
GCC VIDEO CODE FOR ATMEGA644 MICROCO�TROLLER

A Design Project Report

Presented to the Engineering Division of the Graduate School

of Cornell University

in Partial fulfillment of the Requirements for the Degree of

Master of Engineering (Electrical)

by

Shane J Pryor

Project Advisor: Bruce R Land

Degree Date: May 2009

Abstract

Master of Electrical Engineering Program

Cornell University

Design Project Report

Project Title: GCC Video Code for ATmega644 Microcontroller

Author: Shane J Pryor

Abstract: This project investigates designing C code for use on an Atmel

ATmega644 microcontroller. The code outputs an NTSC video signal for

display on a television. The project consists of taking a working

implementation of the code for a different compiler and microcontroller

and porting it to new hardware and software. In addition, the code is

changed to be more efficient with a GCC compiler by using fewer

hardware registers and taking fewer cycles to execute the same

functionality. The resolution of the screen is more than doubled because

of the additional on-chip memory of the new hardware. The result of this

project is black and white video output with a screen buffer for storing the

current output frame. The buffer is manipulated through methods

provided in the code on a per-frame basis. Several design choices are

presented, with justification for the design methods chosen based upon

different trade-offs. The results of the project are presented with a

comparison to the previous version and a comparison to the initial design

specifications. The project is designed for use by students in a senior level

design course in electrical and computer engineering as the foundation for

a two week lab to design a video game.

Report Approved by

Project Advisor: ___ Date: ____________

Executive Summary

 The overall goal of this project was to take video code written for the Atmel

ATmega32 microcontroller in the CodeVision AVR environment, and convert the code to

run on the ATmega644 microcontroller on the AVR Studio 4 environment using GCC.

This project consisted of a few major steps. First, the original code needed to be written

for the GCC compiler. The main points of conversion are syntax and usage of code in

both the C portion and the assembly portion. Different compilers interpret code in

different ways and this had to be accommodated. During the conversion process, there

were also parts of the code that were rewritten to be either be more efficient, including

improved register use, or more user-friendly to students than the previous version.

 Once the GCC version of the code was completed, the code was then converted to

run on the ATmega644. Each microcontroller has some difference in features available.

Most of the features that have the same functionality between microcontrollers have some

small differences in the design of the chip (such as register addresses of associated

hardware registers). All of these differences had to be discovered and accounted for

through reading of documentation for both chips.

 Finally, the last improvement upon the design was increasing the horizontal and

vertical resolution of the screen using the additional memory of the ATmega644

compared to the ATmega32. The vertical resolution was increased by 100% and the

horizontal resolution was increased by 12.5%. The choice of resolution was based upon

keeping the screen proportioned fairly well. There were different choices to outputting

the video signal. The selected method was to output through two pins of one of the ports

on the microcontroller. These two signals were combined and input to a black and white

television through component video input in the NTSC video format.

 To complete this project, several pieces of hardware and software had to be

learned. To program the ATmega32 used during the process of converting to GCC, an

AVR Dragon board was used. The Dragon is not capable of programming an

ATmega644, so an STK500 board was used for this. Both were programmed using the

ISP interface. In addition to the hardware, the GCC library had to be learned to be able to

implement the correct functionality.

Design Problem

Problem:

 The goal of this project is to design software running on an Atmel ATmega644

microcontroller to generate a video signal in the black and white NTSC format for input

on a component cable to a black and white television. The code needs to be able to

output each line of each frame in the timing specifications given by the format. It must

also store a buffer of the screen contents in memory. Access to this memory must be fast

enough so that output to the port of the microcontroller is not delayed by memory access

latency. Also, the buffer must be able to be updated on a per-frame basis. These updates

will come from some type of calculations while output is not occurring; therefore, there

must also be enough non-output time to do whatever calculations will be required by the

application using the video generation code. Finally, there must be some helper functions

to provide an interface for manipulating the screen buffer, so someone who uses the code

does not have to directly do it themselves.

Previous Work:

 A working version of the code has been previously written for the ATmega32 in

the CodeVision AVR programming environment by Bruce Land. This code has been

used as the basis for a lab in ECE 4760 where the students create a version of the old

video game Lunar Lander. The code provides functions to the students to interact with

the screen buffer so that they do not have to learn exactly how the code works in the short

period for the lab. The students must write the computations and use these methods to

produce a playable video game. Playable in this sense means the game is winnable and

the code the students write does not introduce video artifacts on the screen.

 The computations required for this lab involve polling an analog to digital

converter (ADC) input, and using the input to control the thrust of their landing vehicle

on the screen. Using this acceleration, the new velocity and position of the ship must be

calculated. Then, the old position of the ship must be erased from the buffer and the new

position of the ship must be drawn to the buffer. The code allows this kind of updating

on a per-frame basis to allow for a smooth continuous flight of the ship. There are

several terminating conditions to the game that must also be checked on each movement

of the ship: crashing into the side or top of the screen, crashing into the landscape if

velocity is too high or ship is angled wrong, or winning conditions. The code must allow

all of these computations while still outputting the signal.

 For spring 2009, Professor Land had planned to transition ECE 4760 to use the

ATmega644 with the AVR Studio 4 (GCC) programming environment. To be able to do

this, all of the code used for the labs in the class needed to be converted to run in this new

software environment with the new hardware. The lab that uses the most software is the

video generation lab. Also, the video generation lab requires precise timing to generate a

video signal that looks good on the screen.

Requirements:

 The requirements for this project were set at the beginning of the academic year

and have not evolved much since. These included making the code faster, making the

output buffer a larger resolution, and better register usage. The main questions were how

to best implement the requirements on the selected hardware / software combination. A

brief summary of the overall requirements is as follows:

• Meet NTSC video format for black and white analog television sets

• Store a buffer to output to the screen each frame at a higher resolution

• Allow fast manipulation of screen buffer through user-friendly methods

• Provide methods to perform fixed point arithmetic to save time / memory over

floating point operations

 These goals are broad and general and require several stages to complete each.

The details of each requirement are described more in detail in the rest of the report;

however, it is worth noting here that each of these portions differs in implementation in

some level of detail from the previous version of the code. This is due to several

different factors, including a different compiler, different features available on the

hardware, and different algorithms.

Range of Solutions / Solution Choices

Overall Approach:

 The approach to this project was to take the available code and use that as a base

to go forward. The first logical step was to take the code and convert it to compile using

the GNU Compiler Collection (GCC) compiler for C code running on Atmel

microcontrollers. Afterwards, the methods that were changed for optimization were

rewritten. While this portion of the project could have occurred at any of the stages, it

seemed most appropriate to perform this portion at this stage. It seemed somewhat

pointless to port over code to new hardware that was not the final code to be used. If the

original code had been ported, the new algorithms would have had to have been written

on the new hardware anyway, so this saved some time in the long run. Finally, all of the

work associated with the new hardware was done last. The overall approach was fairly

straightforward with few design choices.

Video Generation:

 The analog video signal had to be produced in the NTSC video format to be able

to be used on any standard television in North America. However, there are several

design choices that went into this portion of the project. The output of the screen could

be in many different formats, so the decision had to be made what the most appropriate

output would be. As a brief summary, basically the microcontroller needs to be able to

generate a synch signal to synchronize each line and frame, and also a video signal that

contains the contents of the screen buffer to place on the screen. The synch signal has to

occur at regular intervals to time each line, but the video data can be output as long as

there is still time remaining on the line before the next horizontal sync.

 This presents a tradeoff between height and width considerations since the new

hardware has double the RAM to store the video buffer. The data can be output to the

screen as fast as the microcontroller can move each individual bit to the output port.

However, the mega644 has a USART that is double-buffered to provide serial output. A

possibility for output was to output using the USART instead; when properly configured

it could output somewhat faster than setting the port manually. Another method of

increasing the output speed was simply to increase the frequency of the clock used. The

maximum frequency that the mega644 can run is 20 MHz. This would provide 25%

faster output than the 16 MHz clock generally used with the ATmega microcontrollers in

the digital lab.

 However, after consideration, neither of these techniques was used. This is

because the screen size was set at 200 lines in the vertical direction and 144 individual

values in the horizontal direction. Outputting the 144 values using the 16 MHz clock

through PORT D provided an image that fit nicely from one side of the screen to the

other. If the output speed was increased, then the image would start to be too narrow. It

would be useful to output faster if the required effect was a widescreen output for

something like a 16:9 aspect ratio. In this case, the screen buffer could be altered to be

shorter and wider.

 The size of the screen buffer needed to be chosen because the ATmega644 has

double the RAM of the ATmega32; therefore, the screen buffer can increase in size once

the code runs on the 644. The original size of the buffer was 100 vertical lines by 128

horizontal values. The 100 vertical lines would be displayed twice each – making it

appear twice as high as the data actually was; therefore, doubling the number of vertical

lines seemed like an intuitive choice for the new hardware. In addition, there was room

to expand the screen by the extra 16 values (2 bytes), so this decision was also made. It

certainly was not necessary to do this, but there was still enough leftover memory that the

screen could be widened with enough free RAM remaining for the students to implement

their video game in ECE 4760. Making this change was dependant on modified logic.

Methods:

 Most of the design in the other methods came in the choice on whether to write

the methods in assembly or C. This design choice was made as the project went along, as

it turned out that the GCC compiler was efficient enough that writing the code in C was

not much less efficient than writing it in assembler. In addition, most methods performed

some calculations based upon input then manipulated the screen buffer; therefore, they

needed to be as efficient as possible to save cycles.

Design Documentation

Overview:

 The next several pages will contain the steps to completing the project and the

implementation details of each step. The first topic discussed will be setting up the

system at each stage of the design. This is followed by a description of the hardware

digital to analog converter (DAC) built to produce the voltage levels required for NTSC.

Next, a description of how the microcontroller can be used to produce an NTSC signal

will be covered. Finally, the remaining software methods for editing the video memory

and performing fixed point arithmetic are discussed.

Setting up the Hardware and Software:

 For this project, a few couple-hundred page manuals had to be read – including

those for the AVR GCC library, the mega32, mega644, and a guide provided by Atmel

with helpful hints for upgrading / transitioning between their devices. Most of this

documentation had to be read in a fair level of detail because there were a lot of nuances

to learn about why a particular line of code did not perform the way expected or why a

hardware device was not programming.

 The first thing I did to start this project was download the software environment

and compiler that I would be using. The software environment was AVR Studio 4 with

the WinAVR GCC compiler. This compiler is the GCC compiler meant for Atmel

microcontrollers. It provides libraries that define all of the hardware registers, interrupts,

etc. for each different microcontroller. The compiler syntax and libraries are pretty easy

and intuitive to use once the documentation has been read.

 From taking ECE 476 in spring 2008, I had a pretty decent working knowledge of

how the various features of the mega32 worked, as well as a good understanding of how

to write C code for it in the CodeVision AVR. For the final project for this class, my

partner and I built a small protoboard to hold a mega32 microcontroller, port connections

available to solder wires, programming pins, 16 MHz crystal, and LED hooked to one

port pin for test purposes.[1] The programming pins used the six pin ISP programming

interface. This is a standard programming interface for the Atmel microcontrollers. It is

utilized on several, if not all, programming boards they produce.

 A cheap, easy-to-use programmer that Atmel recently introduced is the AVR

Dragon. The Dragon is capable of programming through a few different programming

interfaces, including the six pin ISP. After downloading and installing the software, I

needed to set-up my project settings to specify my hardware choices. The Dragon

requires a USB port to be powered and program another chip. Once everything was

configured, I could see the mega32 through the AVR Studio interface; however, I was

unable to program the chip. After a good bit of debugging, I discovered that the

programming pin that required a connection to Vcc was not being supplied the required

voltage from the Dragon. Running a wire from Vcc supply on the protoboard to the

programming pin instantly solved the problem.

 Once the project was ready to be converted to the mega644, a different

programmer needed to be used because the Dragon is not capable of programming the

mega644. For this task, an STK500 development board was used. This board requires a

separate power supply and a serial cable interface to the PC; however, it is capable of

programming many more chips than the Dragon and has other additional features. This

switch took a little while to get everything working correctly as well. The board has

several jumpers that need to be correct to obtain the correct settings. This includes the

jumper to use an external clock source, rather than the internal one of the mega644. The

mega644 I was using was brand-new, meaning the fuses of the chip were set to the

factory standard. These also needed to be changed to use the external clock source, and

the ISP programming interface on the STK500. Finally, the STK500 I was using was

also brand-new, so it required a firmware upgrade to be brought up to date.

DAC for Video Output:

 A DAC is required to convert the output voltage of the microcontroller to the

three voltage levels required by the synch, black color, and white color signals to the

television. A schematic of this circuit is provided in Appendix B. This circuit is a simple

voltage divider circuit. The sync signal should be ~0V, the black signal should be ~0.3V,

and the white signal should be ~1.0V. The voltages are close to these values with the

resistors chosen to be 75 ohms to ground, 330 ohms from video output, and 1000 ohms

from sync output. Voltage from the outputs is 5.0V.

Video Generation with Memory:

 Video generation follows the NTSC analog television format with a few small

changes. An NTSC frame has 525 horizontal lines with two fields of 262.5 lines that are

interlaced at 60 Hz each. In this version of the code, one field 262 lines is output per

frame at 60 Hz. During these 262 lines, 200 have video output from video memory with

the associated sync signal, and the other 62 just have the sync signal for each line (termed

the vertical blanking interval). At the appropriate point, sync is inverted to signal it is the

end of a frame. The current line number is kept so that each part of the functionality can

be performed at the correct time. Also, this allows each line to be output based upon the

line count. Each line is stored as 18 bytes of memory, for a total of 3600 bytes of

memory used for video.

 The output of the signal is very time critical. Each line must start at very

regularly spaced intervals or the picture will be severely affected. The mega644 has

internal hardware counters that can count time to the resolution of the clock speed. For

this application, the amount of time between beginning successive lines is defined by the

NTSC standard. With a 16 MHz clock, the amount of time for a line is equal to 1018

clock cycles since 1018 cycles per line multiplied by 262 lines per frame multiplied by 60

frames per second is very close to 16 MHz. To have the microcontroller perform these

functions every 1018 cycles, one of the hardware timers is set to enter an interrupt service

routine (ISR) every time this number of cycles is reached. Since the microcontroller will

finish the current instruction before moving to the ISR, the main routine from which the

ISR is entered should be in sleep mode so that the ISR is entered uniformly each time. If

the entry is not uniform, each line will begin at a slightly different location on the screen

which makes the output jitter horizontally around 1% of where it should be.

 Once the interrupt is entered in uniform time, the actual functions of the ISR can

be written. For each line, the line count is updated. If the line count reaches 263, it is

reset to zero. The sync output is stored in two variables, one for the sync at the beginning

of the interrupt and one for right before video output starts. The output port for sync is

assigned these values at the appropriate locations. The sync values stay the same, except

for the lines where the inverted sync is required. For the vertical blanking period, this is

all the interrupt does; however, if it is a line number where video output occurs, then a

few more steps need to be taken. First, a pointer to the location in memory in the screen

array where output will start for this line is computed. Then, a nine microsecond delay is

introduced. This is because the NTSC signal actually has space built in that is off the

screen – this must be accounted for so that video output does not start before the edge of

the screen. Finally, each byte is sent out the video port from memory.

 Video data is brought from memory to output in a few stages. The compiler

recognizes a few pairs of registers as 16 bit address pointers. One such pair is registers

26 and 27. The address where the data starts is loaded into these two registers. Then, a

data load of the first byte is performed to register four and the address pointer is

incremented by one. A macro is called to output this byte one bit at a time through the

port pin. The macro works by taking each successive bit and putting it in a register that is

then designated to be output to the address for port D. This procedure is repeated for

each of the 18 bytes to be output.

There are a couple things to note about this version of the code against the

original version. First, the ISR was changed to use fewer statements and fewer registers.

This is a result of the realization that one of the assembler commands was redundant for

each bit and only needed to be performed once. With the additional computation cycles,

each byte could successively be loaded into the same register instead of loading all the

bytes into separate registers initially. Second, the macro to output each bit contains a nop

for each bit. The reason for this is so output for each pixel is widened some so a line will

fill the entire width of the screen nicely. Originally, each bit had two nops because the

screen width had been 16 bytes instead of the 18 it has now.

Buffer Manipulation:

 Once there is a buffer for video memory, and a method to output to the television,

the user needs a way to edit the memory to place their contents in it. There are a few

helper methods written for this purpose. These methods already existed in the original

version of the video code; however, several of them were written in assembler. This was

to decrease the number of instructions needed to perform them since the CodeVision

compiler was not extremely efficient. It was determined that the optimization on the

GCC compiler is good enough so that writing these methods in C instead of assembler is

acceptable. C code is preferable in this context because it is easier to understand for

someone who is not familiar with how the code works. It is also much easier to edit if

additional / different functionality is required in the future. The user interface for the

video methods is described in detail in Appendix A.

 The logical starting point for this code is a method that alters one pixel in the

buffer at a time. This method is video_pt. Since the video memory is stored as an array

of bytes, each byte in the memory contains eight horizontal pixels. To access one pixel,

first the correct byte must be accessed, and then within this byte one bit is altered. To

compute the correct byte index, the given (x, y) pixel coordinates are converted. Since

each line of video output has 18 bytes, the vertical (y) value is effectively multiplied by

18 to get the correct line. Then, the horizontal value (x) is effectively divided by 8 and

summed with the correct line to get the correct byte. This byte is then set using the

appropriate mask for the pixel location. The masks are a set of eight bytes, where each

mask has one bit high and the rest low. For instance, if the user wants to change the first

pixel to be on, the byte in the video buffer is set to be the logical OR of the byte and the

first mask. This ensures that the first pixel is white, while the rest remain the same.

Two additional methods can be implemented based upon what was just discussed.

First, a line drawing method can be implemented by using several calls to this point

method. Based upon the slope of the line, and it being quantized into pixels, these pixels

can be stepped through and drawn with the point method. The algorithm is taken from

Procedural Elements of Computer Graphics by David Rodgers. Second, a method can be

constructed to tell the user what the current value of the video memory is for a particular

pixel. The byte containing the pixel can be indexed in the same fashion as in the point

drawing method. Then, the individual bit value can be masked as in the point method

and the resulting value is returned.

 The final set of methods provided deal with outputting characters to the screen.

There are two sets of characters that can be output, a 3x5 pixel (small) set and a 5x7 pixel

(large) set. For each of these sets, the user can either output a single character at a

provided location or a string of characters given a reference pointer. For small

characters, only the Arabic numerals, English capital letters, colon, equals, and space are

provided. The large character set has all 128 ASCII characters defined. These character

sets were already defined in the code that was being worked with. [2] In this same

fashion, any block of pixels defining a unique character could be added, as long as there

is sufficient program memory. Character sets are stored in program memory because

there is not sufficient memory in RAM.

 To draw any of these characters, the user provides the location and the index in

the respective array that they wish to draw. The location in turn gives the location of the

first byte to change based upon the above methodology. Then, for each of seven bytes,

the code reads a byte from program memory and calls video_pt for whether each bit in

that character map should be turned on or off (using a mask). Each large character is five

bits wide, so five calls to video_pt must be made per byte. For small characters, two

bitmaps of each character are stored. In turn, the method requires that the user specify a

horizontal location that is a multiple of four. While this restricts location, it allows direct

manipulation of the screen buffer from the character method, rather than calling video_pt

or reproducing the same functionality. This saves cycles and allows more edits per

frame. To edit the buffer, each of the five bytes are read out, and then the appropriate

four bits are changed for each buffer byte by masking the input horizontal location to

determine whether the first set should be used or the second.

Fixed Point:

 A fixed point arithmetic system was implemented to allow users to prevent using

floating point notation. While there are intrinsic tradeoffs between the two arithmetic

systems in speed, accuracy, and range of numbers that can be represented, speed is really

the only important factor in this setting. With this in mind, there are two macros defined

to convert between integer and fixed point numbers and two macros to convert between

floating point and fixed point numbers. These conversions are simply a shift, a multiply,

etc. as the appropriate case may be. Fixed point numbers were chosen to be 16 bits,

where 8 bits represent the whole number portion and 8 bits represent the decimal portion.

This assignment is arbitrary as the decimal place can be moved anywhere along the 16

bits, as long as the conversion macros are updated appropriately.

 The addition and subtraction operations in fixed point can be performed the same

as an integer operation. The multiplication operation is a little trickier. Since the

mega644 is an 8-bit hardware, fixed point multiplication can be thought of as four byte-

wise multiplications. First, the least significant bytes are multiplied, then pair-wise least

and most significant for each number, then finally the most significant. These are

summed with the correct shifting. The middle two bytes are the final result. This routine

had already been written for the mega644. [3]

System Test Results / Conclusions

Calculations:

 The amount of time that computation can be done between displaying frames is

based upon the amount of vertical blanking time. That is, the video code outputs during

video lines 30-230 of the 262 available for a field in the NTSC format. Therefore, this

leaves the remaining lines free to do computations with the exception of the time to

output the synchronization pulse and updating the line count. This time can be estimated

as 60 lines x 63.5 uSec / line x 16 cycles / uSec = 60960 cycles. If this limit is exceeded

the video output will be late, causing video artifacts to appear. This number of cycles is

difficult to judge based upon written code; therefore, a brief summary of how many times

individual methods can be called per frame is given as a guide to performance.

• Draw a point: ~550 per frame

• Draw a line, 1 pixel long: ~170 per frame; 10 pixels long: ~35 total lines per

frame

• Small characters, individually: ~315 per frame; in 10 character strings: ~270 total

characters per frame

• Large characters, individually: ~12 per frame; a string of ~14 per frame

 These numbers direct relate to how many calculations are performed and how

many times values in program memory must be fetched. For drawing a point, the byte

index to be altered in the buffer is computed based upon the given (x,y) coordinates. To

draw a line, a line drawing algorithm is implemented which calls the video point function

multiple times. For each line, there is the same overhead, but the routine to determine

each point takes more time than the overhead cost. Therefore, more total pixels can be

altered per frame when shorter line segments are drawn.

 In the case of characters, they need to fetch the set of bytes from program

memory. Obviously larger characters must fetch more than the small characters. In

addition, the appropriate manipulations to the screen buffer must be made. For instance,

for every small character, 5 manipulations of the buffer are made directly, and for large

characters 35 calls to draw a point are made.

 These numbers were determined by trial and error on how many times the

particular method could be called before visible artifacts appeared on the screen. This

generally would take the form of the top left corner of the screen beginning to warp to the

right. This makes sense because the timing constraints for starting the first few lines

were not being met, so they were starting late. Eventually, if they started too late, the

signal would turn to something similar to noise.

 These numbers show that the performance of the code is faster, or in some cases

equivalent to, the original version. The original version could draw roughly 500 points in

a frame, 500 points worth of lines, 200 3x5 characters, and 16 5x7 characters. [4] The

point and small character drawing methods have become more efficient. The number

cited for lines is for drawing a lot of long lines in the original version. This number

scales back some as the number of function calls increases, as it does in the new version.

Slightly fewer large characters can be drawn per frame in this version.

Bouncing Ball:

 The first basic test of updating the screen buffer and fixed point calculations came

with a simple bouncing ball. The buffer is updated each frame by a call to the video

point drawing function to erase the ball, calculating the new position of the ball, and

drawing the ball at the new position. Fixed point numbers of x and y position and

velocity are stored. There is also a fixed point value stored for gravity and drag. The ball

starts with an initial x and y position and velocity. On each frame, the value of velocity is

changed in the x direction by drag and in the y direction by drag and gravity. These

updates are performed by using the multfix method to calculate the fraction of velocity to

subtract in each direction on the current frame. To output the ball, its coordinates must

be converted to integer values using the macros.

Pong:

 To test the code more fully, a couple video games were created using it. The first

was a version of the game pong. The game consists of a boundary that the ball must stay

inside, the ball itself, the paddles the users can control, and a score for each player. The

players can move their paddles using two buttons provided to each of them – one of the

buttons makes their paddle go up and the other button makes their paddle go down.

These buttons are polled on each frame. In addition, the position of the ball is updated on

each frame based on a constant velocity. Also, the score of each player is updated if the

ball touches the boundary behind either player's paddle. If the ball touches a paddle, it

reverses velocity in both directions. The intersecting conditions are tested by a call to

video set each frame. All of the objects on the screen are erased and redrawn each frame,

with the exception of the boundary box.

Tic-Tac-Toe:

 The other game that was designed to test the code was tic-tac-toe. Initially in this

game, a grid would be drawn to the middle of the screen that has nine spaces to place an

X or O. Above the grid it would print "Player 1's Turn". The player could input their

choice of placement by first giving the row and then the column he or she wanted. Then,

the choice would appear in the appropriate grid and the new text would read "Player 2's

Turn". After each turn, the winning condition of having three marks in a row would be

tested for that player. If it was met, the text would change to "Player 1 Wins!", for

example.

Conclusions:

 The expectations at the beginning of the project were that everything could be

implemented correctly and the buffer output methods could operate as fast as the original

version of the code. To that end, the goals of performance in this project were met. In

addition, the methods written could be called a comparable number of times (in some

cases more times) in the allotted time to the original version of the code running in the

CodeVision AVR environment. By the beginning of the spring semester, a working

implementation of the code had been tested and was ready for use in ECE 4760. This

semester, students successfully used the code during the course without problems. For

final projects, some student groups are altering the code to do things such as color NTSC,

other video games using additional hardware, etc.

 This project provided a large amount of knowledge about programming for a real-

time system that must meet timing constraints. In this context, it also provided a strong

foundation for understanding the features available on current microcontrollers, and how

these devices can be applied to so many different applications, in this case a video

system. In addition, using different programmers and different microcontrollers gave a

little bit of exposure to different available methods to work with programming these

devices. Additionally, reading the data sheets for these devices provided good experience

being able to read about the functionality of the device and then actually be able to go

and implement it. Overall, the project was a success, with few required design changes

along the way, and with a wealth of knowledge gained.

References

1. http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2008/sjp45_rxy2/sjp4

5_rxy2/index.html

2. http://instruct1.cit.cornell.edu/courses/ee476/video/video2008/VidFixEx2.c

3. http://instruct1.cit.cornell.edu/courses/ee476/labs/s2009/lab4code/multASM.S

4. http://instruct1.cit.cornell.edu/courses/ee476/video/indexCodeVision.html

Appendix A: Software Manual

The following is a brief summary of the functionality provided to alter video memory and

perform fixed point arithmetic and conversions:

void video_pt(char x, char y, char c):

 Draws a point at pixel position (x, y) with value equal to c, where:

 {0 ≤ x ≤ 143, 0 ≤ y ≤ 199} and c = {0 for black, 1 for white, 2 for invert}

void video_line(char x1, char y1, char x2, char y2, char c):

 Draws a line at pixel position (x1, y1) to (x2, y2) with value equal to c, where:

 {0 ≤ x1,2 ≤ 143, 0 ≤ y1,2 ≤ 199} and c = {0 for black, 1 for white, 2 for invert}

void put_char(char x, char y, char c):

 Draws a 5x7 character c at pixel position (x, y) where:

 {0 ≤ x ≤ 143, 0 ≤ y ≤ 199} and c = {ascii value of desired character}

 - note that the location of x and y should not specify that part of the character is

 drawn outside the screen buffer.

void video_puts(char x, char y, char* str):

 Draws a string of 5x7 characters referenced by str at pixel position (x, y) where:

 {0 ≤ x ≤ 143, 0 ≤ y ≤ 199} and str = {memory address of beginning of string}

 - note that the location of x and y should not specify that part of the character is

 drawn outside the screen buffer.

void video_smallchar(char x, char y, char c):

 Draws a 3x5 character c at pixel position (x, y) where:

 {0 ≤ x ≤ 143, 0 ≤ y ≤ 199} and c = {number or capital letter in smallbitmap array}

 - note that the location of x and y should not specify that part of the character is

 drawn outside the screen buffer and x must be divisible by 4.

void video_putsmalls(char x, char y, char* str):

 Draws a string of 3x5 characters referenced by str at pixel position (x, y) where:

 {0 ≤ x ≤ 143, 0 ≤ y ≤ 199} and str = {memory address of beginning of string}

 - note that the location of x and y should not specify that part of the character is

 drawn outside the screen buffer and x must be divisible by 4.

char video_set(char x, char y):

 Returns the value of the video memory at pixel position (x, y), where:

 {0 ≤ x ≤ 143, 0 ≤ y ≤ 199}

int multfix(int a, int b):

 Returns the 16 bit result of multiplying two 16 bit fixed point numbers.

#define int2fix(a):

 Converts an 8 bit character whole number to a 16 bit fixed point number.

#define fix2int(a):

 Converts a 16 bit fixed point number to an 8 bit integer.

#define float2fix(a):

 Converts a single precision floating point number to a 16 bit fixed point number.

#define fix2float(a):

 Converts a 16 bit fixed point number to a single precision floating point number.

Appendix B: Pictures / Screenshots

Figure 1: Video DAC

Figure 2: GCC video code running on ATmega32 with AVR Dragon programmer.

Figure 3: GCC video code running on ATmega644 with STK500 programmer.

Figure 4: Close-up of screen with ATmega32 code running.

Figure 5: Close-up of screen with ATmega644 code running.

Appendix C: C Code

// Black and white NTSC video generation with fixed point animation
// D.6 is sync: 330 ohm + diode to 75 ohm resistor
// D.5 is video: 1000 ohm + diode to 75 ohm resistor

#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <stdlib.h>
#include <math.h>
#include <util/delay.h>
#include <avr/sleep.h>

// identify the assembler routine to C
extern int multfix(int a, int b);

//cycles = 63.625 * 16 Note NTSC is 63.55
//but this line duration makes each frame exactly 1/60 sec
//which is nice for keeping a real-time clock
#define lineTime 1018
#define ScreenTop 30
#define ScreenBot 230

//sync
volatile char syncON, syncOFF;

//line number in the current frame
volatile int LineCount;

//200v x 144h - screen buffer and pointer
char screen[3600];
int* screenindex;

//One bit masks
char pos[8] = {0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01};

//================================
//3x5 font numbers, then letters
//packed two per definition for fast
//copy to the screen at x-position divisible by 4
prog_char smallbitmap[39][5] = {
 //0
 {0b11101110,
 0b10101010,
 0b10101010,
 0b10101010,
 0b11101110},
 //1
 {0b01000100,
 0b11001100,
 0b01000100,
 0b01000100,
 0b11101110},
 //2
 {0b11101110,

 0b00100010,
 0b11101110,
 0b10001000,
 0b11101110},
 //3
 {0b11101110,
 0b00100010,
 0b11101110,
 0b00100010,
 0b11101110},
 //4
 {0b10101010,
 0b10101010,
 0b11101110,
 0b00100010,
 0b00100010},
 //5
 {0b11101110,
 0b10001000,
 0b11101110,
 0b00100010,
 0b11101110},
 //6
 {0b11001100,
 0b10001000,
 0b11101110,
 0b10101010,
 0b11101110},
 //7
 {0b11101110,
 0b00100010,
 0b01000100,
 0b10001000,
 0b10001000},
 //8
 {0b11101110,
 0b10101010,
 0b11101110,
 0b10101010,
 0b11101110},
 //9
 {0b11101110,
 0b10101010,
 0b11101110,
 0b00100010,
 0b01100110},
 //:
 {0b00000000,
 0b01000100,
 0b00000000,
 0b01000100,
 0b00000000},
 //=
 {0b00000000,
 0b11101110,
 0b00000000,
 0b11101110,

 0b00000000},
 //blank
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //A
 {0b11101110,
 0b10101010,
 0b11101110,
 0b10101010,
 0b10101010},
 //B
 {0b11001100,
 0b10101010,
 0b11101110,
 0b10101010,
 0b11001100},
 //C
 {0b11101110,
 0b10001000,
 0b10001000,
 0b10001000,
 0b11101110},
 //D
 {0b11001100,
 0b10101010,
 0b10101010,
 0b10101010,
 0b11001100},
 //E
 {0b11101110,
 0b10001000,
 0b11101110,
 0b10001000,
 0b11101110},
 //F
 {0b11101110,
 0b10001000,
 0b11101110,
 0b10001000,
 0b10001000},
 //G
 {0b11101110,
 0b10001000,
 0b10001000,
 0b10101010,
 0b11101110},
 //H
 {0b10101010,
 0b10101010,
 0b11101110,
 0b10101010,
 0b10101010},
 //I
 {0b11101110,

 0b01000100,
 0b01000100,
 0b01000100,
 0b11101110},
 //J
 {0b00100010,
 0b00100010,
 0b00100010,
 0b10101010,
 0b11101110},
 //K
 {0b10001000,
 0b10101010,
 0b11001100,
 0b11001100,
 0b10101010},
 //L
 {0b10001000,
 0b10001000,
 0b10001000,
 0b10001000,
 0b11101110},
 //M
 {0b10101010,
 0b11101110,
 0b11101110,
 0b10101010,
 0b10101010},
 //N
 {0b00000000,
 0b11001100,
 0b10101010,
 0b10101010,
 0b10101010},
 //O
 {0b01000100,
 0b10101010,
 0b10101010,
 0b10101010,
 0b01000100},
 //P
 {0b11101110,
 0b10101010,
 0b11101110,
 0b10001000,
 0b10001000},
 //Q
 {0b01000100,
 0b10101010,
 0b10101010,
 0b11101110,
 0b01100110},
 //R
 {0b11101110,
 0b10101010,
 0b11001100,
 0b11101110,

 0b10101010},
 //S
 {0b11101110,
 0b10001000,
 0b11101110,
 0b00100010,
 0b11101110},
 //T
 {0b11101110,
 0b01000100,
 0b01000100,
 0b01000100,
 0b01000100},
 //U
 {0b10101010,
 0b10101010,
 0b10101010,
 0b10101010,
 0b11101110},
 //V
 {0b10101010,
 0b10101010,
 0b10101010,
 0b10101010,
 0b01000100},
 //W
 {0b10101010,
 0b10101010,
 0b11101110,
 0b11101110,
 0b10101010},
 //X
 {0b00000000,
 0b10101010,
 0b01000100,
 0b01000100,
 0b10101010},
 //Y
 {0b10101010,
 0b10101010,
 0b01000100,
 0b01000100,
 0b01000100},
 //Z
 {0b11101110,
 0b00100010,
 0b01000100,
 0b10001000,
 0b11101110}
};

//===
// Full ascii 5x7 char set
// Designed by: David Perez de la Cruz and Ed Lau
// see:
http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2005/dp93
/index.html

prog_char ascii[128][7] = {
 //0
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //1
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //2
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //3
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //4
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //5
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //6
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,

 0b00000000},
 //7
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //8
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //9
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //10
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //11
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //12
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //13
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},

 //14
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //15
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //16
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //17
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //18
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //19
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //20
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //21

 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //22
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //23
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //24
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //25
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //26
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //27
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //28
 {0b00000000,

 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //29
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //30
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //31
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //32 Space
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //33 Exclamation !
 {0b01100000,
 0b01100000,
 0b01100000,
 0b01100000,
 0b00000000,
 0b00000000,
 0b01100000},
 //34 Quotes "
 {0b01010000,
 0b01010000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //35 Number #
 {0b00000000,
 0b01010000,

 0b11111000,
 0b01010000,
 0b11111000,
 0b01010000,
 0b00000000},
 //36 Dollars $
 {0b01110000,
 0b10100000,
 0b10100000,
 0b01110000,
 0b00101000,
 0b00101000,
 0b01110000},
 //37 Percent %
 {0b01000000,
 0b10101000,
 0b01010000,
 0b00100000,
 0b01010000,
 0b10101000,
 0b00010000},
 //38 Ampersand &
 {0b00100000,
 0b01010000,
 0b10100000,
 0b01000000,
 0b10101000,
 0b10010000,
 0b01101000},
 //39 Single Quote '
 {0b01000000,
 0b01000000,
 0b01000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //40 Left Parenthesis (
 {0b00010000,
 0b00100000,
 0b01000000,
 0b01000000,
 0b01000000,
 0b00100000,
 0b00010000},
 //41 Right Parenthesis)
 {0b01000000,
 0b00100000,
 0b00010000,
 0b00010000,
 0b00010000,
 0b00100000,
 0b01000000},
 //42 Star *
 {0b00010000,
 0b00111000,
 0b00010000,

 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //43 Plus +
 {0b00000000,
 0b00100000,
 0b00100000,
 0b11111000,
 0b00100000,
 0b00100000,
 0b00000000},
 //44 Comma ,
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00010000,
 0b00010000},
 //45 Minus -
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b11111000,
 0b00000000,
 0b00000000},
 //46 Period .
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00010000},
 // 47 Backslash /
 {0b00000000,
 0b00001000,
 0b00010000,
 0b00100000,
 0b01000000,
 0b10000000,
 0b00000000},
 // 48 Zero
 {0b01110000,
 0b10001000,
 0b10011000,
 0b10101000,
 0b11001000,
 0b10001000,
 0b01110000},
 //49 One
 {0b00100000,
 0b01100000,
 0b00100000,
 0b00100000,

 0b00100000,
 0b00100000,
 0b01110000},
 //50 Two
 {0b01110000,
 0b10001000,
 0b00001000,
 0b00010000,
 0b00100000,
 0b01000000,
 0b11111000},
 //51 Three
 {0b11111000,
 0b00010000,
 0b00100000,
 0b00010000,
 0b00001000,
 0b10001000,
 0b01110000},
 //52 Four
 {0b00010000,
 0b00110000,
 0b01010000,
 0b10010000,
 0b11111000,
 0b00010000,
 0b00010000},
 //53 Five
 {0b11111000,
 0b10000000,
 0b11110000,
 0b00001000,
 0b00001000,
 0b10001000,
 0b01110000},
 //54 Six
 {0b01000000,
 0b10000000,
 0b10000000,
 0b11110000,
 0b10001000,
 0b10001000,
 0b01110000},
 //55 Seven
 {0b11111000,
 0b00001000,
 0b00010000,
 0b00100000,
 0b01000000,
 0b10000000,
 0b10000000},
 //56 Eight
 {0b01110000,
 0b10001000,
 0b10001000,
 0b01110000,
 0b10001000,

 0b10001000,
 0b01110000},
 //57 Nine
 {0b01110000,
 0b10001000,
 0b10001000,
 0b01111000,
 0b00001000,
 0b00001000,
 0b00010000},
 //58 :
 {0b00000000,
 0b00000000,
 0b00100000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00100000},
 //59 ;
 {0b00000000,
 0b00000000,
 0b00100000,
 0b00000000,
 0b00000000,
 0b00100000,
 0b00100000},
 //60 <
 {0b00000000,
 0b00011000,
 0b01100000,
 0b10000000,
 0b01100000,
 0b00011000,
 0b00000000},
 //61 =
 {0b00000000,
 0b00000000,
 0b01111000,
 0b00000000,
 0b01111000,
 0b00000000,
 0b00000000},
 //62 >
 {0b00000000,
 0b11000000,
 0b00110000,
 0b00001000,
 0b00110000,
 0b11000000,
 0b00000000},
 //63 ?
 {0b00110000,
 0b01001000,
 0b00010000,
 0b00100000,
 0b00100000,
 0b00000000,

 0b00100000},
 //64 @
 {0b01110000,
 0b10001000,
 0b10111000,
 0b10101000,
 0b10010000,
 0b10001000,
 0b01110000},
 //65 A
 {0b01110000,
 0b10001000,
 0b10001000,
 0b10001000,
 0b11111000,
 0b10001000,
 0b10001000},
 //B
 {0b11110000,
 0b10001000,
 0b10001000,
 0b11110000,
 0b10001000,
 0b10001000,
 0b11110000},
 //C
 {0b01110000,
 0b10001000,
 0b10000000,
 0b10000000,
 0b10000000,
 0b10001000,
 0b01110000},
 //D
 {0b11110000,
 0b10001000,
 0b10001000,
 0b10001000,
 0b10001000,
 0b10001000,
 0b11110000},
 //E
 {0b11111000,
 0b10000000,
 0b10000000,
 0b11111000,
 0b10000000,
 0b10000000,
 0b11111000},
 //F
 {0b11111000,
 0b10000000,
 0b10000000,
 0b11111000,
 0b10000000,
 0b10000000,
 0b10000000},

 //G
 {0b01110000,
 0b10001000,
 0b10000000,
 0b10011000,
 0b10001000,
 0b10001000,
 0b01110000},
 //H
 {0b10001000,
 0b10001000,
 0b10001000,
 0b11111000,
 0b10001000,
 0b10001000,
 0b10001000},
 //I
 {0b01110000,
 0b00100000,
 0b00100000,
 0b00100000,
 0b00100000,
 0b00100000,
 0b01110000},
 //J
 {0b00111000,
 0b00010000,
 0b00010000,
 0b00010000,
 0b00010000,
 0b10010000,
 0b01100000},
 //K
 {0b10001000,
 0b10010000,
 0b10100000,
 0b11000000,
 0b10100000,
 0b10010000,
 0b10001000},
 //L
 {0b10000000,
 0b10000000,
 0b10000000,
 0b10000000,
 0b10000000,
 0b10000000,
 0b11111000},
 //M
 {0b10001000,
 0b11011000,
 0b10101000,
 0b10101000,
 0b10001000,
 0b10001000,
 0b10001000},
 //N

 {0b10001000,
 0b10001000,
 0b11001000,
 0b10101000,
 0b10011000,
 0b10001000,
 0b10001000},
 //O
 {0b01110000,
 0b10001000,
 0b10001000,
 0b10001000,
 0b10001000,
 0b10001000,
 0b01110000},
 //P
 {0b11110000,
 0b10001000,
 0b10001000,
 0b11110000,
 0b10000000,
 0b10000000,
 0b10000000},
 //Q
 {0b01110000,
 0b10001000,
 0b10001000,
 0b10001000,
 0b10101000,
 0b10010000,
 0b01101000},
 //R
 {0b11110000,
 0b10001000,
 0b10001000,
 0b11110000,
 0b10100000,
 0b10010000,
 0b10001000},
 //S
 {0b01111000,
 0b10000000,
 0b10000000,
 0b01110000,
 0b00001000,
 0b00001000,
 0b11110000},
 //T
 {0b11111000,
 0b00100000,
 0b00100000,
 0b00100000,
 0b00100000,
 0b00100000,
 0b00100000},
 //U
 {0b10001000,

 0b10001000,
 0b10001000,
 0b10001000,
 0b10001000,
 0b10001000,
 0b01110000},
 //V
 {0b10001000,
 0b10001000,
 0b10001000,
 0b10001000,
 0b10001000,
 0b01010000,
 0b00100000},
 //W
 {0b10001000,
 0b10001000,
 0b10001000,
 0b10101000,
 0b10101000,
 0b10101000,
 0b01010000},
 //X
 {0b10001000,
 0b10001000,
 0b01010000,
 0b00100000,
 0b01010000,
 0b10001000,
 0b10001000},
 //Y
 {0b10001000,
 0b10001000,
 0b10001000,
 0b01010000,
 0b00100000,
 0b00100000,
 0b00100000},
 //Z
 {0b11111000,
 0b00001000,
 0b00010000,
 0b00100000,
 0b01000000,
 0b10000000,
 0b11111000},
 //91 [
 {0b11100000,
 0b10000000,
 0b10000000,
 0b10000000,
 0b10000000,
 0b10000000,
 0b11100000},
 //92 (backslash)
 {0b00000000,
 0b10000000,

 0b01000000,
 0b00100000,
 0b00010000,
 0b00001000,
 0b00000000},
 //93]
 {0b00111000,
 0b00001000,
 0b00001000,
 0b00001000,
 0b00001000,
 0b00001000,
 0b00111000},
 //94 ^
 {0b00100000,
 0b01010000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //95 _
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b11111000},
 //96 `
 {0b10000000,
 0b01000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000},
 //97 a
 {0b00000000,
 0b01100000,
 0b00010000,
 0b01110000,
 0b10010000,
 0b01100000,
 0b00000000},
 //98 b
 {0b10000000,
 0b10000000,
 0b11100000,
 0b10010000,
 0b10010000,
 0b11100000,
 0b00000000},
 //99 c
 {0b00000000,
 0b00000000,
 0b01110000,

 0b10000000,
 0b10000000,
 0b01110000,
 0b00000000},
 // 100 d
 {0b00010000,
 0b00010000,
 0b01110000,
 0b10010000,
 0b10010000,
 0b01110000,
 0b00000000},
 //101 e
 {0b00000000,
 0b01100000,
 0b10010000,
 0b11110000,
 0b10000000,
 0b01110000,
 0b00000000},
 //102 f
 {0b00110000,
 0b01000000,
 0b11100000,
 0b01000000,
 0b01000000,
 0b01000000,
 0b00000000},
 //103 g
 {0b00000000,
 0b01100000,
 0b10010000,
 0b01110000,
 0b00010000,
 0b00010000,
 0b01100000},
 //104 h
 {0b10000000,
 0b10000000,
 0b11100000,
 0b10010000,
 0b10010000,
 0b10010000,
 0b00000000},
 //105 i
 {0b00000000,
 0b00100000,
 0b00000000,
 0b00100000,
 0b00100000,
 0b00100000,
 0b00000000},
 //106 j
 {0b00000000,
 0b00010000,
 0b00000000,
 0b00010000,

 0b00010000,
 0b00010000,
 0b01100000},
 //107 k
 {0b10000000,
 0b10010000,
 0b10100000,
 0b11000000,
 0b10100000,
 0b10010000,
 0b00000000},
 //108 l
 {0b00100000,
 0b00100000,
 0b00100000,
 0b00100000,
 0b00100000,
 0b00100000,
 0b00000000},
 //109 m
 {0b00000000,
 0b00000000,
 0b01010000,
 0b10101000,
 0b10101000,
 0b10101000,
 0b00000000},
 //110 n
 {0b00000000,
 0b00000000,
 0b01100000,
 0b10010000,
 0b10010000,
 0b10010000,
 0b00000000},
 //111 o
 {0b00000000,
 0b00000000,
 0b01100000,
 0b10010000,
 0b10010000,
 0b01100000,
 0b00000000},
 //112 p
 {0b00000000,
 0b00000000,
 0b01100000,
 0b10010000,
 0b11110000,
 0b10000000,
 0b10000000},
 //113 q
 {0b00000000,
 0b00000000,
 0b01100000,
 0b10010000,
 0b11110000,

 0b00010000,
 0b00010000},
 //114 r
 {0b00000000,
 0b00000000,
 0b10111000,
 0b01000000,
 0b01000000,
 0b01000000,
 0b00000000},
 //115 s
 {0b00000000,
 0b00000000,
 0b01110000,
 0b01000000,
 0b00010000,
 0b01110000,
 0b00000000},
 //116 t
 {0b01000000,
 0b01000000,
 0b11100000,
 0b01000000,
 0b01000000,
 0b01000000,
 0b00000000},
 // 117u
 {0b00000000,
 0b00000000,
 0b10010000,
 0b10010000,
 0b10010000,
 0b01100000,
 0b00000000},
 //118 v
 {0b00000000,
 0b00000000,
 0b10001000,
 0b10001000,
 0b01010000,
 0b00100000,
 0b00000000},
 //119 w
 {0b00000000,
 0b00000000,
 0b10101000,
 0b10101000,
 0b01010000,
 0b01010000,
 0b00000000},
 //120 x
 {0b00000000,
 0b00000000,
 0b10010000,
 0b01100000,
 0b01100000,
 0b10010000,

 0b00000000},
 //121 y
 {0b00000000,
 0b00000000,
 0b10010000,
 0b10010000,
 0b01100000,
 0b01000000,
 0b10000000},
 //122 z
 {0b00000000,
 0b00000000,
 0b11110000,
 0b00100000,
 0b01000000,
 0b11110000,
 0b00000000},
 //123 {
 {0b00100000,
 0b01000000,
 0b01000000,
 0b10000000,
 0b01000000,
 0b01000000,
 0b00100000},
 //124 |
 {0b00100000,
 0b00100000,
 0b00100000,
 0b00100000,
 0b00100000,
 0b00100000,
 0b00100000},
 //125 }
 {0b00100000,
 0b00010000,
 0b00010000,
 0b00001000,
 0b00010000,
 0b00010000,
 0b00100000},
 //126 ~
 {0b00000000,
 0b00000000,
 0b01000000,
 0b10101000,
 0b00010000,
 0b00000000,
 0b00000000},
 //127 DEL
 {0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000,
 0b00000000}

};

//macro to put a byte to the screen
asm(".MACRO videobits\n\t"

 "BST R4,7\n\t"
 "BLD R30,5\n\t"
 "OUT 0x0b,R30\n\t"
 "NOP \n\t"

 "BST R4,6\n\t"
 "BLD R30,5\n\t"
 "OUT 0x0b,R30\n\t"
 "NOP \n\t"

 "BST R4,5\n\t"
 "BLD R30,5\n\t"
 "OUT 0x0b,R30\n\t"
 "NOP \n\t"

 "BST R4,4\n\t"
 "BLD R30,5\n\t"
 "OUT 0x0b,R30\n\t"
 "NOP \n\t"

 "BST R4,3\n\t"
 "BLD R30,5\n\t"
 "OUT 0x0b,R30\n\t"
 "NOP \n\t"

 "BST R4,2\n\t"
 "BLD R30,5\n\t"
 "OUT 0x0b,R30\n\t"
 "NOP \n\t"

 "BST R4,1\n\t"
 "BLD R30,5\n\t"
 "OUT 0x0b,R30\n\t"
 "NOP \n\t"

 "BST R4,0\n\t"
 "BLD R30,5\n\t"
 "OUT 0x0b,R30\n\t"
 "NOP \n\t"

 ".ENDM\n\t"
);

// puts 18 bytes (1 line) to the screen
void byteblast() {

 asm("LDS R26,screenindex\n\t"
 "LDS R27,screenindex+1\n\t"

 "LDI R30, 0x40\n\t"

 "LD R4,X+\n\t"

 "videobits\n\t"

 "LD R4,X+\n\t"
 "videobits\n\t"

 "LD R4,X+\n\t"
 "videobits\n\t"

 "LD R4,X+\n\t"
 "videobits\n\t"

 "LD R4,X+\n\t"
 "videobits\n\t"

 "LD R4,X+\n\t"
 "videobits\n\t"

 "LD R4,X+\n\t"
 "videobits\n\t"

 "LD R4,X+\n\t"
 "videobits\n\t"

 "LD R4,X+\n\t"
 "videobits\n\t"

 "LD R4,X+\n\t"
 "videobits\n\t"

 "LD R4,X+\n\t"
 "videobits\n\t"

 "LD R4,X+\n\t"
 "videobits\n\t"

 "LD R4,X+\n\t"
 "videobits\n\t"

 "LD R4,X+\n\t"
 "videobits\n\t"

 "LD R4,X+\n\t"
 "videobits\n\t"

 "LD R4,X+\n\t"
 "videobits\n\t"

 "LD R4,X+\n\t"
 "videobits\n\t"

 "LD R4,X\n\t"
 "videobits\n\t"

 "CLT\n\t"
 "LDI R30, 0x40\n\t"

 "BLD R30,5\n\t"

 "OUT 0x0b,R30\n\t"
);
}

//==================================
//This is the sync generator and raster generator. It MUST be entered
from
//sleep mode to get accurate timing of the sync pulses

ISR (TIMER1_COMPA_vect) {
 //start the Horizontal sync pulse
 PORTD = syncON;

 //update the current scanline number
 LineCount++;

 //begin inverted (Vertical) synch after line 247
 if (LineCount==248) {
 syncON = 0b01000000;
 syncOFF = 0;
 }

 //back to regular sync after line 250
 if (LineCount==251) {
 syncON = 0;
 syncOFF = 0b01000000;
 }

 //start new frame after line 262
 if (LineCount==263)
 LineCount = 1;

 //adjust to make 5 us pulses
 _delay_us(2);

 //end sync pulse
 PORTD = syncOFF;

 if (LineCount < ScreenBot && LineCount >= ScreenTop) {
 //compute offset into screen array
 screenindex = (int *)(screen + ((LineCount - ScreenTop) << 4) +
 ((LineCount - ScreenTop) << 1));

 //center image on screen
 _delay_us(9);

 //blast the data to the screen
 byteblast();
 }
}

//==================================
//plot one point
//at x,y with color 1=white 0=black 2=invert
void video_pt(char x, char y, char c) {
 //each line has 18 bytes
 //calculate i based upon this and x,y

 // the byte with the pixel in it
 int i = (x >> 3) + ((int)y<<4) + ((int)y<<1);

 if (c==1)
 screen[i] = screen[i] | pos[x & 7];
 else if (c==0)
 screen[i] = screen[i] & ~pos[x & 7];
 else
 screen[i] = screen[i] ^ pos[x & 7];
}

//==================================
//plot a line
//at x1,y1 to x2,y2 with color 1=white 0=black 2=invert
//NOTE: this function requires signed chars
//Code is from David Rodgers,
//"Procedural Elements of Computer Graphics",1985
void video_line(char x1, char y1, char x2, char y2, char c) {
 int e;
 signed int dx,dy,j, temp;
 signed char s1,s2, xchange;
 signed int x,y;

 x = x1;
 y = y1;

 //take absolute value
 if (x2 < x1) {
 dx = x1 - x2;
 s1 = -1;
 }

 else if (x2 == x1) {
 dx = 0;
 s1 = 0;
 }

 else {
 dx = x2 - x1;
 s1 = 1;
 }

 if (y2 < y1) {
 dy = y1 - y2;
 s2 = -1;
 }

 else if (y2 == y1) {
 dy = 0;
 s2 = 0;
 }

 else {
 dy = y2 - y1;
 s2 = 1;
 }

 xchange = 0;

 if (dy>dx) {
 temp = dx;
 dx = dy;
 dy = temp;
 xchange = 1;
 }

 e = ((int)dy<<1) - dx;

 for (j=0; j<=dx; j++) {
 video_pt(x,y,c);

 if (e>=0) {
 if (xchange==1) x = x + s1;
 else y = y + s2;
 e = e - ((int)dx<<1);
 }

 if (xchange==1) y = y + s2;
 else x = x + s1;

 e = e + ((int)dy<<1);
 }
}

//==================================
// put a big character on the screen
// c is index into bitmap
void video_putchar(char x, char y, char c) {
 char i;
 char y_pos;
 uint8_t j;

 for (i=0;i<7;i++) {
 y_pos = y + i;

 j = pgm_read_byte(((uint16_t)(ascii)) + c*7 + i);

 video_pt(x, y_pos, (j & 0x80)==0x80);
 video_pt(x+1, y_pos, (j & 0x40)==0x40);
 video_pt(x+2, y_pos, (j & 0x20)==0x20);
 video_pt(x+3, y_pos, (j & 0x10)==0x10);
 video_pt(x+4, y_pos, (j & 0x08)==0x08);
 }
}

//==================================
// put a string of big characters on the screen
void video_puts(char x, char y, char *str) {
 uint8_t i;
 for (i=0; str[i]!=0; i++) {
 video_putchar(x,y,str[i]);
 x = x+6;
 }
}

//==================================
// put a small character on the screen
// x-coord must be on divisible by 4
// c is index into bitmap
void video_smallchar(char x, char y, char c) {
 char mask;
 int i=((int)x>>3) + ((int)y<<4) + (((int)y)<<1);

 if (x == (x & 0xf8)) mask = 0x0f; //f8
 else mask = 0xf0;

 uint8_t j = pgm_read_byte(((uint16_t)(smallbitmap)) + c*5);
 screen[i] = (screen[i] & mask) | (j & ~mask);

 j = pgm_read_byte(((uint16_t)(smallbitmap)) + c*5 + 1);
 screen[i+18] = (screen[i+18] & mask) | (j & ~mask);

 j = pgm_read_byte(((uint16_t)(smallbitmap)) + c*5 + 2);
 screen[i+36] = (screen[i+36] & mask) | (j & ~mask);

 j = pgm_read_byte(((uint16_t)(smallbitmap)) + c*5 + 3);
 screen[i+54] = (screen[i+54] & mask) | (j & ~mask);

 j = pgm_read_byte(((uint16_t)(smallbitmap)) + c*5 + 4);
 screen[i+72] = (screen[i+72] & mask) | (j & ~mask);
}

//==================================
// put a string of small characters on the screen
// x-cood must be on divisible by 4
void video_putsmalls(char x, char y, char *str) {
 uint8_t i;
 x = x & 0b1111100; //make it divisible by 4
 for (i = 0; str[i] != 0; i++) {
 if (str[i] >= 0x30 && str[i] <= 0x3a)
 video_smallchar(x, y, str[i] - 0x30);

 else video_smallchar(x, y, str[i]-0x40+12);
 x += 4;
 }
}

//==================================
//return the value of one point
//at x,y with color 1=white 0=black 2=invert
char video_set(char x, char y) {
 //The following construction
 //detects exactly one bit at the x,y location
 int i = (x>>3) + ((int)y<<4) + ((int)y<<1);

 return (screen[i] & 1<<(7-(x & 0x7)));
}

//=== fixed conversion macros ===
#define int2fix(a) (((int)(a))<<8) //Convert char to fix. a is

 //a char

#define fix2int(a) ((uint8_t)((a)>>8)) //Convert fix to int. a is
 //an int

#define float2fix(a) ((int)((a)*256.0)) //Convert float to fix. a is
 //a float

#define fix2float(a) (((float)(a))/256.0) //Convert fix to float. a is
 //an int

//=== animation stuff
==
unsigned int x, y;
int vx, vy, g, drag;
char cu1[]="Cornell ECE 4760";
char cu2[]="COPYRIGHT:2009";

//==================================
// set up the ports and timers
int main() {
 //init timer 1 to generate sync
 OCR1A = lineTime; //One NTSC line

 TCCR1B = 0x09; //full speed; clear-on-match
 TCCR1A = 0x00; //turn off pwm and oc lines
 TIMSK1 = 0x02; //enable interrupt T1 cmp A

 //init ports
 DDRD = 0xf0; //video out

 DDRC = 0xff; //LEDs

 //initialize synch constants
 LineCount = 1;

 syncON = 0b00000000;
 syncOFF = 0b01000000;

 //Print "CORNELL" message
 video_puts(13,2,cu1);

 //Print "Copyright" message
 video_putsmalls(86,192,cu2);

 //side lines
 #define width 142
 #define height 199

 video_line(0,0,0,height,1);
 video_line(width,0,width,height,1);

 video_line(0,10,width,10,1);
 video_line(0,0,width,0,1);
 video_line(0,height,width,height,1);

 //init animation
 // initial position
 x = int2fix(20);

 y = int2fix(40);

 // initial velocity
 vx = float2fix(1.5);
 vy = float2fix(0.0);

 // gravity and drag
 g = float2fix(0.018);
 drag = float2fix(0.004);

 video_pt(fix2int(x),fix2int(y),2);
 ///////////////////////

 // Set up single video line timing
 sei();
 set_sleep_mode(SLEEP_MODE_IDLE);
 sleep_enable();

 //The following loop executes once/video line during lines
 //1-230, then does all of the frame-end processing
 for(;;) {

 //stall here until next line starts
 //use sleep to make entry into sync ISR uniform time

 sleep_cpu();

 //The following code executes during the vertical blanking
 //Code here can be as long as
 //a total of 60 lines x 63.5 uSec/line x 8 cycles/uSec

 if (LineCount == 231) {

 //animation
 //erase old ball using XOR mode
 video_pt(fix2int(x),fix2int(y),2);

 // new vel = old vel + acceleration*dt (dt=1)
 vy = vy + g - multfix(drag,vy);
 vx = vx - multfix(drag,vx);

 // new pos = old pos + velocity*dt (dt=1)
 x = x + vx;
 y = y + vy;

 // Bounds check -- fixed notation
 if (x>0x8d00) { vx = -vx; x=0x8d00; } // right edge
 if (x<0x0100) { vx = -vx; x=0x0100; } // left edge
 if (y>0xc600) { vy = -vy; y=0xc600; } // bottom edge

 video_pt(fix2int(x),fix2int(y),2);

 } //line 231
 } //for
} //main

;**
;*
;* FUNCTION
;* muls16x16
;* DECRIPTION
;* Signed multiply of two 16bits numbers with 16 bits result.
;* USAGE
;* r25:r24 = r23:r22 * r25:r24
;**

;int multfix(int a, int b)

.global multfix
multfix:
 ;input parameters are in r23:r22(hi:lo) and r25:r24

 ;b already in right place -- 2nd parameter is in r22:23

 mov r20,r24 ;load a -- first parameter is in r24:25
 mov r21,r25

 muls r23, r21 ; (signed)ah * (signed)bh
 mov r25, r0 ;r18, r0"
 mul r22, r20 ; al * bl"
 mov r24, r1 ;movw r17:r16, r1:r0"

 mulsu r23, r20 ; (signed)ah * bl
 add r24, r0 ;r17, r0"
 adc r25, r1 ;r18, r1"

 mulsu r21, r22 ; (signed)bh * al
 add r24, r0 ;r17, r0"
 adc r25, r1 ;r18, r1"

 clr r1 ; required by GCC

 ;return values are in 25:r24 (hi:lo)

 ret

