
WIRELESS PULSE RATE MONITORING  

USING NEAR FIELD COMMUNICATION 

 

 

 

 

 

 

 

A Design Project Report 

Presented to the Engineering Division of the Graduate School 

of Cornell University 

in Partial Fulfillment of the Requirements for the Degree of 

Master of Engineering (Electrical) 

 

 

 

 

 

by 

Hemanshu K Chawda & Zi Ling Kang 

Project Advisor:  Dr. Bruce R. Land 

Degree Date:  May 2008



 2

Abstract 

Master of Electrical Engineering Program 

Cornell University 

Design Project Report 

 

Project Title:  Wireless Pulse Rate Monitoring Using Near Field Communication 

Authors:  Hemanshu K Chawda & Zi Ling Kang 

Abstract:  This project involves wireless communication using the Near Field 

Communication (NFC) specification in order to facilitate the monitoring of pulse rates for 

small laboratory animals by researchers.  We did not test the project on animals due to 

the associated protocols, instead we only tested it on ourselves with the knowledge that 

this was not a true medical device.  The transmitter, which would be attached to the 

laboratory animal, consists of an Atmel ATTiny25 Microcontroller (MCU) which reads 

an electrocardiogram (EKG) signal from the monitored subject into its analog-to-digital 

converter (ADC) and encodes the data with a 106 kHz clock using a Manchester 

encoding scheme, as per the IEEE 802.3 standard.  The signal is then amplitude 

modulated with a 13.5 MHz carrier wave and outputted to a small loop antenna 

resonating at 13.56MHz, as per the NFC specification.  The use of the MCU enables 

smart power management, since the oscillator is enabled by the MCU and the MCU is 

powered down except during transmission bursts.  The receiver circuitry has a separate 

small loop antenna resonating at 13.56 MHz which receives this signal, amplifies it, 

demodulates it, and decodes it.  Then the resulting data signal is read into the ADC of an 

Atmel Mega32 MCU which will transmit that data via serial communication (RS232) to a 

PC.  A MATLAB software script running on the PC will read the incoming data from the 

serial port and output it in a user-friendly manner.  The project was mostly successful.  

The only pursued specification of NFC that was omitted was the Manchester encoding 

scheme, due to problems with clock recovery using a phase-locked loop (PLL).   

Report Approved by 
Project Advisor: _______________________________________ Date: ____________ 



 3

Executive Summary 
 

This project was motivated by the desire to help researchers monitor the heart 

rates of their laboratory animals by transmitting that data across a wireless 

communication channel using the NFC standard.  We originally wanted to explore the 

power and the limitations of the Cyclone II FPGA on the Altera DE2 Development 

Board, however, it was decided that the DE2 Development Board was an excessive use of 

hardware for this given task and we instead incorporated Atmel microcontrollers.  The 

rest of the major design requirements were driven by the NFC standard.   

We created two separate stages for the project: a transmitter stage and a receiver 

stage.  The transmitter stage was designed as if it was going to be attached to a laboratory 

animal that it was monitoring and therefore needed to be small and battery-operated.  An 

Atmel ATTiny25 was used in this stage for its low current draw and its power 

management options.  The receiver stage would act as a base station and would collect 

data transmitted by the transmitter stage before relaying it to a PC via a serial link.  An 

Atmel Mega32 was used in this stage to digitize the data and communicate with a PC via 

serial.  The wireless communication was performed by two small loop antennas made of 

gauge 31 insulated magnet wire. 

The project was mostly successful.  The only pursued specification of NFC that 

we were unable to implement was the Manchester encoding scheme, due to problems 

with clock recovery with a phase-locked loop (PLL).  We did not attempt to test it on any 

animals due to the associated protocols that would need to be followed.  We only tested 

the project on ourselves with ground isolation while knowing that this was not a true 

medical device.  We were, however, able to retrieve a pulse signal from ourselves, 

transmit it wirelessly through our fabricated setup, and display it on the PC through 

MATLAB.  Therefore we are satisfied with the functionality of our design and the 

experience that we received throughout the project. 

 



 4

Contributions 
 

The project could not have been possible without comparable hard work from 

each of us.  The approximate division of work broke down as displayed below in Table 1. 
Table 1: Work Distribution 

Item Design Implementation Testing 
Data Acquisition Both Both Both 
INA121 Differential 
Amplifier 

Zi Ling Zi Ling Hemanshu 

Input Data Filter Hemanshu Zi Ling Hemanshu 
Low Side Switch Hemanshu Zi Ling Hemanshu 
ATTiny ADC Code Zi Ling Zi Ling Hemanshu 
ATTiny Encoding Zi Ling Zi Ling Zi Ling 
ATTiny Power 
Management 

Hemanshu Zi Ling Zi Ling 

Modulation Hemanshu Hemanshu Hemanshu 
Antennas Both Both Both 
Band-pass Filter Zi Ling Hemanshu Hemanshu 
Receiver Voltage 
Amplifier 

Hemanshu Zi Ling Both 

Envelope Detector Zi Ling Hemanshu Zi Ling 
Phase-Locked Loop Both Both Both 
Decoding Zi Ling Hemanshu Hemanshu 
Mega32 ADC Zi Ling Hemanshu Hemanshu 
Mega32 Serial Zi Ling Hemanshu Zi Ling 
MATLAB code Hemanshu Zi Ling Zi Ling 



 5

Table of Contents 
ABSTRACT .................................................................................................................................................. 2 

EXECUTIVE SUMMARY .......................................................................................................................... 3 

CONTRIBUTIONS ...................................................................................................................................... 4 

TABLE OF CONTENTS ............................................................................................................................. 5 

INTRODUCTION ........................................................................................................................................ 6 

DESIGN REQUIREMENTS ....................................................................................................................... 6 

BACKGROUND ........................................................................................................................................... 7 

RANGE OF SOLUTIONS ......................................................................................................................... 10 

Power Management ............................................................................................................................ 10 
Pulse Rate Input .................................................................................................................................. 11 
Encoding ............................................................................................................................................. 11 
Antennas.............................................................................................................................................. 12 
Clock Recovery & Decoding ............................................................................................................... 13 

DESIGN AND IMPLEMENTATION ...................................................................................................... 14 

HIGH LEVEL DESIGN: ............................................................................................................................... 14 
TRANSMITTER SIDE .................................................................................................................................. 16 

Input Data - Acquisition Stage ............................................................................................................ 16 
Input Data - Amplifier & Filter Stage with Low-Side Switch ............................................................. 16 
ATTiny25 Microcontroller – ADC & Manchester Encoding .............................................................. 19 
Oscillator and Low Side Switch .......................................................................................................... 20 
Modulation .......................................................................................................................................... 21 
ATTiny25 Microcontroller – Power Management .............................................................................. 22 
Antenna – Transmitter Side................................................................................................................. 24 
Completed Transmitter Stage .............................................................................................................. 28 

RECEIVER SIDE ......................................................................................................................................... 29 
Antenna & Filter – Receiver Side ....................................................................................................... 29 
Amplification Stage ............................................................................................................................. 31 
Demodulation – Envelope Detection .................................................................................................. 33 
Clock Recovery – The Phase-Locked Loop ......................................................................................... 34 
Decoding ............................................................................................................................................. 37 
Mega32 Microcontroller – ADC & Serial Communication ................................................................ 37 
Display – MATLAB ............................................................................................................................. 37 
Completed Receiver Stage .................................................................................................................. 38 

RESULTS .................................................................................................................................................... 39 

CONCLUSION ........................................................................................................................................... 44 

ACKNOWLEDGEMENTS ....................................................................................................................... 45 

REFERENCES ........................................................................................................................................... 46 

Knowledge Articles ............................................................................................................................. 46 
Datasheets ........................................................................................................................................... 46 

APPENDIX A: ATMEL ATTINY25 CODE ............................................................................................ 48 

APPENDIX B: ATMEL MEGA32 CODE ............................................................................................... 51 

APPENDIX C: MATLAB SCRIPT .......................................................................................................... 55 

APPENDIX D: PARTS COST LIST ........................................................................................................ 56



 6

Introduction 
 
The aim of this project is to create and test a method of wirelessly monitoring the 

pulse of a small laboratory animal using the Near Field Communication standard in order 

to aid researchers.  This required us to combine and expand our knowledge of both 

analog and digital aspects of electrical and computer engineering in order to implement a 

design comprising of standard as well as novel solutions to design problems.  The designs 

were tested throughout the project using sample inputs from a signal generator until the 

later stages, when the inputs were taken from our own bodies.  The project was never 

tested on any animals due to various protocols that would need to be followed.  

 

Design Requirements 
 

Since the project was designed with the intended purpose to wirelessly transmit 

data from a laboratory animal, the transmitter circuitry needs to be battery powered and 

fairly small and lightweight in terms of its physical dimensions.  Because of this, there 

are a variety of constraints upon the size and power consumption of the transmitter 

circuitry.  The transmitter needs to be able to run reliably without needing to have its 

battery changed frequently.  Since the base station (receiver circuitry) will be powered 

via a wall socket, it does not have any significant power limitations. 

There are also design requirements imposed from the NFC specifications.  The 

carrier wave for the transmission must have a frequency of 13.56MHz ± 0.007MHz in 

order to operate in the globally available and unlicensed radio frequency industrial, 

scientific, and medical (ISM) band of 13.56MHz.  The data should be encoded using a 

Manchester Encoding about the target ISM frequency, and the antennas should be small 

loop antennas that communicate using magnetic field induction, effectively forming an 

air-core transformer. 

 The final set of design requirements concern usability.  The data from the test 

subjects should be transmitted to a laboratory PC from the base station using serial 

communication and the data should be displayed in a user-friendly format from a 

MATLAB script. 



 7

Background 
 

Full NFC devices are able to transmit and receive data concurrently, but our 

implementation does not require bidirectional communication and therefore we have only 

implemented unidirectional transmission for simplification of the design.  NFC is 

standardized in both the European Computer Manufacturers Association (ECMA)–340 

and International Organization for Standardization / International Electrotechnical 

Commission (ISO/EIC) 18092, which detail encoding, modulation schemes, transfer 

speeds, and frame format of the RF channel used by NFC devices, among other 

configuration details.    The most important of these specifications which we adhere to 

are the encoding, modulation, transfer speed and the band in which we operate our NFC 

device.   

NFC specifies that the data must be encoded using Manchester encoding.  The 

data is encoded by XORing the data with a transmission clock signal, as shown in Figure 

1 below. 

 
Figure 1: Manchester Encoding (Source: Wikipedia) 

 

In this encoding, a transition from low to high in the encoded signal signifies a high 

signal in the original data, and a transition from high to low in the Manchester signal 

signifies a low signal in the original data.  However, one should only look at the 

transitions that occur on the falling edge of the transmission rate clock to determine the 

data for that clock period since according to convention, the transitions occurring on the 

rising edge of the clock carry no meaning.  This is because in order to signify 3 periods of 



 8

a high signal in the original data, the Manchester signal needs to transition from low to 

high 3 times in a row, which cannot happen consecutively unless the Manchester signal 

transitions to a low value on the rising edge of the clock.  However these transitions from 

high to low are not representative of a low value in the original data signal, instead they 

can be considered to be “setting up” the signal to make a valid transition on the falling 

edge of the clock.   

 The data transmission rate to use for encoding is also specified by NFC to be 

only 106kBd, 212kBd, or 424kBd.  The reason for Manchester encoding is to aid in the 

clock recovery process for the receiver, which is one of the primary strengths of the 

encoding scheme.  Clock recovery is important because in order to decode the encoded 

signal, you have to XOR the Manchester encoded signal with the data transmission clock 

rate, as shown in Table 2 below.  This data clock rate should not be confused with the 

carrier frequency of 13.56 MHz, which is another specification of the NFC protocol. 
Table 2: Manchester Encoding & Decoding 

Original Data    =    Clock 8 Manchester Signal 

0 0 0 

1 0 1 

1 1 0 

0 1 1 

Original Data   8 Clock  =  Manchester Signal

 

Our modulation scheme is a simple logical NAND, which is supported by the 

NFC protocol since it still allows for easy clock recovery using a PLL.  This is important 

because the receiver will not know the data transmission rate of a given transmitters, and 

therefore it needs to be able to recover the data transmission clock rate given the 

modulated signal in order to decode the Manchester encoded signal.   

The major limitation of NFC is that it offers no protection against eavesdropping.  

In order to establish a secure channel, NFC devices need to use higher level 

cryptographic protocols.  However, since the distance from which an attacker can 

eavesdrop on an NFC communication is on the order of a few meters and our device is 



 9

built with the intention to help researchers monitor non-secretive laboratory animal heart 

rates, this is not a cause for any serious concern.   



 10

Range of Solutions 
 

Power Management 
Our project’s goal was to implement the NFC protocol to allow researchers to 

wirelessly monitor the pulse rate of small laboratory animals.  In order to accomplish this, 

we were locked into a wireless transmitter stage that would have to be battery powered.  

Because of this, power management became a critical issue and we explored a few 

different possibilities to address it.  The simplest solution was to design a transmitter 

circuit that drew very little current, used a powerful battery, and transmitted constantly.  

However, this is a relatively crude solution and proved to be difficult to accomplish due 

to limitations of battery sizes.  The next best solution that was explored was the use of a 

reed switch to power the circuit.  We would move a magnet near the transmitter circuitry 

to close the reed switch and power the circuit for a certain predetermined amount of time.  

The major disadvantage to this implementation is that a person who wants to monitor an 

animal’s pulse rate for an extended period of time would have to continually move the 

magnet close to the circuitry or just leave the magnet near the transmitter circuitry.  This 

would leave the transmitter powered on continually and therefore drain the battery 

relatively quickly.   

Therefore, we settled on our current scheme of power management, which uses an 

MCU running on a timer to power-down itself and the rest of the circuit components on 

the transmitter side via a low-side switch.  This way, the user can physically power off 

the transmitter circuit whenever they are not interested in obtaining readings.  Otherwise, 

while powered on the circuit will continually obtain readings and then power itself down 

into a low-power mode for a predetermined time period before restarting and transmitting 

the next set of readings.  This way a user can efficiently obtain readings over an extended 

period of time without having to continually monitor the circuit for power consumption 

issues. 

 



 11

Pulse Rate Input 
The next significant decision we made was the manner in which we obtained our 

input pulse rate from the laboratory animal.  We were deciding between two methods: 

using a photoreflectance transducer or an EKG.  The disadvantage of the 

photoreflectance transducer is that it would take more power than the EKG, since it 

requires a voltage to be applied across it and a current to flow through it in order for it to 

function properly.  Its advantage is that it generates a relatively strong signal, compared 

to the EKG.  The EKG doesn’t need to be powered to generate its own voltage 

differential.  However, the weakness of the signal generated means that it requires 

significant amplification.   

Even though the power concerns of both methods were similar, the EKG still 

appeared to be the best option because of the nature of the connection both of these 

methods required with the subject.  The EKG could have its electrodes taped to the 

animal relatively safely and securely.  The photoreflectance transducer, however, is an IC 

that would have to be soldered to the circuit board.  This limits the quality of the 

connection the transducer could make with the animal.  Also, in order for the transducer 

to function properly, it would have to be in direct contact with the animal’s skin, without 

any hair blocking the connection.  For an EKG, this requirement is also present in order 

to establish a clean signal, however it is less critical than with the transducer.  Therefore, 

we chose to use the EKG with an amplifier as the method of signal acquisition.   

 

Encoding 
 Another project decision that we made was whether or not to perform the 

Manchester encoding of the data digitally on the MCU or in analog using a Schmidt 

trigger and oscillator and XOR ICs.  If we had chosen to perform the encoding in analog, 

we would have needed to power an op-amp for the Schmidt trigger to digitize the signal, 

as well as oscillator and XOR ICs to perform the modulation.  However, performing the 

action on the MCU required a faster MCU than we would have otherwise needed, since 

the only processing that the MCU performed was a second counter in order to power-

down the circuit.  The main reason that we ended up choosing the digital method on the 

MCU was that the incremental power increase of a more powerful MCU to handle the 



 12

additional processing was significantly less than the power required to power the three 

ICs required to do the computation in analog.  Also, we are able to implement an elegant 

algorithm on the MCU that would detect high and low voltages accurately even with 

varying ranges of voltage offsets on the input, which would not have been possible in 

analog with a simple Schmidt trigger.   

 
Antennas 

The basic design of the antennas was also subject to various implementations.  By 

the NFC specifications, we were limited to using small loop antennas.  However, the size, 

shape and core of the antennas were dimensions that we were allowed to specify 

ourselves, based on our unique application requirements.  We originally decided to make 

two identical ferrite-core circular-loop antennas for both the transmitter and receiver.  We 

chose circular-loop antennas because of their simplicity to make and tune.  We chose a 

ferrite core because the antenna for the receiver side would have to be small since it 

would be attached to the laboratory animal, and having a ferrite core instead of an air 

core would increase the inductance and hence the radiation for a given size of antenna.  

We decided to make two identical antennas for both stages because we thought we could 

save time by perfecting one antenna and then duplicating it.  However, in the end the only 

decision that remains unchanged was to make the antennas circular.  We ended up 

changing from identical ferrite core antennas to different-sized air core antennas.  This 

was because we found that the ferrite cores that we were able to acquire required us to 

make the antenna’s diameter smaller than was actually necessary, to the point that a 

slightly larger air core antenna had equivalent inductance and transmission capacity.  

Also, by making the receiver antenna larger than the limit imposed on the transmitter 

antenna, we were able to attain better signal reception using the air core antennas than we 

got using the smaller ferrite core antennas.  Also, the air core antennas were lighter, 

which would probably be appreciated by the laboratory animal.  Therefore, better signal 

reception and lighter antennas propelled us towards using different air core antennas 

rather than identical ferrite core antennas.   

  



 13

Clock Recovery & Decoding 
 In order to decode the demodulated signal on the receiver side, the encoding clock 

needs to be recovered.  This is accomplished via a PLL.  This can be implemented in 

analog or digitally on the Atmel Mega32 MCU.  To implement this in analog, we need to 

use a PLL IC comprised of a phase detector, low-pass filter, and voltage-controlled 

oscillator to recover the clock signal, and then XOR that clock signal with the 

demodulated signal to receive the data.  The digital alternative requires the use of an 

external ADC IC interfaced with the Mega32 because the ADC on the Mega32 is not fast 

enough to convert the signal with enough precision to use a digital PLL.  Once the value 

from the external ADC is read into the port pins of the Mega32 a software algorithm 

implementing a PLL recovers the clock signal and digitally XORs it with the value from 

the external ADC to obtain the original data.  We decided to follow the analog path 

because we anticipated timing issues if we had followed the digital path.  For the digital 

implementation, the data from the external ADC is read from the port pins before it can 

be clock-recovered.  While the clock is being recovered, new ADC values would be read 

from the port pins, meaning the old values would have to be saved and then XOR’d with 

the proper phase of the data clock once it is recovered, which would require timing the 

signals precisely.  Rather than going through that effort, we decided to follow the analog 

implementation which has no significant timing issues and therefore is rather painless to 

implement.



 14

Design and Implementation 

 

High Level Design: 
 

In order to create the final solution to the project, every problem encountered was 

divided down into smaller, more manageable issues and designed and tested at a lower 

level before they were assimilated into the complete project.  The high level design of 

this project can be logically broken down into two stages: the transmitter side and the 

receiver side.  A logical diagram of the transmitter side is shown below in Figure 2.   

 
Figure 2: Transmitter Stage 

 

An EKG method is used to get the pulse signal from the target.  The EKG input 

consists of two electrodes which are connected to the laboratory animal.  Since this 

potential is inputted into the ADC of the MCU for encoding purposes, an amplifier stage 

is necessary prior to inputting the signal to the ADC in order for the ADC to be able to 

read the signal with enough precision. Therefore, the electrodes are connected to a 

differential voltage amplifier which is powered by a low side switch under control of the 

MCU.  The amplified signal is then low-pass filtered to remove 60Hz noise before being 

read into the ADC of the ATTiny25 MCU.   

The ATTiny digitally determines whether the signal read into the ADC 

corresponds to a “high” or a “low” signal using a simple, yet elegant software algorithm 

and then digitally XORs that value with a 106kHz clock running on the timer in order to 



 15

Manchester-encode the signal.  The Manchester-encoded signal is output onto the port 

pin and is NAND’d with a 13.50MHz square wave generated by an oscillator IC, which 

is also powered by a low side switch under control of the MCU.  This NAND’d value is 

inverted and then sent to the transmitting antenna, which is experimentally tuned to 

resonate at approximately 13.56MHz.   

The ATTiny also runs some power-save code which powers down the MCU and 

turns off the low-side switch every few seconds until the watchdog timer running on the 

MCU triggers a reset, thereby turning the MCU and the low-side switch back on.  This is 

to permit transmitting in bursts for extended periods of time without stressing the battery 

with continuous transmission.  The transmitter stage is powered by a single 6V lithium 

battery. 

The receiver stage is powered by a wall socket, so it is subject to less stringent 

design requirements with respect to power consumption than the transmitter stage.  A 

logical diagram of the receiver stage is shown below in Figure 3.   

 
Figure 3: Receiver Stage 

 

On the receiver stage, the signal is received through a separate small-loop antenna and 

then it is amplified before being input into an envelope detector, since the received signal 

is too weak to reliably demodulate.  The envelope detector demodulates the signal and 

outputs the Manchester-encoded signal.  This signal is then input into the next two ICs: a 

PLL for clock recovery and an XOR for decoding.  The output of the PLL is a square 

wave at the encoding clock rate.  This square wave is XOR’d with the amplified decoded 



 16

signal in order to decode the signal.  The decoded signal is representative of the pulse 

signal that was originally obtained from the EKG.  This is read into the ADC of the 

Mega32 and then outputted to the PC via the serial (RS232) bus.  A MATLAB script 

running on the PC reads the data from the serial port and presents it to the user in a plot. 

 

Transmitter Side 

Input Data - Acquisition Stage 
In order to obtain the EKG, two electrodes were attached across the muscle to 

measure the voltage drop across the muscle.  The problem with this method is that it does 

not yield a very strong potential.  According to Bruce Land, a muscle potential across a 

human’s biceps should yield approximately 10mV of potential difference, whereas the 

potential across the heart should be approximately 1mV of potential difference.   

Safety considerations forced the testing to be done on battery power, which is a relatively 

weak power setup.  This was because the test subject needed to be isolated from ground 

in order to avoid unexpected current paths.  In the preliminary testing of the other 

components, a sinusoidal wave with a frequency of ~20Hz and amplitude of ~100mV 

was used to emulate the pulse signal since it was not feasible to test the entire project 

using a real EKG signal, as that would have required the use of many electrodes and 

batteries. 

 

Input Data - Amplifier & Filter Stage with Low-Side Switch 
Since the expected potential difference from the EKG of the heart is only going to 

be 1mV, an amplifier stage is necessary prior to inputting the signal into the ADC of the 

MCU.  The ADC value is calculated by the following equation. 
Equation 1: 10-bit ADC Value Calculation 

ܥܦܣ ൌ ௜ܸ௡ כ 1024
௥ܸ௘௙

 

This means that even using the 10-bit ADC’s lowest internal voltage reference of 1.1V, a 

1mV potential difference only yields 1 bit of precision.  The ADC of the ATTiny25 has 

an internal 20x amplifier for differential voltage inputs.  However, even using the 20x 



 17

internal ADC amplifier, the 1mV input into the ADC yields only 20mV of potential 

difference, which yields the following ADC value: 
0.02ܸ כ 1024

1.1ܸ ൌ 18.6 

This is approximately only 4 bits of precision, which is still insufficient for reliably 

detecting pulses.  Therefore, an INA121 differential voltage amplifier was used as an 

amplifier stage prior to ADC input.  The amplifier’s output signal is passed through a 

simple first order RC low-pass filter in order to filter out 60Hz noise. 

 
Figure 4: INA121 Differential Amplifier & Low Pass Filter 

 

We designed our amplifier stage to have a gain of ~668 by choosing Rg as 75Ω so 

that our expected 1mV potential change would be almost on the order of 1V.  The 50kΩ 

term in Equation 2 below is unrelated to the 50kΩ resistor that was used for the low-pass 

filter, rather is a property of the INA121 differential amplifier itself. 
Equation 2: Gain of INA121 Differential Amplifier 

݊݅ܽܩ ൌ 1 ൅
50݇Ω

ܴ௚
ൌ 1 ൅

50݇Ω
75Ω ؆ 668 

This means that the potential created by a pulse would be much easier to discern through 

the ATTiny25’s ADC.  The parameters of the RC filter were chosen in order to filter out 

the 60Hz noise, so our filter has a cutoff of 31 Hz, as we see in Equation 3 below.   
Equation 3: Cutoff of RC Low-Pass Filter 

௖݂ ൌ
1

ߨ2 ܥܴ ൌ  
1

ߨ2 50݇Ω כ 0.1μF ؆ 31Hz 

This means that 60Hz noise should have its signal amplitude reduced by ~9dB, which 

should be sufficient for our purposes.   



 18

The INA121 has its power regulated through a low side switch, as shown in 

Figure 5 below. 

 
Figure 5: Low-Side Switch for INA121 

 

The low-side switch also controls the power to the 13.50MHz oscillator, which is shown 

in grey.  When the gate of the BUZ73 has a high signal from the MCU port pin, the 

transistor is on and the INA121 and the oscillator see ground on the drain of the BUZ73.  

This powers both the oscillator and the INA121.  When the gate of the BUZ73 has a low 

signal from the MCU, the transistor is powered off and the oscillator and INA121 don’t 

see a ground and therefore aren’t powered.  This enables the MCU to power down the 

INA121, the 13.50 MHz oscillator, as well as itself whenever it enters power-save mode. 

The INA121 needs to be powered by voltages centered around its voltage 

reference for it to work.  The reference is typically tied to ground for laboratory settings 

and a negative voltage is applied to V-.  However since the transmitter is battery-powered 

we could not set the reference to ground unless we had two batteries: one battery would 

provide V+ and one battery would provide V-.  Since the space limitations on the 

transmitter don’t allow for two batteries, we instead set the reference of the INA121 to 

half of our 6V Vcc via a voltage divider and op-amp buffer and set V- to ground, thereby 

setting V- to a negative voltage with reference to Vref.  The values of R in the voltage 

divider were chosen to be 100kΩ in order to decrease the current through the voltage 

divider as much as possible.  The op-amp buffer was used to provide an extremely low 



 19

input impedance to the Vref pin of the INA121, which is necessary in order to minimize 

the noise under control and not degrade the common-mode rejection ratio.  A high 

common-mode rejection ratio is important to us because we are attempting to amplify a 

small voltage differential which may be present in a much larger DC voltage offset.  We 

did not need to add a coupling capacitor to remove the DC offset because our electrodes 

were of high enough quality that the voltage differential they provided was small enough 

so that the amplifier output doesn’t saturate. 

ATTiny25 Microcontroller – ADC & Manchester Encoding 
To achieve our power and size goals, an Atmel ATTiny25 MCU is used for its 

small footprint and low power consumption, as well as its support of a power-down sleep 

mode in which power consumption is minimal.  Programming for the ATTiny25 is also 

very similar to programming for the Atmel Mega32 MCU, which proved to be very 

advantageous since this enables quick debugging due to our previous experience with the 

Mega32.  The ATTiny25 was ordered in an 8-DIP package, which provides for six I/O 

pins due to two pins being occupied by power and ground.  Of the six available I/O pins, 

five are nominally available for use since one of the I/O pins is considered a “weak I/O” 

pin since it is also the hardware reset pin.  Of the remaining five dedicated I/O pins, we 

only require use of two for our final design, since the MCU ran using an internal 

oscillator for its clock signal.  However, the other pins were used in intermediate design 

decisions and they were helpful for debugging.   

 In the final design, only 3 of the available I/O pins are used.  PortB.2 is used by 

the ADC as the input for the EKG data, using the Vcc of the MCU as the reference.  The 

code running on the MCU reads the ADC value after the conversion completes and 

determines whether it corresponds to the low end of a pulse or the high end of a pulse.  

The code then assigns the ADC input a value of either a binary ‘1’ or a binary ‘0’, 

effectively digitizing the signal.  The threshold between a high and a low signal is 

determined by finding the halfway point between the max and the min of the input ADC 

values.  The max value is initialized to be the lowest possible voltage, and the minimum 

value is initialized to be the highest possible voltage, and they are updated whenever a 

higher max or a lower min is found.  The threshold is updated to be the ୫ୟ୶ ି ௠௜௡
ଶ

 



 20

whenever a new max or min ADC value is found.  This is an elegant solution to dealing 

with indeterminate floating voltages input to the ADC.   

The code then takes the digitized ADC input and encodes it using Manchester 

encoding, following the IEEE 802.3 convention.  The Manchester encoded signal is the 

digitized data signal XOR’d with a digital clock running on the MCU via timer0 running 

at the target transmission frequency of 106kHz.  We chose the lowest possible data 

transmission rate, 106kBd, for our rate because the pulse rate data that we are 

transmitting does not gain any accuracy given a higher transmission rate.  This encoded 

output is then translated onto PortB.3, which is sent to a NAND to be modulated.  The 

ATTiny code is included in Appendix A. 

 

Oscillator and Low Side Switch 
In order to generate the 13.56 MHz carrier wave to comply with the NFC 

specifications, we had originally planned on using the timer on the MCU toggling a port 

pin at 8MHz in order to generate a 4MHz square wave.  This square wave would then 

have been inputted into a PLL frequency multiplier to achieve the target frequency of 

13.56 MHz.  However, running the timer at 8MHz on our MCU negated some of the 

power conservation options and power-down modes that were set on the MCU, so this 

method was not pursued.  Instead, a CMX-309 series 13.50 MHz oscillator with an 

output enable pin was used to generate the required waveform.  The output of the 

oscillator is shown in below. 

 However, this new method generated a new power conservation problem.  The 

current drawn by the oscillator while the output was disabled could still climb up to 

~12mA.  This was too much for the battery-powered transmission stage to sustain and 

therefore a low side switch was incorporated into the design using an N-channel power 

transistor.  The gate of the transistor would be operated by a port pin on the MCU, so that 

when the MCU disabled the oscillator setup, there would be approximately zero current 

draw through the oscillator.  Figure 6 below shows the schematic of the oscillator and the 

low side switch, and the INA121 setup and the modulation NAND which are also 

connected to the low-side switch are shown in grey.   



 21

 
Figure 6: Low-Side Switch for Oscillator 

 

Figure 7 below shows the output of the oscillator when it is powered. 

 
Figure 7: CMX-309 Oscillator Output 

Modulation 
 The modulated signal is created by the logical NAND of the Manchester-encoded 

signal output from the ADC and the 13.50 MHz square wave generated by the oscillator.  

However, since the NAND operation inverts the modulated signal, we pass the modulated 



 22

signal through another NAND with its input tied together in order to invert it.  In order 

for this operation to function properly, we needed to use specifically fast NAND gates, 

since they would have to switch on the order of 13.50 MHz.  The switching delay of our 

74AC00P NAND gates is guaranteed to be no more than 11ns in the worst case, which is 

sufficiently less than the 70ns period of a 13.50 MHz signal for these NANDs to be 

functional.  Both of these NAND gates are on the same IC, which has its power 

controlled by the low side switch setup shown in Figure 8 below. 

 
Figure 8: Low-Side Switch for Modulation NAND IC 

 

ATTiny25 Microcontroller – Power Management 
The last task performed by the MCU is power management.  The ATTiny25 

supports numerous low-power modes which are chosen via control register values.  We 

incorporate use of the most extreme power-save mode, called power-down, in which the 

MCU is running in minimalist operation along with a watchdog timer to restart the MCU.  

In order to trigger the power-down, we have an interrupt-driven timer driving a second 

counter.  Once the counter hits five seconds, the code enters a conditional statement 

which executes all of our power-saving code.  Our power-save code consists of driving 

the data output port low, as well as driving the PORTB.4 output pin low.  The PORTB.4 

output pin is connected to the gate of a power transistor operating a low side switch 

which controls the power to the input differential amplifier, the oscillator, and the NAND 



 23

IC used for modulation, and driving this pin low effectively cuts off all power to these 

circuit components.  Lastly, our power-save code calls the sleep command which triggers 

the MCU to enter power-down mode, in which the MCU stops all generated clocks 

excluding the watchdog timer and will only draw approximately 10µA.   

The MCU remains in power-down mode until the watchdog timer has ran for a 

total of 16 seconds without being reset.  We only reset the watchdog timer when it is first 

configured upon starting the MCU or when the MCU is woken from power-down.  Since 

the MCU, and therefore the watchdog timer runs for 5 seconds before calling entering 

power-save mode, the MCU remains in power-down mode for a total of 11 seconds.  

Once the watchdog timer reaches 16 seconds it triggers a watchdog timeout, which in 

turn generates a watchdog timeout interrupt.  This interrupt is treated as an asynchronous 

interrupt by the MCU since it is clocked from a separate watchdog oscillator and 

therefore this interrupt wakes the MCU from power-down mode and starts all generated 

clocks and resets the watchdog timer before continuing full-powered operation.  The 

ATTiny code is included in Appendix A.  Table 3 below shows the current drain from the 

circuit components which comprise the transmitter stage while powered and during 

power-down mode.  
Table 3: Current Drain of Transmitter Stage 
Component Active Current Drain Power-Down Current Drain

ATTiny25 9mA 10µA 

CMX-309 Oscillator 23mA 0 

BUZ73N Power Transistor 10µA negligible 

LM833 Op-Amp 5mA 0 

1NA121 Differential Amplifier 450µA 0 

NAND Gates 5mA 0 

Total: 42.46mA ~10µA 

 

Considering that the active current drain is only present while the ATTiny is not in 

power-down mode, which is only ହ ௦௘௖
ଵ଺ ௦௘௖

ൌ 31% of the time, the power strains on the 

circuit are reasonable considering the requirements of the transmitter stage.  Under 

power-down mode the differential amplifier, oscillator, and modulation NAND IC pull 



 24

no current due to the low side switch and the ATTiny’s current draw drops to 10µA, so 

the power down mode pulls only ~ଵ଴ఓ஺
ସଶ.ସ଺௠஺

؆ 0.02% as much current as the active mode. 

 

Antenna – Transmitter Side 
The transmitter side antenna was originally planned to be an air core circular 

small loop antenna.  However, this idea was quickly abandoned once we discovered that 

we would not be able to attain sufficient radiation given the size restrictions we had 

placed upon our identical transmitting and receiving antennas.  Therefore, the design was 

changed to a pair of identical ferrite core antennas made from gauge 31 insulated magnet 

wire with an inner diameter of 8mm and an outer diameter of 9mm.  We attained these 

dimensions from Equation 4 below, detailing the resonant frequency of the antenna, 

which we targeted at our carrier frequency of 13.56MHz. 
Equation 4: Antenna Resonant Frequency 

݂ ൌ  
1

ߨ2
ඨ 1

ܥܮ ൌ  ݖܪܯ13.56

From this equation we determined that our LC value must be 1.3776 x10-16 HF.  

We chose C to be 22pF since it was the only capacitor value readily available to us that 

would give us an inductance value that we could attain using a small loop antenna of our 

desired dimensions.  With the chosen capacitor value, we calculated our desired 

inductance to be 6.26µH.  We first went about deriving the necessary antenna size 

parameters by using an online inductance calculator implementing Wheeler’s Formula, 

which is shown below in Equation 5. 
Equation 5: Wheeler's Formula 

ܮ ൌ
ܰଶܴଶ

9ܴ ൅  ܪ10

Where L is the inductance, N is the number of turns, R is the radius of the coil in inches 

and H is the height of the coil in inches.  The reason we went about using an online 

calculator implementing this specific formula is because Wheeler’s Formula gives the 

inductance L in µH, which is the units we were aiming for.  However, the fact that the 

other units of Wheeler’s Formula were in inches made repeated calculations to find the 

ideal values painstaking, so we used an online calculator implementing Wheeler’s 



 25

Formula to expedite the calculations.  From the calculator we were able to determine that 

we should fabricate an antenna of gauge 31 magnet wire with an inner diameter of 8mm 

and an outer diameter of 9mm to reach our target inductance of ~6µH.   

Once we had fabricated the antennas, we tested the antennas’ resonance by 

measuring the voltage output from the test circuit shown in Figure 9 below. 

 
Figure 9: Transmitter Antenna Resonator Circuit 

 
The inductance of the antenna and the value of C are the same as those chosen above 

from Equation 4.  The value of R is chosen based on Equation 6 below, for a desired Q 

value of approximately 40.   
Equation 6: Q of Antenna 

ܳ ൌ ܴඨܥ
ܮ ൌ ܴඨ

22pF
Hߤ6.26 ൌ 40 

Solving this equation for R gives an R value of 21.3kΩ.  The closest readily available 

value of resistor was 20kΩ, which yields a Q of 37.49.  These values also yield a 

favorable bandwidth of ~361kHz, as shown below in Equation 7. 
Equation 7: Antenna Bandwidth Calculation 

ܤ ൌ  
1

ܥܴߨ2 ൌ
1

ߨ2 כ 20kΩ כ 22pF ൌ 361.72kݖܪ 

However, the antennas ended up resonating quite poorly at our target frequency of 

13.56MHz and therefore they had to be replaced.  A picture of one of the open core 

antennas is shown below in Figure 10. 



 26

 
Figure 10: Preliminary Air Core Antenna 

 

 The next antennas that we tried were identical small loop antennas with ferrite 

cores.  We attempted to keep the dimensions of the antennas the same while just 

changing the air core to a ferrite rod core since the transmitter antenna was already as 

large as possible.  The effect that this should have had on the antennas was that it should 

have increased their inductance, and therefore their radiation strength, according to the 

following equation indicating the inductance of a circular loop. 
Equation 8: Inductance of a Circular Loop (source: Wikipedia) 

ܮ ൌ ݎߤ כ ሺln
8r
a െ 2ሻ 

Where µ is the magnetic permeability of ferrite, r is the loop radius, and a is the wire 

radius.  Since µferrite is typically 100-10,000x larger than µ0, this is a significant increase.  

This also increases the radiation resistance of the antenna by a factor of ቀఓ೑೐ೝೝ೔೟೐

ఓబ
ቁ

ଶ
, as 

detailed in Equation 9 below. 
Equation 9: Radiation Resistance of Small Loop Antenna 

ܴ௥௔ௗ ൌ 31200 כ ൬
ܣ௙௘௥௥௜௧௘݊ߤ

ଶߣ଴ߤ ൰
ଶ

 



 27

However, this greater inductance required us to modify the values of the resistor and the 

capacitor in our antenna resonator circuit in Figure 9.  However, we were unable to attain 

the value of µferrite for our ferrite rods, so we attemped to experimentally tune our ferrite 

rod core antennas to resonate at 13.56MHz.  This, too, was unsuccessful.  A picture of the 

identical ferrite core antennas is shown below in Figure 11. 

 
Figure 11: Identical Ferrite Core Antennas 

 
 This led us to our final antenna design, which is similar to our original design in 

that it re-incorporates air core antennas using the original resonator circuit shown in 

figure Figure 9 with a resistance of 20kΩ and a capacitance of 22pF.  However, this time 

we designed the antennas experimentally, by changing the sizes and number of turns until 

we were able to resonate them at our target frequency.  Also, we kept the transmitter 

antenna small due to the constraints of the transmitter circuit but we made the receiver 

antenna much larger than before, in order to attain better signal reception.  With these 

modifications, we aimed to alleviate the issues we had originally run into with our first 

set of air-core antennas.  We hoped the experimentally resonated antennas would allow 



 28

our setup to resonate at 13.56MHz and that the larger receiver antenna would be able to 

pick up the signal with a stronger amplitude at the target frequency due to the resonance. 

We were able to resonate the air-core transmitter antenna at ~13.56MHz with an inner 

loop diameter of 8mm, an outer loop diameter of 13mm, and 22 turns.  The transmitter 

antenna is shown on the left of Figure 12 below.  

 
Figure 12: Final Air Core Antennas 

 
 

Completed Transmitter Stage 
Below is a picture of the completed transmitter stage. 



 29

 
Figure 13: Transmitter Stage 

 

Receiver Side 

Antenna & Filter – Receiver Side 
The first two receiver antennas were detailed in the antenna description for the 

transmitter side, since the antennas were built to be identical.  The final receiver stage 

open-core small loop antenna that we ended up using, however, is different from the 

transmitter side.  We experimentally built this antenna, tuning it until it resonated at 

13.56MHz with the circuit shown in Figure 14 below.   

 
Figure 14: Receiver Antenna Resonator Circuit 

 
The resistance and capacitance are the same as for the transmitter antenna resonator 

circuit, 20kΩ and 22pF respectively.  The antenna ended up having an inner diameter of 

80mm, an outer diameter of 82mm, with 5 turns.  The antenna also functions as a high-Q 



 30

band-pass filter centered at the resonant frequency of 13.56MHz.  This eliminates the 

need for a separate band-pass filter stage on the receiver side.  However, before we were 

able to obtain a steadily resonated antenna for the receiver stage, we built a high-Q band-

pass filter out of an op-amp, shown below in Figure 15. 

 
Figure 15: High-Q Band-pass Filter (Source: Swarthmore.edu) 

 

We chose 10pF for the capacitances and 33kΩ, 22Ω, and 62kΩ for R1, R2, and R3 

respectively, in order to get a center frequency of 13.63MHz, a bandwidth of 513.4kHz, 

and maximum gain of 0.9394 (to minimize attenuation through the filter), as detailed in 

Equation 10 through Equation 12 below.  
Equation 10: Band-pass Filter Cutoff 

଴݂ ൌ
1

ඥሺܴଵ||ܴଶሻܴଷܥߨ2
ൌ

1
ߨ2 כ 10pFඥሺ33݇Ω||22Ωሻ כ 62݇Ω

ൌ  ݖܪܯ13.63

Equation 11: Band-pass Filter Bandwidth 

ܤ ൌ
1

ଷܴܥߨ
ൌ

1
ߨ כ 10pF כ 62݇Ω ൌ  ݖܪ513.4݇

Equation 12: Band-pass Filter Amplification 

଴ܪ ൌ
ܴଷ

2ܴଵ
ൌ

62݇Ω
2 כ 33݇Ω ൌ 0.9394 

This design of band-pass filter ended up functioning well for our prototype, which we 

had set to filter around a test frequency of 10kHz on a breadboard.  However, when we 

soldered our band-pass setup discussed above, we found that the filter did not function 

well at the desired frequency of 13.56MHz due to the excessively low resistance and 



 31

capacitance values for R2 and C, and instead we opted to just rely on the innate high-Q 

band-pass filter present in our tuned receiver antenna. 

Amplification Stage 

The received signal needs to be amplified before it can be demodulated and the 

data can be decoded.  We used 2 identical copies of the standard non-inverting amplifier 

setup in series for our amplification stage.  The schematic of a single setup and its gain is 

shown in Figure 16 and Equation 13 below. 

 
Figure 16: Receiving Stage Non-Inverting Amplifier 

 
Equation 13: Gain of Receiving Stage Non-Inverting Amplifier 

௏ܣ ൌ 1 ൅
ܴଶ

ܴଵ
ൌ 1 ൅

1݇Ω
330Ω ൌ 4.03 

Therefore, each amplifier should give a gain of approximately 4, for a total gain of 

approximately 16 through our series amplifier stage.  We chose to use two amplifiers in 

series instead of pushing a single amplifier’s gain higher because lowering the gain of 

each individual stage allowed the amplifiers to operate in higher frequency regions, due 

to the principle of gain bandwidth product (GBP).   

The operational amplifiers that we ordered were specifically fast with high GBPs 

and high slew rates because we originally intended for them to amplify a signal switching 

from rail to rail at our carrier frequency of 13.50MHz.  However, the effective slew rate 

requirement of our amplifiers is slightly lower because the signal will not be amplified to 

the rails.  The required slew rate for the op-amp is a function of our maximum switching 

frequency, 13.50MHz, and the voltage potential that the op-amp will actually be 

switching over.  Since we are operating on signals between ground and 5V, this requires 

a slew rate of at least 5ܸ כ ݖܪܯ13.50 כ 2 ൌ 135ܸ/μݏ.  The LT1223’s have an input 



 32

slew rate of 350V/µs and a peak output slew rate of 2000V/µs, which is clearly sufficient 

for our application.   

Another requirement which we took into consideration when ordering our op-

amps was the speed of the envelope detector, which is the stage following the 

amplification stage.  This is because the signal coming out of the amplifier needs to be 

switching at least as fast as the envelope detector can switch, otherwise data would be 

lost in the demodulation.  The time constant of the envelope detector is 220ns.  This 

means our minimum switching frequency needed to be ଵ
ଶ

כ ଵ
ଶଶ଴௡௦

ൌ  which our ,ݖܪܯ2.27

op-amps cover since they have a GBP of 100MHz.   

Since our op-amps, the LT1223s, have a GBP of 100MHz, this should allow a 

theoretical maximum amplification of ଵ଴଴ெு௭
ଵଷ.ହ଴ெு௭

ൌ 7.41.  However, due to second order 

effects and imperfections in the op-amps themselves, we discovered that the theoretical 

GBP of 100MHz was not truly attainable with gains above unity, so we lowered our 

effective use of the available GBP by splitting our amplification across two identical 

stages of lower amplification in order to have a higher quality of reliable amplification at 

our target frequency.  The input and output of our two-stage amplifier setup is shown 

below in Figure 17.  We can see that the obtained amplification in our target frequency 

range is approximately ଶ.଼଴௏
଴.ଷଶ଼௏

؆ 8.5, which is an amplification of approximately 3 

through each stage of the amplifier.  This is reasonable given the imperfections of the op-

amp and the high frequencies which we are amplifying.   



 33

 
Figure 17: Output vs Input of Amplifier 

 

Demodulation – Envelope Detection 
An envelope detector is used to demodulate the signal.  The schematic of the 

envelope detector is shown below in Figure 18.   

 
Figure 18: Envelope Detector Schematic 

 

The diode that we used was a general purpose 1N914 diode.  The values of the resistor 

and capacitor were chosen in order to minimize the time constant τ, while adhering to the 

constraint in Equation 14 below. 
Equation 14: Envelope Detector Constraint 

1
௠݂௢ௗ௨௟௔௧௜௢௡

ب τ ب
1

௖݂௔௥௥௜௘௥
 



 34

This is because minimizing τ minimizes the negative peak clipping, effectively 

improving the response of our demodulator.  Increasing τ minimizes the ripple, however 

since we are demodulating a digital signal, ripple is a much smaller concern than negative 

peak clipping.  Since fmodulation is 106kHz and fcarrier is 13.50MHz, we obtain the following 

constraint on our values of R and C: 

9.434μݏ ൐ ܥܴ ൐  ݏ74.07݊

Our chosen values of R and C give us a τ of 220ns, which is ~4x larger than the lower 

constraint of 74.07ns and ~50x smaller than the higher constraint of 9.434µs.  These 

values and the circuit functioned properly for the expected 106kHz modulation clock. 

 

Clock Recovery – The Phase-Locked Loop 
In order to recover the data from the demodulated signal, we need to XOR the 

demodulated signal with a square wave running at the clock frequency that was used to 

encode the signal.  In order to determine that clock frequency, an analog clock recovery 

mechanism is implemented using a phase-locked loop (PLL).  A high level diagram of 

the PLL implementation is shown in Figure 19 below. 

 
Figure 19: High Level PLL 

 
The demodulated signal is fed into a phase comparator, which is an XOR.  The 

other input of the phase comparator is the output of the voltage-controlled oscillator 

(VCO) fed backwards for negative feedback.  The output of the phase comparator is sent 

into a low-pass filter.  The output of this low-pass filter is then fed into the VCO, whose 

output is both the output of the PLL and is also fed back into the phase comparator for 

negative feedback.  Figure 20 below shows our specific implementation of the CD4046b 

PLL. 



 35

 
Figure 20: CD4046B PLL (Source: Datasheet by Texas Instruments) 

 
The values of R1, R2, R3, C1 and C2 were all chosen by approximating data points for 

values of f0 and fmin from log-log curves in the datasheet of the PLL IC and using them in 

conjunction with the following provided equations: 
Equation 15: fmax 

௠݂௔௫ ൌ ଴݂ ൅ ௅݂ 
Equation 16: fmin 

௠݂௜௡ ൌ ଴݂ െ ௅݂ 
Equation 17: fL 

௅݂ ൌ ଵ
ଶሺ ௠݂௔௫ െ ௠݂௜௡ሻ 

Equation 18: fc 

௖݂ ൌ
1

ߨ2
ඨ2ߨ ௅݂

τ  

Equation 19: τ 
τ ൌ RଷCଶ 

However, since the data points that were used to approximate f0 and fmin were at 

best approximations, we noticed a considerable phase lag of up to 45˚ when we 

implemented our calculated configuration.  Therefore, we ended up using the calculated 

resistor and capacitor values as only a starting point, and experimentally tweaked the 

values until we were able to lock the PLL onto our sample 106kHz square wave with 



 36

minimal phase lag.  Our low-pass filter has ended up having a -3dB point of ଵ
ଶగ

ܴଷܥଶ ൌ

ଵ
ଶగ

9.1݇Ω כ 22pF ൌ  We ended up using this value, even though it is higher than  .ݖܪ795݇

the target encoding frequency of 106KHz because we felt there was value in making the 

tradeoff for better phase synchronization on the output of the PLL.  With the original 

calculated values, we were using a low-pass filter with a -3dB point of approximately 

110kHz, but that resulted in the output of the PLL being almost 1µs phase delayed from 

the input, when tested with a sample input square wave at 106kHz.  By increasing the 

cutoff frequency, we were able to reduce the phase lag to approximately 700ns, which 

was more acceptable for our clock period of 9.2µs.  A screenshot of the output of the 

tweaked PLL being tested with a 106kHz square wave input is shown in Figure 21 below. 

 
Figure 21: PLL Output vs Sample Input 

 

In this image, the input to the PLL is on channel 1 and the output of the PLL is shown on 

channel 2.   



 37

Decoding 

Once the demodulated signal has its clock recovered by the PLL, decoding the 

data from the signal is quite simple.  The recovered clock from the PLL and the 

demodulated signal are XOR’d by an XOR with a maximum propagation delay of 350ns, 

and the original data signal is the output of the XOR.  Since our original data signal is an 

animal’s pulse, it will rarely be greater than 100Hz, which has a period of 0.01s.  

Therefore, our XOR is sufficiently fast enough for decoding the data signal.   

 

Mega32 Microcontroller – ADC & Serial Communication 
The Atmel Mega32 MCU is soldered onto a prototype board designed by Bruce 

Land.  Bruce was kind enough to donate a Rev7 board to us, which made the hardware 

implementation of the Mega32 fast and painless.  The webpage detailing the design of the 

board and the hardware setup required is included in the References. 

The Mega32 reads in the voltage value from the decoder on ADC0 which is set to 

PINA.0 and converts it to a digital value.  The 8 most significant bits in the ADCH 

register are then printed out to the serial port at 9600 baud after each ADC conversion.  

The serial code was leveraged from Bruce Land’s example code on serial 

communication: interrupt driven serial communication.  We implemented a delay of 

20ms between each ADC conversion so that we don’t flood the serial port with data for 

MATLAB.  The Mega32 code is included in Appendix B. 

 

Display – MATLAB 
The MATLAB script running on the PC opens a serial connection at 9600 baud 

on whichever COM is available for the current PC.  This COM port needs to be edited in 

the script to reflect the port changes.  Then the script goes into an infinite loop polling the 

serial port for data.  Data from serial is retrieved with a “scanf” command and then is left 

shifted into a vector.  Since the data from the ADC ranges from 0-255, it is first adjusted 

to represent the voltage range by dividing by 255 and multiplying by 5.  The vector is 

then plotted using the “set” command so the plot updates with new points in real time.  

Frequency is calculated by counting how many times the peaks in the vector are greater 



 38

than a threshold voltage of 2.5.  That number is then divided by the size of the vector and 

multiplied by a calibration constant to get the frequency.  The calibration constant is set 

so that the frequency calculation matches up with the given input frequency.  This 

frequency value is also constantly updated in the plot of the pulse.  The MATLAB code 

is included in Appendix C. 

 

Completed Receiver Stage 
Below is a picture of the completed receiver stage. 

 
Figure 22: Completed Receiver Stage 



 39

Results 
 

All of the lower level components to our project worked to specification as 

detailed in the Design and Implementation section of the report.  However, upon combing 

the pieces together and chaining outputs and inputs, we ran into considerable difficulties 

with sub-circuit performance and behavior.   

Though the PLL worked with the test signal from a signal generator, it wasn’t 

able to lock in phase onto a real demodulated signal from the antenna.  This shift in phase 

is a skew between the clock and the data, and therefore the XOR that is decoding the 

encoded signal suffers from devastating jitter when the signal should be a clean “high” or 

“low” value.  After considerable debugging and attempting to use different phase 

comparators on the PLL IC, we decided to remove the encoding and decoding stages 

from the transmit and receive stages in order to salvage the functional parts of the project.  

However, removing the encoding and decoding stages had considerable impact on other 

parts of the project which had already been designed and tested with encoding and 

decoding in mind. 

The ATTiny’s code was modified in order to remove the digital encoding that was 

being performed.  Now, the ATTiny functioned simply as a digital Schmidt trigger, 

reading the input data into the ADC and outputting a digitized version of it onto the port 

pin.  The ATTiny still provides power management for the transmitter circuit through the 

use of its power-down mode and its watchdog timer. 

The envelope detector had to be changed due to the removal of signal decoding, 

because the effective modulation frequency was changed from 106kHz to a few Hertz, 

which is the frequency of the data.  With this new modulation frequency, our old 

envelope detector no longer worked, as the ripple was too large.  The new modulation 

frequency caused the constraint on RC to change to: 

ݏ0.33 ൐ ܥܴ ൐  ݏ74.07݊

However, we found that following this constraint did not yield a difference in the output 

of the envelope detector versus its input for an input signal of such a low frequency.  

Therefore, the capacitor was changed from 22pF to 11pF, and the resistor was changed 

from 10kΩ to 75Ω, yielding a new τ of 0.825ns, which is below the lower bound of the 



 40

constraint on τ.  We kept this regardless because we found that increasing τ caused far too 

much ripple in the output signal.  The following figure shows the output of our envelope 

detector with a sample modulated signal.  As we expect, there is considerable ripple but 

very little negative peak clipping. 

 
Figure 23: Output vs Input of Modified Envelope Detector 

 

 The end result of all these simplifications to our circuit was that we are able to 

read in an input through the EKG, amplify it and send it to the transmitter-stage MCU to 

be digitized.  Then it is modulated with our carrier wave at the NFC specifications and 

transmitted over a small loop antenna to the receiver stage.  This happens in bursts 

interlaced with periods of powered-down modes so as to not drain the battery.  The 

receiver stage then amplifies the signal it receives and demodulates it before reading it 

into the ADC of the receiver-stage MCU, the Mega32.  The Mega32 then sends this data 

via a serial connection to a MATLAB script running on a PC, which plots the data in 

real-time and calculates the frequency and the beats-per-minute (BPM) of the signal for 

the user to see. We did not attain our goal of encoding the data using the Manchester 

encoding scheme due to problems retrieving the clock rate of the data from the PLL on 



 41

the receiving end.  Other than this NPC specification-related issue, we managed to 

perform all of the tasks that we had set out to accomplish. 

 The performance of our project was reasonably accurate, given that it is not an 

actual medical device.  The accuracy on the transmitter stage is highly dependent upon 

the quality of the electrodes used.  Since we are using high quality electrodes for our 

input, our transmitter stage’s response is quite accurate.  We noticed that given an input 

of approximately 1Hz on the electrodes, the output of the input amplifier shows a 

waveform with approximately 1 second period.  A sample EKG is shown below in Figure 

24. 

 
Figure 24: Sample EKG from Zi Ling 

 
This signal is then digitized and modulated successfully before being transmitted.  A 

picture of a sample EKG on channel 1 versus the modulated waveform on channel 2 is 

shown below in Figure 25. 



 42

 
Figure 25: Sample EKG versus Modulated Signal from Hemanshu 

 

The received signal on the receiver stage is representative of the transmitted 

signal, except much lower in amplitude.  Once demodulated, the signal is still 

representative of the input.  The actual waveform was destroyed when the signal was 

digitized, so only the frequency data is recovered.  This is then read into the Mega32 and 

transmitted to the PC, which displays this digitized signal on a MATLAB plot.  

Throughout this process, the frequency data is quite close to the input frequency.  

However, the frequency and beats-per-minute calculation of the MATLAB plot may 

sometimes be inaccurate due to non-precise calibration.  A sample MATLAB plot is 

shown below in Figure 26.   



 43

 
Figure 26: Sample MATLAB Plot 

The input signal that generated this plot was approximately 2Hz, so we can see that the 

MATLAB frequency calculation is slightly inaccurate.  However, the waveform’s 

frequency is visibly close to the input waveform’s frequency.  We were unable to 

calculate an exact percentage of difference due to the MATLAB waveform updating in 

real time and lacking sophisticated measurement tools that the oscilloscope contains, so 

instead we had to rely on visual confirmation of frequency resolution in the MATLAB 

plot.  Given these results, we are satisfied with our project’s performance. 

 



 44

Conclusion 
 

We were fairly successful in accomplishing our goals.  We successfully read in an 

input signal from a living source and transmitted it wirelessly to a base station, which 

then communicates with a PC and plots the information in a user-friendly format.  The 

shortcoming of our project is that we do not fully implement the NFC protocol since we 

do not support a Manchester encoding scheme.   

This project allowed us to significantly apply our computer engineering 

knowledge while stretching our analog electrical engineering knowledge to its limits.  

Looking back on our difficulty in using the PLL and getting it to output a clock signal in 

phase, we should have allocated much more time to the PLL than we had allotted.  Had 

we been able to get the PLL working, our project would have fulfilled all of the goals it 

had originally set out to accomplish.  Other than the PLL, we feel that the rest of the 

project was approached in a manner which allowed for efficient identification and solving 

of problematic issues and we have no serious regrets.  We feel that we learned a lot about 

the details of designing working circuit components and integrating them together, which 

is valuable design experience for engineers. 



 45

Acknowledgements 
 

This project would not have been possible without the help and guidance of a few 

key people.  We first and foremost would like to thank Professor Bruce Land for all of his 

help, insight, patience, and understanding throughout the project.  We would also like to 

thank Maxim IC for their kind donation of the MAX233 level shifters. 

Hemanshu would like to thank his roommate and fellow Cornell ECE student, 

Ankur Kumar, for his help with analog issues and MATLAB code.  He would like to 

thank his parents for all their guidance and support that made everything possible. 

Zi Ling would like to thank Digikey for their fast, accurate, and costly shipping.  

He would also like to thank his parents for the upbringing that made him what he is 

today. 



 46

References 
 

Knowledge Articles 
Microchip. “Antenna Circuit Design for RFID Applications.” 
http://ww1.microchip.com/downloads/en/AppNotes/00710c.pdf 
 
Sheshidher Nyalamadugu, Naveen Soodini, Madhurima Maddela, Subramanian Nambi 
and Stuart M. Wentworth. “Radio Frequency Identification Sensors.” 
http://cee.citadel.edu/asee-se/proceedings/ASEE2004/P2004132electNYA.pdf 
 
Barry Hanson. “Barry’s Inductor Simulation.” 
http://www.coilgun.info/mark2/inductorsim.htm 
 
P-N Designs. “Inductor mathematics.” 
http://www.microwaves101.com/encyclopedia/inductormath.cfm 
 
Jim Lesurf. “Loops and rods.” 
http://www.st-andrews.ac.uk/~www_pa/Scots_Guide/RadCom/part7/page5.html 
 
Jim Lesurf. “The Envelope Detector.” 
http://www.st-andrews.ac.uk/~www_pa/Scots_Guide/RadCom/part9/page2.html 
 
Erik Cheever. “Frequency Response and Active Filters.” 
http://www.swarthmore.edu/NatSci/echeeve1/Ref/FilterBkgrnd/Filters.html 
 
Wikipedia. “Near Field Communction.” 
http://en.wikipedia.org/wiki/Near_Field_Communication 
 
Wikipedia. “Manchester Code.” 
http://en.wikipedia.org/wiki/Manchester_code 
 
Bruce Land. “Microcontroller Board.” 
http://www.nbb.cornell.edu/neurobio/land/PROJECTS/Protoboard476/index.html 
 
Bruce Land. “Serial Communication.” 
http://instruct1.cit.cornell.edu/courses/ee476/Serialcom/SerialInt.c 
 

Datasheets 
National Semiconductor. Voltage Buffer LM833 
http://www.national.com/ds/LM/LM833.pdf 
 
Texas Instruments. Differential Amplifier INA121 
http://focus.ti.com/lit/ds/symlink/ina121.pdf 



 47

 
Atmel. AVR MCU 2K 20MHZ ATTINY25-20PU 
http://www.atmel.com/dyn/resources/prod_documents/2586S.pdf 
 
Infineon. Low Side Switch BUZ73N 
http://www.infineon.com/dgdl/Buz73_Rev+2.2.pdf?folderId=db3a304412b407950112b4
08e8c90004&fileId=db3a304412b407950112b42b314b4492 
 
Citizen Crystal and Oscillators. Oscillator 13.5 MHz CMX309FLC13 
http://media.digikey.com/pdf/Data%20Sheets/Citizen%20PDFs/CMX-309.pdf 
 
Toshiba. NAND Quad 2INP TC74AC00P 
http://www.toshiba.com/taec/components2/Datasheet_Sync//149/83.pdf 
 
Linear Technology. Current Feedback Amp 100MHz LT1223CN8 
http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1154,C1009,C1146,P1
473,D2786 
 
Texas Instruments. Phase-Lock Loop MCPWR CD4046BE 
http://focus.ti.com/lit/ds/symlink/cd4046b.pdf 
 
ON Semiconductor. XOR MC14070BCPGOS 
http://www.onsemi.com/pub_link/Collateral/MC14070B-D.PDF 
 
Atmel. AVR MCU 32K ATMEGA324P-20PU 
http://www.atmel.com/dyn/resources/prod_documents/doc8011.pdf 
 
Maxim. RS232 Level Shifter MAX232 
http://datasheets.maxim-ic.com/en/ds/MAX220-MAX249.pdf 
 
Fairchild Semiconductor. Diode 1N914 
http://www.fairchildsemi.com/ds/1N/1N914B.pdf 
 
Atmel. Program Board STK500 
http://www.atmel.com/dyn/resources/prod_documents/doc1925.pdf 
 
  



 48

Appendix A: Atmel ATTiny25 Code 
 
//ATtiny25 code 
//Reads in voltage values on PB2 and converts A to D 
//Outputs thresholded signal on PB1 and Manchester encoded signal on 
PB3 
//Watchdog timer for power down mode with power down control signal to 
other ICs on PB4 
//106 kHz CLK on PB0 for testing purposes 
//Zi Ling Kang (zk29) 
//Hemanshu Chawda (hkc2) 
 
//----------------INCLUDEs------------------------ 
#include <tiny25.h> 
#include <stdlib.h> 
#include <delay.h> 
#include <sleep.h> 
 
//----------------GLOBAL-VARIABLES------------------ 
int khz_count = 0;            // Timer counter 
unsigned char count = 0x00;   // Timer counter 
unsigned char sec_counter = 0x00; 
// LED 3 and 4 are switched 
// need to generate a sine wave at 4.068 MHz 
// http://instruct1.cit.cornell.edu/courses/ee476/labs/s2007/lab2.html 
unsigned char adcval = 0x00; 
unsigned char adcthres = 0x00; 
unsigned char adcmax = 0x00; 
unsigned char adcmin = 0xff; 
unsigned char clk106k = 0x0; 
 
// -----------------ISRs------------------------------------------ 
interrupt [TIM0_COMPA] void timer0_compareA() 
{ 
    //find min and set threshold 
    if (adcval < adcmin){ 
      adcmin = adcval; 
      adcthres = (adcmax-adcmin)>>1; 
    } 
    //find max and set threshold 
    if (adcval > adcmax){ 
      adcmax = adcval; 
      adcthres = (adcmax-adcmin)>>1; 
    } 
    //toggle PB3 based on ADC value and threshold 
    if (adcval <= adcthres){ 
      PORTB.1 = 0x0; 
      PORTB.3 = clk106k; 
    } else{ 
      PORTB.1 = 0x1; 
      PORTB.3 = ~clk106k; 
    } 
   PORTB.0 = ~PORTB.0; 
   clk106k = ~clk106k; 
   // This interrupt service routine is called when timer 0 overflows. 



 49

   // Since prescalar is chosen to be 1, timer compares at frequency of 
16MHz/(1 prescalar * 77 compare value) = 212.779kHz 
   if(khz_count == 1023){   // if khz_count has counted another khz, 
check to see if count has reached 212 
      khz_count = 0; 
      if(count == 212){     // if count has counted to 212, increment 
the second counter 
        count = 0; 
        sec_counter++; 
        // toggle the LEDs hopefully every second 
        } 
        else count++;       // if khz_count has counted another khz but 
count isnt 212, increment count 
      } 
      else khz_count++;     // if khz_count hasn't reached 1023, just 
increment khz_count 
} 
 
interrupt [WDT] void watchdog_timeout() 
{ 
   // This interrupt service routine is called when the Watchdog Timer 
Timeouts 
} 
 
// -----------MAIN-------------------------------------------------- 
int main(){ 
   // set port B: Output - PB0, PB1; Input - PB2-PB5 
   DDRB = 0b111011; 
 
   TCNT0 = 0; // clear timer counter 
   TCCR0A = 0b00000010; 
   TCCR0B = 0b00000001; // prescalar = 1 (full clock rate) 
   OCR0A = 76;  // compare value of 76 for timer 0 compare -> generate 
106kHz square wave 
                        // since 0 indexed, divide 16MHz/77 -> 212khz 
switching -> 106kHz square wave 
   TIMSK = 0b00010000;  // enable timer0a compare match interrupt 
 
   // ADC 
   ADMUX = 0b00100001; // Vcc used as Vref-, right adjusted, MUX = 0001 
to select PB2 
   ADCSRA = 0b11000101; // Enable ADC, start first conversion, and set 
prescalar to 16 
 
   // Wait for conversion to complete 
   while( ADCSRA.6 == 0b1) 
   { } 
 
   // Power Reduction Register 
   PRR = 0b00001010; // Turn off the timer1 and USI (universal serial 
interface) to save power 
 
   // MCU Control Register 
   MCUCR = 0b10110100; // diable BOD during sleep and enable sleep to 
go into power-down mode 
 
   // Watchdog Timer Control Register 



 50

   WDTCR = 0b01111001; // Watchdog Timeout Interrupt Enable and Change 
Enable and Watchdog Enable 
   // set to timeout every 1024k cycles at 128kHz = 8 seconds  but for 
some reason goes 16 seconds... 
   PORTB.4 = 0x0; 
 
   // enable interrupts 
   #asm("sei"); 
 
   sleep_enable(); 
   while (1){ 
 
   PORTB.4 = 0x1;        //power down signal high when not in power 
down mode 
    // Start the conversion 
    ADCSRA.6 = 0b1; 
 
    // Wait for conversion to complete 
    while( ADCSRA.6 == 0b1) 
    { } 
 
    adcval = ADCH;  //get the 8 MSBs of the ADC 
 
/*  //find min and set threshold 
    if (adcval < adcmin){ 
      adcmin = adcval; 
      adcthres = (adcmax-adcmin)>>1; 
    } 
    //find max and set threshold 
    if (adcval > adcmax){ 
      adcmax = adcval; 
      adcthres = (adcmax-adcmin)>>1; 
    } 
    //toggle PB1 based on ADC value and threshold, Manchester encoding 
on PB3 
    if (adcval <= adcthres){ 
      PORTB.1 = 0x0; 
      PORTB.3 = clk106k;   
    } else{ 
      PORTB.1 = 0x1; 
      PORTB.3 = ~clk106k; 
    } 
*/ 
    //reset values and power down 
    if (sec_counter == 8){ 
      adcmax = 0x00; 
      adcmin = 0xff; 
      PORTB.1 = 0x0; 
      PORTB.3 = 0x0; 
      PORTB.4 = 0x0;         //power down signal 
      powerdown();           //power down ATtiny25 to save power 
      } 
    } 
 return 0;  // never happens but gets rid of warning! 
} 
  



 51

Appendix B: Atmel Mega32 Code 
 
// Hemanshu Chawda (hkc2) 
// Zi Ling Kang (zk29) 
// Atmel Mega32 code (taken largely from Bruce Land's example serial 
code)   
              
#include <mega32.h>  
#include <stdio.h>        
#include <delay.h> 
 
//timeout values for each task 
#define t1 100   
#define t2 1000   
 
//the  subroutines 
void task1(void);    //test for button press 
void task2(void);  //increment note to be played   
void gets_int(void); //starts getting a string from serial line 
void puts_int(void); //starts a send to serial line 
void initialize(void);  //all the usual mcu stuff  
           
unsigned int time1, time2 ; //task scheduling timeout counters 
unsigned long time; 
unsigned int v; 
  
//RXC ISR variables         
unsigned char r_index;  //current string index 
unsigned char r_buffer[16]; //input string  
unsigned char r_ready;  //flag for receive done 
unsigned char r_char;  //current character   
 
//TX empth ISR variables         
unsigned char t_index;  //current string index 
unsigned char t_buffer[16]; //output string  
unsigned char t_ready;  //flag for transmit done 
unsigned char t_char;  //current character 
    
//********************************************************** 
//timer 0 compare-match ISR, every 1 msec 
interrupt [TIM0_COMP] void timer0_overflow(void) 
{    
   time++; 
  //Decrement the three times if they are not already zero 
  if (time1>0) --time1; 
  if (time2>0)  --time2; 
} 
 
//********************************************************** 
//UART character-ready ISR 
interrupt [USART_RXC] void uart_rec(void) 
{ 
 r_char=UDR;    //get a char 
 UDR=r_char;    //then print it 
 //build the input string 
 if (r_char != '\r') r_buffer[r_index++]=r_char; 



 52

 else 
 { 
  putchar('\n');     //use putchar to avoid 
overwrite 
  r_buffer[r_index]=0x00;     //zero terminate 
  r_ready=1;        //signal cmd processor 
  UCSRB.7=0;       //stop rec ISR 
 } 
} 
 
/**********************************************************/ 
//UART xmit-empty ISR 
interrupt [USART_DRE] void uart_send(void) 
{ 
 t_char = t_buffer[++t_index]; 
 if (t_char == 0)   
 { 
  UCSRB.5=0; //kill isr  
  t_ready=1; //transmit done  
 } 
 else UDR = t_char ;     //send the char  
} 
/**********************************************************/  
//**********************************************************        
//Entry point and task scheduler loop 
void main(void) 
{   
  initialize(); 
   
  //main task scheduler loop -- never exits! 
  while(1) 
  {                                       
    ADCSRA.6 = 0x1;             //start the conversion 
   while (ADCSRA.6 == 0x1) {}  //wait until conversion finishes 
 
 printf("%d\r\n", ADCH);     //print ADC value to serial 
    puts_int(); 
    delay_ms(20);               //get next ADC conversion after 20 ms 
for timing issues 
    if (time1==0) task1(); 
//    if (time2==0) task2(); 
  }    
}  
   
//**********************************************************           
//Task 1   input a string and print it 
void task1(void)  
{ 
 
  time1=t1;      //reset the task timer  
  //print and get another serial string       
  if (r_ready )     
  { 
   //sscanf(r_buffer,"%d",&v); 
    //gets_int();      
  }      
}   



 53

  
//**********************************************************  
//Task 2  print the system time 
void task2(void)  
{ 
  time2=t2;      //reset the task timer 
  //sprintf(t_buffer,"%ld %d\n\r",time,v) ;   
  puts_int();  
}   
   
//**********************************************************  
//  -- non-blocking keyboard check initializes ISR-driven 
// receive. This routine merely sets up the ISR, which then 
//does all the work of getting a command. 
void gets_int(void)  
{ 
  r_ready=0; 
  r_index=0; 
  UCSRB.7=1;  // RX Complete Interrupt Enable 
} 
       
//**********************************************************  
//  -- nonblocking print: initializes ISR-driven 
// transmit. This routine merely sets up the ISR, then 
//send one character, The ISR does all the work.    
void puts_int(void)  
{ 
  t_ready=0; 
  t_index=0; 
  if (t_buffer[0]>0)  
  { 
   putchar(t_buffer[0]); 
   UCSRB.5=1; // USART Data Register Empty Interrupt Enable 
  } 
}      
 
//**********************************************************  
//Set it all up 
void initialize(void) 
{ 
  //serial setop for debugging using printf, etc.      
  UCSRB = 0x18 ; // Tx and Rx enable 
  UBRRL = 103 ;  // set baud rate to 9600 for single rate transmission 
and 16MHz crystal 
          
  //set up timer 0 
  TCCR0=0b00001011;  // prescalar to 64  and Clr-on-match  
  OCR0=249;       // 16MHz/64 prescalar * 250 counts -> set 
output compare register to 1 mSec 
  TIMSK=2;       // turn on timer 0 output compare-match 
interrupt 
   
  //init the task timers 
  time1=t1; 
  time2=t2;     
   
  r_ready=0; 



 54

  t_ready=1; 
 
  ADMUX = 0b01100000;  //ref = AVCC, ADC0 
  ADCSRA = 0b11000111; //prescaler = 128 => ADC speed 16MHz/128 = 128 
kHz 
 
  ADCSRA.6 = 0x1;            //do an ADC conversion to get out any bugs  
  while (ADCSRA.6 == 0b0) {}  
       
  //crank up the ISRs 
  #asm 
   sei 
  #endasm   
  
  gets_int(); 
} 
  



 55

Appendix C: MATLAB Script 
 
%=====clean up any leftover serial connections============== 
clear all 
try 
    fclose(instrfind) %close any bogus serial connections 
end 
  
%=====open a serial connection=============================== 
%set its rate to 9600 baud 
%SR830 terminator character is  (ACSII 13) 
%use fprintf(s,['m' mode]) to write 
%find which COM port you need!!!! 
s = serial('COM1','baudrate',9600,'terminator',13);  
fopen(s); 
disp('serial communication setup complete'); 
  
%defines and init values 
PLOT_SIZE = 200; 
CALIB_CONST = 20; 
vect = zeros(1, 200); 
figure(1); 
pulse = plot(vect); 
pulseTitle = title('Freq ~ BPM ~'); 
  
%infinite loop to continuously poll serial com and plot data 
while (1)      
    vect = vect([ 2:end 1 ]); %left shift data vector 
    temp = fscanf(s, '%d'); %get data from serial 
    if (temp <= 255) %only use values that aren't bogus, ADC values 
range from 0-255 
        vect(PLOT_SIZE) = 5*temp/255; %adjust ADC value from 0-5V 
         
        thres = (min(vect)+max(vect))/2; %calculate threshold 
        counti = 0; 
        for i=1:200 %count number of pulses that pass threshold in data 
vector 
           if (i > 1) 
               if (vect(i) >= thres && vect(i-1) <= thres) 
                   counti = counti + 1; 
               end                
           end 
        end 
        set(pulse, 'YData', vect); %update the plot with new data 
        drawnow; 
        pfreq = CALIB_CONST*counti/PLOT_SIZE; %get frequency from 
count/total size adjusted by constant 
        pbpm = 60*pfreq; 
        pTitle = sprintf('Freq ~ %5.2f Hz BPM ~ %d', pfreq, pbpm); 
%update frequency value and BPM value 
        set(pulseTitle, 'String', pTitle);         
    end 
end 

  



 56

Appendix D: Parts Cost List 
 
Part Name  Unit 

Cost 
Quantity Total 

Cost 
Ferrite Rod FRD12875  $1.50  1 $1.50  
Ferrite Rod FRD18750  $1.50  1 $1.50  
Threaded Ferrite Rod FRD18375  $3.00  1 $3.00  
Switch Reed SPST 1A 22‐388 A/T HE505  $1.30  1 $1.30  
Switch Reed SPST .5A 12‐33 A/T HE503  $0.72  1 $0.72  
Switch Reed SPST .5A 22‐33 A/T HE504  $2.34  1 $2.34  
Socket Adapter SOIC/8PIN .300 DIP A724  $5.96  2 $11.92  
PLL CLK Mult PI6C4511WE  $1.37  3 $4.11  
AVR MCU 2K 20MHZ ATTINY25‐20PU  $1.76  6 $10.56  
AVR MCU 32K ATMEGA324P‐20PU  $6.02  1 $6.02  
Oscillator 13.5 MHz 300‐7027‐1  $3.00  4 $12.00  
NAND Dual 2INP 497‐1343‐5  $0.50  2 $1.00  
XOR MC14070BCPGOS  $0.68  4 $2.72  
OP Amp Dual Audio LM833NNS  $0.94  3 $2.82  
OP Amp High Slew Rate LM318N  $1.40  5 $7.00  
Current Feedback Amp 100MHz 
LT1223CN8 

$5.38  5 $26.90  

Mod/Demod Balanced MC1496PGOS  $1.12  3 $3.36  
Mod/Demod Double Balanced NJM1496M  $1.65  2 $3.30  
Phase‐Lock Loop MCPWR 296‐2052‐5  $0.56  2 $1.12  
PLL W/VCO/Lock Detect 296‐9237‐5  $1.93  2 $3.86  
NAND Quad 2INP TC74AC00P  $0.46  2 $0.92  
6V Lithium Battery  $5.00  4 $20.00  
RS232 Level Shifter MAX232  $2.40  1 $2.40  
Diff Amp INA121  $5.00  1 $5.00  
Low Side Switch BUZ73N  $1.27  1 $1.27  
Diode 1N914  $0.01  1 $0.01  
Resistors  $0.00  50 $0.01  
Capacitors  $0.00  50 $0.01  
Wires and Solder  $0.00  100 $0.01  
Solder Board  $1.99  2 $3.98  
EKG Electrodes  $0.40  10 $4.00  

Subtotal      $134.75  
Shipping & Handling      $57.45 
Sales Tax Paid      $9.36 

Total      $201.56 

 
 
 


