:

// change mode

if ((in & 0x0F) == 0)

mode = 0;

269 else if ((in & 0x0F) == 1)

{

mode = 1;

char_count = 0;

}

else if ((in & 0x0F) == 2)

{

mode = 2;

char_count = 0;

}

279 else if ((in & 0x0F) == 3)

mode = 3;

else if ((in & 0x0F) == 4)

mode = 4;

break;

default:

break;

}

}

else if (mode == 1)

289 {

// store character to header

if (char_count < 25)

header[char_count ++] = in;
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}

else if (mode == 2)

{

// store character to footer

if (char_count < 25)

footer[char_count ++] = in;

299 }

else if (mode == 3)

{

// erase previous cursor , if it was visible

if (x_cursor != 255)

{

drawCursor (x_cursor , 0);

// fix the waveform

if (x_cursor > 0)

309 {

drawLine (x_cursor -1, samples[x_cursor -1],

x_cursor , samples[x_cursor ], 1);

}

if (x_cursor < 199)

{

drawLine (x_cursor , samples[x_cursor ], x_cursor +1,

samples[ x_cursor +1], 1);

}

}

319

// store new cursor

x_cursor = in;

// draw new cursor , if it is visible

if (x_cursor != 255)

drawCursor (x_cursor , 1);

// Always return to mode 0!

mode = 0;

329 }

else if (mode == 4)

{

// store new trigger

y_trigger = in;

// Always return to mode 0!

mode = 0;

}

else

339 {

if (x < 200)

{

// erase old line

if (x < 199)

drawLine (x, samples [x], x+1, samples [x+1], 0);

// store new sample

samples [x] = in & 0x7F;

349 // draw new line

if (x > 0)

drawLine (x-1, samples [x-1], x, samples[x], 1);
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// redraw cursor

if (x_cursor != 255)

drawCursor (x_cursor , 1);

// increment x-counter

x++;

359 }

}

}

return 0;

}

/*

* DRAWPOINT : Draws a point at (x,y) color c: 0=black , 1= white , 2= invert

*/

369 void drawPoint (uint8_t x, uint8_t y, uint8_t c)

{

asm volatile (

// i = (x>>3) + (y*25)

// the byte with the pixel in it

// get y

"mov r16 , %1" "\n\t"

// mult y by 25

379 "ldi r17 , 25" "\n\t"

"mul r16 , r17" "\n\t"

// get x

"mov r16 , %0" "\n\t"

// divide x by 8

"lsr r16" "\n\t"

"lsr r16" "\n\t"

"lsr r16" "\n\t"

389

// add in x/8

"clr r17" "\n\t"

"add r16 , r0" "\n\t"

"adc r17 , r1" "\n\t"

"clr __zero_reg__ " "\n\t"

// move screen to X (r27:r26)

"mov r26 , %A3" "\n\t"

399 "mov r27 , %B3" "\n\t"

"add r26 , r16" "\n\t"

"adc r27 , r17" "\n\t"

// get screen byte

"ld r5 , X" "\n\t"

// form x & 7

"mov r30 , %0" "\n\t"

"andi r30 , 0x07" "\n\t"

409

// get bit mask
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"clr r31" "\n\t"

"add r30 , %A4" "\n\t"

"adc r31 , %B4" "\n\t"

"lpm r6 , Z" "\n\t"

// if (v4 ==1) graph[i] = v2 | v3 ;

// if (v4 ==0) graph[i] = v2 & ~v3;

// if (v4 ==2) graph[i] = v2 ^ v3 ;

419 "cpi %2, 1" "\n\t"

"brne 1f" "\n\t"

"or r5 , r6" "\n\t"

"1:" "\n\t"

"cpi %2, 0" "\n\t"

"brne 2f" "\n\t"

"com r6" "\n\t"

"and r5 , r6" "\n\t"

"2:" "\n\t"

"cpi %2, 2" "\n\t"

429 "brne 3f" "\n\t"

"eor r5 , r6" "\n\t"

"3:" "\n\t"

// write the byte back to the screen

"st X, r5"

:

: "r" (x), "r" (y), "d" (c), "r" (graph), "r" (bitmask )

: "r5", "r6", "r16", "r17", "r26", "r27", "r30", "r31"

);

439 }

/*

* DRAWLINE : draw a line from (x1 ,y1) to (x2 ,y2), color c: 0=black , 1= white ,

* 2= invert

*

* Code is from David Rodgers ,

* "Procedural Elements of Computer Graphics " ,1985

*/

void drawLine (uint8_t x1 , uint8_t y1 , uint8_t x2 , uint8_t y2 , uint8_t c)

449 {

int16_t e;

uint8_t dx ,dy ,j, temp ;

int8_t s1 ,s2;

uint8_t x,y, xchange ;

x = x1;

y = y1;

dx = (x1 < x2) ? x2 -x1 : x1 -x2;

dy = (y1 < y2) ? y2 -y1 : y1 -y2;

459 s1 = (x1 == x2) ? 0 : ((x1 < x2) ? 1 : -1);

s2 = (y1 == y2) ? 0 : ((y1 < y2) ? 1 : -1);

xchange = 0;

if (dy >dx)

{

temp = dx;

dx = dy;

dy = temp ;

xchange = 1;

}

469 e = (( int16_t)dy <<1) - dx;
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for (j=0; j<=dx; j++)

{

drawPoint (x,y,c) ;

if (e >=0)

{

if (xchange ==1) x = x + s1;

else y = y + s2;

e = e - (( int16_t )dx <<1);

}

479 if (xchange ==1) y = y + s2;

else x = x + s1;

e = e + (( int16_t )dy <<1);

}

}

/*

* DRAWCURSOR : Draws the cursor at position x, color c: 0= black , 1= white ,

* 2= invert

*/

489 void drawCursor (uint8_t x, uint8_t c)

{

uint8_t y;

for (y = 0; y < 128; y++)

drawPoint (x, y, c);

}

/*

* INITIALIZE : Set up the microcontroller registers and initialize global

499 * variables .

*/

void initialize ()

{

uint8_t i;

// PB7: SCK in

// PB6: MISO out

// PB5: MOSI in

// PB4: VIDEO CS in

509 // PB3: VIDEO REQ in

// PB2: VIDEO ACC out

// PB1: (unused)

// PB0: USART XCK out

// Note : the USART XCK needs to be configured as an output even though it

// is unconnected (required by MSPIM mode )

PORTB = _BV(PORTB2 );

DDRB = _BV(DDB6 ) | _BV(DDB2 ) | _BV(DDB0 );

// PD7: LED out

519 // PD6: (unused)

// PD5: (unused)

// PD4: uC DETECT in

// PD3: (unused)

// PD2: SYNC out

// PD1: VIDEO out

// PD0: USART RX in

DDRD = _BV(DDD7 ) | _BV(DDD2 ) | _BV(DDD1 );

// SPI: MSB first , slave , mode 00, fosc /4 (5 MHz)
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529 SPCR = _BV(SPE );

// TIMER 1: OC1* disconnected , CTC mode , fosc /1 (20 MHz), OC1A and OC1B

// interrupts enabled

TCCR1B = _BV(WGM12) | _BV(CS10 );

OCR1A = LINE_TIME ; // time for one NTSC line

OCR1B = SLEEP_TIME ; // time to go to sleep

TIMSK1 = _BV(OCIE1B) | _BV(OCIE1A );

// USART in MSPIM mode , transmitter enabled , frequency fosc /4

539 UCSR0B = _BV(TXEN0);

UCSR0C = _BV(UMSEL01 ) | _BV(UMSEL00 );

UBRR0 = 1;

// SLEEP: idle sleep mode

SMCR = 0x01;

// cursor and trigger off

x_cursor = 255;

y_trigger = 255;

549

// initialize the sample array

for (i = 0; i < 200; i++)

samples [i] = 0;

// start at first videoline , with regular sync pulses

video_line = 1;

sync_on = 0;

sync_off = _BV(PORTD2 );

}

559

/*

* VERIFY: Check to make sure the code is running on the correct

* microcontroller . If not , flash a warning on the LED forever .

*/

void verify ()

{

uint8_t i;

// if pin 4 on port D is low , everything ’s fine !

569 if (!( PIND & _BV(PIND4 )))

return;

// we’re executing on the wrong microcontroller !

DDRD |= _BV(DDD7 );

while (1)

{

// flash the LED forever

PORTD |= _BV(PD7 );

for (i = 0; i < 20; i++)

579 _delay_ms (10);

PORTD &= ~( _BV(PD7 ));

for (i = 0; i < 20; i++)

_delay_ms (10);

PORTD |= _BV(PD7 );

for (i = 0; i < 20; i++)

_delay_ms (10);

PORTD &= ~( _BV(PD7 ));

for (i = 0; i < 20; i++)
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_delay_ms (10);

589 PORTD |= _BV(PD7 );

for (i = 0; i < 20; i++)

_delay_ms (10);

PORTD &= ~( _BV(PD7 ));

for (i = 0; i < 100; i++)

_delay_ms (10);

}

}
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