
FPGA Virtual Air Hockey

A Design Project Report

Presented to the Engineering Division of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering (Electrical & Computer)

by

Ping-Hong Lu

Project Advisor: Dr. Bruce R. Land

Degree Date: May 2008

 2

Abstract

Master of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title: FPGA Virtual Air Hockey

Author: Ping-Hong Lu

Abstract: A virtual air hockey game was designed that blends together many aspects of

embedded systems design in electrical and computer engineering to create an interactive

game that is sophisticated yet intuitive to play. The video game is implemented on the

DE2 FPGA educational development board made by Terasic for Altera's Cyclone II

processor. The FPGA is used in combination with a CCD camera for video input as well

as a monitor and speakers for game output. The camera tracks movements of LED

paddles through image processing techniques and the players move the paddles to strike

a virtual puck which is displayed on the monitor along with the on-screen paddles. In

addition to synthesizing basic hardware on the DE2, a general purpose CPU, called the

Nios II, is also instantiated on the board, which runs high-level C code. The dynamics of

the game is coded in C. The result is a fully interactive game in which the users'

movements of LEDs register as movements of paddles in the virtual air hockey game,

accompanied by sound.

Report Approved by

Project Advisor: Date:

 3

Executive Summary

This design project was inspired by my interest in games and gaming console

design. With the current generation of gaming consoles incorporating cameras,

microphones, and motion sensors as inputs to the games, it was decided that a similar

approach would be used. It takes a simple game like air hockey and incorporates image

processing to mimic actual hand-controlled motion of the on-screen paddle. The image

processing accurately captures the velocities of the users' movements to realistically

affect the dynamics of the game.

The game utilizes sophisticated dynamics for controlling the puck movements, as

well as many low-level hardware modules including video output, audio Digital to

Analog Conversion, and image processing. Since the VGA only has whole numbered

pixel resolution, 32-bit fixed point arithmetic allowed quick conversions of puck position

between integer values and mixed fractional values. A high-resolution camera for the

system used in conjunction with various digital image processing techniques such as

dilating and eroding allowed accurate position detection for the paddles.

Originally, I had envisioned implementing the game on a traditional

microcontroller. However, the idea of using reconfigurable hardware was appealing in

that future firmware upgrades could also potentially change the features of the hardware

and add or reduce functionality where needed. This last point is certainly relevant

considering the existing game consoles on the market today already support firmware

updates through internet connections. The entire project was done on the DE2 FPGA

development board and TRDB_DC2 1.3 Megapixel camera, both made by Terasic

Technologies, a speaker, a VGA monitor, and two LED-mounted paddles. The hardware

was programmed in Verilog and the Nios II CPU was programmed in embedded C.

 The project was a great success, and the game play is both natural and fun. I am

extremely satisfied with the results and found the entire process very rewarding.

 4

Table of Contents
Virtual Air Hockey

Abstract ...2
Executive Summary ..3

Introduction ..5
Design Requirements ...5
Background...6

Interactive gaming...6
Air hockey ...6

Range of Solutions ..7
Game Input ..7
Video Output ...9
Sound Output...10
Final Project Definition ...11

Design and Implementation...12
Video Input Hardware ...12
Paddle Control Hardware ..13
Video Output Hardware ..16
Sound Output Hardware ..16
Miscellaneous Hardware ...17
Game Dynamics Software...18

Fixed-point Arithmetic ...20
Puck Velocity Integration & Position Calculation ...20
Physics Modeling ...21
Starting, Scoring, & Ending Rules ...25

Debugging ...26
Results..28
Future Works..32
Conclusions ...33
Acknowledgements ...34
References ...35
Appendix A – Glossary of Terms Used...36
Appendix B – Hardware Schematics and Diagrams ...37
Appendix C – Virtual Air Hockey Photographs..38
Appendix D – User’s Manual ..41
Appendix E – Code...42

 5

INTRODUCTION

Upon starting my Masters of Engineering design project, my goal was to create an

embedded systems project that would utilize both knowledge of hardware organization

and software development. To achieve this goal, the idea to create a video game that was

both interactive and intuitive to play was born. The idea of physical movements

controlling the game was influenced by the present state of the gaming industry, and

provides an added fun-factor for the user who feels more involved in the game

play. Even a seemingly simple game such as air hockey involves a great deal of

electrical and computer engineering knowledge. By organizing the hardware on the

FPGA for fast response as well as programming a general purpose CPU instantiated on

the FPGA to run high-level logic, I was able to create the game environment I aimed

for. Through use of the system, one can immediately see that it is highly responsive to

the user's movements, and the dynamics of the game emulates the real experience very

well.

DESIGN REQUIREMENTS

There were three main requirements for this video game which ultimately shaped

the resulting product. The most important design requirement was the responsiveness of

the system. For the most part, this meant that the image capturing and outputting needed

to be fast and therefore implemented in hardware which required no additional software

logic. The game dynamics could take a little longer since the game needed to be slow

enough for humans to play, and was accordingly implemented in software running on the

Nios II CPU. Other requirements were that the video game run smoothly with no lags or

glitches in the game play and simply that it should feel like a real game of air hockey.

This last requirement is a bit subjective and required adjustments made by iterative trial

and errors.

The requirements of this project are summarized as the following:

- Good responsiveness, the actions feel like an extension of the user’s body

- Precise and accurate game dynamics

- Overall experience like playing real air hockey

 6

BACKGROUND

Interactive Gaming-

With the recent burst of interactive video game consoles hitting the market, it is

clear that there is much consumer interest in interactive gaming. The

accelerometer/gyroscope technologies combined with infrared position triangulating in

the Nintendo® Wii allow users to aim a gun or slash a sword, while the SIXAXIS tilt

sensitive controller for the Sony Playstation® 3 allows players to guide a flying object

with the tilt their hands instead of the motion of their thumbs. Other forms of interactive

games also exist, such as stepping on pressure-sensitive pads or playing musical

instruments along with a specific rhythm. While the packaging and forms may be

different, the goals of these systems are all the same: provide control input to the game

through the user’s physical motion or sounds instead of key presses. The game input

devices can be either digital, in the case of games like Guitar Hero, or analog like in

Karaoke Revolution.

Air Hockey-

The game of air hockey adheres to fairly straightforward rules that can be

modeled by a physics engine quite nicely. The game can be represented on a two

dimensional space from a bird’s-eye perspective which is also ideal for displaying

relatively simple graphics. The energy input to the system are typically all impulses

which translates to a sudden change in the puck’s acceleration, or jerk, and small amounts

of friction and energy dissipation due to inelastic collisions will remove kinetic energy

from the puck and slow it down. The physics differ from elastic collisions like many

billiard ball simulators. One reason is that the mass of the paddle is considerably larger

than the mass of the puck because the user holds onto the paddle. In other words, the

conservation of momentum (p = m * v) is trickier to express, assuming an extremely

large mass of the paddle with a non-completely elastic collision. However, aside from

paddle/puck collision math, the overall behavior of the system like position and velocity

can be modeled nicely in a 2-dimensional coordinate system.

 7

RANGE OF SOLUTIONS

To create a realistic game experience, many possible implementations and ideas

were considered. Much cost-benefit analysis had to be taken into account and the

following were things that were considered in ultimately coming up with the project

solution.

Game Input

Upon coming up with the idea of the air hockey game, the first possibility for

game input was to use accelerometers in conjunction with a camera so that I could

measure actual acceleration, and therefore determine the force at the time of “contact”.

The accuracy of the collision force made this option fairly attractive. However, in

researching wireless radio transmissions, it was determined that the overhead of both cost

and time did not warrant that level of precision measuring. Instead, simply using the

change in position from the imaging would have to provide sufficient data for the

dynamics of the system.

The next idea was to use just a camera to determine the position of the paddles.

The Sony PlayStation® 2 EyeToy camera uses edge detection and various signal

processing techniques to determine the user’s movements against the background.

Conveniently, Terasic Technologies makes a CCD camera for the FPGA board that was

ultimately used for this project. My idea was to draw upon principles similar to the

EyeToy but to make the processing easier by detecting distinct colors, for example. The

camera has a fairly high resolution that is capable of 1.3 Mega pixels which is more than

enough for my desired application.

To ensure that the game can be played in all types of lighting, I decided to use

colored LEDs as inputs for the game. Unfortunately the sensitivity of photo capture is

different from human eyes and the colors of LEDs are not easily distinguishable as

recorded through the camera. The following figure is an example of what a blue and

yellow LED look likes through the camera, with the blue LED on the left and yellow on

the right.

 8

Figure 1

Notice that the blue LED, while having some blue in the fringes, is almost completely

white. The yellow LED looks completely white, and differentiating the two in a reliable

manner could prove to be complex. Instead of color, the next choice for detection was to

simply use light intensity, tracking a certain level of whiteness (an intense mixture of red,

green, and blue light), and splitting the playing space among the two players so that

player 1 cannot move into player 2’s space on screen.. Figure 2 is an example of what

the light intensity of an LED looks like up close, with a value of zero being the lowest

intensity (black) and five being the highest (white):

 9

Figure 2

One limitation of this approach is that dispersed light sources in the same camera space

would need some sort of mechanism to decide which pixel would represent the paddle.

In other words, how do we process the peak values (i.e., 5) in Figure 2 in an orderly and

systematic fashion? The solution for this will be discussed in the DESIGN AND

IMPLEMENTATION section.

Video Output

The idea is to play this game on a large display. For that reason, considerable

time was spent considering the form of the video output. Digital outputs like HDMI or

DVI are fairly standard in new televisions and monitors. HDMI and DVI have the ability

to output tremendously high-resolution video of 1920 x 1080 and 1920 x 1200 pixels

 10

respectively. In addition to the digital video formats, there is also NTSC video used in

standard television coaxial cables, and VGA for computer monitors. After considering

the multitude of video output formats, a VGA interface was chosen for several reasons.

First, the high definition digital formats are completely excessive for the type of video

this system expects to output, which are simple geometric shapes with solid colors. The

digital formats are also strictly specified so the time put into implementing and

debugging the video output to conform to the strict standards would not be worth the

benefits (which this project will be unable to make use of, anyway).

The VGA specifications are very similar to the NTSC protocol used for standard

analog television sets, with two differences. One difference is that there are separate

analog lines for each of color: red, green, and blue. The other major difference is that

there are separate lines for horizontal and vertical sync pulses.

The basic premise of VGA is that the output device will send a repeating series of

horizontal and vertical sync pulses to the monitor, which specifies the exact pixel to

brighten or darken. Each horizontal sync pulse indicates to the monitor to shift its focus

to the next pixel on the same line, while each vertical sync pulse tells the monitor to

move on to the next line. Each pixel can be set to a specific red, green, and blue value

depending on the voltage level of the respective color input, with a higher voltage level

corresponding to a brighter color. Figure 3 is an example of what a sample VGA video

signal may look like for the green color with respect to the sync pulses:

Figure 3

Sound Output

The aim for this project is to create a rich gaming experience, and no game would

be complete without sound effects. There are many viable techniques for generating

 11

sounds, and the one chosen for this project is direct digital syntheses (DDS). The general

functionality of DDS is explained as follows: a calculated constant number called a

phase increment is added to an n-bit register every N clock cycles, causing the n-bit

register to overflow at some constant rate. At the same time, the top x-bits (where x < n)

of that register are used as index values for a table with y elements (2x ≥ y). This table is

the digital values of a single sine wave spread out evenly over y elements. These digital

values are sent to the DAC and an analog since wave is generated. To change

frequencies, simply change the constant value that is added to the n-bit register.

Mathematically expressed, the formula is:

clk
Nfreq n

e
increment

*2*sin=φ

By correctly choosing the phase increment based on your known clock and N values, a

sine wave with the desired frequency can be created. Notice that as you increase the sine

frequency by using higher increment values, the time resolution of the sine wave gets

worse and worse.

Final Project Definition

The final project is summarized as follows:

- Game input of detecting LED movements through a digital camera

- Game dynamics engine based solely on LED positions

- Video output via VGA interface

- Sound generation through Direct Digital Synthesis

 12

DESIGN AND IMPLEMENTATION

This section details the video input hardware, paddle control hardware, video output

hardware, sound output hardware, and other miscellaneous hardware, as well as the game

dynamics software. The block diagram of the virtual air hockey system is show below:

CCD CameraSDRAM
ControllerImage Filter

Paddle
Positioning

Nios II CPU
(Game Dynamics)

Display
Logic Hardware

VGA
Controller

Audio
DAC

Monitor

Speaker

LED
Paddles Input

Outputs

Figure 4

Video Input Hardware

The CCD camera uses a 25 MHz clock that is derived from the internal 50 MHz

clock divided by two. The module takes control inputs to start, stop, and reset the camera,

and outputs 10-bits of raw data on the mCCD_DATA bus. That bus is an input to the

module RAW2RGB, which then separates the raw camera information into red, green,

and blue values in for each pixel position. Note that the CCD camera code is provided by

Terasic with no changes made. More design details of the code can be found from

Terasic at http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=50.

The CCD camera's information is stored in on board the SDRAM memory. The

SDRAM contains 307,200 pixels of information per frame (640 x 480) but less than 60

percent of those pixels are used because the video that is generated is a 600 x 300. It

would have been desirable to have the camera skip the unused video space so that each

frame took only 58.6 percent of the time it actually takes. However, after thorough

research and analysis, it was determined that the TRDB CCD camera cannot be hacked to

 13

display less information, and using anther camera was not a realistic option. As a result,

the data path of the camera’s information and identifying the source was a source of

performance constraint. As I found out later in the project, this was actually the largest

constraint in the project, and this will be discussed further in the RESULTS section of the

report.

Another constraint on the system is that the camera will pick up light reflection

from the paddle LED. In order to avoid false position calculations, the system needs to

be used in an environment free of reflective objects in the camera’s field of view. This

includes the actual playing surface, and during development and testing a large non-

smooth black piece of paper was used under the playing area.

Paddle Control Hardware

The paddle detection hardware is one of the more complex sections of this project

with many steps in the process. First the red, green, and blue data for each pixel in the

SDRAM is processed by image filtering hardware to even out extraneous data. That

filtered data set is used to determine the center locations of the two paddles, and finally

when each pixel is output on the VGA, it’s proximity to the center of the paddles are

checked and the right action is taken in drawing the pixel.

To perform the image filtering on the red, green, and blue values of each pixel in

SDRAM, there are three special shift-registers called taps that shift in the information

every clock cycle. The taps are unique because as their name suggests, they allow the

hardware to tap each position of the shift-register to access its bits. The taps were created

using the MegaWizard Plug-In Manager in the Quartus II IDE. For more information on

how these work see: http://www.altera.com/literature/ug/ug_alt_shift_taps.pdf. The taps

are used to perform two morphological image processing techniques called erode and

dilate which fade away the edge of the foreground and background respectively. The

information is then used to compare against the next state of the shift-register and if it can

detect whether “change” (motion) has occurred or not. If no motion has been detected,

the VGA output address going to the Nios II retains the value from the previous position.

Next, a finite state machine was utilized in determining the location and drawing

of the two paddles for many reasons. One of the reasons is that a scheme is necessary to

 14

manipulate the video memory only while the sync signals are asserted so that no video

artifacts show. Another reason is that the FSM provides a systematic way to detect

motion in which the playing space which has been divided into two regions, one for each

paddle. Use the figure below as a guide in following the FSM description. While there

are only a few number of states in the state machine, the last state is fairly complex with a

lot of parallel hardware so please review the following carefully.

Init test1 test2 test3

Assert “New Frame”
if x and y coordinates

of the current pixel has
wrapped back to

beginning.

Calculate the distance
of the current pixel from
the centers of the two

paddles. Also calculate
the distance of the

current pixel from the
center of the puck.

Illuminate the current
pixel based on its

address, and proximity
to the paddles and

puck.

Enter here upon reset.

Figure 5

The state machine is clocked by the rising edge of 50 MHz clock and begins in the “init”

state. If at any time KEY[0] s pressed, the state machine returns to the “init” state. No

action is taken in the init state except to set the state variable to “test1”.

In the state “test1”, the goal is to record the most recently known location of the

LEDs in each playing space. Each cycle of the 50 MHz clock also increments the

mVGA_X and mVGA_Y variables which have red, green, and blue values of mVGA_R,

mVGA_G, and mVGA_B. Using this, the values in mVGA_R, mVGA_G, and

mVGA_B are checked against the filtering threshold to determine the center of the LED.

Undoubtedly, there will be multiple pixels who satisfy this condition, and to avoid having

a moving virtual paddle for a static LED, a first-satisfied scheme is utilized where one a

fresh frame has started and a “LED center” has been detected, the state machine does not

 15

attempt to update the paddle center addresses until a new frame begins, which is defined

by mVGA_X == 20 and mVGA_Y == 20. For example in Figure 2, the algorithm would

always identify the top-left most pixel labeled 5 as the center of the paddle. If no LED

center is found the previous paddle locations are kept. Such a case would be possible

only if the LED leaves the camera view, or is turned off. Once these steps are completed,

the state variable is updated to “test2”.

State “test2”, is used to determine the surrounding pixels of the paddle centers,

which were recorded in state “test1”. To do this, the paddle center’s x and y addresses

have mVGA_X and mVGA_Y subtracted, and that difference is stored in registers

DIFF_X_1, DIFF_Y_1, DIFF_X_2, and DIFF_Y_2. Unlike programming in sequential

languages like C and Java, Verilog cannot perform the calculations in states “test1” and

“test2” in the same cycle because “instructions” are actually dedicated hardware on the

DE2 board and happen concurrently at the clock-edge with no knowledge of data

dependencies. In addition, the puck’s x and y addresses are also subtracted from the

VGA x and y address and recorded. The state variable is then set to “test3”.

In state “test3” the actual drawing of borders, paddles, and puck occur. The

borders are drawn by using absolute addresses of mVGA_X and mVGA_Y, where the

border is a rectangle defined by the points (20,100), (620,100), (20, 400), and (620,400).

Please note that in the VGA coordinate system the Cartesian coordinate system has been

reflected over the y-axis, or in other words, the positive direction of y is down. In

drawing the paddles, the previously calculated difference values are used to determine

how far away from the center of the paddle the current pixel is. If the current pixel is a

within a defined radius of the center, that pixel is illuminated according to the

corresponding paddle color. And lastly, the illumination of the puck is done in the same

way as the paddles, with a slight difference in that the x and y coordinates of the puck’s

center are passed from the NIOS II CPU via a bus instead of being detected by the

camera. When this is all done, the state variable is set back to “test1” and the process

begins anew.

Users should note that there are limitations on the camera and its refresh rate. It is

possible for the user to move the LED faster than the camera’s refresh rate which results

in a huge jump in the paddle’s position. This is because the time between the previous

 16

position and the new position detected by the camera is so long. This was exactly the

problem that was described in the Video Input Hardware and really has no solution in

hardware. While it is possible to detect the huge jump in software and extrapolate some

trajectory (a straight line, for example), this was not done because of the additional

complexity that such a scheme would introduce.

Video Output Hardware

The VGA_Controller is clocked at 25 MHz and provides the monitor with the

information to be displayed on the screen. The outputs of the module are on five lines,

VGA_Red, VGA_Green, VGA_Blue, VGA_HSYNCH, and VGA_VSYNCH. The

VGA_Controller module keeps track of incrementing and resetting the horizontal and

vertical synch values so that it outputs the correct sequence of horizontal and vertical

sync pulses. The inputs to the module are the red, green, and blue information we wish to

output based on the red, green, and blue values stored at the x and y coordinate in

SDRAM. The red, green, and blue values we wish to output are set by the state machine

discussed earlier and use a blue value for the air hockey table border, white for the goals,

blue for player 1’s paddle, white for player 2’s paddle, yellow for the puck, and black

everywhere else. There are also two white boxes that are necessary to satisfy the “start

game” condition which will be covered further in the Starting, Scoring, & Ending Rules

section of the report. Again, these pixel values are only altered while the

VGA_HSYNCH and VGA_VSYNCH lines are asserted.

 Sound Output Hardware

A phased-locked loop (PLL) is used to take one of the FPGA’s internal clocks of

frequency 27 MHz and output a 18.4 MHz clock which is subsequently used as the audio

control clock. A Quartus II IDE wizard, which generates PLL modules with a few high-

level design inputs, was utilized to create the PLL. The three other inputs into the audio

module are a reset delay line, an on/off signal, and a source select signal. The reset delay

signal is asserted by the Reset_Delay module when KEY[0], or the system reset button, is

pressed. The delay is to provide enough time for all components of the system to reach a

known steady state before continuing. The on/off signal is asserted for example when a

 17

sound effect is needed. In the AUDIO_DAC module, a DDS system is used to generate

sine waves of different frequencies based on a phase increments which is depend on the

source select. The foundation of the code was used from Teraic’s TRDB camera’s

motion detection example, and more design details can be found at

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=50. In

extending the code, multiple sounds for different circumstances with various frequencies

were added. This was accomplished by adding a source select bus to the AUDIO_DAC

module which controlled the phase increment. Each source can play for different time

intervals by having separate control lines for the on/off signal. For example, when the

puck reflects off of a border, ten cycles of 10 KHz sine wave is generated, but when the

puck enters a goal, a chime with increasing frequencies is played. The duration of the

tone was controlled by the on/off signal which can be controlled precisely by using a 24

bit counter. Because the sound generation hardware that is an input to the AUDIO_DAC

is clocked at 50 MHz, asserting the on/off signal for 50 million counts generates a one

second tone. In the case of the chime that is played when a player scores a goal, four

different thresholds were used for the 24-bit counter and during each threshold, a

different source select value was used, causing the AUDIO_DAC to use phase

increments corresponding to each of the different source selects. The result is a chime

that increases in frequency three times every 63 ms for a total 252 ms, and it sounds quite

good. For a waveform of the output signals, please see the RESULTS section.

In hindsight, if I were to do the project again, I would write the AUDIO_DAC

module from scratch rather than start with Terasic’s code as a foundation. The main

reason is that the lookup table only has 48 elements because the original hardware only

output a 1 KHz sine wave. The sound output is very good when simply multiplying the

frequency, but in trying to create musical notes, i.e. frequencies less than 1 KHz, the DDS

was limited by the number of A/D values it had in the table and the output suffered as a

result.

Miscellaneous Hardware

The DE2’s on-board 7-segment displays were used to indicate each player’s

current numerical score. To do this, a lookup table module was created which took a 4-

 18

bit input and output 7-bits. The four bits represent 16 possible values ranging from 0x0

to 0xh, and a lookup table maps each of the 16 values to a corresponding 7-bit pattern

that make up alphanumeric outputs on the 7-segment display.

In addition to the 7-segment displays, 18 general purpose red LEDs exist on the

DE2 which were used during development to blink on and off depending on the specific

need of the task. The 7-segment displays are active low, while the LEDs are active high.

As mentioned previously in the Sound Output Hardware section, there is a

Reset_Delay module on the board that detects the KEY[0] button press. When this

button is pressed, three different delay lines are controlled, each with its own time delay

before it is asserted. The delay values used by the Sdram_Control module is

approximately 41.9 ms, the delay for the CCD_Capture, RAW2RGB, and AUDIO_DAC

modules are approximately 62.9 ms, and the delay for the VGA_Controller is 83.9 ms.

Game Dynamics Software

A Nios II/f core (fast) was used in implementing the game dynamics. The

Quartus II IDE has a built in module called the SOPC (System On Programmable Chip)

Builder which takes care of generating the general purpose CPU out of your high level

design requirements. See the figure below for the specific SOPC Builder parameters.

 19

Figure 6

The Nios II/f has several advantages over the Nios II/e (economy) and Nios II/s

(standard) in that it has a six-stage pipeline to achieve greater throughput, or instructions

per second, and also has single-cycle hardware multiply and barrel-shift operations,

something that is very useful for this project.

The default memory available to the Nios II is either SDRAM or M4K memory,

and the choice can be configured through the Nios II IDE project settings. Since, our

project utilizes the SDRAM to store the CCD camera’s data and M4K blocks are not

sufficiently large enough to contain this code space. Instead, the Nios II instantiated for

this project utilizes a 512k block of SRAM whose implementation was made available by

Terasic in the module SRAM_16bit-512k.

 20

Fixed-Point Arithmetic

Fixed-point arithmetic was used to represent non-integer values. In the Nios II

architecture, int values are 32-bit values, so the top three bytes are used for the whole-

number value, and the lower byte is used for fractional values. The virtual decimal point

was located between the first and second low-order bytes and values to the right of the

decimal represented one divided by two raised to the position’s value (see figure 7).

Figure 7

For example, a hex value of 0x00000040 is ¼ because there is no whole-number value

and the fraction value is 1 divided by two squared. Conversion back to a rounded whole

number (basically a floor function) is to shift the fixed-point variable to the right 8-bits.

Conversion from integer would be to shift the value to the left 8-bits, and conversion

from a floating point value is to multiply the value by 256.0 (same as shifting left by 8

but keeps the correct data type) and to cast the result as an int to keep the 32-bits.

Therefore, when displaying video of a puck whose address is (450.25,300.5) will result in

the puck being at location (450,300).

Puck Velocity Integration & Position Calculation

In each iteration of the Nios II main loop, a simple integral is performed to

determine the new position of the puck. In performing this integral, it is assumed that the

main loop runs at a regular interval so that the time between each position update is

constant. To validate this assumption, a simple exercise was conducted where the Nios II

toggled a GPIO on the DE2 board each iteration of the main while-loop. The CPU’s

tight-loop takes at 40 μs with slight variance at times. The worst observed variance was

48 μs. However, the frequency of the variances was very low, about 4 out of every 100

 21

iterations. With the worst possible variance being 20% but only occurring 4% of the time,

one can see that the variance is fairly insignificant. With such low margins of error, it

was determined that this method of calculating integrals was acceptable.

Having established that a mostly constant time interval exists between position

updates, the integration is performed by simply adding the current velocity to the current

position. Of course, collisions with the boundaries of the air hockey table as well as

paddles and the goal conditions are checked prior to moving the puck so that impossible

conditions are avoided when possible. However, it is possible that the puck’s velocity is

such that in one time-step, it moves from near an object (wall or paddle), to overlapping

the object, and this is not checked prior to moving the puck. This usually happens for

only a single frame and is virtually undetectable by the human eye at game speeds. The

code will reflect the object in the appropriate direction assuming the point of collision to

be where it should have been, rather than where it currently is. See APPENDIX E for

implementation details. There are rare instances where the puck can move completely

through a paddle in one cycle of the main loop. While it is possible for this to happen,

the occurrences are rare because the speed of the puck needs to be near the maximum

allowed value and the user must be moving the paddle in the opposite direction at a high

speed as well. I decided that the complexity of detecting this corner case is not worth the

payoff in the context of this project, especially since there is no protection against the

user moving the LED too fast for the camera, and having the paddle jump

discontinuously. Future work may include exploring the many possible solutions for

corner cases.

Physics Modeling

The physics involved in air hockey is modeled in this game by keeping track of

the puck’s x and y-velocities as well as calculating the paddles’ x and y-velocities in real-

time. The puck’s movements are straight with very little friction, just like real air

hockey. The velocity vector changes directions with some speed loss upon colliding with

static objects on the table, with the energy being transferred from kinetic energy to

friction heat and sound energy. This is done in software reducing the absolute value of

the velocities upon a collision and asserting an output line to the AUDIO_DAC module

 22

to create a sound. For simplicity, the speed of the puck was not taken into account and a

constant energy loss was implemented, although future implementations could certainly

improve upon this by making the energy loss more accurate to the physical world.

Energy input is achieved by striking the puck with the paddle, with more energy

transferred to the puck when the paddle is moving faster. This is good in that there is

never any constant acceleration (we ignore force of friction because this is virtual air

hockey, after all). The tricky part is that the paddle has a much larger mass compared to

the puck and the paddle’s velocity remains unchanged after the collision. Therefore the

concept of conservation of momentum where the momentum of the entire system

(consisting of n objects with mass m and velocity v defined below)

 ∑
=

n

i
ii vm

0
*

before the collision is equal to the momentum of the entire system after the collision is

computationally hard because there is no known mass of the paddle. There was some

leeway in designing the non-completely elastic collision, because the precise amount of

energy lost to sound and friction depend on many factors in the real world. In adding

energy to the puck, my design based the speed increase on the current speed of the puck

and the speed of the paddle at the time of collision, with a saturation point near the

maximum allowed puck speed defined by the constant MAX_SPEED. For exact

implementation details, please refer to APPENDIX E.

 Even though the code is quite lengthy, the actual logic for changing directions and

speeds based on collisions with walls and paddles is fairly straightforward. The wall

collisions require simply detecting the x or y address of the puck to be greater than or less

than the boundary depending on the wall in question. For the paddles, the design broke

down the different scenarios in which collisions could occur. Based on the code prior to

the dynamics calculations, a flag is set based on the distance between the paddle and puck

being greater or less-than-or-equal-to twice the radius of the puck and paddle (they share

the same radius lengths). Figure 8 is an accompanying partial flow chart meant to

facilitate the understanding of the collision logic and is not representative of the entire

code. It was determined that the logic would first determine which direction the puck

was traveling (positive x & positive y, positive x & negative y, negative x and positive y,

 23

or negative x and negative y). In each of these scenarios, the collision with the puck is

then categorized again. This time, we are interested in which area of the paddle makes

contact with the puck. If you think of the puck being at the origin of a two-dimensional

graph, then the x and y-axis’ divide the paddle into 4 quadrants. Similar to the Cartesian

coordinate system, the design refers to the top right as quadrant I, bottom right as

quadrant II and so on. Once these two parameters of the collision scenario are known,

the appropriate reflecting direction is determined. In referring to the figure below, please

remember that it is not a complete representation of the dynamics engine.

Counter is
200? Counter++

Yes

Collision
frozen?Counter is 0

Save prev.
pos. &

update pos.
No

Reflect off walls
and change

speeds if needed

Collision
Flag is 1?

No

Puck
moving
down &
right?

Paddle’s 4th

quadrant?

Yes

Bounce puck
up and left Yes

Paddle’s 1st

quadrant?

No

Start

Paddle’s 3rd

quadrant?

Yes

No

Bounce puck
up and right

Bounce puck
down and rightYes

No

No direction
change

Puck
moving up

& right?

Yes

No

Etc.

Update speed
& freeze
collisions

Yes

No

Yes

No

Figure 8

 24

 Lastly, the speed of the puck resulting from a paddle collision occurs as a function

of the paddle speed. A conscious decision was made to transfer energy from the paddle

to the puck non-linearly so that at low speeds the resolution of speed differentiation is

large but as the paddle moves faster the speed increases in larger step intervals. This is to

provide precise control at low speeds when users want to control the puck using finesse,

but can also take hard shots at high speeds. The calibration for this was done over many

trials and was largely subjective to what I felt was a good level of game control. There

was one design problem that surfaced during the testing – the sampling rate of the paddle

positions is so fast that the difference in the LED positions from the user’s movements

were registered as zero for a majority of the movement duration. See Figure 9 below for

one example of the perceived X position differences when moving the LED at a constant

low speed.

Original X Position Delta

Sample
Calculated X
Delta Sample

Calculated X
Delta

1 0 26 0
2 0 27 0
3 76 28 64
4 0 29 0
5 0 30 0
6 0 31 0
7 46 32 0
8 0 33 83
9 0 34 0

10 21 35 0
11 0 36 47
12 0 37 0
13 0 38 48
14 0 39 0
15 57 40 0
16 0 41 23
17 64 42 0
18 0 43 0
19 0 44 0
20 23 45 45
21 0 46 0
22 0 47 0
23 0 48 49
24 45 49 0
25 0 50 0

Figure 9

 25

The problem was remedied by inserting logic to detect a lengthy period of zero

movement before registering the speed as zero, in this case 15 consecutive zeros. This is

not unreasonable since calculations are separated by about 40 μs so 0.6 ms after user has

stopped moving, the game will register that the paddle is static, which is virtually

unnoticeable to the human player. The results of applying the algorithm on the data in

Figure 9 are shown below in Figure 10.

Adjusted X Position Delta

Sample
Calculated X
Delta Sample

Calculated X
Delta

1 0 26 45
2 0 27 45
3 76 28 64
4 76 29 64
5 76 30 64
6 76 31 64
7 46 32 64
8 46 33 83
9 46 34 83

10 21 35 83
11 21 36 47
12 21 37 47
13 21 38 48
14 21 39 48
15 57 40 48
16 57 41 23
17 64 42 23
18 64 43 23
19 64 44 23
20 23 45 45
21 23 46 45
22 23 47 45
23 23 48 49
24 45 49 49
25 45 50 49

Figure 10

Starting, Scoring, & Ending Rules

In order to start a game, both players must be ready. To indicate this, a start

condition must be satisfied before the Nios II will populate the puck. The starting

condition is met by each player placing his or her paddle within a specified area on the

 26

screen. This area is highlighted by the display logic hardware and will remove the box

when a signal from the Nios II indicates that the game has begun. After asserting this

logic line, the Nios II will populate the puck in the middle of the table in the reach of both

players. In the course of play, if the puck hits the goal (white) region on the east/west

walls, the scoring condition is met and a point is awarded to the player opposite of the

goal that was scored upon. Afterwards, the puck is re-populated on the side of the player

that was scored upon.

Debugging

The debugging process was a conducted by utilizing the hardware’s LED’s and

print statements, as well subjective methods for the “look and feel” aspects. The 18 red

LEDs on the DE2 helped show the state of certain variables in real time and were a low-

cost method of debugging without introducing extra delays because it is completely done

in hardware. For more complex tasks that required more details, print statements were

used through the JTAG UART on the DE2. The print statements were extremely useful,

but they introduced some delay into the calculations that depend on constant time so they

were avoided when possible. Additionally, I used my own judgment in determining what

a realistic reaction to collisions was. This included decisions like how much to increase

the puck’s speed based on how “hard” (velocity) you hit the puck. This was fairly

arbitrary because there is no known mass of the two objects and no good way to

determine just how the energy is conserved.

Some interesting bugs were observed in the course of this project. In my first try

at VGA video through the FPGA, I encountered problems where the pixel changes were

not where I expected them to be. This was a result of executing two calculations that

needed to be done sequentially in the same state in the FSM. That meant that while I

wanted the code to be run one after the other, they were actually being run

simultaneously in hardware. Another bug was seen which eventually led to the addition

of the Freeze_Collision flag. The symptoms were erratic puck/paddle collisions upon a

moderately fast collision. The reason for this was that the updating of the puck’s position

at high speeds would draw the puck overlapped with the paddle. This of course is a

collision scenario and the puck’s direction and speeds are updated. In the very next

 27

update, the puck is still somewhere overlapping the paddle, and another direction and

speed update occurs. This problem of multiple collisions detected as a result on one

collision was compounded by the fact that the user is moving the paddle, usually further

towards the center of the puck. The solution was to set the aforementioned flag and to

not allow another collision to occur until that flag is de-asserted through counting down a

variable.

Finally, there were some obscure problems as a result of using the two integrated

development environments (IDEs). First, the Quartus II IDE’s SOPC builder’s naming

convention caused one problem where the orders of the Parallel Input/Out (PIO) busses

ended up in the wrong order. The reason for this was that the naming convention used

for this project was numbering all inputs and outputs sequentially. This worked fine for

Out0 through Out9, but as soon as Out10 was added, everything stopped working.

Digging into the generated Verilog file, bigNios.v, it was later revealed that the order

used by the SOPC builder was Out0, Out1, Out10, Out2, etc. which is in alphanumerical

order. Once the bus ordering in the high level Verilog code was switched, the code

worked flawlessly. The problem encountered with the Nios II IDE was also non-intuitive,

and the problem occurred when I made a copy of my source code and placed the copy in

the same directory as the original source file. This was done because I was about to make

dramatic changes to the code and I wanted to retain a copy of the working code.

Subsequent changes to the original source code made no differences in the behavior of

the program, which was extremely puzzling. The reason for this turned out to be that the

copy of the original was being compiled and run on the board instead of the original

source file because the name of the copy file came before the name of the original file,

and the builder took the first main function it saw. In this scenario, I would have at least

expected the code to not run or throw some warnings during compilation, but it did

neither of those.

 28

RESULTS

 The overall results were very positive. The video output of the puck movement

showed no artifacts when the game speed was increased during testing. The puck lost

video continuity when the puck began traveling at about 13 pixels per frame which makes

sense since the radius of the puck is also about 13 pixels. Generally during the course of

play, the puck velocity never reached 1.3 pixels per frame (10% of 13 pixels per frame)

which is a fairly conservative measure of video continuity. Furthermore, fear of

discontinuity is not even an issue in this application since a puck traveling that fast is not

conducive to a realistic gaming environment.

The paddle detection was very precise with LED position detection resolution of

approximately 1 cm when played from 2 feet away from the camera. This was far better

than my expectation. In contrast, the speeds at which the user could move the LED and

have the movement registered in a continuous manner were somewhat disappointing.

This was the result of the CCD camera taking so long to capture one frame of information

and moving onto the next frame. This result forced the game dynamics to be more

exaggerated at medium speeds, so that users can still perform hard shots while not losing

their paddle on the screen. In general, users became accustomed to the limits of the

camera very quickly and controlled the paddle expertly. I was also satisfied by the

overall ease of use of the system. New users required virtually no instructions and

learned the system through using.

The sound generation hardware worked quite well for the range of sine waves

which was 1, 2, 3, 4, 5, and 8 K Hz. As shown in Figures 11 and 12 below the 1 KHz

signal had plenty of samples and a solid time resolution to define a clean sine wave.

 29

Figure 11

Figure 12

 30

Figure 13

Figure 14

 31

In Figure 13 and 14, the 8 KHz signal begins to show some distortions in the waveforms.

However, this worked perfectly as the 8 KHz sound was used to create a harsh, sharp

noise of the puck reflecting off of the border.

The goal to play this game in most conditions was also met, as testing in different

lighting conditions showed no artifacts. Of course, the testing was carried out with the

black paper below the camera and no other reflective objects in the view screen of the

camera.

 The game dynamics felt very natural, even though some calibrations were purely

subjective. The approximations made for reflection angles were convincing for the

players while not introducing too much complexity into the physics engine. When the

puck is traveling at high speeds, there is an element of unpredictability in the reflection

when striking the puck with the paddle which provides an experience just like in real air

hockey. There were conscious design decisions to not address certain corner cases such

as paddles disappearing at one coordinate and reappearing at another or a puck traveling

at high speeds going through a paddle. These cases were ignored in an interest to keep

the code relatively straightforward, but some possible solutions were considered and

discussed in the DESIGN AND IMPLEMENTATION section of the report.

 The lack of accelerometers was somewhat noticeable as sometimes there were

variances in the resulting puck speeds after collisions of seemingly similar speeds.

However, the variances were on the order of ± 3 speed increments, or 1.5 pixels per

position update which is noticeable but certainly acceptable.

 32

FUTURE WORKS

This project has developed the foundation for a simple yet robust video game.

With some modifications, one can imagine implementing many other games which

feature similar physics. For example, games like virtual Pong are possible using the same

image tracking concept to control paddle movements. Some changes to implement

elastic collision physics would enable a game like billiards where the players control the

pool cues via image tracking. Collaborative games like curling where one player throws

the rock and another player sweeps the ice with the broom is extremely conducive of the

image tracking technology as well as the distance calculating hardware already in

existence from this project.

While requiring slightly more work, it is also conceivable to take advantage of the

DE2’s Fast Ethernet Network Controller to implement a cross-board game where each

player has their own DE2, TRDC camera, and monitor. As an example, if the air hockey

game is used, each player may only see their half of the table, their own paddles and the

puck when it is in their playing space. With so many features available on this hardware,

the gaming possibilities are quite extensive.

 In addition to other possible games, I believe that this project or parts of it would

be useful as laboratory teaching material for academic purposes, as this project

incorporates many aspects of DE2 programming like state machines, video generation,

CPU synthesis, and high level C code.

 33

CONCLUSIONS

The results from the air hockey game were overall very positive. Taking into

consideration all of the unforeseen bugs and problems I ran into, the end product has met

the high expectations set at the beginning of the project.

The paddle control is very precise and smooth at moderate speeds which are

sufficient for the game play, and the video output is very stable with no flickering or

breaking whatsoever. The sound output is also very neat and adds significant depth to the

game play. The system is robust enough to play in different light settings, although care

needs to be taken to ensure there are no reflective objects within the range of the camera.

In addition to the positive performance of the system, I have learned a great deal

about game and gaming console design. Having previous experience in designing a

simple video game on an 8-bit microcontroller, the Nios II was a much more pleasant

experience. With its pipelined architecture, the faster throughput for computing was

instrumental in creating a rich gaming experience that required many calculations per

frame of video. In addition to the power of the CPU, creating dedicated audio and video

generation hardware was also a powerful tool. This hardware had a simple interface with

wires or busses to and from the CPU creating instant audio and video results with no

additional time spent by the CPU.

 I feel that I was able to achieve the intuitive factor which I set out to accomplish

from the beginning. Much like the Wii, users were able to pick up a paddle and play the

game with a very small learning curve.

 I am extremely pleased to have undertaken this project, as I was able to turn my

interests in gaming into an academic endeavor which was both enlightening and

educational.

 34

ACKNOWLEDGEMENTS

There are some individuals to whom I am grateful in completing this project.

First, I owe many thanks to Dr. Bruce Land whose inputs and suggestions were vital to

my progress. I would like to thank Elissa Chin for all her support and for putting up with

my lack of communication during the long hours of solitude spent in lab. And lastly, the

facilities crew responsible for the maintenance of Phillips 238 digital lab has done a

tremendous job in making my second home an enjoyable place.

 35

REFERENCES

1. “VGA Specifications” <http://web.mit.edu/6.111/www/s2004/NEWKIT/vga.shtml>

2. “Fixed Point Arithmetic”
<http://instruct1.cit.cornell.edu/courses/ee476/Math/index.html>

3. “Elastic and Inelastic Collisions”
<http://hyperphysics.phy-astr.gsu.edu/HBASE/elacol.html>

4. “Terasic TRDB_DC2 Camera Specifications and Documentation”
<http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=50>

5. “Altera Nios II CPU Specifications and Documentation”
 <http://www.altera.com/products/ip/processors/nios2/ni2-index.html>

 36

APPENDIX A – Glossary of Terms Used

Dynamics/Physics engine

- computer logic to simulate Newtonian physics models using variables like mass,

velocity, friction, and acceleration.

Cartesian coordinate system

- a two dimensional coordinate system consisting of an abscissa (x-coordinate) and an

ordinate (y-coordinate) where two points can uniquely identify every point in the plane.

- also known as the rectangular coordinate system.

Elastic collision

- a physical collision where the total kinetic energy of the system is the same before and

after the collision.

Inelastic collision

- a physical collision where the total kinetic energy of the system is not the same before

and after the collision.

- the kinetic energy that is not conserved is transferred to other forms of energy such as

heat and sound.

 37

APPENDIX B – Hardware Schematics and Diagrams

Paddle Circuit Schematic

9V

75 Ω

System Diagram

See Figure 4

 38

APPENDIX C – Virtual Air Hockey Photos

TRDB_DC2 1.3 Megapixel CCD Camera

DE2 Development and Educational Board

 39

Homemade Paddles

System Setup Pt. 1 – Top

 40

System Setup Pt. 2 – Bottom

Game Screen Shot

 41

APPENDIX D – User’s Manual

1. Select a surface that is non-reflective.

2. Remove DE2 board and TRDB camera from packaging. Note: You must handle

the boards only on the ESD mat.

3. Connect the camera and the FPGA via the ribbon cable to the GPIO 1 expansion

slot on the DE2 board.

4. Fit the camera into slot in the middle of stand with the lens in the center and the

FPGA resting on the stand.

5. Connect the monitor’s VGA cable to the VGA port on the DE2.

6. Connect the speakers to the green port labeled “LINE OUT”.

7. Connect the PC to the DE2 using the USB cable to the port labeled “BLASTER”.

8. Connect the power cable.

9. Turn on the power supply with the red switch on the DE2 board.

10. Open the “DE2_CCD_Detect” project file using the Quartus II IDE on the PC.

11. Program the board by clicking on the third icon from the top right labeled

“Programmer” and click “Start”. Note: Make sure the device is on “USB Blaster”.

12. Press the pushbutton labeled “KEY3” on the DE2 to start the camera.

13. Open the Nios II IDE and select the workspace to be

“\DE2_CCD_detect_noos\software”.

14. In the “Run” menu at the top of the window, click on “Run…” and click on

“Run” in the bottom right of the new window.

15. When ready to play, each player must move their paddle into their respective

white boxes on the air hockey table.

16. First player to 10 goals wins.

 42

APPENDIX E – Code

Verilog Code

Instantiated Nios II module
//============================= Nios II =============================//

 bigNios nios2(CLOCK_50, KEY[0],
 // parallel i/o
 current_dram_addr_x, //In0
 addr_valid, //In1
 current_dram_addr_y, //In2
 current_dram_addr_x_2,//In3
 current_dram_addr_y_2,//In4
 start_game, // In5
 DIFF_X_1_IN, // In6
 DIFF_Y_1_IN, // In7
 DIFF_X_2_IN, // In8
 DIFF_Y_2_IN, // In9
 GPIO_0[0], // Out0
 LED_RED, // Out1
 chime_sound, // Out10 - stupid naming convention
 SPEED, // Out2 - Actually, left player's score
 X_ADDRESS, // Out3 - Actually, right player's score
 Y_ADDRESS, // Out4
 PUCK_CENTER_X, // Out5
 PUCK_CENTER_Y, // Out6
 sound_signal, // Out7
 collision_sound,// Out8
 suppress_boxes, // Out9 1 bit Suppress-Boxes signal
 // lcd
 LCD_EN, LCD_RS, LCD_RW, LCD_DATA,
 // the_sram_16bit_512k_0
 SRAM_ADDR,
 SRAM_CE_N,
 SRAM_DQ,
 SRAM_LB_N,
 SRAM_OE_N,
 SRAM_UB_N,
 SRAM_WE_N);
//=========================== End Nios II ===========================//

Paddle Detection & Video Generation
//==================== Paddle Detection & Drawing ===================//

always@(posedge CLOCK_50)
begin
if (mVGA_X == 20 && mVGA_Y == 20)
begin
 NEW_FRAME_1 <= 1'b1;
 NEW_FRAME_2 <= 1'b1;
end
if (!KEY[3])

 43

begin
 reset_pressed = 1'b1;
end

if (reset) //synch reset assumes KEY0 is held down 1/60 second
begin
 //initialize variables
 CENTER_X_1 <= 20;
 CENTER_Y_1 <= 20;
 CENTER_X_2 <= 620;
 CENTER_Y_2 <= 20;
 state <= init; //first state in regular state machine
end
else if (VGA_VS | VGA_HS) //modify display during sync
begin

case(state)
 init:
 begin
 state <= test1 ;
 end

 test1: //locate center
 begin
 if (mVGA_R >= 10'b1011000000 ||
 mVGA_G >= 10'b1011000000 ||
 mVGA_B >= 10'b1011000000)
 begin
 if (NEW_FRAME_1 == 1 &&
 mVGA_X >= 32 && // avoid left border
 mVGA_X < 305 && // to avoid being cut
 mVGA_Y >= 112 && // avoid top border
 mVGA_Y < 388) // avoid bottom border
 begin
 CENTER_X_1 <= mVGA_X;
 CENTER_Y_1 <= mVGA_Y;
 NEW_FRAME_1 <= 1'b0;
 end
 if (NEW_FRAME_2 == 1 &&
 mVGA_X >= 335 && // to avoid being cut
 mVGA_X < 608 && // avoid right border
 mVGA_Y >= 112 && // avoid top border
 mVGA_Y < 388) // avoid bottom border
 begin
 CENTER_X_2 <= mVGA_X;
 CENTER_Y_2 <= mVGA_Y;
 NEW_FRAME_2 <= 1'b0;
 end
 end
 state <= test2 ;
 end
 test2: //calculate diff
 begin
 DIFF_X_1 <= mVGA_X - CENTER_X_1;
 DIFF_Y_1 <= mVGA_Y - CENTER_Y_1;
 DIFF_X_2 <= mVGA_X - CENTER_X_2;
 DIFF_Y_2 <= mVGA_Y - CENTER_Y_2;
 DIFF_CENTER_X <= mVGA_X - PUCK_CENTER_X;

 44

 DIFF_CENTER_Y <= mVGA_Y - PUCK_CENTER_Y;
 state <= test3 ;
 end
 test3: // draw paddles
 begin
 // draw puck
 if ((PUCK_CENTER_X != 0 && PUCK_CENTER_Y != 0) &&
 ((DIFF_CENTER_X <= 8 && // the square
 DIFF_CENTER_X >= -8 &&
 DIFF_CENTER_Y <= 8 &&
 DIFF_CENTER_Y >= -8)
 ||
 (DIFF_CENTER_X == 9 && // the right arc
 DIFF_CENTER_Y <= 6 &&
 DIFF_CENTER_Y >= -6)
 ||
 (DIFF_CENTER_X == 10 &&
 DIFF_CENTER_Y <= 5 &&
 DIFF_CENTER_Y >= -5)
 ||
 (DIFF_CENTER_X == 11 &&
 DIFF_CENTER_Y <= 3 &&
 DIFF_CENTER_Y >= -3)
 ||
 (DIFF_CENTER_X == 12 &&
 DIFF_CENTER_Y == 0)
 ||
 (DIFF_CENTER_X == -9 && // the left arc
 DIFF_CENTER_Y <= 6 &&
 DIFF_CENTER_Y >= -6)
 ||
 (DIFF_CENTER_X == -10 &&
 DIFF_CENTER_Y <= 5 &&
 DIFF_CENTER_Y >= -5)
 ||
 (DIFF_CENTER_X == -11 &&
 DIFF_CENTER_Y <= 3 &&
 DIFF_CENTER_Y >= -3)
 ||
 (DIFF_CENTER_X == -12 &&
 DIFF_CENTER_Y == 0)
 ||
 (DIFF_CENTER_Y == 9 && // the top arc
 DIFF_CENTER_X <= 6 &&
 DIFF_CENTER_X >= -6)
 ||
 (DIFF_CENTER_Y == 10 &&
 DIFF_CENTER_X <= 5 &&
 DIFF_CENTER_X >= -5)
 ||
 (DIFF_CENTER_Y == 11 &&
 DIFF_CENTER_X <= 3 &&
 DIFF_CENTER_X >= -3)
 ||
 (DIFF_CENTER_Y == 12 &&
 DIFF_CENTER_X == 0)
 ||

 45

 (DIFF_CENTER_Y == -9 && // the bottom arc
 DIFF_CENTER_X <= 6 &&
 DIFF_CENTER_X >= -6)
 ||
 (DIFF_CENTER_Y == -10 &&
 DIFF_CENTER_X <= 5 &&
 DIFF_CENTER_X >= -5)
 ||
 (DIFF_CENTER_Y == -11 &&
 DIFF_CENTER_X <= 3 &&
 DIFF_CENTER_X >= -3)
 ||
 (DIFF_CENTER_Y == -12 &&
 DIFF_CENTER_X == 0))
)
 begin
 green <= 10'b1010100000;
 red <= 10'b1010100000;
 blue <= 10'b0000000000;
 end
 else
 begin
 if ((CENTER_X_1 != 0 && CENTER_Y_1 != 00) &&
 ((DIFF_X_1 <= 8 && // the square
 DIFF_X_1 >= -8 &&
 DIFF_Y_1 <= 8 &&
 DIFF_Y_1 >= -8)
 ||
 (DIFF_X_1 == 9 && // the right arc
 DIFF_Y_1 <= 6 &&
 DIFF_Y_1 >= -6)
 ||
 (DIFF_X_1 == 10 &&
 DIFF_Y_1 <= 5 &&
 DIFF_Y_1 >= -5)
 ||
 (DIFF_X_1 == 11 &&
 DIFF_Y_1 <= 3 &&
 DIFF_Y_1 >= -3)
 ||
 (DIFF_X_1 == 12 &&
 DIFF_Y_1 == 0)
 ||
 (DIFF_X_1 == -9 && // the left arc
 DIFF_Y_1 <= 6 &&
 DIFF_Y_1 >= -6)
 ||
 (DIFF_X_1 == -10 &&
 DIFF_Y_1 <= 5 &&

 DIFF_Y_1 >= -5)
 ||
 (DIFF_X_1 == -11 &&
 DIFF_Y_1 <= 3 &&
 DIFF_Y_1 >= -3)
 ||
 (DIFF_X_1 == -12 &&
 DIFF_Y_1 == 0)

 46

 ||
 (DIFF_Y_1 == 9 && // the top arc
 DIFF_X_1 <= 6 &&
 DIFF_X_1 >= -6)
 ||
 (DIFF_Y_1 == 10 &&
 DIFF_X_1 <= 5 &&
 DIFF_X_1 >= -5)
 ||
 (DIFF_Y_1 == 11 &&
 DIFF_X_1 <= 3 &&
 DIFF_X_1 >= -3)
 ||
 (DIFF_Y_1 == 12 &&
 DIFF_X_1 == 0)
 ||
 (DIFF_Y_1 == -9 && // the bottom arc
 DIFF_X_1 <= 6 &&
 DIFF_X_1 >= -6)
 ||
 (DIFF_Y_1 == -10 &&
 DIFF_X_1 <= 5 &&
 DIFF_X_1 >= -5)
 ||
 (DIFF_Y_1 == -11 &&
 DIFF_X_1 <= 3 &&
 DIFF_X_1 >= -3)
 ||
 (DIFF_Y_1 == -12 &&
 DIFF_X_1 == 0)))
 begin // blue paddle
 green <= 10'b1010100000;
 red <= 10'b0000000000;
 blue <= 10'b1010100000;
 end
 // draw left start box
 else if ((suppress_boxes == 0) &&

(mVGA_X == 120 || mVGA_X == 119) &&
 (mVGA_Y >= 224 && mVGA_Y < 276))
 begin
 green <= 10'b1111100000;
 red <= 10'b1111100000;
 blue <= 10'b1111100000;
 end
 else if ((suppress_boxes == 0) &&

(mVGA_X == 170 || mVGA_X == 169) &&
 (mVGA_Y >= 225 && mVGA_Y < 275))
 begin
 green <= 10'b1111100000;
 red <= 10'b1111100000;
 blue <= 10'b1111100000;
 end
 else if ((suppress_boxes == 0) &&

(mVGA_X > 120 && mVGA_X <= 170) &&
 (mVGA_Y == 225 || mVGA_Y == 224))
 begin
 green <= 10'b1111100000;

 47

 red <= 10'b1111100000;
 blue <= 10'b1111100000;
 end

 else if ((suppress_boxes == 0) &&

(mVGA_X > 120 && mVGA_X <= 170) &&
 (mVGA_Y == 274 || mVGA_Y == 275))
 begin
 green <= 10'b1111100000;
 red <= 10'b1111100000;
 blue <= 10'b1111100000;
 end
 // draw left top border
 else if ((mVGA_X == 19 || mVGA_X == 18) &&
 (mVGA_Y >= 98 && mVGA_Y < 225))
 begin
 green <= 10'b0000000000;
 red <= 10'b0000000000;
 blue <= 10'b1010100000;
 end
 // draw left goal
 else if ((mVGA_X == 19 || mVGA_X == 18) &&
 (mVGA_Y >= 225 && mVGA_Y < 275))
 begin
 green <= 10'b1111100000;
 red <= 10'b1111100000;
 blue <= 10'b1111100000;
 end
 // draw left bottom border
 else if ((mVGA_X == 19 || mVGA_X == 18) &&
 (mVGA_Y >= 275 && mVGA_Y < 403))
 begin
 green <= 10'b0000000000;
 red <= 10'b0000000000;
 blue <= 10'b1010100000;
 end
 // draw top left border
 else if ((mVGA_X >= 19 && mVGA_X < 320) &&
 (mVGA_Y == 98 || mVGA_Y == 99))
 begin
 green <= 10'b0000000000;
 red <= 10'b0000000000;
 blue <= 10'b1010100000;
 end
 // draw bottom left border
 else if ((mVGA_X >= 19 && mVGA_X < 320) &&
 (mVGA_Y == 401 || mVGA_Y == 402))
 begin
 green <= 10'b0000000000;
 red <= 10'b0000000000;
 blue <= 10'b1010100000;
 end
 // blacken all else on left side
 else if (mVGA_X >= 20 &&
 mVGA_X < 320)
 begin
 red <= 10'b0000000000;

 48

 blue <= 10'b0000000000;
 green <= 10'b0000000000;
 end
 // 2nd paddle
 if ((CENTER_X_2 != 0 && CENTER_Y_2 != 0)&&
 ((DIFF_X_2 <= 8 && // the square
 DIFF_X_2 >= -8 &&
 DIFF_Y_2 <= 8 &&
 DIFF_Y_2 >= -8)
 ||
 (DIFF_X_2 == 9 && // the right arc
 DIFF_Y_2 <= 6 &&
 DIFF_Y_2 >= -6)
 ||
 (DIFF_X_2 == 10 &&
 DIFF_Y_2 <= 5 &&
 DIFF_Y_2 >= -5)
 ||
 (DIFF_X_2 == 11 &&
 DIFF_Y_2 <= 3 &&
 DIFF_Y_2 >= -3)
 ||
 (DIFF_X_2 == 12 &&
 DIFF_Y_2 == 0)
 ||
 (DIFF_X_2 == -9 && // the left arc
 DIFF_Y_2 <= 6 &&
 DIFF_Y_2 >= -6)
 ||
 (DIFF_X_2 == -10 &&
 DIFF_Y_2 <= 5 &&
 DIFF_Y_2 >= -5)
 ||
 (DIFF_X_2 == -11 &&
 DIFF_Y_2 <= 3 &&
 DIFF_Y_2 >= -3)
 ||
 (DIFF_X_2 == -12 &&
 DIFF_Y_2 == 0)
 ||
 (DIFF_Y_2 == 9 && // the top arc
 DIFF_X_2 <= 6 &&
 DIFF_X_2 >= -6)
 ||
 (DIFF_Y_2 == 10 &&
 DIFF_X_2 <= 5 &&
 DIFF_X_2 >= -5)
 ||
 (DIFF_Y_2 == 11 &&
 DIFF_X_2 <= 3 &&
 DIFF_X_2 >= -3)
 ||
 (DIFF_Y_2 == 12 &&
 DIFF_X_2 == 0)
 ||
 (DIFF_Y_2 == -9 && // the bottom arc
 DIFF_X_2 <= 6 &&

 49

 DIFF_X_2 >= -6)
 ||
 (DIFF_Y_2 == -10 &&
 DIFF_X_2 <= 5 &&
 DIFF_X_2 >= -5)
 ||
 (DIFF_Y_2 == -11 &&
 DIFF_X_2 <= 3 &&
 DIFF_X_2 >= -3)
 ||
 (DIFF_Y_2 == -12 &&
 DIFF_X_2 == 0)))
 begin // white paddle
 red <= 10'b1010100000;
 blue <= 10'b1010100000;
 green <= 10'b1010100000;
 end
 // draw right start box
 else if ((suppress_boxes == 0) &&

(mVGA_X == 471 || mVGA_X == 470) &&
 (mVGA_Y >= 224 && mVGA_Y < 276))
 begin
 green <= 10'b1111100000;
 red <= 10'b1111100000;
 blue <= 10'b1111100000;
 end
 else if ((suppress_boxes == 0) &&

(mVGA_X == 520 || mVGA_X == 521) &&
 (mVGA_Y >= 224 && mVGA_Y < 276))
 begin
 green <= 10'b1111100000;
 red <= 10'b1111100000;
 blue <= 10'b1111100000;
 end
 else if ((suppress_boxes == 0) &&

(mVGA_X > 470 && mVGA_X <= 520) &&
 (mVGA_Y == 225 || mVGA_Y == 224))
 begin
 green <= 10'b1111100000;
 red <= 10'b1111100000;
 blue <= 10'b1111100000;
 end
 else if ((suppress_boxes == 0) &&

(mVGA_X > 470 && mVGA_X <= 520) &&
 (mVGA_Y == 274 || mVGA_Y == 275))
 begin
 green <= 10'b1111100000;
 red <= 10'b1111100000;
 blue <= 10'b1111100000;
 end
 // draw right top border
 else if ((mVGA_X == 621 || mVGA_X == 622) &&
 (mVGA_Y >= 98 && mVGA_Y < 225))
 begin
 green <= 10'b0000000000;
 red <= 10'b0000000000;
 blue <= 10'b1010100000;

 50

 end
 // draw right goal
 else if ((mVGA_X == 621 || mVGA_X == 622) &&
 (mVGA_Y >= 225 && mVGA_Y < 275))
 begin
 green <= 10'b1111100000;
 red <= 10'b1111100000;
 blue <= 10'b1111100000;
 end
 // draw right bottom border
 else if ((mVGA_X == 621 || mVGA_X == 622) &&
 (mVGA_Y >= 275 && mVGA_Y < 403))
 begin
 green <= 10'b0000000000;
 red <= 10'b0000000000;
 blue <= 10'b1010100000;
 end
 // draw top right border
 else if ((mVGA_X >= 320 && mVGA_X < 621) &&
 (mVGA_Y == 98 || mVGA_Y == 99))
 begin
 green <= 10'b0000000000;
 red <= 10'b0000000000;
 blue <= 10'b1010100000;
 end
 // draw bottom right border
 else if ((mVGA_X >= 320 && mVGA_X < 621) &&
 (mVGA_Y == 401 || mVGA_Y == 402))
 begin
 green <= 10'b0000000000;
 red <= 10'b0000000000;
 blue <= 10'b1010100000;
 end
 // blacken all else on left side
 else if (mVGA_X >= 320 &&
 mVGA_X < 640)
 begin
 red <= 10'b0000000000;
 blue <= 10'b0000000000;
 green <= 10'b0000000000;
 end
 end
 state <= test1 ;

end
 endcase
end

// Apply black thresholding
if (Read_DATA1[14:10] > 5'b10110 ||
 Read_DATA1[9:5] > 5'b10110 ||
 Read_DATA1[4:0] > 5'b10110
)
begin
 Temp_Read_DATA1 <= 15'b111111111111111;
end
else
begin

 51

 Temp_Read_DATA1 <= 15'b000000000000000;
end

end
//================ End Paddle Detection & Drawing ==================//

Audio DAC module
//========================= AUDIO_DAC module =======================//
AUDIO_DAC u9 (// Audio Side
 .oAUD_BCK(AUD_BCLK),
 .oAUD_DATA(AUD_DACDAT),
 .oAUD_LRCK(AUD_DACLRCK),
 // Control Signals
 .iSrc_Select(~(SP|SP2|SP3)),

.iCLK_18_4(AUD_CTRL_CLK),
 .iRST_N(DLY_RST_1),
 .iSound_Select(Sound_Select));
//======================= End AUDIO_DAC module ======================//

Sound Generation Hardware
//========================= Speaker Control =========================//
reg SP;
reg [23:0] DLY_cont;
reg SP2;
reg [2:0] Sound_Select;
reg [23:0] DLY_cont2;
reg SP3;
reg [23:0] DLY_cont3;

always@(posedge CLOCK_50)
begin
 if (sound_signal) // if datected => turn on speaker
 begin
 DLY_cont <= 0;
 end
 else
 begin
 if(DLY_cont<24'h00ffff) // play for 65535 cycles @ 50MHz
 begin
 DLY_cont <= DLY_cont+1;
 SP <= 1;
 Sound_Select<= 0;
 end
 else
 begin
 SP <= 0;
 end
 end

 if (collision_sound) // if datected => turn on speaker
 begin
 DLY_cont2 <= 0;

 52

 end
 else
 begin
 if(DLY_cont2<24'h08ffff) // play for 589823 cycles @ 50MHz
 begin
 DLY_cont2 <= DLY_cont2+1;
 SP2 <= 1;
 Sound_Select<= 2'h01;
 end
 else
 begin
 SP2 <= 0;
 end
 end

 if (chime_sound) // if datected => turn on speaker
 begin
 DLY_cont3 <= 0;
 end
 else
 begin
 if(DLY_cont3<24'h300000) // play for 3145728 cycles @ 50MHz
 begin
 DLY_cont3 <= DLY_cont3+1;
 SP3 <= 1;
 Sound_Select <= 2;
 end
 else if(DLY_cont3<24'h600000) // play for another 3145728
 begin
 DLY_cont3 <= DLY_cont3+1;
 SP3 <= 1;
 Sound_Select <= 3;

end
else if(DLY_cont3<24'h900000) // play for another 3145728
begin

DLY_cont3 <= DLY_cont3+1;
 SP3 <= 1;
 Sound_Select <= 4;

end
else if(DLY_cont3<24'hc00000) // play for another 3145728
begin

 DLY_cont3 <= DLY_cont3+1;
 SP3 <= 1;
 if (DLY_cont3 % 1 == 0) Sound_Select<= 5;
 else Sound_Select<=6;

end
 else
 begin
 SP3 <= 0;
 end
 end
end
//====================== End Speaker Control ========================//

 53

C Code

Game Dynamics
//========================= C Main Program ==========================//
#define begin {
#define end }
#define position_delta 0
#define CIR_BUFFER_SIZE 10
#define RADIUS 13
#define LEFT_WALL (8 + RADIUS)
#define RIGHT_WALL (620 - RADIUS)
#define TOP_WALL (100 + RADIUS)
#define BOTTOM_WALL (400 - RADIUS)
#define MAX_SPEED 6
#define MIN_SPEED 0x0080
#define FREEZE_CONST 12

#define INCREASE_1 0x0000
#define INCREASE_2 0x0010
#define INCREASE_3 0x0020
#define INCREASE_4 0x0040
#define INCREASE_5 0x0080
#define INCREASE_6 0x0100
#define INCREASE_7 0x0140
#define INCREASE_8 0x0180
#define INCREASE_9 0x0200
#define INCREASE_10 0x0280
#define INCREASE_11 0x0300
#define INCREASE_12 0x0380
#define INCREASE_13 0x0400
#define INCREASE_14 0x0480
#define INCREASE_15 0x0500
#define INCREASE_16 0x0580
#define INCREASE_17 0x0600
#define INCREASE_18 0x0600

#define float2fix(a) (int)((a) * 256.0)
#define mfix(a,b) ((int)((((long)(a))*((long)(b)))>>8))

int main(void)
begin
 int address_x, valid, address_y;
 int address_x_2, address_y_2;
 int x_position1, y_position1;
 int x_position2, y_position2, no_change;
 int sw, key, notecount;
 int left_half = 1;
 int x_diff, y_diff; // diff in x and y centers of puck & paddle
 int speed_memory_1, speed_memory_2;
 int x_speed_increase, y_speed_increase;
 int friction_distance;
 char collision_flag;
 char speed_x_positive_flag = 1;
 char speed_y_positive_flag = 1;
 unsigned char LEFT_PLAYER_SCORED = 0;
 unsigned char RIGHT_PLAYER_SCORED = 0;

 54

 unsigned char LEFT_SCORE = 0;
 unsigned char RIGHT_SCORE = 0;

 int speed_x = 0;
 int speed_y = 0;
 int speed_x_2 = 0;
 int speed_y_2 = 0;
 int speed_x_relevant, speed_y_relevant;

 int speed;
 char game_began = 0;

 int collision_count = 0;
 unsigned int delay_counter = 0;
 int dummy = 0;

 unsigned int notes[9]={262, 294, 330, 349, 392, 440, 494, 523, 0};
 unsigned int msg = 0;
 unsigned int freq = 0;
 unsigned int x_position_history[CIR_BUFFER_SIZE];
 unsigned int y_position_history[CIR_BUFFER_SIZE];
 unsigned int head, tail;

 // Fit the entire puck within border
 unsigned int x_position = 0x1400 + (RADIUS<<8);
 unsigned int y_position = 0x6400 + (RADIUS<<8);
 int x_speed = 0x00000000;
 int y_speed = 0x00000700;

 int freeze_collision = 0;

 // jtag_uart variables
 FILE *uart_file;
 int freq_val;
 int wave_val;

 notecount = 0;
 no_change = 1;

 head = 0;
 tail = 0;

 //open the lcd --- device name from system.h
 lcd_fd = fopen("/dev/lcd", "w");
 if(lcd_fd == NULL) printf("Unable to open lcd display\n");

 while (1)
 begin

 if (game_began == 0)
 {
 x_speed = 0x00000000;
 y_speed = 0x00000400;
 x_position = 0x00013100 + (RADIUS<<8);
 y_position = 0x00006400 + (RADIUS<<8);
 IOWR_ALTERA_AVALON_PIO_DATA(OUT9_BASE, 0);

 55

 // Paddle 1 position in int
 address_x = IORD_ALTERA_AVALON_PIO_DATA(IN0_BASE);
 address_y = IORD_ALTERA_AVALON_PIO_DATA(IN2_BASE);

 // Paddle 2 position in int
 address_x_2 = IORD_ALTERA_AVALON_PIO_DATA(IN3_BASE);
 address_y_2 = IORD_ALTERA_AVALON_PIO_DATA(IN4_BASE);

 if (address_x >= 135 && address_x <= 155)
 {
 if (address_y >= 240 && address_y <= 260)
 {
 if (address_x_2 >= 485 && address_x_2 <= 505)
 {
 if (address_y_2 >= 240 && address_y_2 <= 260)
 {
 game_began = 1;
 RIGHT_SCORE = 0;
 LEFT_SCORE = 0;
 }
 }
 }
 }
 }

 if (game_began == 1)
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT9_BASE, 1);

 if (msg == 0) msg = 1;
 else msg = 0;
 if (LEFT_PLAYER_SCORED)
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT10_BASE, 0);
 delay_counter = 0;
 while (delay_counter < 1500000)
 {
 delay_counter++;
 dummy = delay_counter;
 }
 delay_counter = 0;
 // Fit the entire puck within border
 x_position = 0x01D600 + (RADIUS<<8);
 y_position = 0x6400 + (RADIUS<<8);
 x_speed = 0x0000;
 y_speed = 0x0300;
 LEFT_PLAYER_SCORED = 0;
 end
 else if (RIGHT_PLAYER_SCORED)
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT10_BASE, 0);
 delay_counter = 0;
 while (delay_counter < 1500000)
 {
 delay_counter++;
 dummy = delay_counter;
 }

 56

 delay_counter = 0;
 // Fit the entire puck within border
 x_position = 0xAA00 + (RADIUS<<8);
 y_position = 0x6400 + (RADIUS<<8);
 x_speed = 0x0000;
 y_speed = 0x0300;
 RIGHT_PLAYER_SCORED = 0;
 end

 IOWR_ALTERA_AVALON_PIO_DATA(OUT0_BASE, msg);
 IOWR_ALTERA_AVALON_PIO_DATA(OUT7_BASE, 0);
 IOWR_ALTERA_AVALON_PIO_DATA(OUT8_BASE, 0);

 // Check the validity of the data
 //valid = IORD_ALTERA_AVALON_PIO_DATA(IN1_BASE);

 x_position_history[0] = x_position1; // Prev left paddle x pos
 y_position_history[0] = y_position1; // Prev left paddle y pos
 x_position_history[1] = x_position2; // Prev right paddle x pos
 y_position_history[1] = y_position2; // Prev right paddle y pos

 // Paddle 1 position in int
 address_x = IORD_ALTERA_AVALON_PIO_DATA(IN0_BASE);
 address_y = IORD_ALTERA_AVALON_PIO_DATA(IN2_BASE);

 address_x = address_x << 8; // Paddle 1 x position in fixed point
 address_y = address_y << 8; // Paddle 1 y position in fixed point

 // Paddle 2 position in int
 address_x_2 = IORD_ALTERA_AVALON_PIO_DATA(IN3_BASE);
 address_y_2 = IORD_ALTERA_AVALON_PIO_DATA(IN4_BASE);

 address_x_2 = address_x_2 << 8; // Paddle 2 x pos in fixed point
 address_y_2 = address_y_2 << 8; // Paddle 2 y pos in fixed point

 x_position1 = address_x;
 y_position1 = address_y;

 x_position2 = address_x_2;
 y_position2 = address_y_2;

 no_change = 0;

 speed = sqrt((double)(
 abs(x_position_history[0] - x_position1) *
 abs(x_position_history[0] - x_position1) +
 abs(y_position_history[0] - y_position1) *
 abs(y_position_history[0] - y_position1)));

 if (x_position_history[0] == x_position1 &&
 y_position_history[0] == y_position1)
 begin
 if (speed_memory_1 == 0)
 begin

 57

 speed_x = (x_position_history[0] - x_position1);
 speed_y = (y_position_history[0] - y_position1);
 speed_memory_1 = 100;
 end
 else
 speed_memory_1--;
 end
 else
 begin
 speed_x = (x_position_history[0] - x_position1);
 speed_y = (y_position_history[0] - y_position1);
 speed_memory_1 = 3000;
 end

 if (x_position_history[1] == x_position2 &&
 y_position_history[1] == y_position2)
 begin
 if (speed_memory_2 == 0)
 begin
 speed_x_2 = (x_position_history[1] - x_position2);
 speed_y_2 = (y_position_history[1] - y_position2);
 speed_memory_2 = 100;
 end
 else
 speed_memory_2--;
 end
 else
 begin
 speed_x_2 = (x_position_history[1] - x_position2);
 speed_y_2 = (y_position_history[1] - y_position2);
 speed_memory_2 = 3000;
 end

 // commented out because printf takes a loooong time
 // will use LEDR, and HEX0-7 instead
 // printf("x: %d\ny: %d\nspeed: %d\n",
 // address_x, address_y, speed);

 IOWR_ALTERA_AVALON_PIO_DATA(OUT2_BASE, LEFT_SCORE);
 IOWR_ALTERA_AVALON_PIO_DATA(OUT3_BASE, RIGHT_SCORE);

 speed_x_relevant = ((left_half == 1) ? speed_x :
 speed_x_2);
 speed_y_relevant = ((left_half == 1) ? speed_y :
 speed_y_2);

 if (abs(speed_x_relevant) < 1) // 1 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 1);
 x_speed_increase = INCREASE_1;
 end
 else if (abs(speed_x_relevant) < 1000) // 2 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 3);
 x_speed_increase = INCREASE_2;
 end

 58

 else if (abs(speed_x_relevant) < 2000) // 3 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 7);
 x_speed_increase = INCREASE_3;
 end
 else if (abs(speed_x_relevant) < 3000) // 4 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 15);
 x_speed_increase = INCREASE_4;
 end
 else if (abs(speed_x_relevant) < 4000) // 5 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 31);
 x_speed_increase = INCREASE_5;
 end
 else if (abs(speed_x_relevant) < 5000) // 6 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 63);
 x_speed_increase = INCREASE_6;
 end
 else if (abs(speed_x_relevant) < 6000) // 7 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 127);
 x_speed_increase = INCREASE_7;
 end
 else if (abs(speed_x_relevant) < 7000) // 8 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 255);
 x_speed_increase = INCREASE_8;
 end
 else if (abs(speed_x_relevant) < 8000) // 9 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 511);
 x_speed_increase = INCREASE_9;
 end
 else if (abs(speed_x_relevant) < 9000) // 10 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 1023);
 x_speed_increase = INCREASE_10;
 end
 else if (abs(speed_x_relevant) < 10000) // 11 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 2047);
 x_speed_increase = INCREASE_11;
 end
 else if (abs(speed_x_relevant) < 11000) // 12 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 4095);
 x_speed_increase = INCREASE_12;
 end
 else if (abs(speed_x_relevant) < 12000) // 13 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 8191);
 x_speed_increase = INCREASE_13;
 end
 else if (abs(speed_x_relevant) < 13000) // 14 LED
 begin

 59

 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 16383);
 x_speed_increase = INCREASE_14;
 end
 else if (abs(speed_x_relevant) < 14000) // 15 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 32767);
 x_speed_increase = INCREASE_15;
 end
 else if (abs(speed_x_relevant) < 15000) // 16 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 65535);
 x_speed_increase = INCREASE_16;
 end
 else if (abs(speed_x_relevant) < 30000) // 17 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 131071);
 x_speed_increase = INCREASE_17;
 end
 else // 18 LED
 begin
 IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 262143);
 x_speed_increase = INCREASE_18;
 end

 if (abs(speed_y_relevant) < 1) // 1 LED
 begin
 y_speed_increase = INCREASE_1;
 end
 else if (abs(speed_y_relevant) < 1000) // 2 LED
 begin
 y_speed_increase = INCREASE_2;
 end
 else if (abs(speed_y_relevant) < 2000) // 3 LED
 begin
 y_speed_increase = INCREASE_3;
 end
 else if (abs(speed_y_relevant) < 3000) // 4 LED
 begin
 y_speed_increase = INCREASE_4;
 end
 else if (abs(speed_y_relevant) < 4000) // 5 LED
 begin
 y_speed_increase = INCREASE_5;
 end
 else if (abs(speed_y_relevant) < 5000) // 6 LED
 begin
 y_speed_increase = INCREASE_6;
 end
 else if (abs(speed_y_relevant) < 6000) // 7 LED
 begin
 y_speed_increase = INCREASE_7;
 end
 else if (abs(speed_y_relevant) < 7000) // 8 LED
 begin
 y_speed_increase = INCREASE_8;
 end
 else if (abs(speed_y_relevant) < 8000) // 9 LED

 60

 begin
 y_speed_increase = INCREASE_9;
 end
 else if (abs(speed_y_relevant) < 9000) // 10 LED
 begin
 y_speed_increase = INCREASE_10;
 end
 else if (abs(speed_y_relevant) < 10000) // 11 LED
 begin
 y_speed_increase = INCREASE_11;
 end
 else if (abs(speed_y_relevant) < 1100) // 12 LED
 begin
 y_speed_increase = INCREASE_12;
 end
 else if (abs(speed_y_relevant) < 12000) // 13 LED
 begin
 y_speed_increase = INCREASE_13;
 end
 else if (abs(speed_y_relevant) < 13000) // 14 LED
 begin
 y_speed_increase = INCREASE_14;
 end
 else if (abs(speed_y_relevant) < 14000) // 15 LED
 begin
 y_speed_increase = INCREASE_15;
 end
 else if (abs(speed_y_relevant) < 15000) // 16 LED
 begin
 y_speed_increase = INCREASE_16;
 end
 else if (abs(speed_y_relevant) < 30000) // 17 LED
 begin
 y_speed_increase = INCREASE_17;
 end
 else // 18 LED
 begin
 y_speed_increase = INCREASE_18;
 end

 if (((x_diff>>8) * (x_diff>>8) + (y_diff>>8) * (y_diff>>8)) <=
 (4 * (RADIUS - 1) * (RADIUS - 1)))
 // Radius - 1 makes collision closer
 if (!freeze_collision)
 collision_flag = 1;

 // DYNAMICS
 if (notecount++ == 200) // slowing down puck movement
 begin
 if (freeze_collision > 0) freeze_collision--;

 // Previous puck x and y positions
 x_position_history[2] = x_position;
 y_position_history[2] = y_position;

 if (speed_x_positive_flag == 1)

 61

 x_position += x_speed; // x coordinate of puck
 else
 x_position -= x_speed; // x coordinate of puck
 if (speed_y_positive_flag == 1)
 y_position += y_speed; // y coordinate of puck
 else
 y_position -= y_speed; // y coordinate of puck

 x_diff = (left_half == 1) ? (x_position - x_position1) :
 (x_position - x_position2);
 y_diff = (left_half == 1) ? (y_position - y_position1) :
 (y_position - y_position2);
 // RIGHT WALL
 if ((y_position < ((225<<8)+(RADIUS<<8)) || y_position >=

 ((285<<8)-(RADIUS<<8))) &&
 (x_position >= (RIGHT_WALL<<8)))
 begin
 if (speed_x_positive_flag == 1)
 begin
 if (x_speed > MIN_SPEED)
 x_speed -= 0x0040;
 speed_x_positive_flag = 0;
 end
 IOWR_ALTERA_AVALON_PIO_DATA(OUT7_BASE, 1);
 end
 // RIGHT GOAL
 if ((y_position >= ((225<<8)+(RADIUS<<8)) && y_position <
 ((285<<8)-(RADIUS<<8))) &&
 (x_position >= ((RIGHT_WALL+RADIUS+1)<<8)))
 begin
 // Generate chime
 IOWR_ALTERA_AVALON_PIO_DATA(OUT10_BASE, 1);
 LEFT_PLAYER_SCORED = 1;
 LEFT_SCORE++;
 if (LEFT_SCORE == 10)
 {
 game_began = 0;
 }
 end
 // LEFT WALL
 if ((y_position < ((225<<8)+(RADIUS<<8)) || y_position >=
 ((285<<8)-(RADIUS<<8))) &&
 (x_position <= ((LEFT_WALL+RADIUS+1)<<8)))
 begin
 if (speed_x_positive_flag == 0)
 begin
 if (x_speed > MIN_SPEED)
 x_speed -= 0x0040;
 speed_x_positive_flag = 1;
 end
 IOWR_ALTERA_AVALON_PIO_DATA(OUT7_BASE, 1);
 end
 // LEFT GOAL
 if ((y_position >= ((225<<8)+(RADIUS<<8)) && y_position <
 ((285<<8)-(RADIUS<<8))) &&
 (x_position <= (LEFT_WALL<<8)))
 begin

 62

 // Generate chime
 IOWR_ALTERA_AVALON_PIO_DATA(OUT10_BASE, 1);
 RIGHT_PLAYER_SCORED = 1;
 RIGHT_SCORE++;
 if (RIGHT_SCORE == 10)
 {
 game_began = 0;
 }
 end
 // BOTTOM WALL
 if (y_position >= (BOTTOM_WALL<<8))
 begin
 if (speed_y_positive_flag == 1)
 begin
 if (y_speed > MIN_SPEED)
 y_speed -= 0x0040;
 speed_y_positive_flag = 0;
 end
 IOWR_ALTERA_AVALON_PIO_DATA(OUT7_BASE, 1);
 end
 // TOP WALL
 if (y_position <= (TOP_WALL<<8))
 begin
 if (speed_y_positive_flag == 0)
 begin
 if (y_speed > MIN_SPEED)
 y_speed -= 0x0040;
 speed_y_positive_flag = 1;
 end
 IOWR_ALTERA_AVALON_PIO_DATA(OUT7_BASE, 1);
 end

 if (collision_flag == 1)
 // PADDLES
 begin // to look convincing on video
 collision_count++;

 collision_flag = 0;
 // Collision sound effect
 IOWR_ALTERA_AVALON_PIO_DATA(OUT8_BASE, 1);
 // COLLISION 1
 if (speed_x_positive_flag == 1 &&
 speed_y_positive_flag == 1 && !freeze_collision)
 begin
 // bounce up & left if puck is above & left of paddle
 if (y_diff < 0 && x_diff < 0)
 begin
 speed_x_positive_flag = 0;
 speed_y_positive_flag = 0;
 end
 // bounce up & right if puck is above & right of paddle
 else if(y_diff < 0 && x_diff >= 0)
 begin
 speed_y_positive_flag = 0;
 end
 // bounce down & left if puck is below paddle

 63

 else if(y_diff >= 0 && x_diff < 0)
 begin
 speed_x_positive_flag = 0;
 end
 else
 begin
 // same direction
 end

 freeze_collision = FREEZE_CONST;
 end
 // COLLISION 2
 if (speed_x_positive_flag == 1 &&
 speed_y_positive_flag == 0 && !freeze_collision)
 begin
 // bounce down & left if puck is below & left of paddle
 if (y_diff > 0 && x_diff < 0)
 begin
 speed_x_positive_flag = 0;
 speed_y_positive_flag = 1;
 end
 // bounce down & right if puck is above & left of paddle
 else if (y_diff > 0 && x_diff >= 0)
 begin
 speed_y_positive_flag = 1;
 end
 // bounce up & left if puck is above & left of paddle
 else if(y_diff <= 0 && x_diff < 0)
 begin
 speed_x_positive_flag = 0;
 end
 else
 begin
 // same direction
 end
 freeze_collision = FREEZE_CONST;
 end
 // COLLISION 3
 if (speed_x_positive_flag == 0 &&
 speed_y_positive_flag == 1 && !freeze_collision)
 begin

 // bounce up & right if puck is above & right of paddle
 if (y_diff < 0 && x_diff > 0)
 begin
 speed_x_positive_flag = 1;
 speed_y_positive_flag = 0;
 end
 // bounce up & left if puck is above & left of paddle
 else if (y_diff < 0 && x_diff <= 0)
 begin
 speed_y_positive_flag = 0;
 end
 // bounce down & right if puck is below & right of paddle
 else if(y_diff >= 0 && x_diff > 0)
 begin
 speed_x_positive_flag = 1;

 64

 end
 else
 begin
 // same direction
 end
 freeze_collision = FREEZE_CONST;
 end
 // COLLISION 4
 if (speed_x_positive_flag == 0 &&
 speed_y_positive_flag == 0 && !freeze_collision)
 begin
 // bounce down & right if puck is below & right of paddle
 if (y_diff > 0 && x_diff > 0)
 begin
 speed_x_positive_flag = 1;
 speed_y_positive_flag = 1;
 end
 // bounce down & left if puck is below & left of paddle
 else if (y_diff > 0 && x_diff <= 0)
 begin
 speed_y_positive_flag = 1;
 end
 // bounce up & right if puck is above & right of paddle
 else if (y_diff <= 0 && x_diff > 0)
 begin
 speed_x_positive_flag = 1;
 end
 else
 begin
 // same direction
 end
 freeze_collision = FREEZE_CONST;
 end

 if (x_speed == 0)
 {
 if (abs(x_diff) <= 1)
 {
 // do nothing
 }
 else if (abs(x_diff) <= 4)
 {
 x_speed = MIN_SPEED;
 y_speed -= 0x0040;
 }
 else if (abs(x_diff) <= 8)
 {
 x_speed = 0x0050;
 y_speed -= 0x0050;
 }
 else
 {
 x_speed = 0x0060;
 y_speed -= 0x0060;
 }
 }

 65

 // ALL COLLISIONS DONE, CHANGE SPEEDS
 if ((x_speed + x_speed_increase) <= (MAX_SPEED<<8))
 begin
 if (x_speed > 0x0500)
 begin
 x_speed += (x_speed_increase / 2);
 end
 else
 x_speed += x_speed_increase;
 end
 else
 x_speed = MAX_SPEED<<8;

 if ((y_speed - y_speed_increase) < (MAX_SPEED<<8))
 begin
 if (y_speed > 0x0500)
 begin
 y_speed += (y_speed_increase / 2);
 end
 else
 y_speed += y_speed_increase;
 end
 else
 y_speed = MAX_SPEED<<8;
 end

 notecount = 0;
 end

 if ((x_position>>8) < 320)
 begin
 // the puck is in the left half
 left_half = 1;
 end
 else if ((x_position>>8) >= 320)
 begin
 // the puck is in the right half
 left_half = 0;
 end

 IOWR_ALTERA_AVALON_PIO_DATA(OUT4_BASE, 0);

 IOWR_ALTERA_AVALON_PIO_DATA(OUT5_BASE, x_position>>8);
 IOWR_ALTERA_AVALON_PIO_DATA(OUT6_BASE, y_position>>8);

 end
 end
end
//======================= End C Main Program ========================//

