
MEMS Inertial Navigation System

Jordan Crittenden (jsc59) Parker Evans (pae26)

May 8, 2008

Abstract

Our goal was to design and construct a simple Inertial Navigation System using
micro-electromechanical systems (MEMS) sensors. The sensors are processed by a
microcontroller and external floating point unit to estimate current state. Although we
made good progress, significant difficulties along the way prevented us from developing
a system that lived up to our initial expectations. We were, however, able to obtain
modest results with the system we developed and, given more time, would have been
able to improve upon them.

1

1 Background

1.1 Inertial Navigation

An Inertial Navigation System (INS) is a device which computes the real-time state of a
moving vehicle using motion sensors. By state we mean the position, velocity, and orienta-
tion of the vehicle. An INS can be used either as an isolated unit to provide continuous state
information to a pilot, or in conjuction with a control system for autonomous movement.
INSs are widely used in military and commercial projects, and have been under constant
development and revision for several decades, but it is only recently that the technology has
been accessible to hobbyists.

An INS can be logically decomposed into an Inertial Measurement Unit (IMU), which mea-
sures instantaneous accelerations or velocities in the body frame, and a state update system
which uses the IMU values to update the position, velocity, and orientation of the vehicle in
the navigation frame. Coordinate frames will be discussed shortly.

1.2 MEMS Sensors

There are several different ways to design an IMU, and the particular design chosen is often
the driving factor in the cost of the entire INS. The recent proliferation of MEMS sensors
has enabled the construction of low-cost IMUs with a tradeoff of reduced accuracy.

MEMS IMUs generally require three orthogonal measurements of acceleration and three
measurements of rotational velocity around the same orthogonal axes. Accelerometers and
gyroscopes respectively can produce these measurements. Both use micromachined surface
capacitors to measure forces, whether due to an acceleration or the Coriolis effect.

1.3 State Update

As mentioned above, measurements from the IMU are referenced to the body frame, which is
the coordinate system whose origin is located at the center of mass of the vehicle and whose
orientation matches that of the vehicle. To compute the state of the vehicle, then, these
values must be tranformed into the navigation frame, which is an earth-based coordinate
system under flatness assumptions (a good simplification for local movement). The body
and navigation frames are shown in Figure 1.

The coordinate transformation process is complicated, but a good discussion is given in Shin
[3]. Eskin [1] gives an example simplified implementation. In addition to converting the
measurements into the navigation frame, the accelerations and velocities must be integrated
to compute the state values. A summary of the entire transformation/integration process is
given diagrammatically by Shin, and is shown in Figure 2.

2

2 Component Selection

In order to design the INS hardware, we had to make choices about which components to
use. There is no single correct way to construct an inertial system, and cost-performance
tradeoffs must be considered.

2.1 Sensors

One of our primary goals for the INS was to use MEMS components. There are many choices
for the particular MEMS sensors. We considered the following paramters before deciding on
the particular sensors.

• Number of Measurement Axes. Many manufacturers have created two or three
axis accelerometers and gyroscopes. These are tremendously useful as they reduce the
required number of chips and supporting passive components, and eliminate misalign-
ment errors.

• Breakout Boards. To eliminate the difficulty of soldering various packages and to
speed up prototyping time, it is convenient for the sensors to come mounted on a
breakout board. These boards also usually provide the necessary filtering capacitors.

• Source Voltage. The input voltage to the sensors must be within the range of our
source, and it is most convenient if it is exactly equal to the source voltage. Our
primary source voltage was 5V from a regulator. Many sensors require a nominal 3.3V
or 3V input.

• Type of Output. MEMS sensors generally provide either digital or voltage propor-
tional analog output. Digital outputs are further available in either PWM, SPI, or I2C
formats. The latter two formats were less desirable for us because they do not support
arbitrary resolution.

• Cost. We wanted to keep costs as low as possible. One can pay hundreds of dollars
for more accurate sensors, but these are out of our budget range.

• Bandwidth. Different sensors have different bandwidths. For moderate to very ac-
curate systems, the bandwidth is an important factor to consider. However, for our
project, this constraint was less important than the others.

• Manufacturer. Not all manufacturers provide the same quality products and datasheets.

After considering various products, we chose two breakout boards available from Sparkfun
Electronics (TM), a hobbyist electronics depot. The first breakout board includes both a
three axis accelerometer from Analog Devices (ADXL330) and a two axis gyroscope from
InvenSense (IDG300). The board accepts a 3.3V input and produces five voltage proportional
analog outputs. The board costs approximately $100. The second breakout board features
a single axis gyroscope from Analog Devices (ADXRS300) which completes the orthogonal

3

set. The board accepts a 5V input and produces a voltage proportional analog output, at
an approximate cost of $70.

2.2 Analog to Digital Converter

Having chosen sensors with analog output, we needed to be able to convert the signals to dig-
ital values. Most microcontrollers provide an analog to digital converter (ADC) for precisely
this purpose. However, the resolution of these devices is usually 10 or 12 bits. We wanted
higher precision than this. We decided on 16 bits because it fits conveniently in exactly two
bytes, or two 8-bit ports on a microcontroller.

ADCs have similar parameters to those enumerated above. We eventually decided on the
AD976 from Analog Devices which features 5V input, parallel output, and up to 100KSPS
(kilosamples per second). Most high resolution ADCs use SPI or I2C output to reduce the
number of required microcontroller GPIO pins. We initially sampled such a component, but
the interface turned out to be more hassle than it was worth. Parallel output can also be
sampled more quickly than the serial alternatives, which is appropriate for slower processors.

2.3 Microcontroller

The workhorse processing unit for any embedded project is the microcontroller. An INS
is particularly processing intensive application. At each timestep, the signals must be read
and modified according to the current calibration. Then they must be fed into the state
update method, which performs significant mathematical calculation, including several full
matrix multiplications and trigonometric computations. For the greatest accuracy, all of
these computation must be performed on 32 bit floating point values. Thus a fast, powerful
microcontroller is ideal.

The vast array of available microcontrollers does include many 32 bit, 100+ MHz, floating
point capable units. However, code complexity and development costs often scale propor-
tionally to the power of the microcontroller. Furthermore, neither of the authors have had
experience with these very powerful devices. For these reasons, we eventually decided to
use a familiar, cheap, battle-tested, but less-powerful microcontroller: the 8 bit Atmel AT-
Mega32. The ATMega32 is a 16MHz device with no hardware floating point. Thus, to allow
real-time state update, an external floating point processor was necessary.

2.4 Floating Point

Compared to the wide variety of available microcontrollers, floating point coprocessors are
relatively uncommon. However, the uM-FPU from Micromega is cheaply available and
provides a rich set of IEEE 754 floating point math operations. In addition, the FPU features

4

macro operations such as matrix multiplication and FFT, and allows user programmable
functions such that significant processing can be offloaded from the microcontroller.

2.5 False Starts and Future Changes

We tried several seemingly promising paths before settling on the hardware configuration
given in the previous sections. These false starts are instructive enough that we will mention
them here.

The first ADC that we tried to use was a 14 bit SPI device. In retrospect, there is probably
nothing wrong with this choice aside from the slight speed decrease from the serial commu-
nication and some small hassles with filtering capacitors. However, at the time we had no
experience with SPI devices and were simultaneously attempting to use an unfamiliar micro-
controller platform. The result was that we had limited success performing conversions and
communicating with the device. Thus we abandoned the SPI device in favor of a parallel
interface.

We considered several microcontrollers before choosing the ATMega32. Concern about 32
bit processing and hardware floating point led us to experiment with two 32 bit micros.
The first was a relatively new Atmel device, the AVR32UC3. A sample development board
was available to us at no cost. Unfortunately, the chip was so new that at the time, one
could not even purchase the device as a standalone IC. Documentation was also sparse and
incomplete. So we tabled the chip. The second 32 bit micro we tried was the Phillips (now
NXP) LCP2119 with ARM7 core. One of the authors had a development board for this
device prior to starting research. The development board, however, was created by a foreign
manufacturer, resulting in poor documentation and limited community support. Further-
more, the device was difficult to program and the development tools were not polished. So
we gave up on this chip too.

Looking back, there are still many changes that we ought to make to the current design.
Perhaps the easiest change with the biggest payoff would be to add an op amp to the output
of the analog multiplexer before the signal enters the ADC. Although the ADC is sourced
by only a nominal 5V, the valid range for the input voltage is allowed to range from -10V to
+10V. That is, the output of the ADC attains its minimum value (-(215) in two’s complement)
when the input voltage is -10V and its maximum value (215 in two’s complement) when the
input voltage is +10V. Since the peak range for most of our input signals was only 0V to
+3.3V, we were using less than a quarter of the available range, thus wasting a full 2 bits
of resolution. This problem could be partially alleviated by amplifying the input signal to
a wider range. Another desirable change would be to replace the current gyroscopes with
three matched gyroscopes with 3.3V source input. The discrepancy between the parameters
for the dual-axis gyro and the single-axis gyro lead to very different performances. Finally,
given more time we would have like to design a PCB using the bare sensor components
instead of breakout boards to facilitate a more solid interface between the sensors and the

5

rest of the components.

3 Hardware Design

Once we had selected the components, designing the sensor PCB was straightforward. The
sensor breakout boards were placed as closely as possible to each other and to the center
of the PCB to minimize errors associated with shifted origins. The sensor outputs were
connected as inputs to an analog multiplexer (ADG608), and the output of the multiplexer
was passed to the ADC. Supporting resistors and capacitors were placed around the ADC
as prescribed by the datasheet. 5V and 3.3V voltage regulators with appropriate filter ca-
pacitors served as the inputs to the sensor boards, the multiplexer, and the ADC. Finally,
a barrel plug was added for the voltage source and a prototyping area was created for any
quick fixes. The schematic and PCB layout are shown in the Appendices.

Rather than design a new prototype board for the ATMega32, we decided to borrow the well
tested design due to Bruce Land [2]. The protoboard is small and provides access to each 8
bit port. In addition, serial communication from the UART is supported. The protoboard
was mounted into a whiteboard and the appropriate connections were made to both the
FPU and sensor board. A picture of the setup is given in Figure 3. Given more time, we
would have like to mount the device in a project enclosure for easier handling and better
protection against electrostatic discharge.

4 Software Design

Since we offloaded much of the computation to user functions on the FPU, the software
design is logically divided into two pieces - the code on the microcontroller and the code on
the FPU. The relationship between these pieces of code is summarized in Figure 4.

4.1 ATMega32 Code

The code running on the microcontroller is responsible for interfacing with the sensor board
and the floating point unit. All state structures and update calculations are offloaded to the
FPU. The code contains a single task running at 100Hz (using a millisecond timer interrupt
triggered by timer 2) which is responsible for reading each of the six sensor values into mem-
ory. This is done by 1) selectings the appropriate multiplexer channel on the sensor board
and then 2) driving the control lines of the ADC (the control sequence is replicated from the
ADC data sheet) once for each sensor. Once we are done reading all of the sensor values we
transfer the data to the appropriate registers of the FPU, in addition to the time interval
since the last read (in our case a constant 0.01s), and then call a user function on the FPU
to update the state of the system (position, velocity, and a matrix representing orientation)
given the current accelerations and angular rates from the sensors.

6

The communication between the FPU and the microcontroller is done via SPI. Micromega
provides a fully featured API which does the actual low level communication between the mi-
crocontroller and the FPU and provides convenient high level functions and named constants.

Because the state update calculations are all done on the FPU, the only time consuming
code running on the microcontroller is the sensor readings, which include several delays and
takes roughly 100 microseconds to run, and the data transfer to the FPU. This transfer
involved moving seven 32 bit floating point numbers or 28 bytes of data plus the necessary
control bytes (about 12 bytes) for a total of about 40 bytes plus a function call to update the
state which is an extra two bytes. 42 bytes takes about 84µs assuming the SPI is running at
the 5MHz continuous transfer speed. This means that we are well within our limit of 10ms
between tasks.

Apart from reading the sensors values and transferring them to the FPU, the only other tasks
that the microcontroller has is initializing the state of the FPU and INS at reset, which in-
volves a call to an initialize function on the FPU, and to initialize the sensor board into a
known state (the ADC requires one conversion operation before the outputs are determinate).

All code for the ATMega32 was written in AVR Studio 4 Version 4.13 Build 557 with GCC
extensions provided by WinAVR 20070525.

4.2 FPU Code

The Micromega FPU provides a wealth of functionality to speed up the calculations required
by this project. It allows us to do full 32 bit IEEE 754 floating point calculations much faster
than on the ATMega32 and to offload significant processing to ensure that the microcon-
troller operates in real time and controls the system correctly. The FPU runs at 29.48MHz,
nearly twice the speed of the microcontroller (16MHz). The accuracy gained from comput-
ing with floating point instead of fixed point is arguably negligible considering the accuracy
of our sensors, but was a nice addition and gave us experience interfacing with a coprocessor.

We also took advantage of the Integrated Development Environment provided by Micromega
to compile some of our C code math statements into FPU assembly and to provide a frame-
work for writing our own assembly. One of the key features in debugging the FPU code was
the debug interface between the serial pins on the chip and this program.

We also made extensive use of the FPU’s hardware support for matrix operations. The state
update routine uses several matrices and vectors to convert between reference frames and it
was very convenient to be able to code these with few instructions. Initialization is also made
easier by the matrix operation that does an element-wise set (we initialized many vectors
and matrices to zero at reset). Helpful math routines such as those for cosine and sine were

7

also provided by the FPU.

The FPU code is a direct translation of code written in C during the early stages of the
project. The C code was written for the PC and tested for correctness. The mathematics
in the code relies heavily the papers by Shin and Eskin. Small changes were made for the
FPU version to take advantage of the available floating point registers.

According to on-chip timing, the total state update on the FPU takes less than 4ms. Al-
though this is a significant amount of time, we are afforded a window of 10ms to do this
computation, so we are well within our time allowance.

5 Conversions and Calibration

In order to perform the state update calculations, the sensor readings must be converted into
quantities with the appropriate units, namely meters per second squared for accelerations
and radians per second for angular velocities. The output from the ADC, however, is simply
an integer between 0 and 216. The conversion formula from the ADC reading to the physical
quantity is given by the affine map

p = α (q − β) + ε (1)

where q is the value from the ADC, β is the bias, α is the scale factor or gain, ε is additive
noise, and p is the resulting physical quantity. There are several ways to find these values,
which we now discuss.

5.1 Theoretical Biases and Gains

The gains and biases can be found theoretically from the datasheet specifications. The biases
can be computed from the zero level output voltage (or offset voltage) of the devices. The
gains, on the other hand are functions of the devices’ sensitivites. The datasheet for the
accelerometers reports the expected sensitivity in terms of millivolts of change in the output
voltage per g of acceleration. The gyroscope sensitivities are reported in millivolts of change
in the voltage per degree/s. From these we can compute the ideal biases and gains in terms
of ADC levels as shown in Table 1.

Sensor Zero Offset Ideal Bias Sensitivity (Ideal Gain)−1

x/y/z Accelerometer 1.65V 5406.72 300 mV
g

100.27746 levels
m/s2

x/y Gyroscope 1.65V 5406.72 2 mV
◦/s

375.49362 levels
rad/s

z Gyroscope 2.5V 8192 5 mV
◦/s

938.73405 levels
rad/s

Table 1: Ideal biases and gains for the three sensor packages

8

Sensor Experimental Bias (Experimental Gain)−1

x Acceleration 5440 113.9526 levels
m/s2

y Acceleration 5481.8 111.1882 levels
m/s2

z Acceleration 4824.5 71.6598 levels
m/s2

x Gyroscope 4862.6 429.6229 levels
rad/s

y Gyroscope 4863.7 389.2020 levels
rad/s

z Gyroscope 8223.9 828.2950 levels
rad/s

Table 2: Experimental biases and gains for the six sensors

5.2 Experimental Calibration via Constant Sources

Of course, while the ideal biases and gains above are useful starting points, the sensors
will not adhere to theoretical values. Therefore, it is necessary to perform calibration to
find experimental values for the parameters. The calibration of the accelerometers can be
performed by logging the output of the sensors when the IMU is positioned in each of the
orientations shown in Figure 5.

In each of the orientations, we make use of gravity as a fixed acceleration. The reading from
a sensor when its axis is completely orthogonal to gravity should correspond to the sensor
bias. And by finding the magnitude of the difference between the maximum and minimum
readings of the sensor, we can compute the scale factor. This assumes that there are no
other appreciable forces imposed on the sensor, so we must try to restrict any motion to
purely rotational while logging. The output from such a log are shown in Figure 6, and the
resulting experimental biases and gains are listed in Table 2.

5.3 Experimental Calibration via Integration

Finding the biases for the gyroscopes can be done simply by logging the sensor output for the
stationary device. The analogous method for finding the gains for the gyroscopes, however,
would require that we be able to rotate the sensor about each of the orthogonal axes at a
known, constant rate. Unfortunately, there is no freely available constant rotation source
analogous to the freely available constant acceleration due to gravity. We could try to rotate
the sensor by hand, but we would certainly not acheive a constant rate. So the gyroscope
gains cannot be found using this approach.

An alternative method for calibrating the gains of the sensors makes use of the linearity of
integration. Assuming we have already computed the sensors biases and we ignore noise,
Equation 1 simply becomes p = αq. If p is an angular velocity, p = θ′, then ∆θ =

∫
αq dt,

and we can find α using

α =
∆θ∫
q dt

9

If p is a linear acceleration, p = x′′, then ∆x =
∫∫
αq dt, which we solve for α to get

α =
∆x∫∫
q dt

Therefore, to find the scale factors, we can log the sensor data while the sensor is moved a
known distance, say 1m, or rotated by through a known angle, say 90◦, along or about a
single axis. We can then find the gain by dividing the known distance or angle by the sum of
the logged measurements (or in the case of an acceleration, the sum of the cumulative sum
of the measurements). This process is not as accurate as the method above, so we only used
it to find the gyro gains. The results are listed in Table 2.

6 Results

To ascertain the success of the device as an inertial navigation system, we conducted a
number of experiments. The most informative results are given here.

6.1 Experiment 1 - Stationary Device

The first experiment one should carry out when testing an INS is to log the computed posi-
tion for the stationary device. This test is useful for estimating the drift error rate. A log of
the three position coordinates in the navigation frame for the first 2s after boot up is given
in Figure 8 [x=blue, y=green, z=red].

These results are somewhat encouraging. We see that after 2s, all of the coordinate positions
has drifted by less than 5m. And in the first second, the drift is less than 1m. Since GPS
update rates are approximately 1s, this means that if we were to add a GPS unit and Kalman
filtering to the INS, the stationary accuracy would deviate by only about 1m.

This experiment also serves as a sanity check that the basic integration algorithm is working
correctly. Each of the coordinate positions follows a quadratic curve, which is exactly what
should happen under constant acceleration. From this we deduce that at each timestep, the
sensor measurement differs from the bias value by a small amount, leading to compounded
velocity, and a quadratic drift.

6.2 Experiment 2 - Single Axis Oscillation

The stationary results just reported could have been coincidental. Perhaps the sensors aren’t
really working and we are just sending a constant value to the update algorithm at each
timestep. This would produce the same results and we would be none the wiser. Therefore,
we performed an experiment to rule out this hypothesis. While again logging the reported

10

positions, we moved the device up and down along the z-axis in a roughly sinusoidal pat-
tern with amplitude approximately equal to 5cm. The results of this log are given in Figure 9.

We see that the estimated z-position (the red line) appears to be a superposition of a
quadratic with a sinusoidal oscillation. Moreover, the oscillation appears to have approx-
imately 5cm amplitude. We interpret this result as showing the actual oscillations super-
imposed on the drift error. So we are convinced that the state update did pick up on the
movement.

6.3 Experiment 3 - Prerotation vs. Postrotation

Having established that the accelerometers are truly affecting the state estimate, we per-
formed a final test to see if the gyroscopes and rotational update calculations were working.
The test makes use of the following fact: the state update algorithm assumes that, at ini-
tialization, the sensors are oriented such that z-accel points directly up (opposite gravity).
The experiment works by first logging the positions when the sensor is rotated out of this
assumed initial orientation before the system is booted up (specifically we rotated it upside
down). We expect in this case that the system will think that the sensor is being accel-
erated strongly in the +z-direction (because gravity is acting opposite from the assumed
orientation). We then create another position log where we first boot up the system, and
then rotate the sensor as before. We expect in this case that the state update will take into
account the angular velocities reported by the gyros and thus will realize that the sensor has
been rotated. If this works, we should not see the same large positional displacements as
before. Ideally, the INS will report that the sensor has not moved at all. The actual results
are shown in Figure 10.

As expected, when the device is prerotated, the z-position grows very quickly, reaching nearly
200m in 5s. This represents the effect of opposite-from-normal gravity plus the usual bias
drift error. When the rotation is performed after boot-up, we see that, although not nearly
stationary, the INS does not think that it has moved as far in the z-direction. It now reports
a displacement of closer to 70m in the +z-direction, which can be almost fully explained by
drift. So it seems that the gyroscopes and rotational update calculations are working.

7 Conclusions and Future Work

Our initial goals at the inception of the project were very ambitious. Needless to say, we
did not meet all of them. We were, however, able to make a sensor system that performs
the necessary measurements for inertial navigation, and does significant calculation on those
values to obtain new state (all at a rate of one hundred times per second). The code to
update the state of the system appears to be working correctly on our floating point unit
(as can be seen in the results) and with more robust sensor calibration and error correction
and perhaps faster sampling time and sensor filtering, we feel that the system could perform

11

at a level consistent with other low cost dead reckoning systems. Some improvements and
possible future work are detailed below.

7.1 Sensor Reading and Calibration Improvements

Our sensor calibration, while extensive, could certainly have been improved. The system
could have performed self-calibration at start up to ensure more accurate biases and scale
factors by computing time averages and taking advantage of the accelerometers self test
feature. In addition, a temperature sensor could have been used in conjunction with the
sensors’ stated skew factors to dynamically update scale factors and biases during runtime.
The sensor reading method could have also been improved. We neglected to do software
filtering of our sensor readings in the interest of time but feel that this could have provided
some noise immunity for our system. The sensor readings have occasional spikes which may
cause the state to drift more than necessary. Some improvement may have been derived by
increasing the sampling rate and averaging consecutive samples, as described by Eskin [1].
A simple Guassian filter may also have reduced the sensor noise.

The 100Hz sampling frequency may have been one of the biggest weaknesses in our design.
We sample at a much lower frequency than related systems and we sample all of our sensors
at once. While the sampling frequency was limited by the speed of our state update code, we
feel that with a better understanding of the sampling frequency requirements of the sensors,
and with code optimizations (and perhaps hardware improvements), we could have increased
the sampling frequency and possibly the accuracy of our system.

7.2 GPS Integration and Kalman Filtering

The method of state update that we employed falls in the class of dead reckoning integra-
tion. That is, there is no feedback of position, velocity, or orientation error. Such a technique
falls victim to integration drift and compounding errors. To alleviate these shortcomings,
advanced navigation systems generally integrate a GPS unit. GPS devices have limited ac-
curacy but are not vulnerable to drift. Thus the combination of a GPS unit with an inertial
measurement unit can be quite powerful, allowing the IMU to provide improved resolution
while avoiding drift.

The mathematical mechinism for the feedback control is the Kalman filter, which combines
multiple estimates of a signal to reduce the expected error from the true value. The theory
of Kalman filtering is well established and has been successfully applied to INS design. We
had hoped to explore this integration, but time did not permit. On a related note, we had
originally intended to incorporate duplicate MEMS sensors along each axis. These extra
measurements could be utilized by the Kalman filter to further reduce error.

12

7.3 Remote Monitoring

Another initial goal was to allow the INS to be monitored remotely via wireless communica-
tion. This would have allowed the INS to be mounted on a flight vehicle while maintaining
contact with a base station. The addition of this component to the project would not, in
principle, be very difficult, and would have been our next step. Again, time ran out.

7.4 Autonomous Control

Ultimately, our goal was to use the INS as a platform for autonomous control. We planned to
purchase a remote control helicopter and develop real time autopilot algorithms. Helicopters
are notoriously difficult to fly and require constant adjustment from the pilot. The hope
was that a system could be developed which would remove the complex human control
requirements and provide a simple interface for waypoint navigation. We realize now that
this goal was far beyond our reach from the beginning, even if we had not encountered any
of the problems that we did. Nevertheless, the goal is attainable, and we still maintain an
interest in this application.

13

Appendix - Some Lessons Learned

In any self-guided independent study, it is inevitable that difficulties will be encountered
that were not expected. However, the frequency and magnitude of these difficulties can
be minimized. Here are some lessons we learned and would like to pass on to future stu-
dents performing an independent study. Some of these suggestions are specific to electrical
engineering, but many apply to any field.

1. Set Realistic Goals. Our original goal was to build an inertial navigation system
incorporating MEMS sensors, GPS, and wireless communication and use it to fly a scale
helicopter. In hindsight, that goal was absurdly optimistic. Realize that you have other
demanding classes and that things will go wrong and set your goals accordingly.

2. Plan Ahead. It is tempting to dive in right away building your device or program-
ming. While this is fine for a prototype, the final product requires copious planning.
For example, we designed a board an 8x2 parallel digital output without considering
how this would get connected to our microcontroller. That decision led to hours of
frustration which could have been avoided by a different layout.

3. Read All Datasheets. You won’t know to pull the start conversion bit high on the
ADC to enable the output pins if you don’t read the datasheet. That was at least
eight hours wasted. Read the whole datasheet - just do it. Pay special attention to
the timing diagrams and reference circuits. They are there to help you.

4. Start Simple. In your head, you know how the whole symphony will play out. But
when you end up with a cacophony, don’t start blindly telling the instruments to do
different things. Focus on a single component, make sure it is correct, and move on to
the next. It’s simple math - if you have six components working together, there are
26 = 64 ways it could be failing, and if you change something and it doesn’t fix the
problem, you haven’t narrowed anything down. If you focus on a single component, it
either works or it doesn’t, and it’s usually easy to figure out which.

5. Allocate a ’Class’ Time. Many independent studies don’t have a weekly meeting
time. This makes it easy to go weeks without working. So set a time each week when
you have to be working and work some accountability into it, so you can’t get away
with not showing up.

6. Use One Power Supply and Connect All Grounds. Voltage is always referenced.
Make everything in your circuit referenced to the same ground. If you don’t, strange
things will happen and you won’t know why. I promise.

7. Include a Power Switch. It’s always useful to be able to turn off your device. The
best way to do this is NOT to pull out the power each time. Add a switch and save
some tears.

8. Minimize Wires. Every wire is an opportunity for a faulty connection. So try to
minimize the number and length of all wires. A good way to do this is to design a
PCB and get it fabricated.

14

9. Don’t be Afraid to Spend Money. If you have funding and spending money will
make a problem go away, spend the money. We made a PCB but found out that some
of the holes were too small and didn’t fit nice headers. So we ordered a new one with
bigger holes. 50 bucks - totally worth it.

10. Remember the Rule of Pi. Be pessimistic when estimating the time to get some-
thing done or working. A good rule of thumb is to guess how long something will take
if everything you can think of goes wrong. Then multiply by pi.

15

Appendix - Code

Mega32 Code:

#include <avr/io.h>

#include <stdio.h>

#include <avr/interrupt.h>

#include <util/delay.h>

#include "fpu.h"

#define inb(sfr) _SFR_BYTE(sfr)

#define cbi(sfr,bit) (_SFR_BYTE(sfr) &= ~_BV(bit))

#define sbi(sfr,bit) (_SFR_BYTE(sfr) |= _BV(bit))

//ADC data read

#define ADCData (((unsigned int)_SFR_BYTE(PINA)) << 8) | ((unsigned int)_SFR_BYTE(PINC))

//Blinky task variables

#define BLINK_TIME 250

unsigned char volatile blink_count;

unsigned char toggle;

//INS Sensor stuff (sample time gives 100 samples per second)

#define SAMPLE_TIME 10

unsigned char volatile sample_count;

unsigned int cur_x_accel, cur_y_accel, cur_z_accel;

unsigned int cur_x_rate, cur_y_rate, cur_z_rate;

float dtheta[3];

float dv[3];

//FPU Functions

#define ins_initialize 5

#define ins_update_state 6

//Initialization

void initialize(void);

void blink_task(void);

void sample_task(void);

unsigned int readtask(unsigned char channel);

/*

* Timer interrupt code for state update

* Running at 1000 Hz

*/

ISR(SIG_OUTPUT_COMPARE2)

{

if (sample_count > 0) sample_count--;

if (blink_count > 0) blink_count--;

}

int main(void)

{

initialize();

while(1)

{

if (sample_count == 0) sample_task();

if (blink_count == 0)

{

toggle = !toggle;

if (toggle) blink_task();

else blink_count = BLINK_TIME;

}

}

return 0;

}

16

/*

* Blink a light and also print our current state.

*/

void blink_task(void)

{

blink_count = BLINK_TIME;

if (PIND & 0x04) cbi(PORTD,2);

else sbi(PORTD,2);

}

void sample_task(void)

{

sample_count = SAMPLE_TIME;

//Sample the 6 sensors

cur_x_accel = readtask(0);

_delay_us(10);

cur_y_accel = readtask(1);

_delay_us(10);

cur_z_accel = readtask(2);

_delay_us(10);

cur_x_rate = readtask(3);

_delay_us(10);

cur_y_rate = readtask(4);

_delay_us(10);

cur_z_rate = readtask(5);

_delay_us(10);

//Put these values in arrays for block transfer

dv[0] = (float)cur_x_accel;

dv[1] = (float)cur_y_accel;

dv[2] = (float)cur_z_accel;

dtheta[0] = (float)cur_x_rate;

dtheta[1] = (float)cur_y_rate;

dtheta[2] = (float)cur_z_rate;

//Block transfer sensor readings to fpu

fpu_write2(SELECTX,80);

fpu_wrblk(3,dv);

fpu_write2(SELECTX,71);

fpu_wrblk(3,dtheta);

fpu_writeFloatReg(0.01,83); //Register number of dt

fpu_wait();

//Now update the INS state

fpu_fcall(ins_update_state);

fpu_wait();

}

// channel must be 0-7

unsigned int readtask(unsigned char channel)

{

if (channel & 0x04) sbi(PORTD,5); else cbi(PORTD,5);

if (channel & 0x02) sbi(PORTD,4); else cbi(PORTD,4);

if (channel & 0x01) sbi(PORTD,3); else cbi(PORTD,3);

_delay_us(5); // wait for analog mux to settle

cbi(PORTD,6); // start conversion

_delay_us(1); // wait for the conversion to start

sbi(PORTD,6); // pull back high

loop_until_bit_is_set(PIND,7); // spin on busy bit

return ADCData;

}

void initialize(void)

{

17

// reset FPU and check synchronization

if (fpu_reset() == SYNC_CHAR)

{

}

else

{

return;

}

//Init timer0 for millisecond time base

TCNT2 = 0; //clear the timer0 register

OCR2 = 249; //set the timer0 compare value

TCCR2 = _BV(WGM21) |

_BV(CS22); //CTC on OCR0, clock/64

TIMSK = _BV(OCIE2); //enable the timer0 interrupt

//Initialize ADC interface ports

DDRA = 0x00;

DDRC = 0x00;

cbi(DDRD,7);

sbi(DDRD,6);

sbi(DDRD,5);

sbi(DDRD,4);

sbi(DDRD,3);

sbi(PORTD,6);

//Initialize blinky port

sbi(DDRD,2);

sbi(PORTD,2);

blink_count = BLINK_TIME;

toggle = 0;

//Initialize sensor sampling

sample_count = SAMPLE_TIME;

//Start the ISRs

sei();

//Set up the INS state

fpu_fcall(ins_initialize);

fpu_wait();

readtask(0);

}

FPU Code:

’This is the current state of the system

rx equ F1

ry equ F2

rz equ F3

vx equ F4

vy equ F5

vz equ F6

Cbn_0_0 equ F7

Cbn_0_1 equ F8

Cbn_0_2 equ F9

Cbn_1_0 equ F10

Cbn_1_1 equ F11

Cbn_1_2 equ F12

Cbn_2_0 equ F13

Cbn_2_1 equ F14

Cbn_2_2 equ F15

q_0 equ F16

q_1 equ F17

q_2 equ F18

q_3 equ F19

18

’Temporary and intermediate variables

qum_0_0 equ F20

qum_0_1 equ F21

qum_0_2 equ F22

qum_0_3 equ F23

qum_1_0 equ F24

qum_1_1 equ F25

qum_1_2 equ F26

qum_1_3 equ F27

qum_2_0 equ F28

qum_2_1 equ F29

qum_2_2 equ F30

qum_2_3 equ F31

qum_3_0 equ F32

qum_3_1 equ F33

qum_3_2 equ F34

qum_3_3 equ F35

scul_0_0 equ F37

scul_0_1 equ F38

scul_0_2 equ F39

scul_1_0 equ F40

scul_1_1 equ F41

scul_1_2 equ F42

scul_2_0 equ F43

scul_2_1 equ F44

scul_2_2 equ F45

pq_0 equ F46

pq_1 equ F47

pq_2 equ F48

pq_3 equ F49

pvn_0 equ F50

pvn_1 equ F51

pvn_2 equ F52

t3_1_0 equ F53

t3_1_1 equ F54

t3_1_2 equ F55

t3_2_0 equ F56

t3_2_1 equ F57

t3_2_2 equ F58

euler_0 equ F59

euler_1 equ F60

euler_2 equ F61

dtheta_0 equ F71

dtheta_1 equ F72

dtheta_2 equ F73

mag equ F74

s equ F75

c equ F76

sdx equ F77

sdy equ F78

sdz equ F79

dv_0 equ F80

dv_1 equ F81

dv_2 equ F82

dt equ F83

q00 equ F84

q11 equ F85

q22 equ F86

q33 equ F87

q01 equ F88

q02 equ F89

q03 equ F90

q12 equ F91

q13 equ F92

q23 equ F93

#FUNCTION 0 euler_angles_to_body_to_nav_matrix

19

Cbn_0_0 = cos(euler_1)*cos(euler_2)

Cbn_0_1 = (sin(euler_0)*sin(euler_1)*cos(euler_2)) - (cos(euler_0)*sin(euler_2))

Cbn_0_2 = (sin(euler_0)*sin(euler_2)) + (cos(euler_0)*sin(euler_1)*cos(euler_2))

Cbn_1_0 = cos(euler_1)*sin(euler_2)

Cbn_1_1 = (cos(euler_0)*cos(euler_2)) + (sin(euler_0)*sin(euler_1)*sin(euler_2))

Cbn_1_2 = (cos(euler_0)*sin(euler_1)*sin(euler_2)) - (sin(euler_0)*cos(euler_2))

Cbn_2_0 = -sin(euler_1)

Cbn_2_1 = sin(euler_0)*cos(euler_1)

Cbn_2_2 = cos(euler_0)*cos(euler_1)

#FUNCTION 1 body_to_nav_matrix_to_quaternion

mag = sqrt(1 + Cbn_0_0 + Cbn_1_1 + Cbn_2_2)

q_0 = 0.5 * (Cbn_2_1 - Cbn_1_2) / mag

q_1 = 0.5 * (Cbn_0_2 - Cbn_2_0) / mag

q_2 = 0.5 * (Cbn_1_0 - Cbn_0_1) / mag

q_3 = 0.5 * mag

#FUNCTION 2 sculling_matrix

scul_0_0 = 1

scul_1_1 = 1

scul_2_2 = 1

scul_0_1 = 0.5 * dtheta_2

scul_0_2 = -0.5 * dtheta_1

scul_1_0 = -0.5 * dtheta_2

scul_1_2 = 0.5 * dtheta_0

scul_2_0 = 0.5 * dtheta_1

scul_2_1 = -0.5 * dtheta_0

#FUNCTION 3 quaternion_update_matrix_eskin

mag = sqrt((dtheta_0*dtheta_0) + (dtheta_1*dtheta_1) + (dtheta_2*dtheta_2))

#ASM

SELECTA, 74 ;Select mag

FCMPI, 0 ;Check if mag is 0

BRA, EQ, _szero

COPYA, 75 ;Copy mag to s

SELECTA, 75 ;Select s

FDIVI, 2 ;Divide by 2

SIN ;Take the sine

FDIV, 74 ;Divide the result by mag

BRA, _exit ;Done

_szero:

SELECTA, 75 ;Select s

FSETI, 0 ;Set s = 0

_exit:

#ENDASM

c = cos(mag/2)

sdx = s*dtheta_0

sdy = s*dtheta_1

sdz = s*dtheta_2

qum_0_0 = c

qum_0_1 = sdz

qum_0_2 = -sdy

qum_0_3 = sdx

qum_1_0 = -sdz

qum_1_1 = c

qum_1_2 = sdx

qum_1_3 = sdy

qum_2_0 = sdy

qum_2_1 = -sdx

qum_2_2 = c

qum_2_3 = sdz

qum_3_0 = -sdx

qum_3_1 = -sdy

qum_3_2 = -sdz

qum_3_3 = c

#FUNCTION 4 quaternion_to_body_to_nav_matrix_shin

q00 = q_0*q_0

20

q11 = q_1*q_1

q22 = q_2*q_2

q33 = q_3*q_3

q01 = q_0*q_1

q02 = q_0*q_2

q03 = q_0*q_3

q12 = q_1*q_2

q13 = q_1*q_3

q23 = q_2*q_3

Cbn_0_0 = q00-q11-q22+q33

Cbn_0_1 = 2*(q01-q23)

Cbn_0_2 = 2*(q02-q13)

Cbn_1_0 = 2*(q01+q23)

Cbn_1_1 = q11-q00-q22+q33

Cbn_1_2 = 2*(q12-q03)

Cbn_2_0 = 2*(q02-q13)

Cbn_2_1 = 2*(q12+q03)

Cbn_2_2 = q22-q00-q11+q33

#FUNCTION 5 initialize

#ASM

FWRITE0,0.0 ;Reg[0] = 0

SELECTMA,20,4,4 ;A = qum

MOP,0 ;A = 0 element-wise set

SELECTMA,71,3,1 ;A = dtheta

MOP,0 ;A = 0 element-wise set

#ENDASM

@sculling_matrix

#ASM

FWRITE0,0.0 ;Reg[0] = 0

SELECTMA,46,4,1 ;A = pq

MOP,0 ;A = 0 element-wise set

SELECTMA,50,3,1 ;A = pvn

MOP,0 ;A = 0 element-wise set

SELECTMA,53,3,1 ;A = t3_1

MOP,0 ;A = 0 element-wise set

SELECTMA,56,3,1 ;A = t3_2

MOP,0 ;A = 0 element-wise set

SELECTMA,59,3,1 ;A = euler

MOP,0 ;A = 0 element-wise set

SELECTMA,1,3,1 ;A = rn

MOP,0 ;A = 0 element-wise set

SELECTMA,4,3,1 ;A = vn

MOP,0 ;A = 0 element-wise set

#ENDASM

@euler_angles_to_body_to_nav_matrix

@body_to_nav_matrix_to_quaternion

#FUNCTION 6 update_state

#ASM

TRACEREG,1

TRACEREG,2

TRACEREG,3

#ENDASM

’Convert the accelerations and angular velocities (scale and bias)

dtheta_0 = (dtheta_0 - 4850.1)*0.0026632

dtheta_1 = (dtheta_1 - 4760.6)*0.0026632

dtheta_2 = (dtheta_2 - 8219.5)*0.0010653

dv_0 = (dv_0 - 5444.0)*0.0089039

dv_1 = (dv_1 - 5505.8)*0.0089609

dv_2 = (dv_2 - 5146.9)*0.0094717

’Get delta angle and delta velocity

#ASM

LOAD,83 ;Reg[0]=dt

SELECTMA,71,3,1 ;A = dtheta

MOP,4 ;A = A * dt

21

SELECTMA,80,3,1 ;A = dv

MOP,4 ;A = A * dt

#ENDASM

’Update Quaternion using Eskin’s method

@quaternion_update_matrix_eskin

#ASM

SELECTMA,16,4,1 ;Select 4x1 q vector as A

SELECTMB,20,4,4 ;Select 4x4 qum matrix as B

SELECTMC,46,4,1 ;Select 4x1 pq vector as C

MOP,26 ;pq = q (copy)

MOP,16 ;A = BC

#ENDASM

’Update body-to-navigation matrix

@quaternion_to_body_to_nav_matrix_shin

’Update sculling matrix

@sculling_matrix

’Convert dv from body frame to navigation frame

#ASM

SELECTMA,53,3,1 ;Select 3x1 t3_1 vector as A

SELECTMB,37,3,3 ;Select 3x3 scul matrix as B

SELECTMC,80,3,1 ;Select 3x1 dv vector as C

MOP,16 ;A = BC

SELECTMA,80,3,1 ;Select 3x1 dv vector as A

SELECTMB,7,3,3 ;Select 3x3 Cbn matrix as B

SELECTMC,53,3,1 ;Select 3x1 t3_1 vector as C

MOP,16 ;A = BC

#ENDASM

’Add gravity from this

dv_2 = dv_2 + (9.80321 * dt)

’Update velocity

#ASM

SELECTMA,4,3,1 ;Select 3x1 vn vector as A

SELECTMB,80,3,1 ;Select 3x1 dv vector as B

SELECTMC,50,3,1 ;Select 3x1 pvn vector as C

MOP,26 ;pvn = vn (copy)

MOP,9 ;A = A+B (element-wise add)

#ENDASM

’Update position

#ASM

SELECTMA,53,3,1 ;Select 3x1 t3_1 vector as A

SELECTMB,50,3,1 ;Select 3x1 pvn vector as B

SELECTMC,4,3,1 ;Select 3x1 vn vector as C

MOP,29 ;t3_1 = vn

MOP,9 ;A = A+B

FWRITE0,0.5 ;Reg[0] = 0.5

MOP,4 ;A = A*0.5

LOAD,83 ;Reg[0] = dt

MOP,4 ;A = A*dt

SELECTMA,56,3,1 ;Select 3x1 t3_2 vector as A

SELECTMB,1,3,1 ;Select 3x1 rn vector as B

SELECTMC,53,3,1 ;Select 3x1 t3_1 vector as C

MOP,29 ;t3_2 = t3_1

MOP,9 ;A = A+B

MOP,25 ;rn = t3_2

#ENDASM

#END

22

C:\Documents and Settings\Jordan\My Documents\cornell\heli\schematics\IMU 6DOF with ADC.sch - Sheet1

C:\Documents and Settings\Jordan\My Documents\cornell\heli\schematics\IMU 6DOF with ADC rev2.pcb (Silkscreen, Top layer, Bottom layer)

References

[1] Maksim Eskin. Design of an inertial navigation unit using mems sensors. Master’s thesis,
Cornell University, 2006.

[2] Bruce Land. Atmega32 protoboard. http://www.nbb.cornell.edu/neurobio/land/PROJECTS/Protoboard476/index.html.

[3] Eun-Hwan Shin. Accuarcy improvement of low cost INS/GPS for land applications. PhD
thesis, Geomatics Engineering, University of Calgary, 2001.

25

Figure 1: Body and Navigation frames

Figure 2: State update network [credit: Shin[3]]

26

Figure 3: Hardware Setup

Figure 4: Code summary flow

27

Figure 5: Setup for accelerometer calibration

Figure 6: Calibration data for the accelerometers

Figure 7: Calibration data for the gyroscopes

28

Figure 8: Stationary device log

Figure 9: Oscillating device log

29

Figure 10: Prerotation (left) vs. Postrotation (right) logs

30

