
Summary 
 

The magnetic levitation (Maglev) device is a one semester project that I completed for 

independent research, Fall 2007, of my sophomore year with advisor Bruce Land.  All 

research was performed outside Cornell University, using my own equipment, resources, 

and funding.  The magnetic levitation device is designed to levitate an object that has 

been implanted with a permanent magnet at a given height off the ground.  The MagLev 

uses an electromagnet and controlling circuitry to keep the object stable at a given height.  

The challenge is not simple, as the system is inherently unstable, meaning that the object 

never wants to stay at a desired position.  In particular, the system uses 2 hall-effect 

sensors for feedback into 1
st
 order PID control loop.  The control loop runs on a digital 

microprocessor (ATMEGA32) and is actuated by and H-Bridge driver (LMD18200). 

 

 

Theory 
 

Instability 

 

The magnetic levitation system is a classic instability problem.  Instability is a special 

type of equilibrium in a system that is nearly impossible to reach without outside 

interaction.  A classic example of a different type of equilibrium is the pendulum.  A 

pendulum has two equilibrium points, based on the solution to its governing equation of 

motion, one at the top or apex and one at the bottom.  The equilibrium at the top is 

unstable and the equilibrium at the bottom is stable. This can be observed by playing with 

a pendulum.  The pendulum seems to always be attracted towards the bottom after some 

time, but will never stay at the top.  The reason for this is that at the bottom, there are 

restoring forces that act in opposite directions to the direction of motion.  If the 

pendulum, at the bottom, moves a little to the right, there is a force that moves it back to 

the left.  If the pendulum moves to the left, there is a restoring force to the right.  With the 

application of some small friction, the system will eventually reach the equilibrium 

position at the bottom.  However, this is not the case for the top point.  At the top, the 

forces push the pendulum away from the equilibrium position in either direction, such 

that the pendulum can never reach its equilibrium position.   Instability can be shown 

graphically as a concave-down potential energy graph, or an unstable equilibrium in a 

phase plot.  The goal of this project is to take the magnetic system and “balance” it.  In 

this system (assume that the electromagnet is turned off), the magnetic object is either 

attracted upwards to the metallic base of the electromagnet, or is pulled down away from 

equilibrium by gravity. 

 

Physics of the system 

 



At the equilibrium point, the downward gravitational force 

(Fg=mg) equals the upwards magnetic force Fmag.   

 

However, as the magnetic object moves a bit upward, the magnetic 

force increases in the upward direction and exceeds the downward 

gravitational force.  Approximations of this force are based on an 

inverse square law.  The magnet will move faster and faster 

upwards until it is collides with another object.  In the opposite 

direction, if the magnet is displaced slightly downwards of the equilibrium point, the 

magnetic object will have the same gravitational force downwards, but will have a lesser 

upwards magnetic force because the radius has been increased, thus the 1/r
2
 magnetic 

force weakens, and the object falls.  Intuition would lead one to believe that in order to 

stabilize the system, some outside object would need to apply a force downwards once 

the object moves upwards from the equilibrium position to counter the upward magnetic 

force, and an upward force once the object moves too far downward to counter the 

downward magnetic force. 

 

PID Controller 

 

The PID (Proportional, Integral, Derivative) controller is the device which allows for the 

counter-balancing of forces.  The PID controller will try and push the system towards 

equilibrium.  The PID controller needs a way of sensing the state of the system, like how 

far above or below the equilibrium position the magnetic object has moved.  This 

information is called feedback, and it is provided by two sensors that detect magnetic 

field strength.  This will be discussed in more detail later.  The PID controller needs some 

way to apply these “counter” forces to try and maintain equilibrium- this mechanism is 

commonly called the output or actuator.  In this project, the actuator, or output, is an 

electromagnet that can vary its output field and, consequentially, the force it exerts on the 

permanent magnet in the levitated object. 

 

Using feedback, the PID controller determines a quantity called error, which is the 

difference between the equilibrium position and the current position (error = x - xeq ).  

The controller takes this error, in real time, and multiplies it by some gain, or constant 

called Kp, and outputs this quantity.  Output=Kp*error = Kp*( x - xeq).  This term provides 

a restoring force proportional to the distance from the equilibrium position. The further 

the object moves toward the electromagnet or the ground, the more the electromagnet 

will try and push or pull the object.  While this sort of control may seem adequate, it 

neglects oscillations in the system.  For example, if the Kp or gain is set correctly, but the 

object has some inertia proportional to its mass, it will overshoot the equilibrium position 

when moving towards it.  If the object is being pushed downwards for example, it will 

have some velocity v as it approaches the set point.  The net force on it will be zero as it 

crosses the equilibrium position, but it will still pass the point because it has inertia 

p=m*v.   The object will then be pulled upwards, and the same process will occur in the 

opposite direction, where it will pass the equilibrium position and continue moving.  This 

cycle will continue indefinitely, and will appear as visible oscillations.  The system needs 
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some sort of damping, and it is implemented by adding a damping, or derivative term to 

the output expression.  If the Output=Kp * error + Kd * d(error)/dt   the derivative of the 

error fights the proportional term to dampen the system.  For example, as the object 

approaches the equilibrium position from the bottom moving upward, the proportional 

term will continue pulling the object toward the equilibrium position, but the derivative 

term will know that as the error starts decreasing rapidly, it needs to put on the brakes by 

applying a force against the direction of motion.  There is a third term called the integral 

term, but it is not applicable here.  This term gives the system a bit of a kick if the error is 

too small to move the system towards equilibrium.  This term is more important in 

systems where there is a lot of friction and high precision is needed, like CNC mills. 

 

 

Sensing 

 

Sensing is critical to feedback for the PID controller.  The sensors 

used in this project are two hall effect sensors.  Hall-effect sensors 

sense magnetic field strength by applying a current through a 

semiconductor and measuring the voltage that is generated.  The hall 

effect voltage is given by:  Where Eh is the hall 

field and B is the external field. 

 

Two sensors are used- one above the electromagnet and one below in 

an attempt to cancel out the field produced by the electromagnet and 

solely measure the field of the permanent magnet in the moving 

object.  The closer the object moves toward the base of the 

electromagnet, the larger the output voltage gets.  By correlating 

field strength to distance using a linear approximation, a position measurement can be 

made. 

 

PWM 

 

Pulse width modulation is a way to encode a signal in a digital manner.  In PWM, a 

digital square wave has its duty cycle increased or decreased proportionally to an input 

signal.  In a microcontroller’s built-in PWM, an 8-bit unsigned integer (0-255) is used to 

set the duty cycle of the output signal.  The microcontroller sets an input of 0 to be a 0% 

duty cycle (0% on-time) and an input of 255 to be a 100% duty cycle (100% on-time).  

 

What I Built:  

 



 
 

 



 
 

 



 
 

This diagram shows the overall functional block design of the maglev system.  The bulk 

of my work was spent on the microcontroller code, however I designed circuits for both 

the op-amp and opto-isolator and designed noise-immunity mechanisms.  The PID 

algorithm is performed on an ATMEGA32 microcontroller, as well as other debugging 

information, as needed.  The microcontroller gets positional information from 2 hall-

effect magnetic sensors and uses a PID algorithm to derive floating point signed output.  

This output is then converted into a Direction signal (5V for the electromagnet to attract 

the moving object and 0V for the electromagnet to repel the moving object) and a PWM 

signal with a duty cycle proportional to the magnitude of the output.  These two signals 

are then sent to the isolated H-Bridge (LMD18200) circuit using optocouplers.  The H-

Bridge is a device that allows for bi-directional magnet operation.  The sensors sense the 

field produced by the moving permanent magnet by canceling out the field of the 

electromagnet.  Since essentially 2 fields are produced around the sensors, one from the 

electromagnet and one from the moving magnet, it is difficult for a single sensor to 

distinguish which field belongs to the permanent magnet.  Another sensor is introduced at 

the top of the electromagnet, a large distance away from the moving permanent magnet, 

and is only affected by the electromagnet.  By amplifying this sensor’s output and 

subtracting it from the bottom sensor’s output, the field of the electromagnet can be 

cancelled out.  Amplification is achieved (~6.7x) with a small signal, small operating 

voltage, op-amp.  The analog signals are digitized using the microcontroller’s internal 10 

bit ADC. 

 

Power 

 

  The dotted line represents isolation in power supplies.  All logic devices share a 

common power supply, power supply 1.  This power supply is good for up to 3A, and has 
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very small non-DC components on its supply rails.  All power devices share a high-

current computer power supply.  A computer power supply is one of the least expensive 

and versatile power supplies available.  It is small, relatively lightweight, and commonly 

available.  A 350W unit like the one I used can supply +33A peak on the 5V rail.  The 

reason for using two separate, isolated, power supplies is that a significant amount of 

noise can be created by the high frequency, high current switching of the electromagnet.  

These disruptions to the power supply rails can throw off sensor readings and reset digital 

circuits. Isolation is achieved using optocouples that transmit a digital signal using light, 

rather than electrons, from LED’s and phototransistors as receivers.  In addition to 

isolated supplies, every logic component had a .047uF capacitor placed as close to the 

GND and +5V supply lines as possible to block any higher frequency noise.  

Furthermore, each power supply had large (.68 uF) electrolytic capacitors to block any 60 

Hz noise that may be present.  

 

OptoCoupler 

 

As mentioned earlier, an optocoupler is used to isolate the two supplies.  The isolator 

uses an LED on the transmitting end and a phototransistor on the receiving end to allow 

two separate circuits to communicate. The 4n35 was chosen because of its availability 

and low cost.  Also, it is effective at high frequency transmissions up to 250 Khz, which 

is much faster than the PWM frequency (7.8 kHz).  Special considerations had to be 

made for the forward current through the LED vs. frequency and phototransistor 

saturation.  Also, 

consideration had to 

be placed on the 

phototransistor 

current because less 

current meant slower 

switching speeds.  RL 

was chosen to be 1 K 

Ohm and RB was 

chosen to be 1 K Ohm 

based on switching 

speed and LED 

saturation voltage. 

 

Amplifier 

 

Amplification is performed using a basic inverting op-amp circuit.  The circuit is shown 

below. 

 



 
 

The gain is set by R2/R1 and I chose R2=100k and R1= 15k G=6.7 and R3= 13k  

R3 is a bias resistor and does not affect the gain.  

 

Suspended Object: 

 

I chose to suspend a ¼-20 1” bolt with a ¼-20 nut screwed onto the bolt.  The magnet 

was placed on the tip of the bolt, opposite the head, and the nut was screwed all the way 

on.  The nut adds mass to the system, and it is screwed down to increase the angular 

moment.  

 

Software 

 

As stated previously, the microcontroller runs the main PID loop by sensing an input and 

actuating some output.  The code consists of four distinct blocks of code, which are 

conveniently located in four separate files.  The code is written in gcc C, through an open 

source IDE called winAVR.  The blocks are 

• Initialization Block 

• Main loop 

• PID function 

• RS232 / Debug functions 

 

For the final design, the RS232 block is not used as it slows down the execution of code. 

 

Initialization Block: 

 

The initialization block runs once before any other code runs and it initializes all of the 

relevant status and control registers for the ATMEGA32.  The initialization block: 

• Configures Port A as all input pins (ADC pins) 

• Configures Port B as all output pins (Debug LED’s) 



• Configures Port C as all output pins (DIR Pin) 

• Configures Port D as all output pins (PWM Timer) 

• Sets ADC to slowest speed and max resolution 

• Sets ADC to use Analog Reference (AVCC) as a ref. voltage 

• Initializes the RS232 to use 9600N81 

• Turns on the PWM timer at ~7.8 kHz 

 

Main Loop 

 

The main loop runs infinitely and it polls the two sensors, adjusts them for offset 

differences, and runs the PID function, passing it the error parameter.  Offset differences 

are calculated ahead of time by realizing that while the sensors are biased to 2.5V, there 

may be slight variations in this bias, especially with the amplified sensor, as there is an 

additional offset voltage.  In the past versions, the bias points were calculated every time 

the system started in the initialization block, but I found that the same values were being 

produced, so these values were hard coded into the memory.  There is a .5% error in the 

amplified signal and a negligible error in the non-amplified signal. 

 

PID Function 

 

The PID function has 3 coefficients, Kp, Ki, and Kd.  Kp and Kd are read from the ADC 

during each function call, perhaps unnecessarily, and the previous error is stored 

statically so it can be called back later.  The function calculates the derivative by taking 

the difference between the current error and the last error.  The output is calculated by 

adding the error*Kp to the change in error * Kd.  Also, the change in error is always 

multiplied by -1 because as the change in error grows larger, a sign of instability and 

oscillation, the derivative term must move in the opposite direction of the change for 

dampening to occur.    The PWM is calculated by casting the absolute value of the output 

into an integer between 0-255 and moving this value into a special PWM register.  The 

direction is calculated by taking the sign of the error.  A negative error means that 

DIR=1.  Also, at the end of the function, the current output is stored into static memory to 

be saved so that the next time the function is called, it can use the error when calculating 

the change in error for the derivative term. 

 

RS232 / Debugging functions 

 

I did not write the RS232 function set implemented in my code, instead I found it online 

years ago, posted anonymously on a web site.  The code is straightforward; it uses a 

queue implemented as a ring buffer to hold incoming and outgoing serial data.  Since C 

for the atmel microcontroller is a low-level language, an array is used rather than a more 

advanced structure like a doubly linked list.  Also, pointers are used whenever possible.  

The RS232 serial and debugging code is not used in the actual code because RS232 slows 

down the control loop to a crawl (less than 10 Hz). 



 

 

Source Code: [See attached code] 
 

 

Results: 
 

In my set-up, quantitative measurements were hard to make.  I would need force 

transducers to measure forces on the object, or optical sensors to accurately measure the 

position of the object.  However, qualitative observations were made based on different 

settings of the gain parameters and set points.  I set up the system such that I lifted the 

magnetic object upwards with my hand while turning the gain potentiometers with my 

other hand.  I set the proportional gain from 0 to 3, the derivative gain from 0-200, and 

the set-point from -250 to +250.  These numbers may seem arbitrary, as they are scaled 

many different times through the control loop.  However, a gain of 0 still means that there 

is no contribution from that specific term.  Also, the derivative gain includes the discrete 

division by the time step ∆t, so it is really Kd / ∆t where ∆t is small, making the quotient 

larger than expected. 

 

Tuning Method: 

 

I tuned the system coefficients by finding the set-point, or the point where the 

electromagnet exerted no force on the permanent magnet, and allowed the magnet to 

slightly deviate from the set-point.  I adjusted the set point until it was about 1 cm below 

the electromagnet.  I chose this as my set-point because it was close enough that the 

electromagnet would be able to exert strong forces in either direction, while still being far 

enough away that the permanent magnet would not simply jump up and be attracted to 

the metallic surface surrounding the electromagnet. I began to increase Kp from 0 

upwards until the system would oscillate violently.  I stopped increasing Kp when there 

was an equal probability of the magnet flying upwards or falling downward.  I then 

started increasing Kd from 0 upwards until the amplitudes of the oscillations began to 

dampen.  Additionally, I found that as the oscillations began to dampen, the frequency of 

the oscillations increased. I found the longest hovering time, less than half a second, 

when Kp was approximately equal to 2.5, Kd was approximately equal to 200, and the set-

point was close to -125.  With more sophisticated equipment and sensors, a step response 

of the system would be calculated, and from that Kp, Kd and the set point could be better 

approximated. 

 

Non-Linearities 

 

While a linear controller like a PID controller is the simplest and should work well in this 

system, it is not ideal and there are other non-linear controllers that should theoretically 



be able to produce a better balancing result.  Firstly, the system is not linear, and can only 

be approximated as linear in very small regions.  The response of the system is 

asymmetric because in the downward direction, gravity helps pull down the magnet, but 

in the upward direction, gravity works against the controller.  Additionally, even when 

the electromagnet is turned off, there is still magnetic attraction between the permanent 

magnet and the metal casing surrounding the electromagnet.  The magnetic field from the 

electromagnet is also not linear- it depends inversely on the distance from the 

electromagnet.  A good approximation of this field is an inverse square law, but again, 

the field outside of a solenoid, especially at 1 cm away, is very hard to predict.  Ideally, 

the field would be constant, and would only depend on the current supplied to the 

electromagnet.  Another asymmetry occurs because the upward force produced by the 

field of the electromagnet gets weaker as the permanent magnet moves downward and 

gets stronger as the magnetic object moves closer.  A linearization of this phenomenon 

assumes that the response is not asymmetric, which is a good approximation as long as 

the amplitude of any oscillation is sufficiently small (∆r << r).  The asymmetry caused by 

the force of gravity is difficult to ignore when the magnetic forces are small in 

comparison to gravity, but the force of gravity can be ignored as long as the magnetic 

forces are sufficiently large (Fmag >> Fgrav).  This can be achieved if the set-point is 

moved closer to the electromagnet.  Another set of assumptions that is made, and 

reasonably so, is that the magnetic field produced at a given point outside the solenoid is 

proportional to the current flowing through the electromagnet and that the H-Bridge 

driver provides a current through the electromagnet proportional to the duty cycle of the 

input PWM signal. 

 

Balancing the Mass: 

 

Careful considerations had to be made when choosing the size and shape of the moving 

object.  The object needed a high angular moment of inertia because the object tended to 

physically flip and oscillate along a horizontal axis perpendicular to the main vertical axis 

that passes through the electromagnet.  Also, by increasing the mass of the object, the 

object acquired a higher inertia and allowed for a much slower control loop frequency.  A 

higher inertia means that the object resists changes in velocities more, so the output of the 

electromagnet needs to be updated less frequently.  This is desirable because the control 

loop can only run at a maximum speed determined by the number of operations to be 

completed in each loop, and is also desirable because the inductance of the electromagnet 

prevents it from allowing the current to be changed too quickly.  However, a higher mass 

also leads to a stronger gravitational force, which is not desirable for the system to be 

linearly approximated.  To find a compromise, I added washers to the bolt until I found 

the longest balancing time (about .5 seconds). 

 

 

 

 



Improvements: 
 

To improve the magnetic levitation device, I would increase the control loop speed and 

perhaps add a revision in the PID controller for asymmetries in the response of the 

system.  To increase the loop speed, I would change all floating point arithmetic to 

integer arithmetic and scale any quantities, like the output variable, at the end of the 

control loop.  I would also modify the code to update the Kd, Kp, and equilibrium position 

quantities once every 20 loop cycles, rather than every time the loop is executed.  These 

parameters don’t have to be updated 1000’s of times per second, but rather around 10 

times per second.  I observed that the controller seemed unable to activate changes in the 

magnetic field quickly enough to adequately affect a change in the motion of the 

magnetic object.  Additionally, I would experiment with changes in PID response, adding 

2 sets of Kp and Kd so that the system has a different response when moving in the 

upward, versus in the downward, direction.  


