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Abstract 
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Design Project Report 

 

Project Title:  FPGA Virtual Air Hockey 

Author:  Ping-Hong Lu 

Abstract:  A virtual air hockey game was designed that blends together many aspects of 

embedded systems design in electrical and computer engineering to create an interactive 

game that is sophisticated yet intuitive to play.  The video game is implemented on the 

DE2 FPGA educational development board made by Terasic for Altera's Cyclone II 

processor.  The FPGA is used in combination with a CCD camera for video input as well 

as a monitor and speakers for game output.  The camera tracks movements of LED 

paddles through  image processing techniques and the players move the paddles to strike 

a virtual puck which is displayed on the monitor along with the on-screen paddles.  In 

addition to synthesizing basic hardware on the DE2, a general purpose CPU, called the 

Nios II, is also instantiated on the board, which runs high-level C code.  The dynamics of 

the game is coded in C.  The result is a fully interactive game in which the users' 

movements of LEDs register as movements of paddles in the virtual air hockey game, 

accompanied by sound. 
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Executive Summary 

This design project was inspired by my interest in games and gaming console 

design.  With the current generation of gaming consoles incorporating cameras, 

microphones, and motion sensors as inputs to the games, it was decided that a similar 

approach would be used.  It takes a simple game like air hockey and incorporates image 

processing to mimic actual hand-controlled motion of the on-screen paddle.  The image 

processing accurately captures the velocities of the users' movements to realistically 

affect the dynamics of the game.   

The game utilizes sophisticated dynamics for controlling the puck movements, as 

well as many low-level hardware modules including video output, audio Digital to 

Analog Conversion, and image processing.  Since the VGA only has whole numbered 

pixel resolution, 32-bit fixed point arithmetic allowed quick conversions of puck position 

between integer values and mixed fractional values.  A high-resolution camera for the 

system used in conjunction with various digital image processing techniques such as 

dilating and eroding allowed accurate position detection for the paddles.   

Originally, I had envisioned implementing the game on a traditional 

microcontroller.  However, the idea of using reconfigurable hardware was appealing in 

that future firmware upgrades could also potentially change the features of the hardware 

and add or reduce functionality where needed.  This last point is certainly relevant 

considering the existing game consoles on the market today already support firmware 

updates through internet connections.  The entire project was done on the DE2 FPGA 

development board and TRDB_DC2 1.3 Megapixel camera, both made by Terasic 

Technologies, a speaker, a VGA monitor, and two LED-mounted paddles.  The hardware 

was programmed in Verilog and the Nios II CPU was programmed in embedded C. 

 The project was a great success, and the game play is both natural and fun.  I am 

extremely satisfied with the results and found the entire process very rewarding. 
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INTRODUCTION 

Upon starting my Masters of Engineering design project, my goal was to create an 

embedded systems project that would utilize both knowledge of hardware organization 

and software development.  To achieve this goal, the idea to create a video game that was 

both interactive and intuitive to play was born.  The idea of physical movements 

controlling the game was influenced by the present state of the gaming industry, and 

provides an added fun-factor for the user who feels more involved in the game 

play.  Even a seemingly simple game such as air hockey involves a great deal of 

electrical and computer engineering knowledge.  By organizing the hardware on the 

FPGA for fast response as well as programming a general purpose CPU instantiated on 

the FPGA to run high-level logic, I was able to create the game environment I aimed 

for.  Through use of the system, one can immediately see that it is highly responsive to 

the user's movements, and the dynamics of the game emulates the real experience very 

well.  

 

DESIGN REQUIREMENTS 

There were three main requirements for this video game which ultimately shaped 

the resulting product.  The most important design requirement was the responsiveness of 

the system.  For the most part, this meant that the image capturing and outputting needed 

to be fast and therefore implemented in hardware which required no additional software 

logic.  The game dynamics could take a little longer since the game needed to be slow 

enough for humans to play, and was accordingly implemented in software running on the 

Nios II CPU.  Other requirements were that the video game run smoothly with no lags or 

glitches in the game play and simply that it should feel like a real game of air hockey.  

This last requirement is a bit subjective and required adjustments made by iterative trial 

and errors. 

 

The requirements of this project are summarized as the following: 

- Good responsiveness, the actions feel like an extension of the user’s body 

- Precise and accurate game dynamics 

- Overall experience like playing real air hockey 
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BACKGROUND 

Interactive Gaming- 

With the recent burst of interactive video game consoles hitting the market, it is 

clear that there is much consumer interest in interactive gaming.  The 

accelerometer/gyroscope technologies combined with infrared position triangulating in 

the Nintendo® Wii allow users to aim a gun or slash a sword, while the SIXAXIS tilt 

sensitive controller for the Sony Playstation® 3 allows players to guide a flying object 

with the tilt their hands instead of the motion of their thumbs.  Other forms of interactive 

games also exist, such as stepping on pressure-sensitive pads or playing musical 

instruments along with a specific rhythm.  While the packaging and forms may be 

different, the goals of these systems are all the same: provide control input to the game 

through the user’s physical motion or sounds instead of key presses.  The game input 

devices can be either digital, in the case of games like Guitar Hero, or analog like in 

Karaoke Revolution.   

 

Air Hockey- 

The game of air hockey adheres to fairly straightforward rules that can be 

modeled by a physics engine quite nicely.  The game can be represented on a two 

dimensional space from a bird’s-eye perspective which is also ideal for displaying 

relatively simple graphics.  The energy input to the system are typically all impulses 

which translates to a sudden change in the puck’s acceleration, or jerk, and small amounts 

of friction and energy dissipation due to inelastic collisions will remove kinetic energy 

from the puck and slow it down.  The physics differ from elastic collisions like many 

billiard ball simulators.  One reason is that the mass of the paddle is considerably larger 

than the mass of the puck because the user holds onto the paddle.  In other words, the 

conservation of momentum (p = m * v) is trickier to express, assuming an extremely 

large mass of the paddle with a non-completely elastic collision.  However, aside from 

paddle/puck collision math, the overall behavior of the system like position and velocity 

can be modeled nicely in a 2-dimensional coordinate system.   
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RANGE OF SOLUTIONS 

To create a realistic game experience, many possible implementations and ideas 

were considered.  Much cost-benefit analysis had to be taken into account and the 

following were things that were considered in ultimately coming up with the project 

solution. 

 

Game Input 

Upon coming up with the idea of the air hockey game, the first possibility for 

game input was to use accelerometers in conjunction with a camera so that I could 

measure actual acceleration, and therefore determine the force at the time of “contact”.  

The accuracy of the collision force made this option fairly attractive.  However, in 

researching wireless radio transmissions, it was determined that the overhead of both cost 

and time did not warrant that level of precision measuring.  Instead, simply using the 

change in position from the imaging would have to provide sufficient data for the 

dynamics of the system. 

The next idea was to use just a camera to determine the position of the paddles.  

The Sony PlayStation® 2 EyeToy camera uses edge detection and various signal 

processing techniques to determine the user’s movements against the background.  

Conveniently, Terasic Technologies makes a CCD camera for the FPGA board that was 

ultimately used for this project.  My idea was to draw upon principles similar to the 

EyeToy but to make the processing easier by detecting distinct colors, for example.  The 

camera has a fairly high resolution that is capable of 1.3 Mega pixels which is more than 

enough for my desired application.  

To ensure that the game can be played in all types of lighting, I decided to use 

colored LEDs as inputs for the game.  Unfortunately the sensitivity of photo capture is 

different from human eyes and the colors of LEDs are not easily distinguishable as 

recorded through the camera.  The following figure is an example of what a blue and 

yellow LED look likes through the camera, with the blue LED on the left and yellow on 

the right. 
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Figure 1 

Notice that the blue LED, while having some blue in the fringes, is almost completely 

white.  The yellow LED looks completely white, and differentiating the two in a reliable 

manner could prove to be complex.  Instead of color, the next choice for detection was to 

simply use light intensity, tracking a certain level of whiteness (an intense mixture of red, 

green, and blue light), and splitting the playing space among the two players so that 

player 1 cannot move into player 2’s space on screen..  Figure 2 is an example of what 

the light intensity of an LED looks like up close, with a value of zero being the lowest 

intensity (black) and five being the highest (white): 
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Figure 2 

 

One limitation of this approach is that dispersed light sources in the same camera space 

would need some sort of mechanism to decide which pixel would represent the paddle.  

In other words, how do we process the peak values (i.e., 5) in Figure 2 in an orderly and 

systematic fashion?  The solution for this will be discussed in the DESIGN AND 

IMPLEMENTATION section. 

 

Video Output 

The idea is to play this game on a large display.  For that reason, considerable 

time was spent considering the form of the video output.  Digital outputs like HDMI or 

DVI are fairly standard in new televisions and monitors.  HDMI and DVI have the ability 

to output tremendously high-resolution video of 1920 x 1080 and 1920 x 1200 pixels 
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respectively.  In addition to the digital video formats, there is also NTSC video used in 

standard television coaxial cables, and VGA for computer monitors.  After considering 

the multitude of video output formats, a VGA interface was chosen for several reasons.  

First, the high definition digital formats are completely excessive for the type of video 

this system expects to output, which are simple geometric shapes with solid colors.  The 

digital formats are also strictly specified so the time put into implementing and 

debugging the video output to conform to the strict standards would not be worth the 

benefits (which this project will be unable to make use of, anyway). 

The VGA specifications are very similar to the NTSC protocol used for standard 

analog television sets, with two differences.  One difference is that there are separate 

analog lines for each of color: red, green, and blue.  The other major difference is that 

there are separate lines for horizontal and vertical sync pulses. 

The basic premise of VGA is that the output device will send a repeating series of 

horizontal and vertical sync pulses to the monitor, which specifies the exact pixel to 

brighten or darken.  Each horizontal sync pulse indicates to the monitor to shift its focus 

to the next pixel on the same line, while each vertical sync pulse tells the monitor to 

move on to the next line.  Each pixel can be set to a specific red, green, and blue value 

depending on the voltage level of the respective color input, with a higher voltage level 

corresponding to a brighter color. Figure 3 is an example of what a sample VGA video 

signal may look like for the green color with respect to the sync pulses: 

 
Figure 3 

 

Sound Output 

The aim for this project is to create a rich gaming experience, and no game would 

be complete without sound effects.  There are many viable techniques for generating 
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sounds, and the one chosen for this project is direct digital syntheses (DDS).  The general 

functionality of DDS is explained as follows:  a calculated constant number called a 

phase increment is added to an n-bit register every N clock cycles, causing the n-bit 

register to overflow at some constant rate.  At the same time, the top x-bits (where x < n) 

of that register are used as index values for a table with y elements (2x ≥ y).  This table is 

the digital values of a single sine wave spread out evenly over y elements.  These digital 

values are sent to the DAC and an analog since wave is generated.  To change 

frequencies, simply change the constant value that is added to the n-bit register.  

Mathematically expressed, the formula is: 

 

clk
Nfreq n

e
increment

*2*sin=φ  

 

By correctly choosing the phase increment based on your known clock and N values, a 

sine wave with the desired frequency can be created.  Notice that as you increase the sine 

frequency by using higher increment values, the time resolution of the sine wave gets 

worse and worse.   

 

Final Project Definition 

The final project is summarized as follows: 

- Game input of detecting LED movements through a digital camera 

- Game dynamics engine based solely on LED positions 

- Video output via VGA interface 

- Sound generation through Direct Digital Synthesis 
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DESIGN AND IMPLEMENTATION 

This section details the video input hardware, paddle control hardware, video output 

hardware, sound output hardware, and other miscellaneous hardware, as well as the game 

dynamics software.  The block diagram of the virtual air hockey system is show below: 

 

CCD CameraSDRAM
ControllerImage Filter

Paddle
Positioning

Nios II CPU
(Game Dynamics)

Display
Logic Hardware

VGA
Controller

Audio
DAC

Monitor

Speaker

LED
Paddles Input

Outputs

 
Figure 4 

 

Video Input Hardware 

The CCD camera uses a 25 MHz clock that is derived from the internal 50 MHz 

clock divided by two.  The module takes control inputs to start, stop, and reset the camera, 

and outputs 10-bits of raw data on the mCCD_DATA bus.  That bus is an input to the 

module RAW2RGB, which then separates the raw camera information into red, green, 

and blue values in for each pixel position.  Note that the CCD camera code is provided by 

Terasic with no changes made.  More design details of the code can be found from 

Terasic at http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=50. 

The CCD camera's information is stored in on board the SDRAM memory.  The 

SDRAM contains 307,200 pixels of information per frame (640 x 480) but less than 60 

percent of those pixels are used because the video that is generated is a 600 x 300.  It 

would have been desirable to have the camera skip the unused video space so that each 

frame took only 58.6 percent of the time it actually takes.  However, after thorough 

research and analysis, it was determined that the TRDB CCD camera cannot be hacked to 
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display less information, and using anther camera was not a realistic option.  As a result, 

the data path of the camera’s information and identifying the source was a source of 

performance constraint.  As I found out later in the project, this was actually the largest 

constraint in the project, and this will be discussed further in the RESULTS section of the 

report. 

Another constraint on the system is that the camera will pick up light reflection 

from the paddle LED.  In order to avoid false position calculations, the system needs to 

be used in an environment free of reflective objects in the camera’s field of view.  This 

includes the actual playing surface, and during development and testing a large non-

smooth black piece of paper was used under the playing area. 

 

Paddle Control Hardware 

The paddle detection hardware is one of the more complex sections of this project 

with many steps in the process.  First the red, green, and blue data for each pixel in the 

SDRAM is processed by image filtering hardware to even out extraneous data.  That 

filtered data set is used to determine the center locations of the two paddles, and finally 

when each pixel is output on the VGA, it’s proximity to the center of the paddles are 

checked and the right action is taken in drawing the pixel.   

To perform the image filtering on the red, green, and blue values of each pixel in 

SDRAM, there are three special shift-registers called taps that shift in the information 

every clock cycle.  The taps are unique because as their name suggests, they allow the 

hardware to tap each position of the shift-register to access its bits.  The taps were created 

using the MegaWizard Plug-In Manager in the Quartus II IDE.  For more information on 

how these work see: http://www.altera.com/literature/ug/ug_alt_shift_taps.pdf.  The taps 

are used to perform two morphological image processing techniques called erode and 

dilate which fade away the edge of the foreground and background respectively.  The 

information is then used to compare against the next state of the shift-register and if it can 

detect whether “change” (motion) has occurred or not.  If no motion has been detected, 

the VGA output address going to the Nios II retains the value from the previous position. 

Next, a finite state machine was utilized in determining the location and drawing 

of the two paddles for many reasons.  One of the reasons is that a scheme is necessary to 
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manipulate the video memory only while the sync signals are asserted so that no video 

artifacts show.  Another reason is that the FSM provides a systematic way to detect 

motion in which the playing space which has been divided into two regions, one for each 

paddle.  Use the figure below as a guide in following the FSM description.  While there 

are only a few number of states in the state machine, the last state is fairly complex with a 

lot of parallel hardware so please review the following carefully. 

Init test1 test2 test3

Assert “New Frame” 
if x and y coordinates

of the current pixel has
wrapped back to 

beginning.

Calculate the distance 
of the current pixel from 
the centers of the two 

paddles. Also calculate 
the distance of the 

current pixel from the 
center of the puck.

Illuminate the current 
pixel based on its 

address, and  proximity 
to the paddles  and 

puck.

Enter here upon reset.

 
Figure 5 

 

The state machine is clocked by the rising edge of 50 MHz clock and begins in the “init” 

state.  If at any time KEY[0] s pressed, the state machine returns to the “init” state.  No 

action is taken in the init state except to set the state variable to “test1”. 

In the state “test1”, the goal is to record the most recently known location of the 

LEDs in each playing space.  Each cycle of the 50 MHz clock also increments the 

mVGA_X and mVGA_Y variables which have red, green, and blue values of mVGA_R, 

mVGA_G, and mVGA_B.  Using this, the values in mVGA_R, mVGA_G, and 

mVGA_B are checked against the filtering threshold to determine the center of the LED.  

Undoubtedly, there will be multiple pixels who satisfy this condition, and to avoid having 

a moving virtual paddle for a static LED, a first-satisfied scheme is utilized where one a 

fresh frame has started and a “LED center” has been detected, the state machine does not 
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attempt to update the paddle center addresses until a new frame begins, which is defined 

by mVGA_X == 20 and mVGA_Y == 20.  For example in Figure 2, the algorithm would 

always identify the top-left most pixel labeled 5 as the center of the paddle.  If no LED 

center is found the previous paddle locations are kept.  Such a case would be possible 

only if the LED leaves the camera view, or is turned off.  Once these steps are completed, 

the state variable is updated to “test2”. 

State “test2”, is used to determine the surrounding pixels of the paddle centers, 

which were recorded in state “test1”.  To do this, the paddle center’s x and y addresses 

have mVGA_X and mVGA_Y subtracted, and that difference is stored in registers 

DIFF_X_1, DIFF_Y_1, DIFF_X_2, and DIFF_Y_2.  Unlike programming in sequential 

languages like C and Java, Verilog cannot perform the calculations in states “test1” and 

“test2” in the same cycle because “instructions” are actually dedicated hardware on the  

DE2 board and happen concurrently at the clock-edge with no knowledge of data 

dependencies.  In addition, the puck’s x and y addresses are also subtracted from the 

VGA x and y address and recorded.  The state variable is then set to “test3”. 

In state “test3” the actual drawing of borders, paddles, and puck occur.  The 

borders are drawn by using absolute addresses of mVGA_X and mVGA_Y, where the 

border is a rectangle defined by the points (20,100), (620,100), (20, 400), and (620,400).  

Please note that in the VGA coordinate system the Cartesian coordinate system has been 

reflected over the y-axis, or in other words, the positive direction of y is down.  In 

drawing the paddles, the previously calculated difference values are used to determine 

how far away from the center of the paddle the current pixel is.  If the current pixel is a 

within a defined radius of the center, that pixel is illuminated according to the 

corresponding paddle color.  And lastly, the illumination of the puck is done in the same 

way as the paddles, with a slight difference in that the x and y coordinates of the puck’s 

center are passed from the NIOS II CPU via a bus instead of being detected by the 

camera.  When this is all done, the state variable is set back to “test1” and the process 

begins anew. 

Users should note that there are limitations on the camera and its refresh rate.  It is 

possible for the user to move the LED faster than the camera’s refresh rate which results 

in a huge jump in the paddle’s position.  This is because the time between the previous 
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position and the new position detected by the camera is so long.  This was exactly the 

problem that was described in the Video Input Hardware and really has no solution in 

hardware.  While it is possible to detect the huge jump in software and extrapolate some 

trajectory (a straight line, for example), this was not done because of the additional 

complexity that such a scheme would introduce.   

 

Video Output Hardware 

The VGA_Controller is clocked at 25 MHz and provides the monitor with the 

information to be displayed on the screen.  The outputs of the module are on five lines, 

VGA_Red, VGA_Green, VGA_Blue, VGA_HSYNCH, and VGA_VSYNCH.  The 

VGA_Controller module keeps track of incrementing and resetting the horizontal and 

vertical synch values so that it outputs the correct sequence of horizontal and vertical 

sync pulses.  The inputs to the module are the red, green, and blue information we wish to 

output based on the red, green, and blue values stored at the x and y coordinate in 

SDRAM.  The red, green, and blue values we wish to output are set by the state machine 

discussed earlier and use a blue value for the air hockey table border, white for the goals, 

blue for player 1’s paddle, white for player 2’s paddle, yellow for the puck, and black 

everywhere else.  There are also two white boxes that are necessary to satisfy the “start 

game” condition which will be covered further in the Starting, Scoring, & Ending Rules 

section of the report.  Again, these pixel values are only altered while the 

VGA_HSYNCH and VGA_VSYNCH lines are asserted. 

 

 Sound Output Hardware 

A phased-locked loop (PLL) is used to take one of the FPGA’s internal clocks of 

frequency 27  MHz and output a 18.4 MHz clock which is subsequently used as the audio 

control clock.  A Quartus II IDE wizard, which generates PLL modules with a few high-

level design inputs, was utilized to create the PLL.  The three other inputs into the audio 

module are a reset delay line, an on/off signal, and a source select signal.  The reset delay 

signal is asserted by the Reset_Delay module when KEY[0], or the system reset button, is 

pressed.  The delay is to provide enough time for all components of the system to reach a 

known steady state before continuing.  The on/off signal is asserted for example when a 
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sound effect is needed.  In the AUDIO_DAC module, a DDS system is used to generate 

sine waves of different frequencies based on a phase increments which is depend on the 

source select.  The foundation of the code was used from Teraic’s TRDB camera’s 

motion detection example, and more design details can be found at 

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=50.  In 

extending the code, multiple sounds for different circumstances with various frequencies 

were added.  This was accomplished by adding a source select bus to the AUDIO_DAC 

module which controlled the phase increment.  Each source can play for different time 

intervals by having separate control lines for the on/off signal.  For example, when the 

puck reflects off of a border, ten cycles of 10 KHz sine wave is generated, but when the 

puck enters a goal, a chime with increasing frequencies is played.  The duration of the 

tone was controlled by the on/off signal which can be controlled precisely by using a 24 

bit counter.  Because the sound generation hardware that is an input to the AUDIO_DAC 

is clocked at 50 MHz, asserting the on/off signal for 50 million counts generates a one 

second tone.  In the case of the chime that is played when a player scores a goal, four 

different thresholds were used for the 24-bit counter and during each threshold, a 

different source select value was used, causing the AUDIO_DAC to use phase 

increments corresponding to each of the different source selects.  The result is a chime 

that increases in frequency three times every 63 ms for a total 252 ms, and it sounds quite 

good.  For a waveform of the output signals, please see the RESULTS section. 

In hindsight, if I were to do the project again, I would write the AUDIO_DAC 

module from scratch rather than start with Terasic’s code as a foundation.  The main 

reason is that the lookup table only has 48 elements because the original hardware only 

output a 1 KHz sine wave.  The sound output is very good when simply multiplying the 

frequency, but in trying to create musical notes, i.e. frequencies less than 1 KHz, the DDS 

was limited by the number of A/D values it had in the table and the output suffered as a 

result.   

 

Miscellaneous Hardware 

The DE2’s on-board 7-segment displays were used to indicate each player’s 

current numerical score.  To do this, a lookup table module was created which took a 4-
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bit input and output 7-bits.  The four bits represent 16 possible values ranging from 0x0 

to 0xh, and a lookup table maps each of the 16 values to a corresponding 7-bit pattern 

that make up alphanumeric outputs on the 7-segment display.   

In addition to the 7-segment displays, 18 general purpose red LEDs exist on the 

DE2 which were used during development to blink on and off depending on the specific 

need of the task.  The 7-segment displays are active low, while the LEDs are active high. 

As mentioned previously in the Sound Output Hardware section, there is a 

Reset_Delay module on the board that detects the KEY[0] button press.  When this 

button is pressed, three different delay lines are controlled, each with its own time delay 

before it is asserted.  The delay values used by the Sdram_Control module is 

approximately 41.9 ms, the delay for the CCD_Capture, RAW2RGB, and AUDIO_DAC 

modules are approximately 62.9 ms, and the delay for the VGA_Controller is 83.9 ms. 

 

Game Dynamics Software 

A Nios II/f core (fast) was used in implementing the game dynamics.  The 

Quartus II IDE has a built in module called the SOPC (System On Programmable Chip) 

Builder which takes care of generating the general purpose CPU out of your high level 

design requirements.  See the figure below for the specific SOPC Builder parameters. 
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Figure 6 

 

The Nios II/f has several advantages over the Nios II/e (economy) and Nios II/s 

(standard) in that it has a six-stage pipeline to achieve greater throughput, or instructions 

per second, and also has single-cycle hardware multiply and barrel-shift operations, 

something that is very useful for this project. 

The default memory available to the Nios II is either SDRAM or M4K memory, 

and the choice can be configured through the Nios II IDE project settings. Since, our 

project utilizes the SDRAM to store the CCD camera’s data and M4K blocks are not 

sufficiently large enough to contain this code space.  Instead, the Nios II instantiated for 

this project utilizes a 512k block of SRAM whose implementation was made available by 

Terasic in the module SRAM_16bit-512k. 
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Fixed-Point Arithmetic 

Fixed-point arithmetic was used to represent non-integer values.  In the Nios II 

architecture, int values are 32-bit values, so the top three bytes are used for the whole-

number value, and the lower byte is used for fractional values.  The virtual decimal point 

was located between the first and second low-order bytes and values to the right of the 

decimal represented one divided by two raised to the position’s value (see figure 7).   

 

Figure 7 

For example, a hex value of 0x00000040 is ¼ because there is no whole-number value 

and the fraction value is 1 divided by two squared.  Conversion back to a rounded whole 

number (basically a floor function) is to shift the fixed-point variable to the right 8-bits.  

Conversion from integer would be to shift the value to the left 8-bits, and conversion 

from a floating point value is to multiply the value by 256.0 (same as shifting left by 8 

but keeps the correct data type) and to cast the result as an int to keep the 32-bits.  

Therefore, when displaying video of a puck whose address is (450.25,300.5) will result in 

the puck being at location (450,300).   

 

Puck Velocity Integration & Position Calculation 

In each iteration of the Nios II main loop, a simple integral is performed to 

determine the new position of the puck.  In performing this integral, it is assumed that the 

main loop runs at a regular interval so that the time between each position update is 

constant.  To validate this assumption, a simple exercise was conducted where the Nios II 

toggled a GPIO on the DE2 board each iteration of the main while-loop.  The CPU’s 

tight-loop takes at 40 μs with slight variance at times.  The worst observed variance was 

48 μs.  However, the frequency of the variances was very low, about 4 out of every 100 



 21

iterations.  With the worst possible variance being 20% but only occurring 4% of the time, 

one can see that the variance is fairly insignificant.  With such low margins of error, it 

was determined that this method of calculating integrals was acceptable.   

Having established that a mostly constant time interval exists between position 

updates, the integration is performed by simply adding the current velocity to the current 

position.  Of course, collisions with the boundaries of the air hockey table as well as 

paddles and the goal conditions are checked prior to moving the puck so that impossible 

conditions are avoided when possible.  However, it is possible that the puck’s velocity is 

such that in one time-step, it moves from near an object (wall or paddle), to overlapping 

the object, and this is not checked prior to moving the puck.  This usually happens for 

only a single frame and is virtually undetectable by the human eye at game speeds.  The 

code will reflect the object in the appropriate direction assuming the point of collision to 

be where it should have been, rather than where it currently is.  See APPENDIX E for 

implementation details.  There are rare instances where the puck can move completely 

through a paddle in one cycle of the main loop.  While it is possible for this to happen, 

the occurrences are rare because the speed of the puck needs to be near the maximum 

allowed value and the user must be moving the paddle in the opposite direction at a high 

speed as well.  I decided that the complexity of detecting this corner case is not worth the 

payoff in the context of this project, especially since there is no protection against the 

user moving the LED too fast for the camera, and having the paddle jump 

discontinuously.  Future work may include exploring the many possible solutions for 

corner cases. 

 

Physics Modeling 

The physics involved in air hockey is modeled in this game by keeping track of 

the puck’s x and y-velocities as well as calculating the paddles’ x and y-velocities in real-

time.   The puck’s movements are straight with very little friction, just like real air 

hockey.  The velocity vector changes directions with some speed loss upon colliding with 

static objects on the table, with the energy being transferred from kinetic energy to 

friction heat and sound energy.  This is done in software reducing the absolute value of 

the velocities upon a collision and asserting an output line to the AUDIO_DAC module 
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to create a sound.  For simplicity, the speed of the puck was not taken into account and a 

constant energy loss was implemented, although future implementations could certainly 

improve upon this by making the energy loss more accurate to the physical world.  

Energy input is achieved by striking the puck with the paddle, with more energy 

transferred to the puck when the paddle is moving faster.  This is good in that there is 

never any constant acceleration (we ignore force of friction because this is virtual air 

hockey, after all).  The tricky part is that the paddle has a much larger mass compared to 

the puck and the paddle’s velocity remains unchanged after the collision.  Therefore the 

concept of conservation of momentum where the momentum of the entire system 

(consisting of n objects with mass m and velocity v defined below) 

 ∑
=

n

i
ii vm

0
*   

before the collision is equal to the momentum of the entire system after the collision is 

computationally hard because there is no known mass of the paddle.  There was some 

leeway in designing the non-completely elastic collision, because the precise amount of 

energy lost to sound and friction depend on many factors in the real world.  In adding 

energy to the puck, my design based the speed increase on the current speed of the puck 

and the speed of the paddle at the time of collision, with a saturation point near the 

maximum allowed puck speed defined by the constant MAX_SPEED.  For exact 

implementation details, please refer to APPENDIX E.   

 Even though the code is quite lengthy, the actual logic for changing directions and 

speeds based on collisions with walls and paddles is fairly straightforward.  The wall 

collisions require simply detecting the x or y address of the puck to be greater than or less 

than the boundary depending on the wall in question.  For the paddles, the design broke 

down the different scenarios in which collisions could occur.   Based on the code prior to 

the dynamics calculations, a flag is set based on the distance between the paddle and puck 

being greater or less-than-or-equal-to twice the radius of the puck and paddle (they share 

the same radius lengths). Figure 8 is an accompanying partial flow chart meant to 

facilitate the understanding of the collision logic and is not representative of the entire 

code.  It was determined that the logic would first determine which direction the puck 

was traveling (positive x & positive y, positive x & negative y, negative x and positive y, 
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or negative x and negative y).  In each of these scenarios, the collision with the puck is 

then categorized again.  This time, we are interested in which area of the paddle makes 

contact with the puck.  If you think of the puck being at the origin of a two-dimensional 

graph, then the x and y-axis’ divide the paddle into 4 quadrants.  Similar to the Cartesian 

coordinate system, the design refers to the top right as quadrant I, bottom right as 

quadrant II and so on.  Once these two parameters of the collision scenario are known, 

the appropriate reflecting direction is determined.  In referring to the figure below, please 

remember that it is not a complete representation of the dynamics engine. 
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Figure 8 
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 Lastly, the speed of the puck resulting from a paddle collision occurs as a function 

of the paddle speed.  A conscious decision was made to transfer energy from the paddle 

to the puck non-linearly so that at low speeds the resolution of speed differentiation is 

large but as the paddle moves faster the speed increases in larger step intervals.  This is to 

provide precise control at low speeds when users want to control the puck using finesse, 

but can also take hard shots at high speeds.  The calibration for this was done over many 

trials and was largely subjective to what I felt was a good level of game control.  There 

was one design problem that surfaced during the testing – the sampling rate of the paddle 

positions is so fast that the difference in the LED positions from the user’s movements 

were registered as zero for a majority of the movement duration.  See Figure 9 below for 

one example of the perceived X position differences when moving the LED at a constant 

low speed. 

Original X Position Delta 

Sample 
Calculated X 
Delta Sample 

Calculated X 
Delta 

1 0 26 0
2 0 27 0
3 76 28 64
4 0 29 0
5 0 30 0
6 0 31 0
7 46 32 0
8 0 33 83
9 0 34 0

10 21 35 0
11 0 36 47
12 0 37 0
13 0 38 48
14 0 39 0
15 57 40 0
16 0 41 23
17 64 42 0
18 0 43 0
19 0 44 0
20 23 45 45
21 0 46 0
22 0 47 0
23 0 48 49
24 45 49 0
25 0  50 0

Figure 9 
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The problem was remedied by inserting logic to detect a lengthy period of zero 

movement before registering the speed as zero, in this case 15 consecutive zeros.  This is 

not unreasonable since calculations are separated by about 40 μs so 0.6 ms after user has 

stopped moving, the game will register that the paddle is static, which is virtually 

unnoticeable to the human player.  The results of applying the algorithm on the data in 

Figure 9 are shown below in Figure 10. 

 

Adjusted X Position Delta 

Sample 
Calculated X 
Delta Sample 

Calculated X 
Delta 

1 0 26 45
2 0 27 45
3 76 28 64
4 76 29 64
5 76 30 64
6 76 31 64
7 46 32 64
8 46 33 83
9 46 34 83

10 21 35 83
11 21 36 47
12 21 37 47
13 21 38 48
14 21 39 48
15 57 40 48
16 57 41 23
17 64 42 23
18 64 43 23
19 64 44 23
20 23 45 45
21 23 46 45
22 23 47 45
23 23 48 49
24 45 49 49
25 45  50 49

Figure 10 

 

Starting, Scoring, & Ending Rules 

In order to start a game, both players must be ready.  To indicate this, a start 

condition must be satisfied before the Nios II will populate the puck.  The starting 

condition is met by each player placing his or her paddle within a specified area on the 
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screen.  This area is highlighted by the display logic hardware and will remove the box 

when a signal from the Nios II indicates that the game has begun.  After asserting this 

logic line, the Nios II will populate the puck in the middle of the table in the reach of both 

players.  In the course of play, if the puck hits the goal (white) region on the east/west 

walls, the scoring condition is met and a point is awarded to the player opposite of the 

goal that was scored upon.  Afterwards, the puck is re-populated on the side of the player 

that was scored upon.   

 

Debugging 

The debugging process was a conducted by utilizing the hardware’s LED’s and 

print statements, as well subjective methods for the “look and feel” aspects.  The 18 red 

LEDs on the DE2 helped show the state of certain variables in real time and were a low-

cost method of debugging without introducing extra delays because it is completely done 

in hardware.  For more complex tasks that required more details, print statements were 

used through the JTAG UART on the DE2.  The print statements were extremely useful, 

but they introduced some delay into the calculations that depend on constant time so they 

were avoided when possible.  Additionally, I used my own judgment in determining what 

a realistic reaction to collisions was.  This included decisions like how much to increase 

the puck’s speed based on how “hard” (velocity) you hit the puck. This was fairly 

arbitrary because there is no known mass of the two objects and no good way to 

determine just how the energy is conserved. 

Some interesting bugs were observed in the course of this project.  In my first try 

at VGA video through the FPGA, I encountered problems where the pixel changes were 

not where I expected them to be.  This was a result of executing two calculations that 

needed to be done sequentially in the same state in the FSM.  That meant that while I 

wanted the code to be run one after the other, they were actually being run 

simultaneously in hardware.  Another bug was seen which eventually led to the addition 

of the Freeze_Collision flag.  The symptoms were erratic puck/paddle collisions upon a 

moderately fast collision.  The reason for this was that the updating of the puck’s position 

at high speeds would draw the puck overlapped with the paddle.  This of course is a 

collision scenario and the puck’s direction and speeds are updated.  In the very next 
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update, the puck is still somewhere overlapping the paddle, and another direction and 

speed update occurs.  This problem of multiple collisions detected as a result on one 

collision was compounded by the fact that the user is moving the paddle, usually further 

towards the center of the puck.  The solution was to set the aforementioned flag and to 

not allow another collision to occur until that flag is de-asserted through counting down a 

variable. 

Finally, there were some obscure problems as a result of using the two integrated 

development environments (IDEs).  First, the Quartus II IDE’s SOPC builder’s naming 

convention caused one problem where the orders of the Parallel Input/Out (PIO) busses 

ended up in the wrong order.  The reason for this was that the naming convention used 

for this project was numbering all inputs and outputs sequentially.  This worked fine for 

Out0 through Out9, but as soon as Out10 was added, everything stopped working.  

Digging into the generated Verilog file, bigNios.v, it was later revealed that the order 

used by the SOPC builder was Out0, Out1, Out10, Out2, etc. which is in alphanumerical 

order.  Once the bus ordering in the high level Verilog code was switched, the code 

worked flawlessly.  The problem encountered with the Nios II IDE was also non-intuitive, 

and the problem occurred when I made a copy of my source code and placed the copy in 

the same directory as the original source file.  This was done because I was about to make 

dramatic changes to the code and I wanted to retain a copy of the working code.  

Subsequent changes to the original source code made no differences in the behavior of 

the program, which was extremely puzzling.  The reason for this turned out to be that the 

copy of the original was being compiled and run on the board instead of the original 

source file because the name of the copy file came before the name of the original file, 

and the builder took the first main function it saw.  In this scenario, I would have at least 

expected the code to not run or throw some warnings during compilation, but it did 

neither of those. 
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RESULTS 

 The overall results were very positive.  The video output of the puck movement 

showed no artifacts when the game speed was increased during testing.  The puck lost 

video continuity when the puck began traveling at about 13 pixels per frame which makes 

sense since the radius of the puck is also about 13 pixels.  Generally during the course of 

play, the puck velocity never reached 1.3 pixels per frame (10% of 13 pixels per frame) 

which is a fairly conservative measure of video continuity.  Furthermore, fear of 

discontinuity is not even an issue in this application since a puck traveling that fast is not 

conducive to a realistic gaming environment.   

The paddle detection was very precise with LED position detection resolution of 

approximately 1 cm when played from 2 feet away from the camera.  This was far better 

than my expectation.  In contrast, the speeds at which the user could move the LED and 

have the movement registered in a continuous manner were somewhat disappointing.  

This was the result of the CCD camera taking so long to capture one frame of information 

and moving onto the next frame.  This result forced the game dynamics to be more 

exaggerated at medium speeds, so that users can still perform hard shots while not losing 

their paddle on the screen.  In general, users became accustomed to the limits of the 

camera very quickly and controlled the paddle expertly.  I was also satisfied by the 

overall ease of use of the system.  New users required virtually no instructions and 

learned the system through using.   

The sound generation hardware worked quite well for the range of sine waves 

which was 1, 2, 3, 4, 5, and 8 K Hz.  As shown in Figures 11 and 12 below the 1 KHz 

signal had plenty of samples and a solid time resolution to define a clean sine wave.   
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Figure 11 

 

 
Figure 12 
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Figure 13 

 

 
Figure 14 
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In Figure 13 and 14, the 8 KHz signal begins to show some distortions in the waveforms.  

However, this worked perfectly as the 8 KHz sound was used to create a harsh, sharp 

noise of the puck reflecting off of the border. 

The goal to play this game in most conditions was also met, as testing in different 

lighting conditions showed no artifacts.  Of course, the testing was carried out with the 

black paper below the camera and no other reflective objects in the view screen of the 

camera.   

 The game dynamics felt very natural, even though some calibrations were purely 

subjective.  The approximations made for reflection angles were convincing for the 

players while not introducing too much complexity into the physics engine.  When the 

puck is traveling at high speeds, there is an element of unpredictability in the reflection 

when striking the puck with the paddle which provides an experience just like in real air 

hockey.   There were conscious design decisions to not address certain corner cases such 

as paddles disappearing at one coordinate and reappearing at another or a puck traveling 

at high speeds going through a paddle.  These cases were ignored in an interest to keep 

the code relatively straightforward, but some possible solutions were considered and 

discussed in the DESIGN AND IMPLEMENTATION section of the report. 

 The lack of accelerometers was somewhat noticeable as sometimes there were 

variances in the resulting puck speeds after collisions of seemingly similar speeds.  

However, the variances were on the order of ± 3 speed increments, or 1.5 pixels per 

position update which is noticeable but certainly acceptable.   
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FUTURE WORKS 

This project has developed the foundation for a simple yet robust video game.  

With some modifications, one can imagine implementing many other games which 

feature similar physics.  For example, games like virtual Pong are possible using the same 

image tracking concept to control paddle movements.  Some changes to implement 

elastic collision physics would enable a game like billiards where the players control the 

pool cues via image tracking.  Collaborative games like curling where one player throws 

the rock and another player sweeps the ice with the broom is extremely conducive of the 

image tracking technology as well as the distance calculating hardware already in 

existence from this project.   

While requiring slightly more work, it is also conceivable to take advantage of the 

DE2’s Fast Ethernet Network Controller to implement a cross-board game where each 

player has their own DE2, TRDC camera, and monitor.  As an example, if the air hockey 

game is used, each player may only see their half of the table, their own paddles and the 

puck when it is in their playing space.  With so many features available on this hardware, 

the gaming possibilities are quite extensive. 

 In addition to other possible games, I believe that this project or parts of it would 

be useful as laboratory teaching material for academic purposes, as this project 

incorporates many aspects of DE2 programming like state machines, video generation, 

CPU synthesis, and high level C code. 
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CONCLUSIONS 

The results from the air hockey game were overall very positive.  Taking into 

consideration all of the unforeseen bugs and problems I ran into, the end product has met 

the high expectations set at the beginning of the project.   

The paddle control is very precise and smooth at moderate speeds which are 

sufficient for the game play, and the video output is very stable with no flickering or 

breaking whatsoever.  The sound output is also very neat and adds significant depth to the 

game play.  The system is robust enough to play in different light settings, although care 

needs to be taken to ensure there are no reflective objects within the range of the camera. 

In addition to the positive performance of the system, I have learned a great deal 

about game and gaming console design.  Having previous experience in designing a 

simple video game on an 8-bit microcontroller, the Nios II was a much more pleasant 

experience.  With its pipelined architecture, the faster throughput for computing was 

instrumental in creating a rich gaming experience that required many calculations per 

frame of video.  In addition to the power of the CPU, creating dedicated audio and video 

generation hardware was also a powerful tool.  This hardware had a simple interface with 

wires or busses to and from the CPU creating instant audio and video results with no 

additional time spent by the CPU. 

  I feel that I was able to achieve the intuitive factor which I set out to accomplish 

from the beginning.  Much like the Wii, users were able to pick up a paddle and play the 

game with a very small learning curve. 

 I am extremely pleased to have undertaken this project, as I was able to turn my 

interests in gaming into an academic endeavor which was both enlightening and 

educational. 
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APPENDIX A – Glossary of Terms Used 

Dynamics/Physics engine 

- computer logic to simulate Newtonian physics models using variables like mass, 

velocity, friction, and acceleration. 

 

Cartesian coordinate system 

- a two dimensional coordinate system consisting of an abscissa (x-coordinate) and an 

ordinate (y-coordinate) where two points can uniquely identify every point in the plane.   

- also known as the rectangular coordinate system. 

 

Elastic collision 

- a physical collision where the total kinetic energy of the system is the same before and 

after the collision. 

 

Inelastic collision 

- a physical collision where the total kinetic energy of the system is not the same before 

and after the collision. 

- the kinetic energy that is not conserved is transferred to other forms of energy such as 

heat and sound. 
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APPENDIX B – Hardware Schematics and Diagrams 

Paddle Circuit Schematic 

 

 

9V

75 Ω

 
 

 

 

System Diagram 

See Figure 4 
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APPENDIX C – Virtual Air Hockey Photos 

 

TRDB_DC2 1.3 Megapixel CCD Camera 

 
 

DE2 Development and Educational Board 
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Homemade Paddles 

 
 

System Setup Pt. 1 – Top 
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System Setup Pt. 2 – Bottom 

 
 

Game Screen Shot 
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APPENDIX D – User’s Manual 

1. Select a surface that is non-reflective. 

2. Remove DE2 board and TRDB camera from packaging.  Note: You must handle 

the boards only on the ESD mat.  

3. Connect the camera and the FPGA via the ribbon cable to the GPIO 1 expansion 

slot on the DE2 board. 

4. Fit the camera into slot in the middle of stand with the lens in the center and the 

FPGA resting on the stand. 

5. Connect the monitor’s VGA cable to the VGA port on the DE2. 

6. Connect the speakers to the green port labeled “LINE OUT”. 

7. Connect the PC to the DE2 using the USB cable to the port labeled “BLASTER”. 

8. Connect the power cable. 

9. Turn on the power supply with the red switch on the DE2 board. 

10. Open the “DE2_CCD_Detect” project file using the Quartus II IDE on the PC. 

11. Program the board by clicking on the third icon from the top right labeled 

“Programmer” and click “Start”.  Note: Make sure the device is on “USB Blaster”. 

12. Press the pushbutton labeled “KEY3” on the DE2 to start the camera. 

13. Open the Nios II IDE and select the workspace to be 

“\DE2_CCD_detect_noos\software”. 

14. In the “Run” menu at the top of the window, click on “Run…” and click on 

“Run” in the bottom right of the new window. 

15. When ready to play, each player must move their paddle into their respective 

white boxes on the air hockey table. 

16. First player to 10 goals wins. 
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APPENDIX E – Code 

Verilog Code 

Instantiated Nios II module 
//============================= Nios II =============================// 
 
 bigNios nios2(CLOCK_50, KEY[0], 
  // parallel i/o 
  current_dram_addr_x,  //In0 
  addr_valid,           //In1 
  current_dram_addr_y,  //In2 
  current_dram_addr_x_2,//In3 
  current_dram_addr_y_2,//In4 
  start_game,  // In5  
  DIFF_X_1_IN, // In6 
  DIFF_Y_1_IN, // In7 
  DIFF_X_2_IN, // In8 
  DIFF_Y_2_IN, // In9 
  GPIO_0[0],   // Out0 
  LED_RED,     // Out1 
  chime_sound, // Out10 - stupid naming convention 
  SPEED,       // Out2 - Actually, left player's score 
  X_ADDRESS,   // Out3 - Actually, right player's score 
  Y_ADDRESS,   // Out4 
  PUCK_CENTER_X, // Out5 
  PUCK_CENTER_Y, // Out6 
  sound_signal,  // Out7 
  collision_sound,// Out8 
  suppress_boxes, // Out9 1 bit Suppress-Boxes signal 
  // lcd 
  LCD_EN, LCD_RS, LCD_RW, LCD_DATA, 
          // the_sram_16bit_512k_0 
          SRAM_ADDR, 
          SRAM_CE_N, 
       SRAM_DQ, 
          SRAM_LB_N, 
          SRAM_OE_N, 
          SRAM_UB_N, 
          SRAM_WE_N); 
//=========================== End Nios II ===========================// 
 

Paddle Detection & Video Generation 
//==================== Paddle Detection & Drawing ===================// 
 
always@(posedge CLOCK_50) 
begin 
if (mVGA_X == 20 && mVGA_Y == 20) 
begin 
 NEW_FRAME_1 <= 1'b1; 
 NEW_FRAME_2 <= 1'b1; 
end 
if (!KEY[3]) 
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begin 
 reset_pressed = 1'b1;  
end 
  
if (reset)  //synch reset assumes KEY0 is held down 1/60 second 
begin 
 //initialize variables 
 CENTER_X_1 <= 20; 
 CENTER_Y_1 <= 20; 
 CENTER_X_2 <= 620; 
 CENTER_Y_2 <= 20; 
 state <= init; //first state in regular state machine 
end 
else if (VGA_VS | VGA_HS) //modify display during sync 
begin 

case(state) 
 init: 
 begin 
  state <= test1 ; 
 end    
      
 test1: //locate center 
 begin 
  if (mVGA_R >= 10'b1011000000 || 
   mVGA_G >= 10'b1011000000 || 
   mVGA_B >= 10'b1011000000 ) 
  begin 
   if (NEW_FRAME_1 == 1 &&  
       mVGA_X >= 32     && // avoid left border 
       mVGA_X < 305     && // to avoid being cut 
       mVGA_Y >= 112    && // avoid top border 
       mVGA_Y < 388)       // avoid bottom border 
   begin 
    CENTER_X_1 <= mVGA_X; 
    CENTER_Y_1 <= mVGA_Y; 
    NEW_FRAME_1 <= 1'b0; 
   end 
   if (NEW_FRAME_2 == 1  && 
       mVGA_X >= 335     && // to avoid being cut 
       mVGA_X <  608     && // avoid right border 
       mVGA_Y >= 112     && // avoid top border 
       mVGA_Y <  388)       // avoid bottom border 
   begin 
    CENTER_X_2 <= mVGA_X; 
    CENTER_Y_2 <= mVGA_Y; 
    NEW_FRAME_2 <= 1'b0; 
   end 
  end 
  state <= test2 ; 
 end  
 test2: //calculate diff 
 begin 
  DIFF_X_1 <= mVGA_X - CENTER_X_1; 
  DIFF_Y_1 <= mVGA_Y - CENTER_Y_1; 
  DIFF_X_2 <= mVGA_X - CENTER_X_2; 
  DIFF_Y_2 <= mVGA_Y - CENTER_Y_2; 
  DIFF_CENTER_X <= mVGA_X - PUCK_CENTER_X; 
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  DIFF_CENTER_Y <= mVGA_Y - PUCK_CENTER_Y; 
  state <= test3 ;    
 end 
 test3: // draw paddles 
 begin   
  // draw puck 
  if ((PUCK_CENTER_X != 0 && PUCK_CENTER_Y != 0) && 
     (( DIFF_CENTER_X <= 8  && // the square 
        DIFF_CENTER_X >= -8 && 
        DIFF_CENTER_Y <= 8  && 
        DIFF_CENTER_Y >= -8)  
      || 
      ( DIFF_CENTER_X == 9  && // the right arc 
        DIFF_CENTER_Y <= 6  && 
        DIFF_CENTER_Y >= -6) 
      || 
      ( DIFF_CENTER_X == 10 &&  
        DIFF_CENTER_Y <= 5  && 
        DIFF_CENTER_Y >= -5) 
      || 
      ( DIFF_CENTER_X == 11 &&  
        DIFF_CENTER_Y <= 3  && 
        DIFF_CENTER_Y >= -3) 
      || 
      ( DIFF_CENTER_X == 12 &&  
        DIFF_CENTER_Y == 0 ) 
      || 
      ( DIFF_CENTER_X == -9 && // the left arc 
        DIFF_CENTER_Y <= 6  && 
        DIFF_CENTER_Y >= -6) 
      || 
      ( DIFF_CENTER_X == -10 &&  
        DIFF_CENTER_Y <= 5   && 
        DIFF_CENTER_Y >= -5) 
      || 
      ( DIFF_CENTER_X == -11 &&  
        DIFF_CENTER_Y <= 3   && 
        DIFF_CENTER_Y >= -3) 
      || 
      ( DIFF_CENTER_X == -12 &&  
        DIFF_CENTER_Y == 0 ) 
      || 
      ( DIFF_CENTER_Y == 9 && // the top arc 
        DIFF_CENTER_X <= 6 && 
        DIFF_CENTER_X >= -6) 
      || 
      ( DIFF_CENTER_Y == 10 &&  
        DIFF_CENTER_X <= 5  && 
        DIFF_CENTER_X >= -5) 
      || 
      ( DIFF_CENTER_Y == 11 &&  
        DIFF_CENTER_X <= 3  && 
        DIFF_CENTER_X >= -3) 
      || 
      ( DIFF_CENTER_Y == 12 &&  
        DIFF_CENTER_X == 0 ) 
      || 
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      ( DIFF_CENTER_Y == -9 && // the bottom arc 
        DIFF_CENTER_X <= 6  && 
        DIFF_CENTER_X >= -6) 
      || 
      ( DIFF_CENTER_Y == -10 &&  
        DIFF_CENTER_X <= 5   && 
        DIFF_CENTER_X >= -5) 
      || 
      ( DIFF_CENTER_Y == -11 &&  
        DIFF_CENTER_X <= 3   && 
        DIFF_CENTER_X >= -3) 
      || 
      ( DIFF_CENTER_Y == -12 &&  
        DIFF_CENTER_X == 0 )) 
  ) 
  begin 
   green <= 10'b1010100000; 
   red <= 10'b1010100000; 
   blue <= 10'b0000000000; 
  end 
  else 
  begin 
   if ((CENTER_X_1 != 0 && CENTER_Y_1 != 00) && 
   (( DIFF_X_1 <= 8  && // the square 
        DIFF_X_1 >= -8 && 
        DIFF_Y_1 <= 8  && 
        DIFF_Y_1 >= -8)  
      || 
      ( DIFF_X_1 == 9  && // the right arc 
        DIFF_Y_1 <= 6  && 
        DIFF_Y_1 >= -6) 
      || 
      ( DIFF_X_1 == 10 &&  
        DIFF_Y_1 <= 5  && 
        DIFF_Y_1 >= -5) 
      || 
      ( DIFF_X_1 == 11 &&  
        DIFF_Y_1 <= 3  && 
        DIFF_Y_1 >= -3) 
      || 
      ( DIFF_X_1 == 12 &&  
        DIFF_Y_1 == 0 ) 
      || 
      ( DIFF_X_1 == -9 && // the left arc 
        DIFF_Y_1 <= 6  && 
        DIFF_Y_1 >= -6) 
      || 
      ( DIFF_X_1 == -10 &&  
        DIFF_Y_1 <= 5   && 

      DIFF_Y_1 >= -5) 
      || 
      ( DIFF_X_1 == -11 &&  
        DIFF_Y_1 <= 3   && 
        DIFF_Y_1 >= -3) 
      || 
      ( DIFF_X_1 == -12 &&  
        DIFF_Y_1 == 0 ) 
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      || 
      ( DIFF_Y_1 == 9 && // the top arc 
        DIFF_X_1 <= 6 && 
        DIFF_X_1 >= -6) 
      || 
      ( DIFF_Y_1 == 10 &&  
        DIFF_X_1 <= 5  && 
        DIFF_X_1 >= -5) 
      || 
      ( DIFF_Y_1 == 11 &&  
        DIFF_X_1 <= 3  && 
        DIFF_X_1 >= -3) 
      || 
      ( DIFF_Y_1 == 12 &&  
        DIFF_X_1 == 0 ) 
      || 
      ( DIFF_Y_1 == -9 && // the bottom arc 
        DIFF_X_1 <= 6  && 
        DIFF_X_1 >= -6) 
      || 
      ( DIFF_Y_1 == -10 &&  
        DIFF_X_1 <= 5   && 
        DIFF_X_1 >= -5) 
      || 
      ( DIFF_Y_1 == -11 &&  
        DIFF_X_1 <= 3   && 
        DIFF_X_1 >= -3) 
      || 
      ( DIFF_Y_1 == -12 &&  
        DIFF_X_1 == 0 ))) 
  begin // blue paddle 
   green <= 10'b1010100000; 
   red <= 10'b0000000000; 
   blue <= 10'b1010100000; 
  end 
  // draw left start box 
  else if ((suppress_boxes == 0) &&  

(mVGA_X == 120 || mVGA_X == 119)   &&  
   (mVGA_Y >= 224 && mVGA_Y < 276)) 
  begin 
   green <= 10'b1111100000; 
   red <= 10'b1111100000; 
   blue <= 10'b1111100000; 
  end 
  else if ((suppress_boxes == 0) &&  

(mVGA_X == 170 || mVGA_X == 169)   &&  
   (mVGA_Y >= 225 && mVGA_Y < 275)) 
  begin 
   green <= 10'b1111100000; 
   red <= 10'b1111100000; 
   blue <= 10'b1111100000; 
  end 
  else if ((suppress_boxes == 0) &&  

(mVGA_X > 120 && mVGA_X <= 170)   &&  
   (mVGA_Y == 225 || mVGA_Y == 224)) 
  begin 
   green <= 10'b1111100000; 
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   red <= 10'b1111100000; 
   blue <= 10'b1111100000; 
  end 
 
  else if ((suppress_boxes == 0) &&  

(mVGA_X > 120 && mVGA_X <= 170)   &&  
   (mVGA_Y == 274 || mVGA_Y == 275)) 
  begin 
   green <= 10'b1111100000; 
   red <= 10'b1111100000; 
   blue <= 10'b1111100000; 
  end 
  // draw left top border 
  else if ((mVGA_X == 19 || mVGA_X == 18)   &&  
    (mVGA_Y >= 98 && mVGA_Y < 225)) 
  begin 
   green <= 10'b0000000000; 
   red <= 10'b0000000000; 
   blue <= 10'b1010100000; 
  end 
  // draw left goal 
  else if ((mVGA_X == 19 || mVGA_X == 18)   &&  
     (mVGA_Y >= 225 && mVGA_Y < 275)) 
  begin 
   green <= 10'b1111100000; 
   red <= 10'b1111100000; 
   blue <= 10'b1111100000; 
  end 
  // draw left bottom border 
  else if ((mVGA_X == 19 || mVGA_X == 18)   &&  
     (mVGA_Y >= 275 && mVGA_Y < 403)) 
  begin 
   green <= 10'b0000000000; 
   red <= 10'b0000000000; 
   blue <= 10'b1010100000; 
  end     
  // draw top left border 
  else if ((mVGA_X >= 19 && mVGA_X < 320)   &&  
     (mVGA_Y == 98 || mVGA_Y == 99)) 
  begin 
   green <= 10'b0000000000; 
   red <= 10'b0000000000; 
   blue <= 10'b1010100000; 
  end 
  // draw bottom left border 
  else if ((mVGA_X >= 19 && mVGA_X < 320)   &&  
     (mVGA_Y == 401 || mVGA_Y == 402)) 
  begin 
   green <= 10'b0000000000; 
   red <= 10'b0000000000; 
   blue <= 10'b1010100000; 
  end 
  // blacken all else on left side 
  else if (mVGA_X >= 20 && 
           mVGA_X < 320) 
  begin 
   red <= 10'b0000000000; 
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   blue <= 10'b0000000000; 
   green <= 10'b0000000000; 
  end 
  // 2nd paddle 
  if ((CENTER_X_2 != 0 && CENTER_Y_2 != 0)&& 
   (( DIFF_X_2 <= 8  && // the square 
        DIFF_X_2 >= -8 && 
        DIFF_Y_2 <= 8  && 
        DIFF_Y_2 >= -8)  
      || 
      ( DIFF_X_2 == 9  && // the right arc 
        DIFF_Y_2 <= 6  && 
        DIFF_Y_2 >= -6) 
      || 
      ( DIFF_X_2 == 10 &&  
        DIFF_Y_2 <= 5  && 
        DIFF_Y_2 >= -5) 
      || 
      ( DIFF_X_2 == 11 &&  
        DIFF_Y_2 <= 3  && 
        DIFF_Y_2 >= -3) 
      || 
      ( DIFF_X_2 == 12 &&  
        DIFF_Y_2 == 0 ) 
      || 
      ( DIFF_X_2 == -9 && // the left arc 
        DIFF_Y_2 <= 6  && 
        DIFF_Y_2 >= -6) 
      || 
      ( DIFF_X_2 == -10 &&  
        DIFF_Y_2 <= 5   && 
        DIFF_Y_2 >= -5) 
      || 
      ( DIFF_X_2 == -11 &&  
        DIFF_Y_2 <= 3   && 
        DIFF_Y_2 >= -3) 
      || 
      ( DIFF_X_2 == -12 &&  
        DIFF_Y_2 == 0 ) 
      || 
      ( DIFF_Y_2 == 9 && // the top arc 
        DIFF_X_2 <= 6 && 
        DIFF_X_2 >= -6) 
      || 
      ( DIFF_Y_2 == 10 &&  
        DIFF_X_2 <= 5  && 
        DIFF_X_2 >= -5) 
      || 
      ( DIFF_Y_2 == 11 &&  
        DIFF_X_2 <= 3  && 
        DIFF_X_2 >= -3) 
      || 
      ( DIFF_Y_2 == 12 &&  
        DIFF_X_2 == 0 ) 
      || 
      ( DIFF_Y_2 == -9 && // the bottom arc 
        DIFF_X_2 <= 6  && 
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        DIFF_X_2 >= -6) 
      || 
      ( DIFF_Y_2 == -10 &&  
        DIFF_X_2 <= 5   && 
        DIFF_X_2 >= -5) 
      || 
      ( DIFF_Y_2 == -11 &&  
        DIFF_X_2 <= 3   && 
        DIFF_X_2 >= -3) 
      || 
      ( DIFF_Y_2 == -12 &&  
        DIFF_X_2 == 0 ))) 
  begin // white paddle 
   red <= 10'b1010100000; 
   blue <= 10'b1010100000; 
   green <= 10'b1010100000; 
  end 
  // draw right start box 
  else if ((suppress_boxes == 0) &&  

(mVGA_X == 471 || mVGA_X == 470)   &&  
    (mVGA_Y >= 224 && mVGA_Y < 276)) 
  begin 
   green <= 10'b1111100000; 
   red <= 10'b1111100000; 
   blue <= 10'b1111100000; 
  end 
  else if ((suppress_boxes == 0) &&  

(mVGA_X == 520 || mVGA_X == 521)   &&  
   (mVGA_Y >= 224 && mVGA_Y < 276)) 
  begin 
   green <= 10'b1111100000; 
   red <= 10'b1111100000; 
   blue <= 10'b1111100000; 
  end 
  else if ((suppress_boxes == 0) &&  

(mVGA_X > 470 && mVGA_X <= 520)   &&  
   (mVGA_Y == 225 || mVGA_Y == 224)) 
  begin 
   green <= 10'b1111100000; 
   red <= 10'b1111100000; 
   blue <= 10'b1111100000; 
  end 
  else if ((suppress_boxes == 0) &&  

(mVGA_X > 470 && mVGA_X <= 520)   &&  
   (mVGA_Y == 274 || mVGA_Y == 275)) 
  begin 
   green <= 10'b1111100000; 
   red <= 10'b1111100000; 
   blue <= 10'b1111100000; 
  end 
  // draw right top border 
  else if ((mVGA_X == 621 || mVGA_X == 622)   &&  
     (mVGA_Y >= 98 && mVGA_Y < 225)) 
  begin 
   green <= 10'b0000000000; 
   red <= 10'b0000000000; 
   blue <= 10'b1010100000; 
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  end 
  // draw right goal 
  else if ((mVGA_X == 621 || mVGA_X == 622)   &&  
     (mVGA_Y >= 225 && mVGA_Y < 275)) 
  begin 
   green <= 10'b1111100000; 
   red <= 10'b1111100000; 
   blue <= 10'b1111100000; 
  end 
  // draw right bottom border 
  else if ((mVGA_X == 621 || mVGA_X == 622)   &&  
     (mVGA_Y >= 275 && mVGA_Y < 403)) 
  begin 
   green <= 10'b0000000000; 
   red <= 10'b0000000000; 
   blue <= 10'b1010100000; 
  end 
  // draw top right border 
  else if ((mVGA_X >= 320 && mVGA_X < 621)   &&  
     (mVGA_Y == 98 || mVGA_Y == 99)) 
  begin 
   green <= 10'b0000000000; 
   red <= 10'b0000000000; 
   blue <= 10'b1010100000; 
  end 
  // draw bottom right border 
  else if ((mVGA_X >= 320 && mVGA_X < 621)   &&  
     (mVGA_Y == 401 || mVGA_Y == 402)) 
  begin 
   green <= 10'b0000000000; 
   red <= 10'b0000000000; 
   blue <= 10'b1010100000; 
  end 
  // blacken all else on left side     
  else if (mVGA_X >= 320 && 
           mVGA_X < 640) 
  begin 
   red <= 10'b0000000000; 
   blue <= 10'b0000000000; 
   green <= 10'b0000000000; 
  end 
  end 
  state <= test1 ;    

end 
 endcase 
end 
 
// Apply black thresholding 
if (Read_DATA1[14:10] > 5'b10110 || 
    Read_DATA1[9:5]   > 5'b10110 || 
    Read_DATA1[4:0]   > 5'b10110 
) 
begin 
 Temp_Read_DATA1 <= 15'b111111111111111; 
end 
else 
begin 
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 Temp_Read_DATA1 <= 15'b000000000000000; 
end 
 
end 
//================ End Paddle Detection & Drawing ==================// 
 

Audio DAC module 
//========================= AUDIO_DAC module =======================// 
AUDIO_DAC u9 (// Audio Side 
   .oAUD_BCK(AUD_BCLK), 
   .oAUD_DATA(AUD_DACDAT), 
   .oAUD_LRCK(AUD_DACLRCK), 
   // Control Signals 
   .iSrc_Select(~(SP|SP2|SP3)), 

.iCLK_18_4(AUD_CTRL_CLK), 
   .iRST_N(DLY_RST_1), 
   .iSound_Select(Sound_Select) ); 
//======================= End AUDIO_DAC module ======================// 
 

Sound Generation Hardware 
//========================= Speaker Control =========================// 
reg SP; 
reg [23:0] DLY_cont; 
reg   SP2; 
reg [2:0]  Sound_Select; 
reg [23:0] DLY_cont2; 
reg   SP3; 
reg [23:0] DLY_cont3; 
 
always@(posedge CLOCK_50) 
begin 
 if (sound_signal) // if datected => turn on speaker 
 begin 
  DLY_cont <= 0; 
 end 
 else 
 begin 
  if(DLY_cont<24'h00ffff) // play for 65535 cycles @ 50MHz 
  begin 
   DLY_cont <= DLY_cont+1; 
   SP <= 1; 
   Sound_Select<=  0; 
  end 
  else 
  begin 
   SP <= 0;   
  end 
 end 
  
  
 if (collision_sound) // if datected => turn on speaker 
 begin 
  DLY_cont2 <= 0; 
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 end 
 else 
 begin 
  if(DLY_cont2<24'h08ffff) // play for 589823 cycles @ 50MHz 
  begin 
   DLY_cont2 <= DLY_cont2+1; 
   SP2 <= 1; 
   Sound_Select<= 2'h01; 
  end 
  else 
  begin 
   SP2 <= 0;   
  end 
 end 
 
 
 if (chime_sound) // if datected => turn on speaker 
 begin 
  DLY_cont3 <= 0; 
 end 
 else 
 begin 
  if(DLY_cont3<24'h300000) // play for 3145728 cycles @ 50MHz 
  begin 
   DLY_cont3 <= DLY_cont3+1; 
   SP3 <= 1; 
   Sound_Select <= 2; 
  end 
  else if(DLY_cont3<24'h600000) // play for another 3145728  
  begin 
          DLY_cont3 <= DLY_cont3+1; 
   SP3 <= 1; 
   Sound_Select <= 3; 

end 
else if(DLY_cont3<24'h900000) // play for another 3145728 
begin 

DLY_cont3 <= DLY_cont3+1; 
   SP3 <= 1; 
   Sound_Select <= 4; 

end 
else if(DLY_cont3<24'hc00000) // play for another 3145728 
begin 

   DLY_cont3 <= DLY_cont3+1; 
   SP3 <= 1; 
   if (DLY_cont3 % 1 == 0) Sound_Select<=  5; 
   else Sound_Select<=6; 

end 
  else 
  begin 
   SP3 <= 0;   
  end 
 end 
end 
//====================== End Speaker Control ========================// 
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C Code 

Game Dynamics 
//========================= C Main Program ==========================// 
#define begin { 
#define end } 
#define position_delta 0 
#define CIR_BUFFER_SIZE 10 
#define RADIUS  13 
#define LEFT_WALL   (8  + RADIUS) 
#define RIGHT_WALL  (620 - RADIUS) 
#define TOP_WALL    (100 + RADIUS) 
#define BOTTOM_WALL (400 - RADIUS) 
#define MAX_SPEED 6 
#define MIN_SPEED 0x0080 
#define FREEZE_CONST 12 
 
#define INCREASE_1  0x0000 
#define INCREASE_2  0x0010 
#define INCREASE_3  0x0020 
#define INCREASE_4  0x0040 
#define INCREASE_5  0x0080 
#define INCREASE_6  0x0100 
#define INCREASE_7  0x0140 
#define INCREASE_8  0x0180 
#define INCREASE_9  0x0200 
#define INCREASE_10 0x0280 
#define INCREASE_11 0x0300 
#define INCREASE_12 0x0380 
#define INCREASE_13 0x0400 
#define INCREASE_14 0x0480 
#define INCREASE_15 0x0500 
#define INCREASE_16 0x0580 
#define INCREASE_17 0x0600 
#define INCREASE_18 0x0600 
 
#define float2fix(a) (int)( (a) * 256.0) 
#define mfix(a,b) ((int)((((long)(a))*((long)(b)))>>8)) 
 
int main(void) 
begin 
  int address_x, valid, address_y; 
  int address_x_2, address_y_2; 
  int x_position1, y_position1; 
  int x_position2, y_position2, no_change; 
  int sw, key, notecount; 
  int left_half = 1; 
  int x_diff, y_diff; // diff in x and y centers of puck & paddle 
  int speed_memory_1, speed_memory_2; 
  int x_speed_increase, y_speed_increase; 
  int friction_distance; 
  char collision_flag; 
  char speed_x_positive_flag = 1; 
  char speed_y_positive_flag = 1; 
  unsigned char LEFT_PLAYER_SCORED = 0; 
  unsigned char RIGHT_PLAYER_SCORED = 0; 
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  unsigned char LEFT_SCORE = 0; 
  unsigned char RIGHT_SCORE = 0; 
   
  int speed_x = 0; 
  int speed_y = 0; 
  int speed_x_2 = 0; 
  int speed_y_2 = 0; 
  int speed_x_relevant, speed_y_relevant; 
   
  int speed; 
  char game_began = 0; 
   
  int collision_count = 0; 
  unsigned int delay_counter = 0; 
  int dummy = 0; 
   
  unsigned int notes[9]={262, 294, 330, 349, 392, 440, 494, 523, 0}; 
  unsigned int msg = 0; 
  unsigned int freq = 0; 
  unsigned int x_position_history[CIR_BUFFER_SIZE]; 
  unsigned int y_position_history[CIR_BUFFER_SIZE]; 
  unsigned int head, tail; 
   
  // Fit the entire puck within border 
  unsigned int x_position = 0x1400 + (RADIUS<<8);   
  unsigned int y_position = 0x6400 + (RADIUS<<8); 
  int x_speed = 0x00000000; 
  int y_speed = 0x00000700; 
   
  int freeze_collision = 0; 
   
  // jtag_uart variables 
  FILE *uart_file; 
  int freq_val; 
  int wave_val; 
   
  notecount = 0; 
  no_change = 1; 
   
  head = 0; 
  tail = 0; 
   
  //open the lcd --- device name from system.h 
  lcd_fd = fopen("/dev/lcd", "w"); 
  if(lcd_fd == NULL) printf("Unable to open lcd display\n"); 
 
  while (1) 
  begin 
 
    if (game_began == 0) 
    { 
      x_speed = 0x00000000; 
      y_speed = 0x00000400; 
      x_position = 0x00013100  + (RADIUS<<8); 
      y_position = 0x00006400 + (RADIUS<<8); 
      IOWR_ALTERA_AVALON_PIO_DATA(OUT9_BASE, 0); 
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      // Paddle 1 position in int 
      address_x = IORD_ALTERA_AVALON_PIO_DATA(IN0_BASE); 
      address_y = IORD_ALTERA_AVALON_PIO_DATA(IN2_BASE); 
 
      // Paddle 2 position in int 
      address_x_2 = IORD_ALTERA_AVALON_PIO_DATA(IN3_BASE);   
      address_y_2 = IORD_ALTERA_AVALON_PIO_DATA(IN4_BASE); 
 
      if (address_x >= 135 && address_x <= 155) 
      { 
        if (address_y >= 240 && address_y <= 260) 
        { 
          if (address_x_2 >= 485 && address_x_2 <= 505) 
          { 
            if (address_y_2 >= 240 && address_y_2 <= 260) 
            { 
              game_began = 1; 
              RIGHT_SCORE = 0; 
              LEFT_SCORE = 0; 
            }   
          } 
        } 
      } 
    } 
   
    if (game_began == 1) 
    begin 
      IOWR_ALTERA_AVALON_PIO_DATA(OUT9_BASE, 1); 
 
      if (msg == 0) msg = 1; 
      else msg = 0; 
      if (LEFT_PLAYER_SCORED) 
      begin 
        IOWR_ALTERA_AVALON_PIO_DATA(OUT10_BASE, 0); 
        delay_counter = 0; 
        while (delay_counter < 1500000) 
        { 
          delay_counter++; 
          dummy = delay_counter; 
        } 
        delay_counter = 0; 
        // Fit the entire puck within border 
        x_position = 0x01D600  + (RADIUS<<8);   
        y_position = 0x6400 + (RADIUS<<8); 
        x_speed = 0x0000; 
        y_speed = 0x0300; 
        LEFT_PLAYER_SCORED = 0;   
      end 
      else if (RIGHT_PLAYER_SCORED) 
      begin 
        IOWR_ALTERA_AVALON_PIO_DATA(OUT10_BASE, 0); 
        delay_counter = 0; 
        while (delay_counter < 1500000) 
        { 
          delay_counter++; 
          dummy = delay_counter; 
        } 
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        delay_counter = 0; 
        // Fit the entire puck within border 
        x_position = 0xAA00  + (RADIUS<<8); 
        y_position = 0x6400 + (RADIUS<<8);   
        x_speed = 0x0000; 
        y_speed = 0x0300; 
        RIGHT_PLAYER_SCORED = 0;    
      end 
     
         
      IOWR_ALTERA_AVALON_PIO_DATA(OUT0_BASE, msg);  
      IOWR_ALTERA_AVALON_PIO_DATA(OUT7_BASE, 0); 
      IOWR_ALTERA_AVALON_PIO_DATA(OUT8_BASE, 0); 
       
 
      // Check the validity of the data 
      //valid = IORD_ALTERA_AVALON_PIO_DATA(IN1_BASE);  
 
      x_position_history[0] = x_position1;  // Prev left paddle x pos 
      y_position_history[0] = y_position1;  // Prev left paddle y pos 
      x_position_history[1] = x_position2;  // Prev right paddle x pos 
      y_position_history[1] = y_position2;  // Prev right paddle y pos 
     
      // Paddle 1 position in int 
      address_x = IORD_ALTERA_AVALON_PIO_DATA(IN0_BASE);  
      address_y = IORD_ALTERA_AVALON_PIO_DATA(IN2_BASE);  
 
      address_x = address_x << 8; // Paddle 1 x position in fixed point 
      address_y = address_y << 8; // Paddle 1 y position in fixed point 
 
      // Paddle 2 position in int 
      address_x_2 = IORD_ALTERA_AVALON_PIO_DATA(IN3_BASE);   
      address_y_2 = IORD_ALTERA_AVALON_PIO_DATA(IN4_BASE); 
 
      address_x_2 = address_x_2 << 8;  // Paddle 2 x pos in fixed point 
      address_y_2 = address_y_2 << 8;  // Paddle 2 y pos in fixed point 
 
      x_position1 = address_x; 
      y_position1 = address_y; 
       
      x_position2 = address_x_2; 
      y_position2 = address_y_2; 
       
      no_change = 0; 
 
      speed = sqrt((double)( 
               abs(x_position_history[0] - x_position1) * 
               abs(x_position_history[0] - x_position1) + 
               abs(y_position_history[0] - y_position1) * 
               abs(y_position_history[0] - y_position1))); 
 
 
      if (x_position_history[0] == x_position1 && 
          y_position_history[0] == y_position1) 
      begin 
        if (speed_memory_1 == 0) 
        begin 
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          speed_x = (x_position_history[0] - x_position1); 
          speed_y = (y_position_history[0] - y_position1); 
          speed_memory_1 = 100; 
        end 
        else 
          speed_memory_1--; 
      end 
      else 
      begin 
        speed_x = (x_position_history[0] - x_position1); 
        speed_y = (y_position_history[0] - y_position1); 
        speed_memory_1 = 3000; 
      end 
  
  
      if (x_position_history[1] == x_position2 && 
          y_position_history[1] == y_position2) 
      begin 
        if (speed_memory_2 == 0) 
        begin 
          speed_x_2 = (x_position_history[1] - x_position2); 
          speed_y_2 = (y_position_history[1] - y_position2); 
          speed_memory_2 = 100; 
        end 
        else 
          speed_memory_2--; 
      end 
      else 
      begin 
        speed_x_2 = (x_position_history[1] - x_position2); 
        speed_y_2 = (y_position_history[1] - y_position2); 
        speed_memory_2 = 3000; 
      end 
  
      // commented out because printf takes a loooong time 
      // will use LEDR, and HEX0-7 instead 
      //  printf("x: %d\ny: %d\nspeed: %d\n", 
      //          address_x, address_y, speed); 
 
        IOWR_ALTERA_AVALON_PIO_DATA(OUT2_BASE, LEFT_SCORE); 
        IOWR_ALTERA_AVALON_PIO_DATA(OUT3_BASE, RIGHT_SCORE); 
         
        speed_x_relevant = ((left_half == 1) ? speed_x : 
                                               speed_x_2); 
        speed_y_relevant = ((left_half == 1) ? speed_y : 
                                               speed_y_2); 
                                                        
        if (abs(speed_x_relevant) < 1)          // 1 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 1); 
          x_speed_increase = INCREASE_1; 
        end 
        else if (abs(speed_x_relevant) < 1000)  // 2 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 3); 
          x_speed_increase = INCREASE_2; 
        end 
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        else if (abs(speed_x_relevant) < 2000)  // 3 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 7); 
          x_speed_increase = INCREASE_3; 
        end 
        else if (abs(speed_x_relevant) < 3000)  // 4 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 15); 
          x_speed_increase = INCREASE_4; 
        end 
        else if (abs(speed_x_relevant) < 4000)  // 5 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 31); 
          x_speed_increase = INCREASE_5; 
        end 
        else if (abs(speed_x_relevant) < 5000)  // 6 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 63); 
          x_speed_increase = INCREASE_6; 
        end 
        else if (abs(speed_x_relevant) < 6000)  // 7 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 127); 
          x_speed_increase = INCREASE_7; 
        end 
        else if (abs(speed_x_relevant) < 7000)  // 8 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 255); 
          x_speed_increase = INCREASE_8; 
        end 
        else if (abs(speed_x_relevant) < 8000)  // 9 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 511); 
          x_speed_increase = INCREASE_9; 
        end 
        else if (abs(speed_x_relevant) < 9000)  // 10 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 1023); 
          x_speed_increase = INCREASE_10; 
        end 
        else if (abs(speed_x_relevant) < 10000)  // 11 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 2047); 
          x_speed_increase = INCREASE_11; 
        end 
        else if (abs(speed_x_relevant) < 11000)  // 12 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 4095); 
          x_speed_increase = INCREASE_12; 
        end 
        else if (abs(speed_x_relevant) < 12000)  // 13 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 8191); 
          x_speed_increase = INCREASE_13; 
        end 
        else if (abs(speed_x_relevant) < 13000)  // 14 LED 
        begin 
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          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 16383); 
          x_speed_increase = INCREASE_14; 
        end 
        else if (abs(speed_x_relevant) < 14000)  // 15 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 32767); 
          x_speed_increase = INCREASE_15; 
        end 
        else if (abs(speed_x_relevant) < 15000)  // 16 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 65535); 
          x_speed_increase = INCREASE_16; 
        end 
        else if (abs(speed_x_relevant) < 30000)  // 17 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 131071); 
          x_speed_increase = INCREASE_17; 
        end 
        else                   // 18 LED 
        begin 
          IOWR_ALTERA_AVALON_PIO_DATA(OUT1_BASE, 262143); 
          x_speed_increase = INCREASE_18; 
        end 
 
        if (abs(speed_y_relevant) < 1)        // 1 LED 
        begin 
          y_speed_increase = INCREASE_1; 
        end 
        else if (abs(speed_y_relevant) < 1000)  // 2 LED 
        begin 
          y_speed_increase = INCREASE_2; 
        end 
        else if (abs(speed_y_relevant) < 2000)  // 3 LED 
        begin 
          y_speed_increase = INCREASE_3; 
        end 
        else if (abs(speed_y_relevant) < 3000)  // 4 LED 
        begin 
          y_speed_increase = INCREASE_4; 
        end 
        else if (abs(speed_y_relevant) < 4000)  // 5 LED 
        begin 
          y_speed_increase = INCREASE_5; 
        end 
        else if (abs(speed_y_relevant) < 5000)  // 6 LED 
        begin 
          y_speed_increase = INCREASE_6; 
        end 
        else if (abs(speed_y_relevant) < 6000)  // 7 LED 
        begin 
          y_speed_increase = INCREASE_7; 
        end 
        else if (abs(speed_y_relevant) < 7000)  // 8 LED 
        begin 
          y_speed_increase = INCREASE_8; 
        end 
        else if (abs(speed_y_relevant) < 8000)  // 9 LED 



 60

        begin 
          y_speed_increase = INCREASE_9; 
        end 
        else if (abs(speed_y_relevant) < 9000)  // 10 LED 
        begin 
          y_speed_increase = INCREASE_10; 
        end 
        else if (abs(speed_y_relevant) < 10000)  // 11 LED 
        begin 
          y_speed_increase = INCREASE_11; 
        end 
        else if (abs(speed_y_relevant) < 1100)  // 12 LED 
        begin 
          y_speed_increase = INCREASE_12; 
        end 
        else if (abs(speed_y_relevant) < 12000)  // 13 LED 
        begin 
          y_speed_increase = INCREASE_13; 
        end 
        else if (abs(speed_y_relevant) < 13000)  // 14 LED 
        begin 
          y_speed_increase = INCREASE_14; 
        end 
        else if (abs(speed_y_relevant) < 14000)  // 15 LED 
        begin 
          y_speed_increase = INCREASE_15; 
        end 
        else if (abs(speed_y_relevant) < 15000)  // 16 LED 
        begin 
          y_speed_increase = INCREASE_16; 
        end 
        else if (abs(speed_y_relevant) < 30000)  // 17 LED 
        begin 
          y_speed_increase = INCREASE_17; 
        end 
        else                   // 18 LED 
        begin 
          y_speed_increase = INCREASE_18; 
        end 
 
    if (((x_diff>>8) * (x_diff>>8) + (y_diff>>8) * (y_diff>>8)) <= 
        (4 * (RADIUS - 1) * (RADIUS - 1)))   
        // Radius - 1 makes collision closer 
      if (!freeze_collision) 
        collision_flag = 1; 
 
 
    // DYNAMICS 
    if (notecount++ == 200 )   // slowing down puck movement 
    begin 
      if (freeze_collision > 0) freeze_collision--; 
       
      // Previous puck x and y positions 
      x_position_history[2] = x_position;       
      y_position_history[2] = y_position;       
 
      if (speed_x_positive_flag == 1) 
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        x_position += x_speed;  // x coordinate of puck 
      else 
        x_position -= x_speed;  // x coordinate of puck 
      if (speed_y_positive_flag == 1) 
        y_position += y_speed;  // y coordinate of puck 
      else 
        y_position -= y_speed;  // y coordinate of puck 
       
      x_diff = (left_half == 1) ? (x_position - x_position1) :  
                                  (x_position - x_position2); 
      y_diff = (left_half == 1) ? (y_position - y_position1) :  
                                  (y_position - y_position2); 
      // RIGHT WALL  
      if ((y_position < ((225<<8)+(RADIUS<<8)) || y_position >=  

    ((285<<8)-(RADIUS<<8))) &&  
          (x_position >= (RIGHT_WALL<<8))) 
      begin 
        if (speed_x_positive_flag == 1) 
        begin 
          if (x_speed > MIN_SPEED) 
            x_speed -= 0x0040; 
          speed_x_positive_flag = 0; 
        end   
        IOWR_ALTERA_AVALON_PIO_DATA(OUT7_BASE, 1); 
      end 
      // RIGHT GOAL 
      if ((y_position >= ((225<<8)+(RADIUS<<8)) && y_position <  
          ((285<<8)-(RADIUS<<8))) &&  
          (x_position >= ((RIGHT_WALL+RADIUS+1)<<8))) 
      begin 
        // Generate chime 
        IOWR_ALTERA_AVALON_PIO_DATA(OUT10_BASE, 1); 
        LEFT_PLAYER_SCORED = 1; 
        LEFT_SCORE++; 
        if (LEFT_SCORE == 10) 
        { 
          game_began = 0;     
        } 
      end 
      // LEFT WALL 
      if ((y_position < ((225<<8)+(RADIUS<<8)) || y_position >=  
          ((285<<8)-(RADIUS<<8))) &&  
          (x_position <= ((LEFT_WALL+RADIUS+1)<<8))) 
      begin 
        if (speed_x_positive_flag == 0) 
        begin 
          if (x_speed > MIN_SPEED) 
            x_speed -= 0x0040; 
          speed_x_positive_flag = 1; 
        end 
        IOWR_ALTERA_AVALON_PIO_DATA(OUT7_BASE, 1); 
      end 
      // LEFT GOAL 
      if ((y_position >= ((225<<8)+(RADIUS<<8)) && y_position <  
          ((285<<8)-(RADIUS<<8))) &&  
          (x_position <= (LEFT_WALL<<8))) 
      begin 
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        // Generate chime 
        IOWR_ALTERA_AVALON_PIO_DATA(OUT10_BASE, 1); 
        RIGHT_PLAYER_SCORED = 1; 
        RIGHT_SCORE++; 
        if (RIGHT_SCORE == 10) 
        { 
          game_began = 0;     
        } 
      end 
      // BOTTOM WALL 
      if (y_position >= (BOTTOM_WALL<<8)) 
      begin 
        if (speed_y_positive_flag == 1) 
        begin 
          if (y_speed > MIN_SPEED) 
            y_speed -= 0x0040; 
          speed_y_positive_flag = 0; 
        end 
        IOWR_ALTERA_AVALON_PIO_DATA(OUT7_BASE, 1); 
      end 
      // TOP WALL 
      if (y_position <= (TOP_WALL<<8)) 
      begin 
        if (speed_y_positive_flag == 0) 
        begin 
          if (y_speed > MIN_SPEED) 
            y_speed -= 0x0040; 
          speed_y_positive_flag = 1; 
        end 
        IOWR_ALTERA_AVALON_PIO_DATA(OUT7_BASE, 1); 
      end 
 
      if (collision_flag == 1) 
      // PADDLES 
      begin // to look convincing on video 
        collision_count++; 
         
        collision_flag = 0; 
        // Collision sound effect 
        IOWR_ALTERA_AVALON_PIO_DATA(OUT8_BASE, 1); 
        // COLLISION 1  
        if (speed_x_positive_flag == 1 &&  
            speed_y_positive_flag == 1 && !freeze_collision) 
        begin 
          // bounce up & left if puck is above & left of paddle  
          if (y_diff < 0 && x_diff < 0) 
          begin 
            speed_x_positive_flag = 0; 
            speed_y_positive_flag = 0; 
          end 
          // bounce up & right if puck is above & right of paddle 
          else if(y_diff < 0 && x_diff >= 0) 
          begin 
            speed_y_positive_flag = 0; 
          end 
          // bounce down & left if puck is below paddle 
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          else if(y_diff >= 0 && x_diff < 0) 
          begin 
            speed_x_positive_flag = 0; 
          end 
          else 
          begin 
            // same direction 
          end 
           
          freeze_collision = FREEZE_CONST; 
        end 
        // COLLISION 2 
        if (speed_x_positive_flag == 1 &&  
            speed_y_positive_flag == 0 && !freeze_collision) 
        begin 
          // bounce down & left if puck is below & left of paddle 
          if (y_diff > 0 && x_diff < 0) 
          begin 
            speed_x_positive_flag = 0; 
            speed_y_positive_flag = 1; 
          end 
          // bounce down & right if puck is above & left of paddle  
          else if (y_diff > 0 && x_diff >= 0) 
          begin 
            speed_y_positive_flag = 1; 
          end 
          // bounce up & left if puck is above & left of paddle 
          else if(y_diff <= 0 && x_diff < 0) 
          begin 
            speed_x_positive_flag = 0; 
          end 
          else 
          begin 
            // same direction 
          end 
          freeze_collision = FREEZE_CONST; 
        end 
        // COLLISION 3 
        if (speed_x_positive_flag == 0 &&  
            speed_y_positive_flag == 1 && !freeze_collision) 
        begin 
 
          // bounce up & right if puck is above & right of paddle 
          if (y_diff < 0 && x_diff > 0) 
          begin 
            speed_x_positive_flag = 1; 
            speed_y_positive_flag = 0; 
          end 
          // bounce up & left if puck is above & left of paddle  
          else if (y_diff < 0 && x_diff <= 0) 
          begin 
            speed_y_positive_flag = 0; 
          end 
          // bounce down & right if puck is below & right of paddle 
          else if(y_diff >= 0 && x_diff > 0) 
          begin 
            speed_x_positive_flag = 1; 
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          end 
          else 
          begin 
            // same direction 
          end 
          freeze_collision = FREEZE_CONST; 
        end 
        // COLLISION 4 
        if (speed_x_positive_flag == 0 &&  
            speed_y_positive_flag == 0 && !freeze_collision) 
        begin 
          // bounce down & right if puck is below & right of paddle 
          if (y_diff > 0 && x_diff > 0) 
          begin 
            speed_x_positive_flag = 1; 
            speed_y_positive_flag = 1; 
          end 
          // bounce down & left if puck is below & left of paddle  
          else if (y_diff > 0 && x_diff <= 0) 
          begin 
            speed_y_positive_flag = 1; 
          end 
          // bounce up & right if puck is above & right of paddle 
          else if (y_diff <= 0 && x_diff > 0) 
          begin 
            speed_x_positive_flag = 1; 
          end 
          else 
          begin 
            // same direction  
          end 
          freeze_collision = FREEZE_CONST; 
        end 
         
        if (x_speed == 0) 
        { 
             if (abs(x_diff) <= 1) 
            { 
                // do nothing 
            } 
            else if (abs(x_diff) <= 4) 
            { 
                x_speed = MIN_SPEED; 
                y_speed -= 0x0040; 
            } 
            else if (abs(x_diff) <= 8) 
            { 
                x_speed = 0x0050; 
                y_speed -= 0x0050; 
            } 
            else 
            { 
                x_speed = 0x0060; 
                y_speed -= 0x0060; 
            } 
        } 
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        // ALL COLLISIONS DONE, CHANGE SPEEDS 
        if ((x_speed + x_speed_increase) <= (MAX_SPEED<<8))  
        begin 
          if (x_speed > 0x0500) 
          begin 
            x_speed += (x_speed_increase / 2); 
          end 
          else 
            x_speed += x_speed_increase; 
        end 
        else 
          x_speed = MAX_SPEED<<8; 
 
        if ((y_speed - y_speed_increase) < (MAX_SPEED<<8)) 
        begin 
          if (y_speed > 0x0500) 
          begin 
            y_speed += (y_speed_increase / 2); 
          end 
          else 
            y_speed += y_speed_increase; 
        end 
        else 
          y_speed = MAX_SPEED<<8; 
      end 
 
      notecount = 0; 
    end 
  
    if ((x_position>>8) < 320) 
    begin 
      // the puck is in the left half 
      left_half = 1; 
    end 
    else if ((x_position>>8) >= 320) 
    begin 
      // the puck is in the right half 
      left_half = 0; 
    end 
 
    IOWR_ALTERA_AVALON_PIO_DATA(OUT4_BASE, 0); 
     
    IOWR_ALTERA_AVALON_PIO_DATA(OUT5_BASE, x_position>>8); 
    IOWR_ALTERA_AVALON_PIO_DATA(OUT6_BASE, y_position>>8); 
     
    end 
  end 
end 
//======================= End C Main Program ========================// 


