
CONTROL SYSTEM FOR THE SOLAR HOT WATER 

COLLECTION ALTERNATIVE SYSTEM OF 

CORNELL UNIVERSITY SOLAR DECATHLON 

 

 

 

 

 

A Design Project Report 

Presented to the Engineering Division of the Graduate School 

of Cornell University 

in Partial Fulfillment of the Requirements for the Degree of 

Master of Engineering (Electrical) 

 

 

 

 

 

 

 

by 

Wei-jiunn Jang 

Project Advisor: Dr. Bruce R. Land 

Degree Date: May 2009 



 2

Abstract 

Master of Engineering Program 

Cornell University 

Design Project Report 

 

Project Title: Control system for the solar hot water collection alternative system of 

Cornell University Solar Decathlon 

Author: Wei-jiunn Jang 

Abstract: This project is a component of the Cornell University Solar Decathlon which is 

dedicated to building a solar powered house to collect and save as much energy 

as possible using various methods including solar hot water collection. In the 

alternative system this project focuses on, solar hot water is collected in the 

copper coil under the corrugated steel peripheral of the house. The goal is to 

design a control system using microcontroller to control the pump and the 

valves connected to the coil based on the temperature of the coils and the 

hot/cold water tanks monitored using digital temperature sensors. There is a 

computer interface for users to setup desired threshold temperature, and 

control the pump and valves either automatically or manually. Atmel 

ATmega644 microcontroller was used as the control unit for the project. 

 

 

 

 

Report Approved by 

Project Advisor: ______________________________ Date: _____________ 



 3

Table of contents 

Executive Summary ................................................................................................ 4 

1. Introduction ..................................................................................................... 5 

2. Design Requirements ....................................................................................... 8 

3. Possible Solutions ........................................................................................... 10 

3.1. Microcontroller ...................................................................................... 10 

3.2. Temperature sensors ............................................................................... 11 

3.3. User interface ......................................................................................... 12 

3.4. Valves and pump actuating .................................................................... 13 

3.5. Final project definition .......................................................................... 13 

4. Design ............................................................................................................. 14 

4.1. Input ....................................................................................................... 14 

4.2. Output .................................................................................................... 17 

4.3. Microcontroller (MCU).......................................................................... 19 

5. Result.............................................................................................................. 26 

6. Conclusion ...................................................................................................... 28 

7. Reference ........................................................................................................ 29 

8. Appendix ........................................................................................................ 30 

 



 4

Executive Summary 

This project is the control system of the alternative system which uses copper 

coils under the corrugated steel peripheral of the house to collect the heat from the sun. 

The heated solution inside the coils will be pumped through the heat exchanger 

connected to the hot water tank. Initially, the system was designed to have 6 or 8 

different sections located on different positions of the wall; whenever the temperature 

in any of the section is higher than the threshold temperature, the pump would start 

pumping and the corresponding valves would open according. However, due to 

construction delay and cost overruns, the hardware was modified and there was only 

one section left to collect heat from the sun, and the valves for different section were 

removed since there was only one route in the system. 

The control system includes an ATmega644 MCU, two digital temperature 

sensors, a TACO-007 pump, two electrical actuated valves for the heat sink, and a 

computer-based user interface. The pump will be turned on and off based on the 

current temperatures of the coils and the cold water tank, and the threshold 

temperature set by the user. Through the user interface, the user is able to turn on and 

off the pump manually and monitor the system status. 

The outcome of the project was a success. All functionalities were implemented 

and fully tested, and will be installed in the house during its construction. 



 5

1. Introduction 

The Solar Decathlon is an international design-build competition hosted 

biennially by the U.S. Department of Energy. Twenty college and university teams 

compete to design, build and operate the most attractive, effective and 

energy-efficient solar-powered house. Different parameters are being recorded during 

the competition and used to evaluate the overall performance of every team. The solar 

hot water collection is one of the main performance measures, and it consists of two 

systems to maximize the efficiency. 

The alternative system this project focused on can be expressed in the following 

system diagram: 

 

 



 6

The main components of the system hardware include 

1. Copper coils in the wall 

2. Cold/Hot water tank 

3. Heat exchanger 

4. Heat sink with electrical actuated valves 

5. Pump 

6. Manual drain valve 

These components are the output of the whole system; they are like the hands of 

the system. To enable the system to operate automatically and intelligently, a 

microcontroller was used as the main processor of the control system; it is like the 

brain of the system. Besides the microcontroller as the brain, 2 temperature sensors 

are installed on the copper coils in the wall and the cold water tank as the input of 

they system; they are like the eyes of the system. Lastly, there is a computer user 

interface which is connected to the microcontroller via serial port (or USB) to setup 

threshold temperature and to execute other manual control options; this is like the 

manager who gives instruction to the system. 

The logical diagram of the system below may express the idea more clearly. 

 

 



 7

 

Therefore, to achieve the functionalities, the project can be separated into 4 parts: 

input, output, MCU, and the user interface. They were done separately at the 

beginning and integrated after every single part works alone perfectly. 

The MCU used in this project was Atmel ATmega644, which is the control unit 

introduced in the course ECE 4760 by Dr. Bruce Land. 

Temperature of the coil  

Input (Eyes) 

Decision making 

(Decide/follow control actions) 

MCU (Brain) 

Output (Hands) 

Pump Valves 

Manual 

control actions 

User interface 

(Manager) 



 8

2. Design Requirements 

Since this project served as the control system of the alternative system in Solar 

Decathlon, it would have to meet the requirements given by the solar thermal 

sub-team of the Solar Decathlon Engineering Team. That is, the control system will be 

depending on the hardware specifications. 

Initially they were planning to install 6 or 8 sections of copper coils around the 

peripherals of the house. However, due to construction delays and cost overruns, the 

specifications have gone through several modifications during the course of the year. 

For the initial hardware design, there would be either 6 or 8 sections, which meant 

that the system would have to scan through 6 or 8 temperature sensors and turn on 

different sets of valves based on its temperature. The solar thermal team finally settled 

on only 1 section because of construction time and budget constraints. As a result, the 

idea of valves was removed since there is no other section to select from. They also 

added a heat sink route for safety reason to prevent overheating which also required a 

set of valves. The general control logic they required stayed the same: the pump will 

be turned on whenever the temperature reaches the threshold, and turned off when the 

temperature drop close to the temperature of the cold water tank. 

The general requirements of the control system are finalized as the following: 

1. The system should automatically turn on the pump when the temperature of 



 9

the coil reaches the threshold temperature. 

2. The system should automatically turn off the pump when the temperature of 

the coils drops below “the temperature of the cold water tank plus 2 

degree C” 

3. The system should automatically turn on the valves that lead to the heat sink 

when the temperature rises above 99 degree C. 

4. User must be able to view the current status of the valves, pumps, and the 

readings of different temperature sensors from the user interface. 

5. User must be able to set the threshold temperature. 

6. User must be able to control the valves and the pump manually regardless of 

the current status and temperatures. 

The final completed system also includes some minor functions which are not 

stated above such as false input parameter prevention, Celsius/Fahrenheit conversion, 

and temporary suspension of the control actions. 

The biggest problem I encountered in doing this project is that the electrical 

actuated valve needed for the heat sink route was very expensive and would have 

exceeded the budget. At the end of this project, the business sub-team was still trying 

to get the valves donated. Therefore, in this project, a fan was connected to the FET as 

a substitute for the valve to test the control functionality. 



 10

3. Possible Solutions 

To create the control system, I would have to choose a microcontroller (MCU), a 

temperature sensor, and a form of user interface. The selection of the valves is 

determined by the donation we could get, and the pump TACO 007 was previously 

determined by the solar thermal team. The MCU will have to read the temperature 

sensors and create a user interface, and the temperature sensor should better have a 

digital output to avoid noise in analog signal which happens a lot especially when the 

connection between the MCU and the sensors is long. The user interface must be easy 

and straightforward. Everyone with or without electrical engineering background 

knowledge should be able to operate the system through the interface even without a 

user manual. 

3.1. Microcontroller 

The microcontroller Atmel ATmega644 used in the ECE4760 course turned out 

to be to best choice for this project. It can be programmed in C, it is readily available 

and there are plenty of resources about the MCU in the course website. Prototype 

PCB and necessary components for the MCU are all readily available in the ECE4760 

laboratory. Although I had never used the MCU when I started the project, I believed 

that I would become more and more familiar with it since I was taking the course 

starting at the same time. 



 11 

3.2. Temperature sensors 

As stated above, the temperature sensor should come with a digital output. 

Handling analog signal involved noise problem which are not the main thing that this 

project was focused on. Therefore, a digital output sensor would save me from 

worrying about noise and analog to digital conversion. 

The temperature I am dealing with in this project has a range of 15°C to nearly 

100°C. Since the on and off threshold temperature are always differentiated by at least 

30°C, it does not require a very high accuracy; therefore a ±2°C accuracy is 

acceptable. The LM70 digital thermal sensor from National Semiconductor fit the 

requirements very well. It has a resolution of 0.25°C, accuracy of ±2°C, and the 

max/min temperature are -55°C /150°C. It comes with internal ADC, and 

SPI/Microwire compatible interface. The ATmega644 microcontroller has a built-in 

SPI bus, which makes it very easy to interact with the sensor. The package options are 

LLP and SOIC. I chose SOIC because I would have to solder the IC on a breakout 

board, and an IC with lead is much easier to handle. Luckily, National Semiconductor 

provides a small number of free samples of these sensors so I ordered some samples 

when I began to work on this project. 

 

 



 12

3.3. User interface 

For the user interface of the control system, I initially pictured a system with a 

keypad with a 2-lined LCD display by its side. The user could use the keypad to 

choose from different control options and view the current status of the system. This 

would be a compact interface because the user will be able to manipulate the system 

without any external device; however, the input and output interface were both limited 

because of the size of the keypad and the small LCD. 

The other option which I decided to use was a computer interface with UART 

communication to the MCU. I thought about this option when I was working on one 

of the lab assignment of the ECE 4760 course. The MCU will work independently 

without the computer, and whenever the user want to monitor or control the system, 

he or she can simply connect the USB cable to a laptop and run the hyperterminal 

program which is included as a default program in all the Windows XP operating 

system. The USB cable is actually a USB/Serial dongle that goes to the serial port of 

the MCU. With a laptop, the user will be able to operate the system more easily. After 

the program and the connection are setup correctly according to the user manual, all 

the temperature readings and the status can be seen in one screen without the need of 

changing pages. The interface will explain itself so that the user can manipulate the 

system without a user manual. 



 13

3.4. Valves and pump actuating 

The choice of valves and pump was not under my control as they are determined 

by other teams. I will be controlling the valve using FET and the pump using a solid 

state relay. Both of the circuit will be isolated from the MCU using optoisolator to 

prevent from spikes feedback to the MCU. 

 

3.5. Final project definition 

The definition of the final project is as following. The ATmega644 will be used 

to receive the input data from the temperature sensors and decided necessary control 

options to the output of valves and the pump. The LM70 digital thermal sensors will 

be used to monitor the temperature of the coil and the cold water tank. A serial/USB 

connection cable will be available by the control system for the user to connect a 

laptop to interact with the system. The valves and pump are decided by other 

sub-teams, and they will be controlled by the MCU using FET and solid state relay 

and isolated using optoisolator. The project definition satisfies all the project 

objectives. The next part of the report will focus on the detailed design of the project. 

 

 

 



 14

4. Design 

The design of the control system can be divided into 3 parts: input, output, and 

MCU. In the following part of the report, the software design and hardware 

construction of each part will be discussed. 

 

4.1. Input 

The input of the control system is the LM70 temperature sensors. The 

dimension of the SOIC package is approximately 3 x 3 x 0.86 mm
3
; it is a surface 

mount device with 8 leads. I first have to solder the IC on to a breakout board. It was 

my first time to deal with a surface mount device and the very first one did take me a 

while to finish. Luckily the soldering part looks successful and I could start testing the 

sensor with the MCU. 

The LM70 has a SPI/Microwire compatible interface. SPI is a three-wire, 

synchronous, and serial protocol, and most of the AVR MCUs have a hardware 

support for it. The three wires of SPI are master-in-slave-out, master-out-slave-in, and 

clock. For the Microwire on LM70, it is actually a two-wire protocol: SI/O (serial 

input/output) and clock. The principles are basically the same but Microwire use the 

same wire for input and out. Besides the SI/O and clock on the chip, it also has a Chip 

Select (inverted) pin for the master to select from different device. In this project I am 



 15

using 2 SPI-interfaced temperature sensors, so 2 pins (pin 3 and pin 4) from PORTB 

of the MCU are respectively connected to the Chip Select pin on the two sensors. SPI 

is essentially a synchronized serial protocol. When the master (in this case the MCU) 

is ready to send data to the slave (the sensors), the program will put an 8-bit data into 

the shift register SPDR. The transmission will then begin and the data from the master 

will be shifted into the register in the slave, and vice versa. After the transmission is 

completed, the data from the slave will be ready to read in the SPDR register. In the 

LM70 temperature sensor, it will send a fixed format of data no matter what is 

received from the MCU. Since it doesn’t do anything with the data it received, I don’t 

even have to connect the master-out-slave-in pin to the sensor. Therefore in this 

project, the MOSI pin (PORTB 5) was left unconnected to anything. The clock 

(PORTB 7) and the chip select pin (PORTB 4) will enable the SPI transmission to 

work correctly. 

After setting up the connection, I had to figure out the necessary setting 

parameter for the MCU to communicate with the sensor. There are 4 different 

combinations of SPI data transmission modes. The clock can be set to either high or 

low when SPI is idle; this can be selected by setting and clearing the CPOL (Clock 

Polarity) bit in the control register. The data sampling can be set to occur either at the 

trailing or the leading edge of clock; this can be determined by setting or clearing the 



 16

CPHA bit in the control register. Normally in the datasheets of the devices using SPI 

interface, they would directly state its transmission mode; however, these datasheets 

were sometimes too complicated. The easiest way to figure out its mode is to try all 4 

different modes one by one. Luckily my first try worked and I found that the LM70 

sensor has an idle clock of LOW and the sampling is taken place at the trailing edge 

of the clock (CPOL =1 and CPHA = 1). 

LM70 is a 10-bit temperature sensor so the data format is always 2 byte with a 

sign bit (MSB), 10 data bits, and 5 unused bits. Every time the MCU samples data 

from the sensor, it has to read 2 bytes back in order to get a complete data. The LSB 

of the data is the resolution of the sensor, which is 0.25°C in this case. After getting 

the 2 bytes, the MCU would do the calculation and store the result. I first used LED 

on the STK500 (the development board for ATmega644) to display the temperature 

reading and make sure it’s getting the right data. To calibrate a sensor, I had to find an 

external sensor which was guaranteed to be more accurate than the device being 

calibrated. I borrowed an electronic temperature sensor and measure the temperature 

near the LM70, and it turned out that the reading was quite accurate with a difference 

of less than 2°C under room temperature. 

According to the datasheet, the LM70 sensor is measuring the temperature of 

itself, that is, the temperature of the die. For the LM70, the best thermal path between 



 17

the die and the outside world is through its pins. It will also provide an accurate 

measurement of the temperature of the printed circuit board on which it is mounted. I 

tested the sensor under several different circumstances including room temperature, 

the temperature of human body, and I also used electric soldering iron to raise the 

surrounding temperature and see if the sensor works correctly in such condition. The 

test went pretty well and demonstrated that the sensor is capable of reading a large 

range of temperature with a fast response time. 

 

4.2. Output 

The output of the system includes two devices. The pump and the valves 

connected to the heat sink. Since the valves were not readily available at the moment, 

I started working on the pump first. 

The pump used for the system is Taco 007 Cartridge Circulator. The minimum 

fluid temperature is 4°C and the maximum is more than 100°C which is good enough 

to fit the need of this project. The pump run on 110 volts, but it came with no power 

cable or switch on it. The first thing I need was to open the cover of the power panel 

and I found 2 wires and a screw that is used to connect the ground wire. Before trying 

to “control” the pump, I had to make sure that the pump is working properly. To 

provide AC power to the pump, I used an old computer power cord and cut the female 



 18

end, and connect the wires respectively to the pump. The darkest wire inside is 

connected to the hot power, the lightest wire is the neutral wire and the green wire is 

connected to the ground. 110 volts could be harmful to human if not handled properly, 

so I would have to make sure all the wires are connected without any mistake. The 

wire inside the pump is insulated solid wire and the wire in the power cord is stranded 

wire. They were soldered together with electrical tape wrapping around the 

connection. After the 2 wires were connected properly and the ground was attached to 

the screw on the pump surface, I tried to hook up the power cord to a single plug 

instead of the extension cord in the laboratory. I did this because even if there had 

been a connection problem between the wires, it would not affect other plugs in the 

lab. The pump start to run and I removed the plug immediately because the bearings 

inside the pump are water lubricated and the pump is not supposed to be run dry for 

too long. 

After making sure that the pump works, I started working on the control circuit 

for the pump. A solid state relay is the best solution for the pump control issue. The 

solid state I chose was Sharp S216S02 which is used in one of the previous year 

project of ECE 4760. It has 4 pins; two of them should be connected in series to the 

power wire of the 110 volts cable, and the other two should be connected to the MCU 

for sending control signal. The circuit inside the solid state relay was opto-isolated, 



 19

and it can be operated simply by connecting the GND to the negative pin and the 

control pin through a resistor to the positive pin. 

Since the pump was not supposed to run dry, I built a simple circuit connecting a 

desk lamp through the relay as a substitute for the pump. I wrote a small program in 

using the MCU which will set a pin if I push a button. The pin was connected to the 

relay input and the system was ready to go. The system worked perfectly and I 

believed the system would represent the actual system with pump very well. 

By the time I started working on the control of the valves, there was still no news 

from the business sub-team. I decided to build the control system using a substitute as 

I did for the pump to test the control ability first. In one of the lab assignment of the 

ECE 4760 course, we built a circuit that controlled a 12volts fan with the MCU. The 

idea of controlling the fan and the valve is identical because the “switch” was 

implemented using a FET. I built the circuit according to the lab description and it 

worked as expected. 

4.3. Microcontroller (MCU) 

The job of the MCU in the project was to get the readings from the temperature 

sensors, make decision based on the input, and send control signal to the valves and 

the pump. In addition, the user interface was also implemented in pure software inside 

the MCU program. 



 20

First of all, the MCU must be able to read from two sensors. The sensors worked 

as the slaves in SPI communication and the MCU was the master. Through clearing 

the Chip Select pin on the sensor chip, the MCU got to choose which sensor could 

transmit data. The MCU is working as master in this program; therefore I can simply 

use polling to read from the temperature sensor and no interrupt was needed for this 

part. The temperature of the coil is increasing approximately at the maximum rate of 

1°C per second. The resolution of the sensor was 0.25°C so the sampling rate has to 

be at least 4Hz to record all the changes in temperature. A task in the program reading 

the two temperature sensor was scheduled to run every 100 milliseconds, which is 

equivalent to 10Hz. The data received was translated into degree Celsius and store in 

variables with double data type. 

After getting the temperature readings, the program compared the current 

temperature of the coil to the threshold temperature. If the coil temperature is higher 

than the threshold set by the user, it would set a pin which turns on the pump. If the 

temperature drops below the temperature of the cold water tank plus 2°C, the pin will 

be cleared so that the pump is shut down. 

A finite state machine was used in the program to implement the menu-based 

user interface. The program received input via UART from the laptop connected to 

the MCU, processed the input message and did the necessary actions. In view of the 



 21

fact that there will not be a laptop connected to the system at all time, the program 

cannot use a loop or the getchar() function to receive input or the system will stop 

working and wait for input signal. Instead, the program had an interrupt setup to 

receive input from the serial port. ATmega644 has a built-in interrupt handle 

USART0_RX which take care of the job. Whenever the connection is setup and a key 

is pressed on the computer, interrupt would occur and collect the data coming in. To 

output data to the hyperterminal on the laptop, there was another interrupt subroutine 

being responsible for the task. The structure of this part of the program was created in 

the Lab 3 – security system of the ECE 4760 course. Code of the demo program of the 

lab was partially adopted in this project. Not all the inputs will be stored and 

processed but they will first be analyzed to prevent from false input. For example, the 

space key can sometimes cause a problem when it’s stored in a character array. 

Therefore, the space key is ignored and not stored when it’s pressed to prevent any 

possible mistake. 

The finite state machine worked as the core of the user interface. Whenever the 

user interface is idle or not connected, the state machine is in the main_menu state. 

In this state, the state machine displays the menu once and waits for the user input. 

The user will be able to view from the top of the menu the current temperature of 

the coil, the temperature of the cold water tank, the status of the pump, and the 



 22

status of the valves. Different options are available to choose from by the user 

including “Set Threshold Temperature”, “Manual Control”, “Release Control”, 

“Switch to Celsius”, and “Switch to Fahrenheit”. Please refer to the appendix for the 

image of the user interface. When I was testing the user interface, I found that the 

menu can be messed up easily by intentionally sending a large amount of input to the 

system while it’s printing on to the hyperterminal via interrupt. This situation occurs 

due to the limit of transmission rate of UART. I believed it was necessary to have a 

“Back to main menu” or “Refresh” key to restore the system back to normal and the 

key should not go through the finite state machine. In the receive interrupt, I first 

check the input character before storing it. As stated previously, if the key pressed is 

space, then nothing will happen. If an ESC key is pressed, the program will then clear 

the screen and force the state machine to go back to main_menu regardless of the 

current state. Once the program leave the interrupt, the state machine will find itself in 

the main_menu state and display the menu again. The ESC key is also used as the 

initialization key to begin with when the laptop is connected to the MCU. The code of 

the state machine was modified from my code of lab 3 in the ECE 4760 course. The 

following state diagram gives a clear view of the state machine. 

 



 23

 

Main menu 

(display menu once) 

enter_pressed 

==1 ? 

Set Threshold 

Temperature 

enter_pressed 

==1 ? 

Manual 

Control 

enter_pressed 

==1 ? 

’1’ 

’4’ 

Switch to Celsius 

’5’ 

Switch to Fahrenheit 

’2’ 

Turn on/off 

the pump/valves 

manually 

Perform 

corresponding 

actions 

’3’ 

Release control 

over the 

pump/valves 

 

Release 

Control 

enter_pressed 

==1 ? 

Set threshold 

temperature after 

necessary checks 

All States 

Key pressed 

== ESC ? 

 

Yes 

State machine of the control system user interface 

The state machine stays where it is whenever 

enter or ESC is not pressed 



 24

After implementing the functions on the MCU, I started working on the 

hardware of it. Initially I was using a STK500 development board to write and test the 

program. For the final device which is going to be installed in the house, the MCU is 

installed on a more compact prototype board. The prototype board used is designed by 

Dr. Bruce Land for the ECE 4760 course. Please refer to appendix for the schematics. 

I tested the same program on the board upon its completion. There were 2 major 

problems I ran into when I was trying to make the prototype board work. First of all, 

the SPI bus on ATmega644 is hardware-determined on the pin 5, 6, and 7 on PORT B, 

which happens to be the 3 pins that are used to program the MCU. When any of these 

3 pins were driven by an external source during programming, the chip would not 

program. Therefore I would have to remove the MISO wire at PORTB 6 whenever I 

was programming the chip. This wasn’t a big problem because it was stated in the 

prototype board description page. However, if I connect the wire back to PORTB 6 

after the chip was programmed, the reading of the sensor was still sometimes 

incorrect. This was because the programming cable may still affect the prototype 

board because the power of the programmer (STK500) was still on. As a result, I had 

to make sure that the programming cable is removed to ensure that the MCU receive 

the correct data from the sensors. 

The other problem I had was a hardware problem of the prototype board. When I 



 25

was soldering header to the output pins on the board, I happened to solder a header 

falsely into a hole which wasn’t designed for a header connection. It was a ground 

connection and was simply used to connect the upper layer and the lower layer of the 

board, and the size was smaller than other ones as well due to this reason. There 

shouldn’t be any problem even though I inserted a pin to the ground hole. However, I 

somehow destroyed the connection of the hole and made one of the ground pin 

disconnected from the GND of the power source. That is, the ground that goes out 

was not connected to the actual GND properly. I didn’t know this until I keep getting 

incorrect data from the sensor. A few hours were spent on this problem and I went 

through all the possible reasons but hardware. Finally I started checking the 

connection on each pin and found that some of the pins were having a bad connection 

including the GND. I made sure all the connection were good by desoldering the bad 

ones and solder it again, but the bad connection on the ground continued to exist. I 

realized that there’s a connection problem on the PCB rather than the soldered hole. 

To fix the problem, I found out which one of the inner connection failed and soldered 

a short wire on the bottom of the board to rebuild the connection. Detailed pictures are 

included in the appendix. 

After solving these problems, the prototype board worked as expected and the 

system prototype was completed. 



 26

5. Result 

Overall, the results were quite successful. All the required functionalities were 

implemented in software and hardware except for the electrical actuated valve. The 

control system including the pump was fully tested upon completion of the project. 

The user interface is simple and requires only a laptop with USB port and the 

hyperterminal or other compatible programs. The control system along with the 

hardware will be installed on to the house during its construction in May 2009. 

The diagrams below show the user interface. 

Setting threshold temperature 

 

 

 



 27

Manually controlling the pump 

 

Pump manually turned on (also in Fahrenheit mode) 

 

 



 28

6. Conclusion 

It was an excellent experience in the project design process. In terms of technical 

skills, I have learned to control devices with higher voltages. I was able to do turn on 

and off a device running at 110 volts, which is very useful because most of the control 

ideas in daily life involve a high voltage device such as household electronics. I also 

learned to interface with SPI and improved my circuit building, soldering, and 

debugging skills. I got to review my previously written code and make improvements, 

and it made me realize that a program can always be made better by reviewing the 

whole design again and again. A system is never too good to be improved. 

On the other hand, in terms of design experience, my independent research and 

design ability has increased over the course of the year. When interacting with the 

project manager and other sub-teams, I learned about the system engineering concepts 

and a lot of seemingly trivial but actually helpful techniques in communicating and 

interacting with other people. I also get to see the procedure of building a large-scale 

project (the whole CUSD), which is very much more organized and standardized than 

an independent or team project. 

Overall, I not only successfully built a control system for the Solar Decathlon but 

also learned a lot of precious knowledge. 

 



 29

7. Reference 

1. LM70 datasheet (National Semiconductor) 

2. ATmega644 datasheet (Atmel) 

3. Taco 007 - http://wetheadmedia.com/taco-007-circulator-pump/ 

4. ECE 4760 course website - http://instruct1.cit.cornell.edu/courses/ee476/ 

5. AVR Libc - http://www.nongnu.org/avr-libc/ 

6. Cornell University Solar Decathlon: Alternative System Project Manual 



 30

8. Appendix 

 

Hardware schematics and pictures 

 

Prototype board schematics 

 

 

 

 

Prototype board ground connection diagram 1 

 

 

 



 31

Prototype board ground connection diagram 2 

 

The printed connection between of two holes was broken during the soldering 

procedure. Therefore I had to set up the connection with wire. 

 

Prototype board ground connection diagram 3 

 

The two large holes were connected via the body of the D-sub connector. 



 32

Temperature sensor LM70 on the breakout board 

 

 

 

Stripped power cable with 3 wires (hot, neutral and ground) 

 

 

 



 33

Soldered wires from the power cord to the pump 

 

 

 

Ground connection to the pump body 

 

 

 



 34

Control System schematics 

 

 

Valve control circuit schematics (Modified from ECE 4760 Lab 5) 

 

 

 

LM70 

VCC 

GND 

CLK 

Chip Select 

SI/O 

 

 

LM70 

VCC 

GND 

CLK 

Chip Select 

SI/O 

Solid 

State 

Relay － ＋ ～ 

 

PUMP 

Hot 

Neutral Ground 

110V AC 

 

 

 

 

 

MCU 

PORTB 6 

PORTB 7 

PORTB 4 

VCC 

GND 

PORTB 3 PORTC 0 

PORTC 1 

Opto-isolated 

Valve control circuit 
All the GND are 

connected together 



 35

Solar thermal plumbing layout 

 

Solar Thermal Plumbing Diagram 

(Adopted from solar thermal sub-team document) 

 

 

The alternative system is located at the southwest side. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 36

Enlarged Southwest side of the house layout 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 37

 

3D rendition of the CUSD House 

 

Actual location 

of the 

alternative system 

and control system 



 38

Code Listing 

 

// Cornell University Department of Electrical Engineering 

// Master of Engineering (Electrical) Design Project 

// Wei-jiunn Jang 

// AVRStudio / ATmega644 

 

#include <inttypes.h> 

#include <avr/io.h> 

#include <avr/interrupt.h> 

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

 

//set up the debugging utility ASSERT 

#define __ASSERT_USE_STDERR 

#include <assert.h> 

#include "uart.h" 

// UART file descriptor 

// putchar and getchar are in uart.c 

FILE uart_str = FDEV_SETUP_STREAM(uart_putchar, uart_getchar, 

_FDEV_SETUP_RW); 

 

 

unsigned char enter_pressed; 

 

 

//timeout values for each task 

#define t1 100   

#define t2 100 

 

 

//menu state machine state names 

#define main_menu 1  

#define choose_sensor 2 

#define set_threshold 21 

#define control_pump 22 

#define release_pump 23 



 39

#define celsius 4 

#define fahrenheit 5 

 

 

 

#define begin { 

#define end   } 

 

//the  subroutines 

void task1(void); 

void task2(void); 

void getstr_int(void); // Starts getting a string from serial line 

void putstr_int(void); // Starts a send to serial line 

void initialize(void);  // All the usual mcu stuff  

           

volatile int time1, time2;  // task scheduling timeout counters 

char v[10]; 

char newstr ; 

 

// when code added is invalid, set flag; 

unsigned char invalid; 

 

 

 

// for loop index 

unsigned char i; 

  

// RXC ISR variables         

volatile unsigned char r_index;  //current string index 

volatile char r_buffer[16]; //input string  

volatile char r_ready;  //flag for receive done 

volatile char r_char;  //current character   

 

// TX ISR variables         

volatile unsigned char t_index;  //current string index 

volatile char t_buffer[300]; //output string  

volatile char t_ready;  //flag for transmit done 

volatile char t_char;  //current character 



 40

 

 

// toggling LED variable 

unsigned char LED; 

 

// variables for main fuctions 

unsigned char display_menu; 

unsigned char MENU; 

 

 

 

//display TIME and MENU subroutines 

void show_menu(void); 

 

// bit handling macros for i/o registers 

#define READ(U, N) ((U) >> (N) & 1u) 

#define SET(U, N) ((void)((U) |= 1u << (N))) 

#define CLR(U, N) ((void)((U) &= ~(1u << (N)))) 

#define FLIP(U, N) ((void)((U) ^= 1u << (N))) 

 

char Hbits, Lbits; 

double temp[2]; 

int threshold; 

char debug_led; 

char status = 0; 

char valve[4]; 

char force_status[4]; 

 

char force = 0; 

 

 

// Celsius mode(0) or Fahrenheit(1) 

char degree = 0; 

 

#define set_temp 1 

#define control 2 

#define release 3 

 



 41

 

 

 

 

     

//********************************************************** 

//timer 0 overflow ISR 

ISR (TIMER0_COMPA_vect) 

begin 

 //Decrement the times if they are not already zero 

 if (time1>0) --time1; 

 if (time2>0)  --time2; 

end   

 

//********************************************************** 

// UART character-ready ISR 

// builds a sting and signals when the string is complete 

// supports backspace 

 

ISR (USART0_RX_vect) 

begin 

 r_char = UDR0 ;    //get a char 

 

 //build the input string 

 if (r_char != '\r')  // Is the input a <enter>? 

 begin  

  if (r_char == '\b') // Is the input a backspace?  

  begin 

   if (r_index > 0)  

   begin 

    putchar('\b'); // backup 

    putchar(' ');  // erase the character on the screen 

    putchar('\b'); // backup 

    --r_index ;  // wipe a character from the string 

   end 

  end 

  else if (r_char == 27) 

  begin 



 42

   MENU = main_menu; 

   display_menu = 0; 

   putchar(12); 

  end 

  else if (r_char == ' '); // ignore all the space 

  else    

  begin 

   UDR0 = r_char; 

   r_buffer[r_index++] = r_char ; // add a character to the string 

  end 

 end 

 else      // Human pressed <enter> 

 begin 

  putchar('\n');     //use putchar to avoid overwrite 

  r_buffer[r_index] = 0x00;   //zero terminate 

  r_ready = 1;    //signal cmd processor 

  UCSR0B ^= (1<<RXCIE0) ;    //stop rec ISR -- clear rxc 

 end 

end 

 

/**********************************************************/ 

//UART xmit-empty ISR 

ISR (USART0_UDRE_vect) 

begin 

 t_char = t_buffer[++t_index]; 

 if (t_char == 0)    // end of string?  

 begin 

  UCSR0B ^= (1<<UDRIE0) ;  // kill isr -- clear tx enable 

  t_ready = 1;    // transmit done  

 end 

 else UDR0 = t_char ;   //send the char  

end 

 

//**********************************************************        

//Entry point and task scheduler loop 

int main(void) 

begin   

 initialize(); 



 43

 

 while(1) 

 begin      

  if (time1==0){time1=t1; task1(); } 

  if (time2==0){time2=t2; task2(); } 

 end    

end   

   

 

 

//**********************************************************           

//Task 1   input a string and print it 

void task1(void)  

begin  

  //print ad get another serial string       

  if (r_ready)     

  begin 

   enter_pressed = 1; 

 // read string which is now ready 

 sscanf(r_buffer,"%s",v); 

 if (r_buffer[0] == 0) v[0] = 0; 

  

 // set up procedure to get the next string input 

 // and read it using receive ISR 

  getstr_int(); 

  end 

end   

  

//**********************************************************  

//Task 2  print the meaasge and system time in seconds 

void task2(void)  

begin 

 

 // update sensor value 

 debug_led = debug_led ^ 1; // blink LED on the prototype board 

(PORTD.2) 

 PORTD = (debug_led<<2); 

 



 44

 for(int i=0;i<2;i++) 

 begin 

  CLR(PORTB,i+3);  //chip select low begins transmission 

  // send signal to get High byte 

  SPDR = 0; 

  //wait until SPIF is set (SPI done) 

  while (!(SPSR & (1<<SPIF))); 

  Hbits = SPDR;  // get back Hbits 

   

  // send signal to get Low byte 

  SPDR = 0; 

  //wait until SPIF is set (SPI done) 

  while (!(SPSR & (1<<SPIF))); 

  Lbits = SPDR;  // get back Lbits 

  SET(PORTB,i+3);  //chip select high ends transmission 

 

  // calculate the temperature 

  temp[i] = (double)Hbits * 2; 

  temp[i] = temp[i] + ((double)(Lbits >> 5))/4; 

 

 

  if (force == 0)  // only change status when there's no force 

on/off 

  begin 

   if (temp[0] >= threshold) 

   begin 

    status = 1; 

    valve[0] = 'O'; 

    valve[1] = 'n'; 

    valve[2] = ' '; 

   end 

   else if (temp[0] < temp[1]+2) 

   begin 

    status = 0; 

    valve[0] = 'O'; 

    valve[1] = 'f'; 

    valve[2] = 'f'; 

   end 



 45

  end 

 

  if (status == 1) 

   PORTC = 0x01; 

  else 

   PORTC = 0; 

 

 end 

 

 

 switch (MENU) 

 begin 

 

 case main_menu: 

  if (enter_pressed == 0)  // when enter is not pressed 

  begin 

   if (display_menu == 0) 

   begin 

    putchar(12); 

    show_menu(); 

    display_menu = 1; 

   end 

   MENU = main_menu; 

  end 

  else      // when enter is pressed 

  begin 

   if (strlen(v) == 1) 

   begin      // check what was entered 

 

    if (v[0] == '1') 

    begin 

     if (!degree) fprintf(stdout,"Please enter threshold 

temperature (30 C - 99 C) >>"); 

     else fprintf(stdout,"Please enter threshold 

temperature (86 F - 210 F) >>"); 

     MENU = set_threshold; 

     enter_pressed = 0; 

    end 



 46

 

    else if (v[0] == '2') 

    begin 

     fprintf(stdout,"Turn On/Off pump? (1/0) >>"); 

     MENU = control_pump; 

     enter_pressed = 0; 

    end 

 

    else if (v[0] == '3') 

    begin 

     fprintf(stdout,"Release control over pump? (y/n) 

>>"); 

     MENU = release_pump; 

     enter_pressed = 0; 

    end 

 

    else if (v[0] == '4')  // change to celsius mode 

    begin 

     degree = 0; 

     MENU = main_menu; 

     display_menu = 0; 

     enter_pressed = 0; 

    end 

 

    else if (v[0] == '5')  // change to fahrenheit 

mode 

    begin 

     degree = 1; 

     MENU = main_menu; 

     display_menu = 0; 

     enter_pressed = 0; 

    end 

    else 

    begin 

     fprintf(stdout, "invalid entry.\n\r"); 

     enter_pressed = 0; 

    end 

   end 



 47

   else 

   begin 

    fprintf(stdout, "invalid entry.\n\r"); 

    enter_pressed = 0; 

   end 

  end 

  break; 

 

 

 case set_threshold: 

  if (enter_pressed == 1) 

  begin 

   // when addind a code, first check whether the length is 4 

   if (strlen(v) == 2 || strlen(v) == 3) 

   begin 

    if (!degree) 

    begin 

     if (atoi(v) >= 30 && atoi(v) <= 99) 

     begin 

      for(i=0;i<strlen(v);i++) 

      begin   // then check whether they are 

all numbers 

       if(v[i]<48 || v[i]>57 ) invalid = 1; 

       else invalid = 0; 

      end 

     end 

     else invalid = 1; 

    end 

    else 

    begin 

     if (atoi(v) >= 86 && atoi(v) <= 210) 

     begin 

      for(i=0;i<strlen(v);i++) 

      begin   // then check whether they are 

all numbers 

       if(v[i]<48 || v[i]>57 ) invalid = 1; 

       else invalid = 0; 

      end 



 48

     end 

     else invalid = 1; 

    end 

 

    if (invalid == 0) 

    begin 

     if (!degree) threshold = atoi(v); 

     else threshold = ((atoi(v))- 32) * 5 / 9; 

      

     enter_pressed = 0; 

     display_menu = 0; 

     MENU = main_menu; 

    end 

    else  

    begin 

     invalid = 0; 

     if (!degree) fprintf(stdout,"invalid 

entry.\n\rPlease enter threshold temperature (30 C - 99 C) >>"); 

     else fprintf(stdout,"invalid entry.\n\rPlease 

enter threshold temperature (86 F - 210 F) >>"); 

    end 

   end 

   else 

   begin 

    if (!degree) fprintf(stdout,"invalid entry.\n\rPlease 

enter threshold temperature (30 C - 99 C) >>"); 

    else fprintf(stdout,"invalid entry.\n\rPlease enter 

threshold temperature (86 F - 210 F) >>"); 

   end 

   enter_pressed = 0; 

  end 

  else 

   MENU = set_threshold; 

  break; 

 

 case control_pump: 

  if (enter_pressed == 1) 

  begin 



 49

   // when choosing sensor, should be 1 or 2 

   if (strlen(v) == 1) 

   begin 

    if (v[0]==48) //off 

    begin 

     MENU = main_menu; 

     display_menu = 0; 

     status = 0; 

     valve[0] = 'O'; 

     valve[1] = 'f'; 

     valve[2] = 'f'; 

     force = 1; 

     force_status[0] = 'Y'; 

     force_status[1] = 'e'; 

     force_status[2] = 's'; 

    end 

    else if (v[0]==49) //on 

    begin 

     MENU = main_menu; 

     display_menu = 0; 

     status = 1; 

     valve[0] = 'O'; 

     valve[1] = 'n'; 

     valve[2] = ' '; 

     force = 1; 

     force_status[0] = 'Y'; 

     force_status[1] = 'e'; 

     force_status[2] = 's'; 

    end 

    else 

    fprintf(stdout, "invalid entry\n\rTurn On/Off Pump? 

(1/0)"); 

   end 

   else 

    fprintf(stdout, "invalid entry\n\rTurn On/Off Pump? 

(1/0)"); 

   enter_pressed = 0; 

  end 



 50

  else 

   MENU = control_pump; 

  break; 

   

 case release_pump: 

  if (enter_pressed == 1) 

  begin 

   // when choosing sensor, should be 1 or 2 

   if (strlen(v) == 1) 

   begin 

    if (v[0] == 121) //yes 

    begin 

     MENU = main_menu; 

     display_menu = 0; 

     force = 0; 

     force_status[0] = ' '; 

     force_status[1] = ' '; 

     force_status[2] = ' '; 

    end 

    else if (v[0] == 110) //on 

    begin 

     MENU = main_menu; 

     display_menu = 0; 

    end 

    else 

    fprintf(stdout, "invalid entry\n\rRelease control over 

pump? (y/n)\n\r>>"); 

   end 

   else 

    fprintf(stdout, "invalid entry\n\rRelease control over 

pump? (y/n)\n\r>>"); 

 

   enter_pressed = 0; 

  end 

  else 

   MENU = release_pump; 

  break; 

 end 



 51

end   

 

 

   

//**********************************************************  

// Non-blocking keyboard input: initializes ISR-driven receive. 

// This routine merely sets up the ISR, which then 

//does all the work of getting a command. 

void getstr_int(void)  

begin 

 r_ready=0; // mark string as not ready 

 r_index=0; // reset index 

 // turn on receive ISR 

 UCSR0B |= (1<<RXCIE0) ; 

end 

 

//**********************************************************  

// Nonblocking print: initializes ISR-driven transmit.  

// This routine merely sets up the ISR, then 

// sends one character, The ISR does all the work.    

void putstr_int(void)  

begin 

 t_ready=0; // mark transmitter as busy 

 t_index=0; // reset index 

 // see if there is actually a string 

 if (t_buffer[0]>0)  

 begin 

  // if so, send the first chararcter 

    putchar(t_buffer[0]); 

  // and turn on transmit (UDR empty) ISR 

    UCSR0B |= (1<<UDRIE0) ; 

 end  

end 

 

 

void show_menu(void) 

begin 

 fprintf(stdout, "------ Cornell University  Solar Decathlon 



 52

------\n\r"); 

 fprintf(stdout, "--- Solar Hot Water Collecting Control System 

---\n\r"); 

 fprintf(stdout, 

"-------------------------------------------------\n\r"); 

 fprintf(stdout, "--| Sensor      |-|    Coil    |-|  WaterTank 

|--\n\r"); 

 

 if (!degree) 

 fprintf(stdout, "--| Temperature |-| %7.2f C  |-| %7.2f C  

|--\n\r",temp[0],temp[1]); 

 else 

 fprintf(stdout, "--| Temperature |-| %7.2f F  |-| %7.2f F  

|--\n\r",temp[0]*1.8+32,temp[1]*1.8+32); 

 if (!degree) 

 fprintf(stdout, "--| Threshold   |-| %4d    C  |-| %7.2f C  

|--\n\r",threshold,temp[1]+2); 

 else 

  begin 

  if( ((double)threshold*1.8+32) - (char)(threshold*1.8+32) > 0) 

 fprintf(stdout, "--| Threshold   |-| %4d    F  |-| %7.2f F  

|--\n\r",(char)(threshold*1.8+32)+1,(temp[1]+2)*1.8+32); 

  else 

 fprintf(stdout, "--| Threshold   |-| %4d    F  |-| %7.2f F  

|--\n\r",(char)(threshold*1.8+32),(temp[1]+2)*1.8+32); 

  end 

 

 fprintf(stdout, "--| Pump Status |-|     %3s    |-|\n\r",valve); 

 fprintf(stdout, "--| Controlled? |-|     %3s    

|-|\n\r",force_status); 

 fprintf(stdout, 

"-------------------------------------------------\n\r"); 

 

 

 

 

 

 sprintf(t_buffer, "1. Set threshold temperature\n\r2. Manual control 



 53

\n\r3. Release control\n\r4. Switch to Celsius\n\r5. Switch to 

Fahrenheit\n\r-------------------------------------------------\n\r>>

"); 

 

 newstr = 1; 

 

 if (t_ready && newstr) 

 begin 

  // make a string of system time (sec) and number from task 1 

  //sprintf(t_buffer,"%ld %d\n\r",time/1000, v) ; 

 

  // print it using transmit ISR  

  putstr_int(); 

  // clear the string ready handshake from task 1  

  newstr = 0; 

 end 

end 

 

 

 

 

//**********************************************************  

//Set it all up 

void initialize(void) 

begin 

 

 // init the UART -- uart_init() is in uart.c 

 uart_init(); 

 stdout = stdin = stderr = &uart_str; 

 fprintf(stdout,"Starting ISR UART demo...\n\r");  

 putchar(12); 

 

 // set up timer 0      

 OCR0A = 249;       // clear after 250 counts 

 TIMSK0 = (1<<OCIE0A) ; //turn on timer 0 cmp-match ISR  

 

 // turn on timer 0 clear on match 

 TCCR0A = (1<<WGM01) ; 



 54

 // timer 0 prescalar to 64  

 TCCR0B = 3 ;  

   

 // init the task timers 

 time1=t1; 

 time2=t2;     

   

 // initialize the USRT handshake flags 

 r_ready=0; // initially, there is no input ready 

 t_ready=1; // initially, the transmitter is ready 

 

 // initialize main function variables 

 display_menu = 0; 

 MENU = main_menu; 

 enter_pressed = 0; 

 invalid = 0;  

 

 strcpy(force_status, "   "); 

 strcpy(valve, "Off"); 

 

 // output pin to pump controlling relay 

 DDRC = 0x01; 

 PORTC = 0; 

 // output pin debug_led 

 DDRD |= (1<<2) ; // LEDs 

 debug_led = 0x00; 

 // LM70 reading 

 //set up i/o data direction 

 //DDRB.4 = 1; //output chip select for DAC (notSYNC) 

 //DDRB.5 = 1; //output MOSI to ADC 

 //DDRB.6 = 0; //input MISO from ADC 

 //DDRB.7 = 1; //output SCLK    

 DDRB = (1<<DDB3) | (1<<DDB4) | (1<<DDB5) | (1<<DDB7) ;  

 // initialize notSYNC 

 SET(PORTB,4); 

 SET(PORTB,3); 

 

 //set up SPI 



 55

 //bit 7 SPIE=0 no ISR 

 //bit 6 SPE=1 enable spi 

 //bit 5 DORD=0 msb first  

 //bit 4 MSTR=1 Mega32 is spi master 

 //bit 3 CPOL=1 clock polarity 

 //bit 2 CPHA=1 clock phase 

 //bit 1,0 rate sel=10 along with SPRC=1 sets clk to f/32 = 500 kHz 

 SPCR = (1<<SPE) | (1<<MSTR) | (1<<CPOL) | (1<<CPHA) | (1<<SPR1) ; 

//SPCR SPCR = 0b01011110 ;                                                                               

 SPSR = (1<<SPI2X) ; //SPSR = 1;  

 

 // initialize threshold temperature to 50C 

 threshold = 50; 

 

 // turn in ISRs 

 // but note that UART ISRs are enabled when reading/writing 

 sei();  

 // start waiting for input 

 getstr_int(); 

end    


