
1 
 

ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) 

TRANSCEIVER DESIGN 
 

 

 

 

 

A DESIGN PROJECT REPORT 

PRESENTED TO THE ENGINEERING DIVISION OF THE GRADUATE SCHOOL 

OF CORNELL UNIVERSITY 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF ENGINEERING (ELECTRICAL) 

 

 

 

 

 

 

 

 

 

by 

Michal Litwin 

Project Advisor: Bruce R. Land 

Degree Date: August 2010 



2 
 

Abstract 
 

Master of Electrical Engineering Program 

Cornell University 

Design Project Report 

 

Project Title: Orthogonal Frequency Division Multiplexing (OFDM) Transceiver 

Author: Michal Litwin 

Abstract: 

This project implements an Orthogonal Frequency Division Multiplexing (OFDM) 

transceiver in a hybrid Simulink/Verilog programming environment with timing and hardware 

resources consideration for an FPGA platform - Altera Cyclone II. The deliverable of the project is   

real-time processing MATLAB Simulink model of an OFDM transceiver with the core components 

implemented in hardware using hardware descriptive language Verilog.  

My choice of the OFDM transceiver design project is motivated by the relevance of its 

realization for students who share interest in the communication field. The project provides 

opportunity to study outside the classroom a real-time processing software/hardware 

implementation of a complete digital communication system based on most commonly used in 

wireless technology modulation scheme - Orthogonal Frequency Division Multiplexing.  

The orthogonality between overlapping subcarriers which is at the core of OFDM 

modulation requires a perfect synchronization. As a consequence, a more sophisticated 

synchronization mechanism than in the case of a single carrier modulation necessitates 

employment of fast implementations of various commonly used in a receiver design algorithms, 

such as CORDIC and Fast-Fourier Transform, which can be re-used in different transceiver’s 

architectures. 

 

 

 

 

Report Approved by 

Project Advisor: ______________________________________Date: _____________________ 



3 
 

EXECUTIVE SUMMARY 
 

This project involved design and development of an Orthogonal Frequency Division 

Multiplexing transceiver (OFDM) in a hybrid Simulink and Modelsim/Quartus environment for an 

FPGA platform - Altera Cyclone II. Orthogonal Frequency Division Multiplexing is the most 

commonly used multicarrier modulation scheme in wireless communication due to its robustness 

in frequency-selective channels. Advantages of Orthogonal Frequency Division Multiplexing, such as 

efficient spectrum utilization due to overlapping subcarriers, stem from the orthogonality principle 

between subcarriers which requires perfect timing and frequency synchronization. As a 

consequence, the main emphasis in the project was put on design and development of the 

synchronization mechanism. 

The goal set forth for the project - development of a base software/hardware digital 

communication system, which can serve the purpose of an educational tool to supplement students' 

coursework in communication theory, is reflected in the aforementioned selection of the project ‘s 

technology and associated with it requirements. 

Due to the fact that OFDM is an underlying technology of most modern wireless communication 

systems one can use and expand the project to study not only the OFDM system but also other 

wireless communication features. I developed synchronization mechanism based on a single master 

control counter and a state machine which can easily be expanded: 

 to a larger number of OFDM subcarriers by adjusting a reference of the control signals to 

new master control counter values 

 to include an additional feature by introducing an additional state in the state machine 

Development of synchronization mechanism involved implementation of algorithms which are 

commonly used in a digital transceiver design, such as: 

 CORDIC algorithm of linear and circular type in both rotation and vectoring modes 

 Fast-Fourier Transform 

 Quadrature digital synthesis without ROM look-up tables 

I researched most-up-to-date hardware optimizations of the aforementioned algorithms and 

selected representatives which had the highest speed-to-hardware cost ratio. The implementation 

was done both in software (MATLAB) and hardware (Verilog HDL). I implemented a fast variation 

of CORDIC algorithm in rotation mode which eliminates a critical path from the rotation direction 

evaluation with a little hardware cost overhead - a major speed bottleneck in a standard form of 

CORDIC algorithm. My implementation of CORDIC algorithm in vectoring mode halves the number 

of iterations required for convergence by employing radix-4 modification to the standard CORDIC 

algorithm. I designed 64-point multiplierless Fast Fourier Transform unit which in standard 

implementation requires 49 nontrivial complex multiplications (49*4 real multipliers).  The Fast-

Fourier Transform implementation also offers an outstanding speed performance (14 clock cycles 

in a serial output mode and 21 clock cycles in a parallel output mode). The OFDM transceiver is 

robust to synchronization errors and achieves error-free decoding in both ideal and moderate 

multipath channel conditions. 



4 
 

CONTENTS 
 

1 Design problem and system of requirements ..................................................................................... 6 

2 Introduction .......................................................................................................................................... 7 

2.1 Multicarrier modulation .............................................................................................................. 7 

2.2 Orthogonal Frequency Division Multiplexing (OFDM) ................................................................ 7 

2.2.1 Advantages of Orthogonal Frequency Division Multiplexing (OFDM) ............................... 7 

2.2.2 OFDM modulation ................................................................................................................ 8 

2.2.3 OFDM demodulation ............................................................................................................ 8 

2.2.4 Guard interval ....................................................................................................................... 9 

2.3 System architecture ..................................................................................................................... 9 

2.3.1 Description of the OFDM Transceiver’s components ......................................................... 9 

3 Algorithms used in the OFDM transceiver’s design .......................................................................... 12 

3.1 Fast-Fourier Transform............................................................................................................... 12 

3.1.1 Alternative solutions and design choice ............................................................................ 12 

3.1.2 Algorithm description ........................................................................................................ 14 

3.1.3 Hardware Implementation ................................................................................................ 15 

3.1.3.5 Inverse Fast Fourier Transform .......................................................................................... 19 

3.2 CORDIC  ALGORITHM ................................................................................................................. 19 

3.2.1 Introduction ........................................................................................................................ 19 

3.2.2 CORDIC algorithm in vectoring mode (circular type) ........................................................ 20 

3.2.3 CORDIC algorithm in vectoring mode (linear type) ........................................................... 28 

3.2.4 CORDIC algorithm in rotation mode (PARA-CORDIC) ....................................................... 30 

4 Synchronization Mechanism – OFDM Receiver Design .................................................................... 37 

4.1 Synchronization errors ............................................................................................................... 37 

4.1.1 Carrier frequency offset ..................................................................................................... 37 

4.1.2 Symbol timing offset .......................................................................................................... 38 

4.2 Synchronization schemes ........................................................................................................... 39 

4.2.1 Timing Offset Estimation .................................................................................................... 39 

4.2.2 Fractional Frequency Offset Estimation ............................................................................ 41 

4.2.3 Channel estimation ............................................................................................................ 41 



5 
 

4.3 Alternative Solutions And Design Choice .................................................................................. 42 

4.4 Hardware implementation ........................................................................................................ 44 

4.4.1 Overall architecture............................................................................................................ 44 

4.4.2 Coarse Synchronization ...................................................................................................... 46 

4.4.3 Fine synchronization .......................................................................................................... 52 

4.4.4 Channel Estimation ............................................................................................................ 54 

4.4.5 Data decoding ..................................................................................................................... 55 

5 Testing................................................................................................................................................. 56 

6 Results ................................................................................................................................................. 57 

6.1 Results for assessment of reusability of the hardware implementation of the algorithms 

used in the OFDM transceiver’s design ................................................................................................. 57 

6.2 Results for assessment of reusability of the OFDM transceiver ............................................... 64 

7 Conclusion .......................................................................................................................................... 67 

References .............................................................................................................................................. 68 

8 Appendix ............................................................................................................................................. 70 

8.1 Circuit diagrams .......................................................................................................................... 70 

8.2 Testing results............................................................................................................................. 75 

8.2.1 Ideal channel ...................................................................................................................... 75 

8.2.2 Mild multi-path channel..................................................................................................... 77 

8.2.3 Severe multi-path channel ................................................................................................. 80 

8.2.4 Ideal channel with an uncompensated frequency offset ................................................. 82 

8.2.5 Ideal channel with a symbol timing offset (FFT window leads) ....................................... 84 

8.2.6 Ideal channel with a symbol timing offset (FFT window lags) .......................................... 86 

8.2.7 Ideal channel with both a symbol timing offset (FFT window leads) and an 

uncompensated frequency offset ...................................................................................................... 88 

 

 
 

 



6 
 

 

1 DESIGN PROBLEM AND SYSTEM OF REQUIREMENTS 
 

The deliverable of the project is a hybrid Simulink/Verilog model of an Orthogonal 

Frequency Division Multiplexing transceiver which is robust to synchronization errors. The 

transceiver should be able to correctly detect the start of an OFDM symbol and decode error-free 

data in spite of various non-idealities, such as frequency offset between transmitter and receiver’s 

oscillators as well as superposition of multiple copies of the transmitted signal with various delays 

due to the multipath channel. 

Initially, I intended to make my design exclusively in Quartus software – a synthesis tool for 

Cyclone II FPGA platform. However, during the course of the project I changed the deliverable of the 

project from the Verilog code developed exclusively for Cyclone II FPGA in Quartus software to a 

hybrid Simulink and Verilog model with timing and hardware resources consideration for Cyclone 

II FGPA. The motivation behind this change stemmed from the ultimate goal of the project - 

reusability of the project's materials as a study material and a base platform for further expansion 

for students interested in communication theory.  

The new deliverable enables more transparent system's verification process and better 

reusability of the system for implementation in different FPGA platforms.  

I developed all core components of the OFDM transceiver, such as Fast Fourier Transform 

unit, CORDIC-based de-rotator and rectangular-to-polar/polar-to-rectangular coordinates 

converters in hardware descriptive language - Verilog with timing and hardware resources 

constraints consideration for Cyclone II FPGA. First, I implemented a given algorithm in a 

sequential hardware and tested propagation delay between loading input registers and appearance 

of output signals at the output registers using timing analysis tool in Quartus software for Cyclone II 

FPGA. Based on the obtained propagation delay and a particular module's throughput requirement 

I divided the sequential hardware into pipeline stages.  

Keeping in mind reusability premise of the project I coded hardware modules around a core 

notion of a particular algorithm - a notion of iteration in the case of CORDIC algorithm and 

multiplication by complex exponentials (twiddle factors) in the case of FFT. This way one can easily 

increase precision of my CORDIC algorithm implementation by merely instantiating additional 

iteration modules or increase throughput by grouping iterations modules into more pipeline stages. 

The core of FFT calculation control mechanism remains the same for higher FFT orders, the only 

modification concerns expansion of a set of complex exponential multiplication factors. 

 

The only remaining components in a Simulink model of the system which were not coded in 

Verilog and instantiated as Verilog modules in the model are basic hardware components such as 

multipliers, accumulators and shift registers. This approach allows an easy mapping of the model to 

an FPGA platform of one's choice. 

 



7 
 

 

2 INTRODUCTION 
 

2.1 MULTICARRIER MODULATION 
 

Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier modulation 

technique.  

Multicarrier transmission is a method devised to deal with frequency selective channels. In 

frequency selective channels different frequencies experience disparate degrees of fading. The 

problem of variation in fading levels among different frequency components is especially 

aggravated for high data rate systems due to the fact that in a typical single carrier transmission the 

occupied bandwidth is inversely proportional to the symbol period. The basic principle of 

multicarrier transmission is to translate high rate serial data stream into several slower parallel 

streams such that the channel on each of slow parallel streams can be considered flat. Parallel 

streams are modulated on subcarriers. 

In addition to that, by making symbol period longer on parallel streams the effect of the 

delay spread of the multipath channel, namely inter-symbol interference (ISI), is greatly reduced. In 

multipath channels multiple copies of the transmitted signal with different delays, which depend on 

characteristics of the material from which the transmitted signal has been reflected, are received at 

the receiver. The delay spread of a channel is a measure of degree of multipath effect - it is equal to 

the difference between arrival times of the first and the last multipath components. Due to the fact 

the length of the symbol period of each parallel stream scales proportionally to the number of 

subcarriers used the percentage of overlap between two adjacent symbols due to delay spread and 

resulting from it inter-symbol interference (ISI) also decreases proportionally to the number of 

subcarriers. 

 

2.2 ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) 
 

2.2.1 ADVANTAGES OF ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) 
 

In early multicarrier transmission systems subcarriers were non-overlapping to prevent 

inter-carrier interference which can greatly degrade performance of a system. Individual 

subcarriers were separated by guard bands which constituted wasted bandwidth. 

The reason why Orthogonal Frequency Division Multiplexing (OFDM) has become the most 

popular technique of multicarrier transmission is that subcarriers overlap in frequency and 



8 
 

therefore bandwidth utilization increases by up to 50%. Overlapping subcarriers is allowed 

because in OFDM modulation subcarriers are orthogonal to each other. Moreover, OFDM 

modulation/demodulation takes form of inverse DFT/DFT which can be efficiently implemented in 

hardware using Fast-Fourier Transform algorithm. 

 

2.2.2 OFDM MODULATION 
 

In OFDM transmitter N complex-value source symbols Xk k=0,1,...N-1, which can come from 

any constellation, such as QPSK or QAM, are modulated onto N orthogonal subcarriers - inverse 

Fourier-Transform complex exponentials evaluated at subcarrier frequencies fk : 

 𝑥 𝑡 =  𝑋𝑘 ∗ 𝑒𝑗2𝜋𝑓𝑘 𝑡𝑁−1
𝑘=0  (1)  

In a digital transmitter t=nTs where Ts is the sampling period. Subcarriers frequencies are 

uniformly distributed: 

 fk=k*fs k=0,1, ... N-1 (2) 

Frequency spacing fs is equal to 
1

𝑁𝑇𝑠
 in order to preserve orthogonality between subcarriers. 

The final form of OFDM transmission takes a form of inverse-Fast-Fourier Transform:  

 𝑥𝑛 = 𝑥 𝑛𝑇𝑠 =  𝑋𝑘 ∗ 𝑒 𝑗
2𝜋𝑛𝑘

𝑁𝑁−1
𝑘=0  n=0,1,...N-1 (3)  

N-sample long x sequence is called OFDM symbol and its duration is equal to N*Ts. 

 

2.2.3 OFDM DEMODULATION 
 

ADC at the receiver receives an analog signal which is a result of convolution of the 

transmitted OFDM symbol x(t) with the channel impulse response plus noise: 

 r(t)= 𝑟(𝑡 − 𝜏)
∞

−∞
∗  𝜏, 𝑡 + 𝑛(𝑡) (1) 

OFDM demodulation takes a form of Fast-Fourier Transform of the sampled received signal r(t) 

(after removal of Ng samples of the guard interval):  

 𝑅𝑘 =  𝑟𝑛 ∗ 𝑒−𝑗
2𝜋𝑛𝑘

𝑁𝑁−1
𝑘=0  k=0,1,...N-1 (2) 

Since inter-carrier interference (ICI) is avoided by maintaining orthogonality between subcarriers 

the channels (Hk’s) at subcarriers’ frequencies can be treated independently and the demodulated 

OFDM symbol in a frequency domain can be written as: 



9 
 

 Rk=Hk*Xk+Nk (3) 

 

After channel estimation which yields complex-valued channel attenuation factors Hk at 

each subcarrier’s frequency the decoded k-th transmitted data symbol 𝑋 𝑘can be obtained through 

the following transformation: 

𝑋 𝑘=QAM/QPSK de-mapper (
𝑅𝑘

𝐻𝑘
) 

 

2.2.4 GUARD INTERVAL  
 

In order to eliminate inter-symbol interference (ISI) due to the multipath channel a guard 

interval is inserted at the beginning of each OFDM symbol in the OFDM transmitter. The length of 

the guard interval - Ng is set such it is greater than the delay spread of the channel. The guard 

interval is formed by copying last Ng samples of an OFDM symbol and appending them at the 

beginning of the same OFDM symbol. 

The guard interval is made by design longer than the delay spread of the channel therefore within 

the symbol period only multiple copies of the same symbol are combined - no ISI occurs. 

 Due to the fact that I did not design my transceiver for a specific channel I used 802.11a 

length of the guard interval – 16 samples. 

2.3 SYSTEM ARCHITECTURE 
 

The circuit diagram for the entire transceiver’s structure is in Appendix Section 8.1 Figure 12. 

2.3.1 DESCRIPTION OF THE OFDM TRANSCEIVER’S COMPONENTS 
 

2.3.1.1 COARSE SYNCHRONIZATION COMPONENTS 
 

Coarse synchronization is used to roughly estimate the start of an OFDM symbol and the 

fractional frequency offset (FCO) (for a detailed description of the coarse synchronization 

mechanism see Section 4.4.2). The coarse synchronization mechanism is the first processing unit in 

the receiver. 

COARSE SYMBOL TIMING OFFSET SYNCHRONIZATION COMPONENTS 
The chain of the following components in the circuit diagram is responsible for calculation of 

the timing offset metric which is used for the coarse symbol timing synchronization - determination 



10 
 

of the start of an OFDM symbol (please refer to eq. (4) in Section 4.2.1 for the timing offset metric 

expression): 

 16-element shift register 

 bank of multipliers 

 multi-operand adders 

 Vectoring CORDIC unit 

 TO multiplier 

The autocorrelation calculation embedded in the expression for the timing offset metric has a 

special form in which multiplication of the consecutive samples in the two halves of the 15-sample 

long autocorrelation window is replaced by the multiplication of the samples “going” back and 

forward in time with respect to the center sample in the autocorrelation window.  

15-element shift register creates a perfect structure for this special form of the autocorrelation 

calculation (it consists of 15 elements because the preamble used for the coarse synchronization 

consists of 16-sample long “mini” preambles, as described in Section 4.3, and the calculation 

symmetry inherent in the timing offset metric expression requires an odd number of elements).  

The eight pairs of complex multiplication terms in the timing offset metric expression are tapped off 

from the shift register and fed into a bank of multipliers.   

The bank of multipliers consists of four “mini” banks– each “mini” bank of 8 multipliers is 

responsible for calculation of one of the four cross-products of the real and the imaginary parts of 

the eight complex pairs. The resulting cross-product terms are summed up using multi-operand 

adders (one adder for the real part of the multiplication result and the other one for the imaginary 

part).  The outputs of the adders are fed to the Vectoring CORDIC unit which calculates the modulus 

of the complex-valued timing offset metric (the Vectoring CORDIC unit is used as a rectangular-to-

polar coordinate converter).  

Next, the modulus of the timing offset metric is squared using TO multiplier to de-emphasize 

erroneous peaks in the autocorrelation function embedded in the timing offset metric expression. 

COARSE FRACTIONAL FREQUENCY OFFSET SYNCHRONIZATION COMPONENTS 
Coarse FCO Metric Calculation Unit – this unit calculates the coarse frequency offset metric (see 

eq. (2) in Section 4.2.1) using a serial multiplier/accumulator mechanism (for a description of the 

serial multiplier/accumulator mechanism see Section 4.4.2.2). The frequency offset metric is 

converted to the actual frequency offset value using the Vectoring CORDIC unit.  

 

FINE SYNCHRONIZATION COMPONENTS 
 

Fine synchronization is used for fine-tuning the estimates of the synchronization errors (the 

symbol timing offset and the fractional frequency offset) obtained in the course synchronization 

stage. It is the second processing unit in the receiver. 



11 
 

COMPONENTS COMMON FOR BOTH THE FINE SYMBOL TIMING OFFSET AND THE FINE 

FRACTIONAL FREQUENCY OFFSET SYNCHRONIZATION 
De-rotator (Para-CORDIC) – it de-rotates the received samples by the coarse frequency offset. 

Both the fine symbol timing offset synchronization and the fine frequency offset synchronization 

components use as a source of the received data samples the de-rotated samples produced by this 

unit. The de-rotator unit is based on CORDIC algorithm in rotation mode (for a detailed description 

of the algorithm and its hardware implementation, called Para-CORDIC, see Section 3.2.4). 

FINE SYMBOL TIMING OFFSET SYNCHRONIZATION COMPONENTS 
Cross-correlator – this unit calculates the cross-correlation between the received de-rotated 

samples of the second preamble (Preamble 2) and the reference Preamble 2 samples stored in a 

look-up table (for a description of the Preamble 2 structure see Section 4.3). The cross-correlation 

is calculated for an 11-delay window around the start of an OFDM symbol determined by the coarse 

symbol timing offset synchronization. The maximum of the cross-correlation values (one value for 

one delay in the cross-correlation window) determines the start of an OFDM symbol for decoding 

purposes. 

FINE FRACTIONAL FREQUENCY OFFSET SYNCHRONIZATION COMPONENTS 
Fine FCO Metric Calculation Unit – this unit calculates the coarse frequency offset metric for each 

delay in the cross-correlation window. Similar to the coarse synchronization counterpart it uses a 

serial multiplier/accumulator mechanism and its output is converted to the actual frequency offset 

value using the Vectoring CORDIC unit. 

CHANNEL ESTIMATION 
 

Channel estimation is used to estimate complex-valued frequency attenuation factors at all 

subcarriers’ frequencies from the FFT of the received pilot samples and the reference pilot samples 

(for a detailed description of the channel estimation mechanism see Section 4.4.4). The obtained 

attenuation factors are used to equalize the data symbols using an equalizer. 

CHANNEL ESTIMATION COMPONENTS 
Channel Frequency Response Register – this unit consists of a shift register storing the complex-

valued frequency attenuation factors in polar coordinates for all subcarriers’ frequencies. 

Pilot Look-up Table – a look-up table used to store the reference samples of the pilot symbol. 

COMPONENTS COMMON FOR BOTH CHANNEL ESTIMATION AND EQUALIZATION/DATA 

DECODING 
FFT64 – 64-point Fast-Fourier Transform unit used to demodulate OFDM symbols (see eq. (2) in 

Section 2.2.3).  An identical unit is used to do OFDM modulation of the source symbols in the 

transmitter (see eq. (1) in Section 2.2.2) 



12 
 

Polar-to-Rectangular Coordinate Converter – channel estimation and equalization are based on 

a division operation of complex numbers in polar coordinates. The results obtained in these 

processing units have to be converted back to rectangular coordinates for 16-QAM de-mapper. 

Division Unit – this unit calculates division of the modulus of the FFT of the received pilot sample 

by the modulus of the reference pilot sample in the channel estimation processing unit and the 

modules of the FFT of the received data sample by the modulus of the channel frequency response 

in the equalization/data decoding processing unit. The division operation is implemented using 

CORDIC algorithm in vectoring mode of linear type (for a detailed description of the algorithm and 

its hardware implementation see Section 3.2.3) 

EQUALIZATION/DATA DECODING 
 

An equalizer is used for compensation of the received sample by the complex-valued 

frequency attenuation factor at a given subcarrier’s frequency (for a detailed description of 

equalization/data decoding mechanism see Section 4.4.5). The equalizer is implemented using the 

division unit. 

EQUALIZATION/DATA DECODING COMPONENTS 
16-QAM De-mapper – this unit maps the received data samples to one of the sixteen 16-QAM 

constellation points. 

3 ALGORITHMS USED IN THE OFDM TRANSCEIVER’S DESIGN 
 

3.1 FAST-FOURIER TRANSFORM 
 

3.1.1 ALTERNATIVE SOLUTIONS AND DESIGN CHOICE  
 

As a specification reference for my OFDM transceiver’s parameters I used 802.11a modem 

standard. In 802.11a standard 64-point Fast Fourier Transform processor is used to implement 

OFDM modulation and demodulation.   

I did an extensive research on efficient hardware implementation of Fast Fourier Transform 

algorithm from which I concluded that the most crucial design aspect of the hardware 

implementation of Fast Fourier Transform is a process of performing multiplication by complex 

exponential factors, so called twiddle factors.  

 

 



13 
 

Fast-Fourier Transform Design Choice 

Alternative Solutions Justification of Selection Decision 

One can group available solutions to the 
"twiddle factors" multiplication problem 
into : 

 a brute force method by a regular 
multiplication  

 CORDIC algorithm based 
multiplication 

 hardwired multiplication using 
Carry-Save Adder Trees and 
Canonical Signed-Digit 
representation of twiddle factors  

 

 In the preliminary hardware cost 
analysis I ruled out the first option due to 
the fact that it is the most hardware 
resources expensive - each of 49 
nontrivial multiplications for 64-point 
FFT requires 4 real multipliers - not 
viable solution due to lack of resources 
on the target Altera FPGA. 
 CORDIC algorithm is an attractive 
solution due to its inherent efficient 
mechanism for performing a 
multiplication by a complex exponential. 
In addition to that, CORDIC-based 
multiplication architecture has a very 
regular structure therefore it is easily 
scalable (there is no difference in 
multiplication process for different sets 
of twiddle factors). However, in order to 
minimize latency multiple CORDIC 
modules have to be instantiated.  
 Hardwired multiplication using 
Carry-Save Adder Trees and Canonical 
Signed-Digit representation of the 
twiddle factors is very hardware efficient 
method to perform multiplication 
because it only uses adders and shifters 
which are fast hardware components. 
The reason why I chose the algorithm 
based on the hardwired multiplication 
over CORDIC algorithm is because for the 
desired FFT order of 64 there are only 8 
sets of unique constants which, with 
conditional interchange and negation 
operations, can perform all 49 nontrivial 
complex multiplications.  This solution 
offers the best speed performance and 
great hardware savings as compared to 
CORDIC algorithm based alternative. 
CORDIC--based architecture would 
require multiple CORDIC modules to 
achieve the same latency.  
 
 

 

 



14 
 

3.1.2 ALGORITHM DESCRIPTION 
 

The basis for my Fast-Fourier Transform implementation is Cooley-Tukey algorithm. The 

reason why Cooley-Tukey algorithm was a perfect fit for my design specification (the need for both 

FFT and inverse FFT units imposes the largest constraint on hardware resources usage among all 

units in the OFDM transceiver) is that a specific form of this algorithm directly maps itself onto a 

very compact hardware implementation.  

The characteristic feature of Cooley-Tukey algorithm is re-mapping of time and frequency 

indices. 

Time Standard FFT algorithm Cooley-Tukey FFT Algorithm 
(N - FFT order) 

Time index n 𝑛1 ∗  𝑁 + 𝑛2 
Frequency index k 𝑘1 +  𝑁 ∗ 𝑘2 

Table 1: Cooley-Tukey Algorithm time and frequency indices re-mapping 

3.1.2.1 Cooley-Tukey FFT algorithm 
 

 

As can be seen from the final expression for Cooley-Tukey algorithm, by using a technique of 

time and frequency indices re-mapping 64-point FFT is split into two 8-point FFTs: 

 the inner 8-point FFT with n1 time index calculated for a specific value of n2. Through the 

dependence on n2 value the inner 8-point FFT is embedded in the outer 8-point FFT 

 the outer 8-point FFT with n2 time index 

 

 

 



15 
 

3.1.3 HARDWARE IMPLEMENTATION 
 

3.1.3.1 Overall architecture 

 

 In the design of the Fast-Fourier Transform unit I used ideas presented in [6].  

 The expression for Cooley-Tukey algorithm maps directly into the following hardware 

implementation: 

 

Figure 1: Fast-Fourier Transform unit circuit diagram. 

 

FFT hardware units: 
 I/P (input) unit - consist of a bank of 57 registers for both the real and the imaginary parts 

of the serial input. At each clock cycle a serial data is shifted in at 56th position register 

(counting from 0) and the data in the rest 56 registers is shifted down one register at a time. 

The registers at 0, 8, 16, 24, 32, 40, 48 and 56th positions are tapped off to produce 

𝑥[𝑛1 ∗  8+n2] samples for the inner 8-point FFT unit (where n1=0,1,2.. 7). 

 Inner 8-point FFT unit - n1 is a time index calculated for a specific n2 value 

 Multiplier unit - multiplication of the inner 8-point FFT outputs by the twiddle factors 

 INTERM Unit – an intermediate storage unit. It consists of a bank of 64 registers for both 

the real and the imaginary parts of data coming from the multiplier unit. Its function is to 

collect all 64 inner 8-point FFT outputs multiplied by the twiddle factors for all eight n2 

values. Similarly to I/P unit register bank 0, 8, 16, 24, 32, 40,48 and 56th positions are 

tapped off to produce the input to the outer 8-point FFT 

 Outer 8-point FFT unit - n2 is a time index 

 O/P (output) unit - consists of a bank of 57 registers, similar to I/P unit. During the eight 

clock cycles of the 8-point outer FFT unit operation 64-point FFT samples are shifted in 

from the outer 8-point FFT at 0, 8, 16, 24, 32, 40,48 and 56th positions. At each clock cycle 

data is shifted down one register at a time in the register bank and the serial out data is 

shifted out from the 0th position register. 

 

 

 



16 
 

3.1.3.2 Multiplication by the twiddle factors 
 

 64-point Fast Fourier Transform requires 49 nontrivial complex multiplications. However, 

there are only eight unique sets of complex constants which allow to compute all 49 multiplications 

with conditional interchange and negation operations. This important observation combined with 

the representation of each constant in Canonical Signed-Digit representation (binary weights ϵ {-

1,0,1}) leads to a multiplierless solution to the twiddle factor multiplication problem.  

 Canonical Signed-Digit (CSD) representation of a number is a linear combination of 2-i terms 

which in binary arithmetic are just shift operations. Therefore multiplication of a number by a 

constant represented in CSD can be realized with only adders and shifters. Due to the fact that 

multiplication by a constant factor realized through a linear combination of shifted copies of an 

input signal involves addition of multiple operands I decided to implement addition operation using 

Carry-Save Adder Tree to minimize latency associated with addition of a chain of operands. 

 

Consta
nt 

Real part Imaginary 
part 

Real part in CSD Imaginary part in CSD 

C1 0.9951847 0.0980171 1-2-8-2-10+2-14 2-4+2-5+2-8+2-12+2-14 
C2 0.9807853 0.1950903 1-2-6-2-8+2-12+2-14 2-3+2-4+2-7-2-12 
C3 0.9569403 0.2902847 1-2-5-2-7-2-8-2-13 2-2+2-5+2-7-2-10+2-12 
C4 0.9238795 0.3826834 1-2-4-2-7-2-8-2-9 2-2+2-3+2-7-2-13+2-14 
C5 0.8819213 0.4713967 1-2-3-2-7-2-10-2-14 2-1-2-5+2-9+2-11+2-12+2-14 
C6 0.8314696 0.5555702 1-2-3-2-5-2-6+2-8-2-11-2-13 2-1+2-4-2-7+2-10-2-13 
C7 0.7730105 0.6343933 1-2-2+2-6+2-7-2-11+2-14 2-1+2-3+2-7+2-10+2-11+2-14 
C8 0.7071068 0.7071068 2-1+2-3+2-4+2-6+2-8+2-14 2-1+2-3+2-4+2-6+2-8+2-14 

Table 2: The set of eight unique complex constants used to compute all 49 complex multiplications by the twiddle 

factors. 

Time 
Instant 

First 8-
point FFT 
number 

(=INTERM
Counter 
value) 

Frequency index of the first 8-point FFT 
CONSTANT USAGE FORMAT 

(negate(N)/swap(S) real and imaginary parts/real part sign/imaginary part 
sign/constant number 

0 1 2 3 4 5 6 7 

0 0th Trivial 
(1) 

Trivial 
(1) 

Trivial 
(1) 

Trivial 
(1) 

Trivial (1) Trivial 
(1) 

Trivial 
(1) 

Trivial 
(1) 

1 1st Trivial 
(1) 

N/+/-/1 N/+/-/2 N/+/-/3 N/+/-/4 N/+/-
/5 

N/+/-/6 N/+/-/7 

2 2nd Trivial 
(1) 

N/+/-/2 N/+/-/4 N/+/-/6 N/+/-/8    

3 2nd Trivial 
(1) 

    S/-/+/6 S/-/+/4 S/-/+/2 

4 3rd Trivial 
(1) 

N/+/-/3 N/+/-/6 S/+/+/7 S/-/+/4 S/-/+/1 S/-/-/2 S/-/-/5 

5 4th Trivial 
(1) 

N/+/-/4 N/+/-/8  Trivial (-j)    



17 
 

6 4th Trivial 
(1) 

  S/-/+/4   N/-/-/8  

7 4th Trivial 
(1) 

    S/-/-/4   

8 4th Trivial 
(1) 

      N/-/-/4 

9 5th Trivial 
(1) 

N/+/-/5 S/-/+/6 S/-/+/1 S/-/-/4 N/-/-/7 N/-/-/2 N/-/+/3 

10 6th Trivial 
(1) 

N/+/-/6 S/-/+/4 S/-/-/2 N/-/-/8    

11 6th Trivial 
(1) 

    N/-/-/2 N/-/+/4 S/+/-/6 

12 7th Trivial 
(1) 

N/+/-/7 S/-/+/2 S/-/-/5 N/-/-/4 N/-
/+/3 

S/+/-/6 S/+/+/1 

Table 3: Utilization of the constants during all 49 complex multiplications by the twiddle factors. 

 

3.1.3.3 8-point FFT implementation 
 

 8-point FFT unit has been implemented using decimation-in-time (DIT) Fast Fourier 

Transform algorithm. Multiplication by the non-unity twiddle factors - 
+ − 1+ − 𝑗

 2
 of the intermediate 

results in the butterfly architecture of DIT 8-point FFT algorithm has been implemented using 

Carry Save Tree Adder and Canonical Signed-Digit representation of these factors. This approach 

led to a fast multiplierless implementation which computes 8-point FFT in the same clock cycle. 

 

3.1.3.4 FFT control 

 

The entire operation of FFT unit is governed by three counters: 

 MSCounter – master control counter.  Majority of control signals which "orchestrate" 

disparate FFT units and their cooperation is generated from this counter. 

 IUCounter - input unit counter  

 INTERMCounter - intermediate storage counter 

 OPCounter - output unit counter 

 

 The start of FFT unit operation is signaled by start_fft input.  Start_fft can be set  high either 

during a clock cycle for which one wants to start FFT calculation or can stay high afterwards 

because internally there is generated a one-cycle long in duration signal - data_start to enable serial 

data input mechanism for the FFT unit. 

 At the positive clock edge when data_start is high the first serial input is shifted into the 

input register bank (at 56th position) and IUCounter is reset. 

 At 56th IUcounter count all registers in the input register bank are filled and first 8-point 

FFT is calculated. The count of INTERMCounter corresponds to n2 value in Cooley-Tukey FFT 



18 
 

expression hence it specifies the number of currently being processed inner 8-point FFT and 

coordinates a shifting in process in the intermediate storage register bank according to n2 value. 

Because of that INTERMCounter has to be reset at 56th count of IUCounter. In order to centralize 

control around MSCounter MSCounter is enabled by start_count control signal two cycles before the 

first 8-point FFT is computed (when IUCounter=54).  This way the reset of INTERMCounter can be 

evoked through the main control counter. 

 As can be seen in Table 3. ,  the constants 2,4 and 6 are reused two times for the 2nd and the 

6th inner FFT and the constant 4 is reused 4 times.  Therefore shifting down in the input register 

bank and an update of the intermediate storage bank are suspended for one cycle for the 2nd and 

the 6th inner FFT and for three clock cycles for the 4th inner FFT by means of suspend_shift and 

suspend_INTERMCounter control signals. 

 There are three temporary registers inside the input unit designed specifically to hold input 

data during suspension of the shifting mechanism. Every clock cycle a serial input data is shifted 

into temporary register 1. The existing data stored in the temporary registers is shifted down one 

register at a time until all three temporary registers hold the last input data samples. At this point 

shifting in and down operations in the temporary registers are suspended through 

suspend_tempregUpdate signal. 

 

Utilization of temporary registers during suspension 

Inner FFT number 0 2 2 2 3 4 4 4 4 5 6 6 7 
Serial input data sample 
number (range: 0-63 ) 

57 58 59 60 61 62 63 ... .... ... ... ... ... 

Temporary register 1 56 57 58 59 60 61 62 63 63 63 63 63 63 

Temporary 
Register 2 

55 56 57 58 59 60 61 62 62 62 62 62 62 

Temporary register 3 54 55 56 56 58 59 60 61 61 61 61 61 61 

Input register 56 56 57 58 58 59 60 60 60 60 61 62 62 63 

Suspend_shift              

suspend_tempregUpdate              

Table 4:  The bordered fields indicate which temporary register is used as a source of the input data for the 56th 

position in the input register bank after release of suspension. The red shading indicates active status of the 

suspension control signals.  As can be seen in the table no input data is lost during suspension of the shifting 

mechanism. 

 Once the last (8th) inner FFT computation is finished on the next clock cycle all inner FFT 

outputs, which have been multiplied by the twiddle factors, are available in the intermediate 

storage register bank for the outer FFT unit. From this point on the outer 8-point FFT begins its 

operations.  

 For the next 8 clock cycles during which all 8 outer FFTs are calculated shifting down in the 

intermediate register bank is enabled (enable_INTERMshift) in order to provide correct input data 

to the outer 8-point FFT unit. 



19 
 

 Due to the fact that the 8-point FFT unit produces its result in the same clock cycle with a 

stable logical value before the negative clock edge an update of the output register bank's 0, 8, 16, 

24, 32, 40,48 and 56th positions is done on the negative edge in the same clock cycle. The update 

takes place during 8 cycles of the outer FFT unit operation (it is enabled via enable_OPUpdate 

control signal). 

 The reason why the output register bank is updated on the negative clock edge is that it 

allows to produce a serial output right at the next positive edge without introducing additional 

delay.  This approach cuts the serial output latency in half  because instead of using one clock cycle 

for an update and one cycle for shifting out of the FFT data only one cycle is used for both 

operations.  

 The serial output of FFT samples is controlled by OPcounter which value corresponds to the 

FFT sample number currently being output.  

OPcounter is reset in the same clock cycle as the first outer 8-point FFT and counts up to 63 (total of 

64 FFT samples).  

The serial output of the 64-point FFT samples continues as long as enable_serialout stays high.  

Enable_serialout signal stays high for 64 cycles starting from the first outer FFT unless the FFT unit 

is continuously active in which case it stays high until the last batch of 64 data FFT samples are 

output. 

 

3.1.3.5 INVERSE FAST FOURIER TRANSFORM  
 

 The only change in the Fast Fourier Transform unit required to implement Inverse Fast 

Fourier Transform concerns swapping of the real and the imaginary parts of both the input serial 

data and the output serial data. A signal inverse_fft triggers the swapping mechanism.   

 

3.2 CORDIC  ALGORITHM 
 

3.2.1 INTRODUCTION 
 

 CORDIC (COrdinate Rotation DIgital Computer) algorithm is a multiplierless method to 

perform a vector rotation. The fundamental principle of CORDIC algorithm is based on 

decomposition of a rotation angle θ onto the discrete bases wn=arctan(2-n) :  

 𝜃 =  σ𝑘
∞
𝑘=0 𝑤𝑛  (1) 

where σ𝑘 −  𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

 

Instead of performing a vector rotation in one step by a given rotation angle θ: 



20 
 

 xnew= cos(θ)x0-sin(θ)y0 (2) 

 ynew= sin(θ)x0+ cos(θ)y0 (3) 

 

CORDIC algorithm iteratively rotates a vector (x0,y0) by the rotation angle's discrete bases: 

 xn+1= cos(σnwn)xn-sin(σnwn)yn (4) 

 yn+1= sin(σnwn)xn+ cos(σnwn)yn (5) 

 

Given an initial vector (x0,y0) and a rotation angle θ the general form of radix-2 CORDIC algorithm 

is: 

 𝑥𝑛+1 = 𝑥𝑛 −𝑚σnyn2−σn  (6) 

 𝑦𝑛+1 = 𝑦𝑛 + σn xn  2−σn  (7) 

 𝑧𝑛+1 = 𝑧𝑛 − σnwn  (8) 

 

Type m wn Rotation mode 
𝛔𝐧 = 𝐬𝐢𝐠𝐧(𝐳𝐧) 

Vectoring mode 
𝛔𝐧 = −𝐬𝐢𝐠𝐧(𝐲𝐧) 

Circular 1 arctan(2-n) xn → K(x0cos(z0)-y0sin(z0)) 
yn → K(y0cos(z0)+x0sin(z0)) 
zn → 0 

𝑥𝑛 → 𝐾 𝑥0
2 + 𝑦0

2 
yn→0 

zn→ z0+arctan(
𝑦0

𝑥0
) 

Linear 0 2-n xn → 0 
yn → y0+x0z0 

zn → 0 

xn → x0 

yn → 0 

zn  → z0 + 
𝑦0

𝑥0
 

Table 5: Various forms of CORDIC Algorithm. 

 

3.2.2 CORDIC ALGORITHM IN VECTORING MODE (CIRCULAR TYPE) 
 

In the design of the CORDIC algorithm in vectoring mode of circular type hardware 

implementation I used ideas presented in [10] and [13]. 

 

3.2.2.1 Applications in the OFDM transceiver 

 



21 
 

Applications of Vectoring CORDIC of Circular Type In the OFDM Transceiver 

Function Alternative solution Justification of selection decision 

Rectangular-to-polar 
coordinate 

conversion required 
for a division 

operation in the 
equalizer 

Complex division in 
rectangular coordinates - 
rectangular-to-polar 
coordinate conversion is 
not needed. 

 Complex division is much 
more computationally efficient in 
polar coordinates. 
Comparison of resources usage for a 
complex division in: 

 rectangular coordinates: 
 6 real multiplications 

and 1 real division 
 polar coordinates: 

 1 real division and 1 
subtraction 

Modulus calculation 
of the complex timing 

offset metric 

Use two multipliers to 
calculate square of the 
modulus of the timing 
offset metric. There is no 
need for square root 
operation due to the fact 
that only square of the 
modulus of  the timing 
offset metric is required 
for synchronization 
purposes (squaring 
operation de-emphasizes 
small magnitudes of the 
autocorrelation 
function). 

 Due to the fact that modulus 
calculation is needed for a 
rectangular-to-polar coordinate 
conversion I decided to reuse the 
existing hardware instead of 
introducing two additional 
multipliers. 

Angle calculation of 
the complex 

frequency offset 
metric (conversion of 
the frequency offset 

metric to the 
frequency offset 

value) 

None  CORDIC algorithm in 
vectoring mode is the most 
commonly used method for an angle 
calculation due to its efficient 
hardware implementation. 

 

3.2.2.2 Alternative solutions and design choice  

 

 Characteristic of radix-2 CORDIC algorithm is that the number of iterations required for 

convergence is equal to the desired bit precision. The direct correlation between the number of 

iterations and precision is the main disadvantage of radix-2 CORDIC algorithm.  

 In order to decrease latency of radix-2 CORDIC algorithm the general expression for the 

radix-2 CORDIC algorithm is extended to radix-4: 

 



22 
 

 xi+1=xi+m*σi*yi*4-i  (1) 

 yi+1=yi- σi*xi*4-i   (2) 

 zi+1=zi-αm,i(σi)  (3) 

 

where αm,i(σi)=   tan-1(σi*4-i)  in rotation mode 

     σi*4-i  in vectoring mode 

 

 σi={-2,1,0,1,2} 

 

Radix-4 CORDIC Algorithm 

Advantages (+) Disadvantages (-) 

 the number of iterations is halved 
(equal to n/2 where n is bit 
precision) 

 

 more complicated logic to 
evaluate rotation directions σi 

 non-constant scaling factor due to 
redundancy in rotation directions’ 
representation 

Table 6: Advantages and disadvantages of radix-4 CORDIC algorithm. 

  

I chose radix-4 over radix-2 implementation of the vectoring CORDIC algorithm due to the 

fact that in some of the above listed functions required for synchronization tasks in the receiver 

only an angle calculation is required. Therefore latency associated with it can be significantly 

reduced as the number of iterations is halved and the angle calculation does not require scaling by a 

non-constant scaling factor.  

However, scaling cannot be avoided in the case of a modulus calculation and there is no 

particular advantage of employing radix-4 variation. Nevertheless, both angle and modulus 

calculations are based on the same logic for rotation directions’ evaluation hence introducing a 

separate radix-2 CORDIC algorithm unit solely for the purpose of a modulus calculation would only 

entail an additional hardware and no benefit in speed performance. Both radix-2 and radix-4 take 

the same number of iterations (equal to n – number of precision bits) to compute modulus because 

in the case of radix-4 CORDIC algorithm there are n/2 iterations for the uncompensated (by a 

scaling factor) modulus calculation and n/2 iterations for the non-constant scaling factor 

compensation using a linear CORDIC in vectoring mode. 

 

 



23 
 

3.2.2.4 Algorithm description 

 

Radix-4 Vectoring CORDIC Algorithm 
 

Using variable substitution wi=yi4i radix-4 CORDIC algorithm can be described with the 

following set of equations: 

 xi+1=xi+mσiwi4-2i (4) 

  wi+1=4(wi-σixi) (5) 

  zi+1=zi-αm,1(σi)  (6) 

 

where m=     0 - linear type 

          1 - circular type 

 

 αm=0,1 =   σi4-i  - linear type 

  arctan(σi4-i)  - circular type 

 

 

Proof that the number of iterations required for convergence is halved compared to 

radix-2 CORDIC algorithm 
 

Preliminary derivation: 

 

If the rotation direction σi in each iteration is selected according to the following criterion: 

  xi*σi-(2/3)* xi <= wi <= xi*σi+(2/3)* xi (7) 

then wi <= (8/3)*xi. 

 

Proof by induction: 

 

w0<(8/3)*x0 because according to the criterion (7) w0<= (5/3)*x0 which is less than (8/3)*x0.  



24 
 

Assuming that the induction hypothesis is true for i-1 iterations the proof will be completed if it can 

be shown that the hypothesis is also true for i-th iteration. 

For i-1-th iteration the criterion becomes: 

 |wi-1| <= xi-1*σi-1+(2/3)* xi-1  (8) 

From the expression for w we obtain wi-1: 

 wi=4wi-1-4 xi-1*σi-1 => wi-1=wi/4+4 xi-1*σi-1   (9) 

Plugging in the expression for wi-1 into (5) the result is: 

   |wi|<=(8/3)xi     (10) 

 

 

Based on the proof presented above after n iterations w is bounded by (8/3)*xn.  

 The angle of the final coordinates x and y after n iterations can be expressed: 

 θ= tan-1(
𝑦𝑛

𝑥𝑛
) =tan-1(

𝑤𝑛4−𝑛

𝑥𝑛
)  (11) 

Plugging in the bounded value for w (10) into the above angle expression (11):  

θ=tan-1(wn*4-n/xn) <= tan-1((8/3)xn2-2n/xn) = tan-1((8/3)xn2-2n/xn)= tan-1((4/3)2-2n+1)     (12) 

 

Let's assume that the number of iterations for convergence of radix-2 CORDIC is 2n. The angle value 

obtained in radix-4 CORDIC algorithm is slightly greater than after n iterations and less than after 

2n+1 iterations in a radix-2 CORDIC counterpart therefore it can be concluded that convergence 

occurs after half the number of iterations of radix-2 CORDIC algorithm. 

 

A new selection function for rotation directions  
 

    σi =  2 if wi > Pi(2)                 (13) 

      1 if Pi(1) < wi≤ Pi(2) 

      0 if Pi(-1) < wi ≤ Pi(-1) 

     -1 if Pi(-2) < wi≤ Pi(-1) 

     -2 if wi ≤ Pi(-2) 



25 
 

 

Derivation of the selection function for the rotation directions 

 

It can be concluded from the criterion (7), which is the sufficient condition for radix-4 

CORDIC algorithm convergence, that selection regions of different rotation directions in the set {-2,-

1,0,1,2} overlap.  

 

Design problem 1: Nontrivial evaluation of the criterion (7) due to overlapping regions. 

Solution: Reformulation of the criterion (7) into a form which allows efficient mapping to a 

hardware implementation. 

 

Each of the selection regions for rotation directions has two boundary points:  

 L(σi)= (σi-(2/3))*xi – the lower boundary of a region 

 U(σi)= (σi+(2/3))*xi – the upper boundary of a region 

 

A discrimination point Pi between two rotation directions’ selection regions should be set to a 

value which is equidistant from the opposite boundaries of the overlap region and in addition to 

that, it should be in the middle of the overlap region. Therefore Pi's are set as follows: 

 P(1)=(1/2)*xi – the threshold point for σi=0 and σi=1selection regions 

 P(-1)= -(1/2)*xi – the threshold point for σi=0 and σi=-1 selection regions 

 P(2)=(3/2)*xi – the threshold point for σi=1 and σi=2 selection regions 

 P(-2)= -(3/2)*xi – the threshold point for σi=-1 and σi=-2 selection regions 

Design Problem 2: The threshold points are dependent on the current iteration’s x value therefore 

they need to be evaluated at each iteration.  

Solution: Due to the fact that xi is increasing with the iteration number i both the upper and the 

lower boundaries are spreading out as they are function of xi. Therefore it is possible to find lowest 

iteration number for which the threshold value lies inside the overlap region of all successive 

iterations and therefore is common for all of them. This happens when the lower boundary of the 

highest iteration crosses some i-th iteration upper boundary: 

 Llast iteration(σi) < =P(σi) <= Uith iteration(σi) (14) 



26 
 

The lowest i for which the boundaries cross determines the iteration number which in turn 

determines a threshold for all the remaining iterations. 

Plugging in the expressions for L, U and x (4) into the above expression (14) and solving for 

i one obtains i=1 for P(+/-1) and i=2 for P(+/-2). 

 

3.2.2.5 Hardware implementation decisions 

 

Coding approach 
 

My modular hardware implementation is based on the notion of iteration in CORDIC 

algorithm. I created a separate module for one iteration which is parameterized with the iteration 

number in order to evoke correct shifters in calculation of x, y and z variables. The main module 

only calculates necessary threshold values (Pi({-2,1,1,2}))and instantiates an iteration module for 

each iteration. The iteration modules pass their outputs to a next iteration in a sequence. Coding 

around the notion of iteration allows an easy extension of the design into higher bit precision. The 

extension is achieved by mere invocation of additional iteration modules. Modification of the 

number of pipelining stages is also greatly simplified in this approach because it only requires a 

placement of pipeline registers for x, w and z variables and the threshold values at a desired break 

point between iterations.  

 

Pipelining decisions 
 

Taking into account the architecture of the synchronization mechanism in which samples 

are processed as they arrive at the receiver high throughput of the vectoring CORDIC unit is not 

required. It is due to the fact that small amount of samples, which is determined by the latency of 

the first processing unit in the receiver – the timing offset metric calculation, are available for 

parallel processing (The timing offset calculation has latency of four cycles - 4 cycles for modulus 

calculation of the timing metric using vectoring CORDIC algorithm combined with multiplication of 

samples of the timing metric. This leaves only four samples for parallel processing). As a 

consequence, I decided to use the smallest number of pipeline stages. The minimum number of 

stages was determined by the latency of the sequential data-path of the entire CORDIC iteration 

chain. Using Quartus software timing analysis tool for Cyclone II FPGA I obtained the propagation 

delay for the entire chain including time for loading input and output registers. For 27-MHz clock 

frequency the minimum number of pipeline stages was determined to be two. 

 

 



27 
 

Hardware optimization 
 

Both x and W variables are scaled to be within [0,1] range in order not to lose precision in 

the fractional part during intermediate steps. 

W and the threshold values P used in the selection function (13) can be truncated to speed 

up the comparison process and yet lead to correct selection. The threshold value P is in the middle 

of two boundaries L and U. Selection will be correct as long as precision of W will be sufficient to 

allow W to be within a distance between P and either of the boundaries U and L. As a consequence, 

the distance between P and either of the boundaries U and L has to be larger than precision of the 

truncated W. 

The distance between P and either of the boundaries is equal to (1/6)*xi.  

Therefore 

  (1/6)*xi >=2-Wfractional    (15) 

where Wfractional is the number of fractional bits of W. 

Plugging in an expression for xi (4) one can determine the number of fractional bits Wfractional to be at 

least 5.  

Instead of implementing a complicated comparator for both positive and negative numbers 

for the rotation directions' selection function I decided to decode sign information of W and the 

comparison points P(+/-1), P(+/-2). Using the sign information in "case" statement the rotation 

directions' selection conditions of (13) for each set of W and P's signs could be simplified or even 

neglected if for a given set of W and Ps signs they are unconditionally always true or false. 

 

3.2.2.5 Scaling factor 

 

The major drawback of the radix-4 modification of the CORDIC algorithm is nontrivial in 

evaluation scaling factor which is not constant as in the case of radix-2 baseline version of the 

algorithm. The scaling factor is a function of rotation directions due to redundancy in the rotation 

directions' representation therefore it has to be evaluated for each set of input values: 

  K=  𝑘𝑖 =
𝑛

2
−1

𝑖=0
 (1 + σi

2 ∗ 4−2𝑖)−
1

2

𝑛

2
−1

𝑖=0
  (16)  

where  n=
𝐵 𝑏𝑖𝑡𝑠  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

2
 - number of iterations. 

 B – bit precision (in my design I set B to 16) 

 



28 
 

 Simplifications: 

 the scaling factor has be evaluated only for the first n/4+1 iterations (in the rest of 

iterations it can be approximated by 1) 

 ROM size used for storing each iteration's sub-scaling factors ki (3
𝑛

4
+1 − the base of 3 comes 

from the fact that each σi  can take 3 values) can be greatly reduced to  3
𝑛

8
+1by using the first 

two terms of Taylor expansion for the iteration number i >=floor(
𝑛

8
+ 1)  

 𝑘𝑖=1-
1

2
σi

2 ∗ 4−2𝑖   (17) 

which can implemented using only add and shift operations. 

 

The above simplifications reduce the number of multipliers to 2 for the first 4 iterations 

(reusing one multiplier in the 2-stage pipeline implementation used in the transceiver) and ROM 

size to 3
𝑛

8
+1for evaluation of the nontrivial scaling factor. 

 

Compensation of the modulus by the scaling factor is done using radix-4 vectoring CORDIC 

algorithm of linear type. 

 

3.2.3 CORDIC ALGORITHM IN VECTORING MODE (LINEAR TYPE) 
 

In the design of the CORDIC algorithm in vectoring mode of linear type hardware 

implementation I used ideas presented in [10] and [13]. 

3.2.3.1 Applications in the OFDM transceiver 

 

 

Applications Of Vectoring CORDIC of Linear Type In The OFDM Transceiver 

Function Alternative solution Justification of selection 
decision 

Division of the modulus of 
the FFT of the received 
sample by: 
 the modulus of the 

reference pilot in the 
channel estimator 

 the modulus of the 
channel frequency 
response at a given 
subcarrier’s 
frequency in the 

Use any of the available 
division algorithms 

 There is no particular 
advantage in terms of speed in  
performing division by the 
means of vectoring CORDIC of 
linear type as opposed to 
standard division algorithms. 
The reason I chose to 
implement division using 
CORDIC algorithm is that the 
vectoring CORDIC algorithm of 
linear type is just a simplified 



29 
 

decoder 

 

version of the vectoring 
CORDIC algorithm of circular 
type therefore I was able to 
reuse the hardware already 
designed for the circular type.  

 
Compensation of modulus in 
vectoring CORDIC of circular 
type 
 

 

3.2.3.2 Algorithm description 

 

As can be seen from the expressions for x, w and z variables in the radix-4 modification to 

the vectoring CORDIC algorithm (equations 4-6 in section 3.2.2.4)  a linear type variation can be 

treated as a simplified version of a circular type counterpart. In linear coordinates m=0 therefore x 

is constant for the entire CORDIC algorithm operation. Moreover, instead of adding an arctangent 

term to z variable we only add its argument which does not require a ROM lookup table for arctan 

values as in the case of circular coordinates. However, the core of radix-4 CORDIC algorithm - 

rotation directions' selection function is exactly the same and hence the description of operation of 

a circular counterpart and hardware optimization techniques used for the selection function  from 

the previous section applies to the linear type. 

The major complication in comparison to circular coordinates concerns normalization 

(scaling) of the input values. During a preliminary testing of the MATLAB floating point 

implementation I noticed that algorithm only converges if both initial x and y coordinates are of the 

same order of magnitude.  

 

Normalization (Scaling) Procedure 

Normalization step Function 
Normalize (scale) to 1 (shift until MSB is 
at binary 1 weight position) in the 
maximum allowable fractional part 16-
bit fixed-point representation.  

Minimize error propagation in between 
iterations due to insufficient precision of the 
intermediate results. 

Scale a smaller coordinate of x and y to be 
of the same order as the other coordinate 
(shift until MSB position matches bit 
position of the other coordinate). 

Convergence requirement 

 

The maximum allowable fractional part in the 16-bit normalized fixed-point representation 

of x and y  is 13 bits. The absolute value of initial x and y coordinates is taken prior to normalization 

in order to eliminate -1 and -2 rotation directions in the first iteration (the sign of the division 

result - the final value of z variable is adjusted at the end based on the signs of initial x and y 

coordinates). 



30 
 

Out of three variables x, y and z the minimum range of the integer part required for the 

convergence of the CORDIC algorithm is determined solely by W variable because: 

 x variable stays constant (equal to the initial normalized to 1 x value) during the entire 

CORDIC algorithm operation 

 z variable which converges to a division result of x and y coordinates which for the 

normalized to 1 x and y values should not exceed 2  

 W is decreasing and converges to 0 therefore its value only on the first iteration determines 

the required integer part range. Due to the fact that -2 and -1 rotation directions have been 

eliminated by taking the absolute value prior to normalization the worst case (the highest 

integer part of W on the first iteration) happens for 0 rotation direction on the first 

iteration. The worst case value is bounded by 4 therefore we need at least 3 bits plus 1 bit 

for a sign in the normalized x and y representation to ensure convergence and minimize 

precision loss in the intermediate steps.  

 

 

 

3.2.4 CORDIC ALGORITHM IN ROTATION MODE (PARA-CORDIC) 
 

In the design of the CORDIC algorithm in rotation mode hardware implementation I used 

ideas presented in [3],[5] and [12]. 

 

3.2.4.1 Applications in the OFDM transceiver 

 

Applications of CORDIC Algorithm In Rotation Mode In the OFDM transceiver 
Application Alternative Solution Justification of Selection Decision 

Direct Digital 
Synthesis (DDS) 
 

Using multipliers and sine 
and cosine ROMs to 
compute a vector rotation. 

 Large frequency resolution 
in the case of DDS and, in more 
general case, resolution of the sine 
and cosine functions’ arguments 
requires large ROM sizes for sine and 
cosine values storage. Aside from the  
increased hardware resources usage 
larger ROMs induce higher power 
consumption and slower access 
times. ROM size issue is aggravated 
by the fact that in quadrature 
modulation both sine and cosine 
ROMs are needed. The need for both 
sine and cosine translations was the 

De-rotation of a 
received sample by 
the frequency offset 



31 
 

main motivation behind employment 
of CORDIC algorithm as an up/down-
converter. Moreover, multipliers 
used in a standard ROM-based DDS 
implementation cannot be reused 
due to its constant engagement in 
modulation and demodulation 
process during transceiver's 
operation. 

 

3.2.4.2 Alternative solutions and design choice  

 

CORDIC algorithm in rotation mode calculates coordinates of a vector (x0,y0) rotated by an angle z0. 

 

CORDIC Algorithm In Rotation Mode Design Choice 

Alternative Solutions Justification of Selection Decision 

I did an extensive 
research on variations 
of a standard CORDIC 
algorithm in rotation 
mode. The available 
choices can be grouped 
into three categories: 

 standard radix-
2 CORDIC 
algorithm with 
the number of 
micro-rotations 
(iterations) on 
the order of  
desired bit 
precision 

 higher radix 
modifications 
(such as, radix-
4)  

 branching 
mechanism 
with parallel 
execution of 
two rotation 
directions at 
some iterations 

 The major problem with a standard form of the 
CORDIC algorithm regardless of radix choice is latency 
caused by a sequential character of rotation directions 
evaluation from the residual angle z (a rotation direction 
can be evaluated only when the previous iteration has 
finished). There have been introduced variations of 
CORDIC algorithm with a parallel execution of both 
rotation directions' data-paths and a branching mechanism 
used to select the correct result from one of the parallel 
execution branches along the execution chain. However, 
this option almost doubles hardware cost and does not 
completely eliminate the latency issue. 
 The idea behind higher radix modifications (radix-
4) is to ideally cut the number of iterations in half. 
However, higher radix variations introduce redundancy in 
the rotation directions’ representation which in turn 
causes non-constant scaling factor. Evaluation and 
compensation of the non-constant scaling factor aside from 
the fact that it entail an additional hardware consisting of 
ROM-based lookup tables for iterations’ sub-scaling factors 
and multipliers usually have an execution time on the 
order of radix-2 CORIDC algorithm. As a consequence, the 
overall execution time is still on the order of desired bit 
precision. 
 
I decided to implement a particular variation of CORDIC 
algorithm which offers the best compromise between all 
the aforementioned alternative options. It is called Para-
CORDIC [5]. The name of the variation stems from the 



32 
 

fundamental principle on which this modification is based - 
parallel extraction of the rotation directions. Parallel 
extraction of the rotation directions eliminates the latency 
issue. It is achieved by recoding the rotation angle. 
However, hardware cost incurred due to recoding process 
is insignificant compared to the alternative solution to the  
latency issue - branching mechanism (the recoding 
hardware consists exclusively of 2-bit adders). In addition 
to that, Para-CORDIC is a radix-2 based modification 
therefore there is no extra hardware for scaling factor 
calculation because the scaling factor is constant and is 
pre-computed beforehand. 
 
 

 

 

3.2.4.3 Algorithm description 

 

A standard radix-2 CORDIC algorithm suffers from a critical path associated with evaluation 

of the rotation directions from the residual angle z. It introduces additional latency which is 

especially noticeable for higher bit precision. 

The fundamental principle of Para-CORDIC variation [5] is decomposition of the rotation 

angle into low and high parts for which a separate parallel extraction of rotation directions is 

possible by the means of angle recoding. 

 

Angle Recoding 
 

Assumptions and notion convention: 

 the rotation angle is in range [0, π/4) - in section 3.2.4.5 extension to the full range [0,2π] is 

introduced 

 B - denotes angle fractional bit precision (in my design I set B to 15) 

 

Every angle in 2's complement representation - binary weights' coefficients ϵ {0,1} can be 

converted to bipolar representation - binary weights' coefficients ϵ {-1,1} using the following 

transformation: 

 

𝜃 =  −𝑏0 +  𝑏𝑘2−𝑘𝐵
𝑘=1 =  −𝑏0 +  (2−𝑘−1 + (2𝑏𝑘 − 1)2−𝑘−1) =  σ𝑖2

−𝑖 − 2−𝐵−1𝐵+1
𝑖=1

𝐵
𝑘=1  (1) 



33 
 

Where σi  = 1-2b0 

 σi  = (2bi-1-1) k = 2,3…. B 

Two observations from the above expression (1) emerge immediately: 

 hardware necessary to obtain the bipolar rotation directions σi consists of only 2-bit adders 

which does not entail too much hardware resources 

 by expressing an angle in bipolar representation we effectively extract the rotational 

directions in a parallel fashion provided that 2-i binary weights can be expressed in terms of 

arctan2-i (the angle decomposition basis in CORDIC algorithm) with an error larger than 

desired B bits fractional precision: 

 2-i - arctan2-i < 2-B (2) 

 

Due to the fact that not all of the 2-i binary weights can be approximated with arctan2-i with an 

error larger than desired B bits fractional precision the rotation angle is decomposed into two 

parts: 

 θH – the high part which can be directly approximated with arctan2-i 

 θL – the low part which can be expressed with arctan2-i weights with approximation errors 

ei which are less than desired B bits fractional precision. The errors ei have to be included in 

the further processing of the high part angle θH.   

 𝜃 = 𝜃𝐿 + 𝜃𝐻 =  −𝑏0 +  𝑏𝑖2
−𝑖𝑚−1

𝑖=1 + 𝑏𝑖2
−𝑖𝐵

𝑖=𝑚  (3) 

 

 

The division between the high and the low parts occurs at index m= ceiling(B-log23)/3). 

 

Operation of Para-CORDIC algorithm can be split into two phases: 

 phase I:  

 transformation of θL into a bipolar representation with error terms ei. 

 rotation of the input vector by θL 

 compensation of θH with "extra" terms which come from binary-to-bipolar 

conversion of θL : errors ei due to approximation of 2-i weights with arctan2-i 

and 2-m term. 

 phase II:  

𝜃𝐿 𝜃𝐻  



34 
 

 conversion to a bipolar representation of the corrected θH (𝜃𝐻 ) with the 

approximation errors of θL 

 rotation of x, y coordinates produced in phase I by the corrected θH 

 

Phase I 
 

First, θL is transformed from 2's complement into bipolar representation in which 2-i binary 

weights are expressed as a linear combination of n(i) arctan terms (arctan2-i)  and approximation 

errors ei: 

 𝜃𝐿 =  σi2
−i − 2−m =  σi

m
i=1   arctan 2−si

j

 + ei − 2−mn(i)
j=1

𝑚
𝑖=1  (4) 

Observation: 

 the ability to extract the rotation directions σi  in parallel for θL comes at expense of 

additional n(i) micro-rotations at i-th stage due to approximation of 2-i by arctan terms 

 

A choice of a linear combination of arctan terms to approximate 2-i is not arbitrary.  

The high part of the rotation angle θH is corrected by the extra terms which do not appear in a 

standard CORDIC algorithm prior to rotation in phase II. The extra terms include: 
 an extra term introduced in 2's complement-to-bipolar conversion - 2-m  
 approximation errors ei of 2-i weights with arctan(2-i)  

 

 𝜃 =𝜃 +  σi
𝑚−1
𝑖=1 ∗ 𝑒𝑖 − 2−𝑚  (5) 

 

In order to maintain CORDIC convergence the following condition has to be met: 

 |𝜃 |  < 2−𝑚+1 (6) 

 

The authors in [5] devised an algorithm, called MAR, to find a linear combination which 

satisfies the above condition (6). The algorithm finds the number of linear combination terms n(i) 

and shift amounts for each term in the linear combination  𝑠𝑖
𝑗
  

where  

j=1,2,..n(i)  

i – exponent of 2-i term for which an approximation is calculated. 

 



35 
 

For 15-bit fractional precision the number of linear combination terms n(i) and shift amounts for 

each term are: 

Binary weight Number of linear 
combination terms n(i) 

Shift amounts for each 
term in the linear 
combination 

2-1 2 1,5 
2-i  i=2,3,4 1 i 

Table 7: The results of MAR algorithm for the 15-bit fractional bit precision of a rotation angle. 

Example  

2-1 = arctan(2-1) +arctan(2-5) 

 

3.2.4.4 Hardware optimization 

 

If the expressions for the final value of x and y are expanded by iteratively plugging in (in 

decreasing iteration number) the i-th iteration expressions for x and y (equations 6-7 in Section 

3.2.1) for all iterations one will notice that starting from the iteration number k>B/2 (in the case of 

B=15 fractional bit precision k=8) all cross-products terms of the resulting expansion fall off the 

precision range and therefore can be neglected. Therefore the expression for the final values of x 

and y can be folded into a sum of terms involving exclusively k-th iteration values of x and y : 

𝑥𝑘+1 = 𝑥𝑘 − 𝑦𝑘  σi

𝑘+
𝐵
2
−1

𝑖=𝑘

2−𝑖  

𝑦𝑘+1 = 𝑦 − 𝑥𝑘  σi

𝑘+
𝐵
2
−1

𝑖=𝑘

2−𝑖  

The sum in the above expression can be efficiently implemented using Carry-Save Adder 

Tree which decreases significantly latency of the CORDIC data-path in comparison to traditional 

CORDIC rotations in i>k iterations. 

 

3.2.4.5 Range extension 

 

CORDIC algorithm converges for a rotation angle in the range [0,
𝜋

4
 ). In the OFDM 

transceiver various applications of CORDIC algorithm, such as up/down-conversion and de-rotation 

of the received sample by the frequency offset, require full 2𝜋 range. 



36 
 

By exploiting symmetry of sine and cosine functions any angle in the range of [0,2π] can be 

obtained from sine and cosine values of a related angle in the range [0, π/4) by decoding octant 

information of the angle and conditional use of interchange and negate operations (3 MSB bits of 

the normalized to 2𝜋 angle  decode the octant number). 

 

Due to the fact that CORDIC algorithm uses only angle information in [0,
𝜋

4
 ) range the input 

rotation angle is  expressed as a 19-bit number in order not to sacrifice fractional bit precision (1 

bit to represent negative angles, 3 bits to represent maximum range - 2𝜋 value and the desired 15 

bits for the fractional part). 

 

Steps required for 2𝝅 range extension: 

1. Normalize the rotation angle by dividing it by 2𝜋 such that the first MSB of the fractional 

part has 𝜋 weight, the second MSB of the fractional part has 
𝜋

2
 weight and so on. 

2. Decode the octant information of the angle - 3 MSB bits of the fractional part in the 

normalized angle. 

3. Strip-off 2 LSB bits of the 3 bits used for the octant decoding. If the octant number is odd 

subtract from 
𝜋

2
 the stripped normalized angle (subtraction from 

𝜋

2
 in the normalized to 2𝜋 

representation is equivalent to 2's complement operation). Now the normalized angle is in 

the desired range [0, 
𝜋

4
) for CORDIC algorithm processing.  

4. De-normalize the angle obtained in step 3 by multiplying it by 2𝜋 in order to restore 

"binary" weights in the angle representation for CORDIC algorithm processing. 

5. Conditional interchange of x and y coordinates of the input vector based on the octant 

information (see a table below). 

6. Conditional interchange and negation of final x and y coordinates based on the octant 

information (see a table below). 

 

Octant 
number 
(3 MSB of the 
fractional 
part of the 
normalized 
rotation 
angle) 

Negate output 
x coordiante 

Negate output 
y coordinate 

Interchange 
output x and y 
coordinates 

Interchange 
input x and 
y 
coordinates 

0 NO NO NO NO 
1 YES NO YES NO 
2 NO YES NO YES 
3 YES YES YES YES 
4 YES YES NO NO 
5 NO YES YES NO 
6 YES NO NO YES 



37 
 

7 NO NO YES YES 
Table 8: Conditional interchange and negation operations for both the input and the output coordinates used in 

the extension of the rotation angle’s range to 2π. 

 

Example: 

 

 cos(240) =-1/2 = -sin(30) = -sin(240-180+(90-60)) 

 

 

 

 

 

 

4 SYNCHRONIZATION MECHANISM – OFDM RECEIVER DESIGN 
 

4.1 SYNCHRONIZATION ERRORS 
 

4.1.1 CARRIER FREQUENCY OFFSET 
  

If there is a mismatch between frequencies of the transmitter and receiver’s free running 

oscillators  the resulting carrier frequency offset ∆f will result in rotation of the received symbol 

samples by a constant frequency: 

 𝑟𝑖,𝑛 = 𝑒𝑗2𝜋∆ft |𝑡=𝑖 𝑁+𝑁𝑔 𝑇𝑠+𝑁𝑔𝑇𝑠+𝑛𝑇𝑠  (1) 

 

where  

N  – the number of OFDM subcarriers 

Ng – the length (in samples) of the guard interval  

Ts  - sampling period 

i     - symbol index 

Strip-off  2 LSB  of the 3 bits used for 

octant decoding - 180 and 90 degrees 

weights in the normalized angle 

odd octant = > 2's complement = 

subtraction from 90 degrees  



38 
 

n   - time domain index 

 

The frequency offset is usually normalized with respect to subcarrier spacing (𝑓𝑠=
1

𝑁𝑇𝑠
): 

 ∆f=(IFO+FCO)*fs (2) 

where  

IFO – an integer part of the frequency offset ∆f with respect to subcarrier spacing 

   FCO – a fractional part of the frequency offset ∆f with respect to subcarrier spacing 

 

 

Negative effects degrading receiver's performance: 

 attenuation in received magnitude 

 phase shift  

 ICI - inter-carrier interference 

  

4.1.2 SYMBOL TIMING OFFSET 
 

Symbol timing offset is an offset in the start of an OFDM symbol which corresponds to the 

start of the FFT window. 

The severity of negative effects depends on which of the following two possible scenarios occurs: 

1. If the delay spread of the channel is shorter than the guard interval and the FFT window is 

applied too early with an offset TO which is smaller than the difference between the delay 

spread and the guard interval only an additional phase shift is introduced: 

 Rk=Xk*Hk𝑒
−𝑗

2𝜋∗𝑇𝑂 ∗𝑘

𝑁𝑇𝑠  (1) 

 

 

 

where  

Xk – the frequency domain transmitted sample at k-th subcarrier 

phase shift 



39 
 

Hk - frequency response of the channel at k-th subcarrier 

 

2. If the FFT window is applied with a large offset (either lag or lead) then in addition to the 

phase shift as in the scenario 1 there is also a decrease in the received magnitude and inter-

symbol interference distortion due to the fact some of the samples of a current symbol are 

affected by the previous/next symbol’s samples in the guard interval region which is 

corrupted by the multipath channel 

 

4.2 SYNCHRONIZATION SCHEMES 
 

4.2.1 TIMING OFFSET ESTIMATION  
 

All synchronization schemes are based on the autocorrelation property of a PN (Pseudo-

random Noise) sequence. The attractiveness of PN sequences for synchronization tasks lies in their 

thumb-tack autocorrelation function - only for a zero delay modulo N (N- length of a PN sequence) 

we get a peak in the autocorrelation function. 

 

 

Figure 2: The normalized autocorrelation function (R) of a PN sequence (N - length of a PN sequence).  

 

The most commonly used method for the timing and frequenct offsets synchronization in 

OFDM systems is Schmidl and Cox's method [11]. Schmidl anc Cox use a preamble which consists of 

two identical N/2-sample long PN sequences (N – the number of subcarriers in OFDM 

transmission). They introduced a timing metric which peak indicates the start of an OFDM symbol: 

 M(d)=
|𝑃 𝑑 2|

𝑅(𝑑)2   (1) 



40 
 

 𝑃 𝑑 =  𝑟∗ 𝑑 + 𝑚 ∗ 𝑟(𝑑 + 𝑚 +
𝑁

2

𝑁

2
−1

𝑚=0 )  (2) 

 R(d)=  |𝑟(𝑑 + 𝑚 +
𝑁

2

𝑁

2
−1

𝑚=0 )|2 (3)  

 

The intuitive explanation why the above time metric (1) gives a peak at the start of an 

OFDM symbol follows from the construction of the synchronization preamble. Since both halves of 

the preamble are composed of the same PN sequence sum of  products of a conjugate of a sample 

from first half and a corresponding sample in the second half will be the largest due to the fact they 

have the same phase and add up constructively.  

Schmidl and Cox's method is very popular among OFDM designers, however, it suffers from 

a plateau region around the peak. Using the timing offset metric, introduced by Schmidl and Cox, 

one does not obtain a single peak at the start of an OFDM symbol but a plateau region which spans 

the number of samples equal to the length of the guard interval minus the length of the channel 

response. 

The plateau region causes uncertainty in the start of an OFDM symbol therefore I started 

researching variations on Schmidl and Cox’s method in order to find a solution which gives a 

distinct single peak in the timing offset metric. 

I found a desired variations in a paper  by H. Minn [8] and a paper by P. Byungjoon [1]. Minn 

uses a special structure of the synchronization preamble. Instead of using a preamble with two 

identical PN sequennces in each halves Minn uses the following structure which emphasizes 

differences between the peak timing metric and offset values and therefore achieves a 

distinguishing single peak in the timing metric at the start of OFDM symbol: 

     [A A*A A*]  

where A is N/4-sample long PN sequence and * denotes complex conjugate operator.  

 

The modified timing offset metric takes the following form: 

 M(d)=
|𝑃 𝑑 2|

𝑅(𝑑)2    (4) 

 𝑃 𝑑 =  𝑟∗ 𝑑 − 𝑚 ∗ 𝑟(𝑑 + 𝑚
𝑁

2
−1

𝑚=0 ) (5) 

 R(d)=  |𝑟(𝑑 + 𝑚
𝑁

2
−1

𝑚=0 )|2 (6) 

 

 



41 
 

4.2.2 FRACTIONAL FREQUENCY OFFSET ESTIMATION 
 

The only difference in phases between the first and the second half comes from the 

frequency offset as the channel effect should cancel. The phase difference is equal to: 

 θ=2π*∆f *
𝑇

2
= π*∆f*T (1) 

where  

∆f – the fractional frequency offset (fractional with respect to subcarrier subspacing - 
1

N∗Ts
) 

T – OFDM symbol duration 

 Therefore in order to find the fractional frequency offset we calculate an angle of the timing 

metric at the start of the preamble symbol : 

 θ = angle(PFCO(d)) (2) 

where PFCO(d) is expressed by (2) in section 4.2.1.  

The obtained angle is converted into the frequency offset value using the phase difference equation 

(1): 

 ∆f=
θ  

𝜋𝑇
 (3) 

 

4.2.3 CHANNEL ESTIMATION 
 

There are two groups of estimators used in OFDM systems: 

 Least-squares (LS) estimator 

 Mean-squared error (MMSE) estimator 

 

Both estimators achieve the same performance in high signal-to-noise ratio environments. If 

one knows a priori statistics of the channel, such as covariance matrix and SNR, MMSE estimator 

can outperform LS estimator. 

Due to the fact I did not design my transceiver for a specific channel type I decided to 

implement LS estimator which takes the following form: 

𝐻𝑘 =
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑖𝑙𝑜𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑡 𝑘 − 𝑡 𝑠𝑢𝑏𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑖𝑙𝑜𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑠𝑎𝑚𝑝𝑒 𝑎𝑡 𝑘 − 𝑡 𝑠𝑢𝑏𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 

where  

Hk – channel frequency response at k-th subcarrier 

 



42 
 

A pilot is an OFDM symbol which is known at the receiver and is used as a reference to 

estimate corruption of the signal by the channel at a given subcarrier’s frequency. Pilots are 

interleaved with data symbols. 

 

4.3 ALTERNATIVE SOLUTIONS AND DESIGN CHOICE 
 

In practice, synchronization is split into two phases: 

 coarse synchronization 

 fine synchronization 

in order to improve accurancy of synchronization errors estimates and thereby improve 

performance of a system. Synchronization done in a single step leaves significant residual errors. By 

doing an initial coarse synchronization which brings initial large offsets in timing and frequency 

into vicinity of the right answer and leaving fine-tunning for fine sychronization the residual errors 

are small enough to not degrade performance of a system as opposed to a single-step 

synchronization (the received signal is derotated by the estimate of the frequency offset 

determined during the coarse synchronization stage and the processing of the fine synchronization 

stage takes place on a corrected signal). 

 

In my design I chose the following structure for the preambles responsible for coarse and 

fine synchronization: 

 

 

Preamble 1 GI Preamble 2 GI Pilot 1 GI Data 1 GI Data 2 ... 

PN1 PN1 PN1 PN1 PN2 

 

 

Coarse synchronization  Fine Synchronization Channel Estimation 

 

GI   – guard interval 

PN1 - 16-sample long preamble with Minn's PN sequence structure [A A*] where A is a  

 PN sequence of length 8 

PN2-  64-sample long preamble with Minn's PN sequence structure [A A*] where A is a  

 PN sequence of length 32 

 

 



43 
 

Synchronization Implementation Design Choice 

Synchronization 
Step 

Alternative Solutions Justification of Selection Decision 

Coarse 
synchronization 

 using standard 
Schmidl and 
Cox's method 
with a preamble 
consisting of 
two idential  
copies of a PN 
sequence of 
length 32 

 
 
 
 
 

 using the 
original Minn's 
method with 
two identical 
halves having 
complex 
conjugate 
symmetry which 
are built using 
16-sample long 
PN sequence  

  I chose Minn's method over Schmidl 
and Cox's alternative because , as mentioned 
in the introduction, the standard Schmidl 
and Cox's timing metric suffers from a 
plateau region which introduces uncertainty 
in determination of the start of an OFDM 
symbol whereas Minn's method produces a 
single distinct peak at the start of a symbol. 
 
 I decided to modify Minn's 
sychronization method taking into 
consideration hardware resources 
availability on the target FPGA – Cyclone II. 
Using Minn's single 64-sample long 
preamble  would require 32 complex 
multiplications per one clock cycle to 
calculate the timing metric (each complex 
multiplication requires 4 real 
multiplications - total of 128 
multiplications). Obviously, the number of 
embedded multipliers in Cyclone II FPGA is 
not sufficient. Even though one could 
implement it by extending the number of 
multipliers with software multipliers it 
would still be a very bad design choice due 
to the fact that it would leave no multipliers 
resources for other tasks in the receiver.  
Therefore my coarse synchronization 
preamble consists of 4 "mini"16-sample long 
Minn's preambles. In order to improve 
reliability of the coarse synchronization 
which degrades with shorter PN sequences 
(the shorter the PN sequence the less 
distinct peak becomes among erroneous 
peaks) I devised a special mechanism for 
detecting the start of an OFDM symbol from 
four peaks of the timing metric in Preamble 
1 (a description of the mechanism is in 
section 4.4.2.2). 
 
 Even though Preamble 1 consists of 
four "mini" preambles its both halves are 
still identical therefore the timing metric for 
the frequency offset is calculated with 
respect to entire Preamble 1. The frequency 
offset metric PFCO(d) has to be calculated 



44 
 

only for one delay value d and can be 
implemented using a serial 
multiplier/accumulator mechanism 
(described in section 4.4.2.2 ). 
 
 

Fine 
synchronization 

 using Minn's 
timing metric 
based on the 
autocorrelation 
functionn of the 
received signal  

 using cross-
correlatoin 

 I decided to use 64-sample long 
Minn's preamble in order to decrease 
uncertainty in selection of the"right" peak 
among erroneous peaks. However, instead 
of correlating the noisy received signal with 
a delayed copy of itself for the fine timing 
sychronization I decided to correlate the 
noisy received signal with the reference 
Preamble 2. The assumption is that majority 
of synchronization has been done in the 
coarse synchronization stage and therefore 
the received Preamble 2 samples "resemble" 
more the transmitted samples (ignoring 
corruption caused by the channel). Due to 
the fact that samples of Preamble 2 have 
been already compensated with the 
frequency offset estimated in the coarse 
synchronization stage  and the vicinity of the 
symbol start is known the phase of the 
received samples should be close to the 
phase of the transmitted signal. As a 
consequence,  I chose to use only sign 
information of the received signal and the 
reference Preamble 2 and implement a 
clipped cross-correlattion. The clipped 
cross-correlator gave me very similar 
perforamance results compared to a regular 
cross-correlator, however, hardware 
resources saving was tremendous (a 
comparison of the signs of numbers requires 
no multipliers). 

 

 

4.4 HARDWARE IMPLEMENTATION 
 

4.4.1 OVERALL ARCHITECTURE 
 

The entire synchronization mechanism is based on a state machine and a single main 

control counter. Each time a given state is exit the main control counter is reset. 



45 
 

 



46 
 

Figure 3: The state diagram governing operation of the entire receiver. 

4.4.2 COARSE SYNCHRONIZATION 
 

4.4.2.1 Alternative Solutions and Design Choice 

 

Coarse Timing Synchronization Design Choice 
Alternative Solutions Justification of Selection Decision 

 detection based on only one of the 
four autocorrelation peaks in the 
Preamble 1 

 detection based on four 
autocorrelation peaks in the 
Preamble 1 

 use a longer PN sequence for a 
more distinguishing 
autocorrelation peak among 
erroneous peaks caused by the 
multipath channel   

 The worst alternative is to use 
only one of the four peaks for detection of 
the Preamble 1 due to the fact that it 
would trigger a lot of false detections in 
both moderate and severe multipath 
channels and therefore decoding of a 
"garbage" data would occur. The other 
extreme of alternative solutions' 
spectrum - detection based on all four 
autocorrelation peaks is a little bit better 
alternative due to the fact that it 
eliminates false detection problem. 
However, it is still not an acceptable 
solution because in moderate and severe 
multipath channel conditions where 
erroneous peaks' magnitudes are on the 
same order as the actual Preamble 1 
peaks the system would miss a 
substantial amount of Preamble 1 
instances before locking to a 
synchronized state. 
 Using a longer PN sequence is a 
very  costly solution in terms of hardware 
resources and in the case of Altera 
Cyclone II FPGA it is not viable solution at 
all due to lack of sufficient number of 
embedded and software multipliers. 
Moreover, it is not a good design in which 
one subsystem uses all available 
multipliers’ resources. 
 
My design of the coarse synchronization 
scheme is a compromise between all 
alternative solutions. The mechanism 
uses only 16-sample long PN sequence to 
save on multipliers’ resources. 
Deterioration of the autocorrelation 
property in moderate and severe 
channels due to a shorter PN sequence is 



47 
 

compensated by a mechanism based on 
an idea of a search range and 2-element 
maximum autocorrelation peaks memory 
to allow uncertainty in peaks detection 
and eliminate false detection alarms. 

 

4.4.2.2 Implementation Description 

 

The first state "No first peak" is an initialization stage in which all control signals governing 

the entire synchronization system are reset to their default values. The system stays in this state as 

long as the timing offset metric PTO(d) does not exceed the autocorrelation threshold. Otherwise, an 

event corresponding to exceeding threshold value triggers a detection of the first autocorrelation 

peak in the first preamble and the synchronization state machine transitions to the next state - 

"Found first peak".  

Preliminary MATLAB simulation of the timing offset metric performance in various multipath 

channel conditions led me to the following observations which formed a foundation for the 

development strategy of the coarse timing offset synchronization mechanism: 

1. The magnitude of the "correct" PN sequence autocorrelation peak is larger than erroneous 

peaks which emerge due to "smearing" effect caused by superposition of multiple copies of the 

transmitted signal due to a multipath channel. This should be expected from the thumb-tack 

autocorrelation property of a PN sequence.  

2. In severe multipath channel conditions in which magnitude of the out-of-sight components 

in the channel impulse response is comparable to the line-of-sight component (the first 

coefficient in the channel impulse response) the erroneous peaks are of the same order of 

magnitude as the "actual" PN sequence autocorrelation peak. 

 

Design choice motivated by the first conclusion from the preliminary MATLAB 

simulation results 
 

The first observation led me to an approach in which the first peak is detected based on the 

maximum autocorrelation value. As a consequence, in the next state " Found first peak " for the next 

7 cycles the current cycle's autocorrelation value is compared to the first peak’s autocorrelation 

magnitude (the boundary between the first and the second peaks’ regions lines up with the 7th/8th  

clock cycles’ edge counting from the first peak location, as it is shown in the autocorrelation peaks 

distribution diagram in the Preamble 1 – Table 9). 

 

 



48 
 

 Peak1  Peak 

2 

 Peak 

3 

 Peak 

4 

 

Preamble 

sample 

index 

1,2...8 9 10,11...16 17,18...24 25 26,27...32 33,34...40 41 42,43...48 49,48...56 57 58,59...64 

Samples 

between 

peaks 

1,2...8  1,2...7 1,2... 8  1,2... 7 1,2... 8  1,2... 7 1,2... 8  1,2...7 

Table 9: A diagram of the autocorrelation peaks distribution in the Preamble 1. 

There are two possible state transitions upon entry to "Found first peak" state: 

 If in any of 7 clock cycles following the detected peak the autocorrelation magnitude is 

higher than the detected first peak's magnitude the main control counter is reset and the 

searching process is repeated. 

 If in all of 7 following clock cycles the autocorrelation values are smaller than the 

autocorrelation threshold or the first peak's magnitude it is an indication that the first peak 

has been found and a transition to the next stage -"Align to peak 2 search range" occurs. 

 

Due to the fact that I decided to employ a short 16-sample long PN sequence for the coarse 

timing offset synchronization in order to make hardware implementation feasible on Cyclone II 

FPGA I decided to take into account a rare possibility that an erroneous peak can have the same or 

larger magnitude as the actual PN sequence autocorrelation peak. To accommodate this scenario 

and improve reliability I employed an idea of a search region for the second and the third peak. The 

search region extends 3 samples back and forward in time from the second and the third peak’s 

locations with respect to the first peak found in " Found first peak" state. 

The purpose of "Align to peak 2/3 search range" state is to approach each peaks' search region 

which starts 3 samples before the second/third peak's location relative to the position of the first 

peak.  

Detection mechanism for the first preamble is based on a relative distance between the second 

and the third peak due to the fact that the location of the first peak is much less reliable - the first 

peak's region corresponds to a guard interval in an OFDM symbol and hence it is affected to the 

largest extent by the multipath channel among all of the peaks. The sole purpose of the first peak 

detection is to establish a search region in proximity of the actual second and third peak. I designed 

the mechanism in this manner to eliminate possibility of false detection. In the worst case scenario 

when the multipath channel corrupts the first peak area to such an extent that the search region for 

the second peak does not embrace the actual second peak the current preamble will be ignored and 

the receiver will proceed to seek another occurrence of the Preamble 1. However, no false detection 

will occur. 

 



49 
 

Design choice motivated by the second observation from the preliminary MATLAB 

simulation results 
 

Since erroneous autocorrelation peaks can have magnitude on the order of the actual peak’s 

magnitude in a severe multipath channel I decided to implement 2-element memory for 

autocorrelation peaks in both the second and the third peak's search regions. The memory 

elements are sorted in a decreasing autocorrelation magnitude order.  

Both "Search second peak" and "Search third Peak" states include a flowchart with four 

states to detect two maximum peaks in each search region. 

 

Embedded in "Search second/third peak" state(s) flowchart 

Flowchart 
State 

Common Entry 
Condition 

Specific Entry Condition Action Taken Upon Entry 

Found 
second/third 
peak max1 

Current 
Autocorrelation 
>= pk2/3max1 - 
the current 
cycle's 
autocorrelation 
magnitude 
exceeds the first 
maximum 
peak's 
magnitude in 
the memory 
(pk2/3max1) 
 

pk2/3max1<pk2max2 
- the first maximum 
peak in the memory 
to be displaced by a 
new value is less than 
the second maximum 
peak in the memory 

Clear the frequency 
offset metric PFCO (d) 
corresponding to the 
first maximum peak 
in the memory. 
 
Set the first 
maximum peak’s 
value to a current 
cycle's 
autocorrelation 
value and its index to 
the main control 
counter. 

Found 
second/third 
peak 
max1ANDmax2 

pk2/3max1>= 
pk2max2 - the first 
maximum peak in the 
memory to be 
displaced by a new 
value is larger than 
the second maximum 
peak in the memory 

Clear the frequency  
offset metric PFCO (d) 
corresponding to 
both the first and the 
second maximum 
peaks in the 
memory. 
 
Set the first 
maximum peak value 
in the memory to the 
current cycle's 
autocorrelation 
value and its index to 
the main control 
counter. 
 
Copy the displaced 
current first 
maximum peak value 
and its index into the 



50 
 

second maximum 
peak’s memory 
entries. 

 

Found 
second/third 
peak max2 

Current 
Autocorrelation 
< pk2/3max1 - 
the current 
cycle's 
autocorrelation 
magnitude is 
less than the 
first maximum 
peak's 
magnitude in 
the memory 
(pk2/3max1) 

 
 

Current 
Autocorrelation >= 
pk2/3max2 - the 
current cycle's 
autocorrelation 
magnitude exceeds 
the second maximum 
peak in the memory 
(pk2/3max2) 

Clear the frequency 
offset metric PFCO (d) 
corresponding to the 
second maximum 
peak in the memory 
(clear_pk2max2) 
 
Set the second 
maximum peak value 
to the current cycle's 
autocorrelation 
value and its index to 
the main control 
counter 

No second 
peak 

Current 
Autocorrelation < 
pk2/3max2 - no peak 
is detected which 
exceeds the current 
memory peaks’ values 

        No action 

 

The frequency offset metric is calculated with respect to 33rd sample of the 64-sample long 

Preamble 1(index d=33 according to equation (2) in section 4.2.2). 

The architecture employed for the frequency offset metric PFCO(d) calculation is based on a 

serial multiplier and accumulator combination. Once the enable signal for the frequency offset 

metric accumulator (enable_Sym1FreqPDaccumSEQ )goes high every clock cycle a current sample 

is multiplied by a delayed by 32 cycles sample and the results is accumulated as long as the enable 

signal stays high (see Appendix Section 8.1 Figure 13).. 

Thirty third position in Preamble 1 corresponds to a sample immediately following the 

second autocorrelation peak of the timing offset metric PTO therefore frequency offset metric 

calculation should start one sample after detection of the second autocorrelation peak. In a scheme 

based on an idea of a search range and a 2-element autocorrelation peaks memory accumulation for 

both elements in the second peak’s memory starts one sample after the beginning of the second 

peak search range - it corresponds to the second peak’s location at the maximum allowable 

negative offset -3 in the search range. If two maximum autocorrelation peaks are detected at the 

other offsets’ positions in the 7-sample long search range the signals clear_pk2max1 and 

clear_pk2max2 are set high at these offset locations which causes a reset of the frequency offset 

accumulators (two accumulators comprise the 2-element memory). Accumulation resumes one 

cycle later producing the right result for a given peak's offset in the search range.  

 



51 
 

The next state following "Search third peak" - "Check preamble 1 found status" checks whether 

Preamble 1 has been found. It uses the following Preamble 1 detection condition:  

 Preamble 1 has been found if indices of any pair of entries in the second and the third peaks’ 

memories match (one entry from the second peak’s memory and one from the third peak’s 

memory) 

 

"Check preamble 1 found status" sets a selection signal "which_from_p2maxFreqPDaccumSEQ" 

for a MUX which loads an appropriate frequency offset corresponding to the matching condition 

upon completion of the frequency offset metric PFCO calculation in the coarse synchronization stage 

(it occurs at the 4th peak’s location). 

If a match was established with the first maximum peak in the second peak's memory 

which_from_p2maxFreqPDaccumSEQ will be set to take the frequency offset metric value from 

pk2max1. Otherwise, in the case of a match with the second maximum peak in the second peak's 

memory which_from_p2maxFreqPDaccumSEQ will be set to take the frequency offset metric PFCO 

from pk2max2. 

 

There are two possible transitions from "Check preamble found" state depending on Preamble 

1 found status: 

 Preamble 1 not found - go back to "No first peak" 

 Preamble 1 has been found - go to " Fine sync conditions " 

 

The purpose of "Fine sync conditions" is to adjust all control signals for the fine synchronization 

stage  (based on Preamble 2) with respect to location of the second/third autocorrelation peak 

within its search range which has been established in the coarse synchronization stage (based on 

Preamble 1). The reference location of the second/third peak is 3 - the location predicated by the 

first peak's location. The mechanism allows +/-3 samples uncertainty due to corruption of the first 

peak’s samples to the largest extent by the multipath channel. Therefore upon entry to "Fine sync 

conditions "  state locations of all fine synchronization control signals, based on the main control 

counter, are adjusted by an offset : 

 if which_from_p2maxFreqPDaccumSEQ  is set to select PFCO from pk2max1 => 

offset=p2max1_index-3 

 if which_from_p2maxFreqPDaccumSEQ  is set to select PFCO from pk2max2 => 

offset=p2max2_index-3 

 



52 
 

4.4.3 FINE SYNCHRONIZATION 
 

4.4.3.1 Implementation Description 

 

States responsible for fine synchronization are “Coarse TO and FCO calculation/Fine TO and 

FCO metrics calculation” and “Fine TO and FCO calculation”. 

Fine synchronization includes four steps: 

1. Conversion of the coarse frequency offset metric (PFCO) to the actual coarse frequency offset value 

(FCO) , according to equation (3) in section 4.2.2, using vectoring CORDIC algorithm of circular type. 

2. De-rotation of the received Preamble 2 samples by the coarse frequency offset. 

3. Calculation of cross-correlation between the de-rotated Preamble 2 samples and the reference 

Preamble 2 samples which are stored in a lookup table for fine timing offset determination 

4. Calculation of the fine frequency offset metric from the de-rotated samples for fine frequency 

offset determination. 

 

 

1. Conversion from the coarse frequency offset metric (PFCO) to the frequency offset 

value (FCO) 
 

Once the calculation of the frequency offset metric in the coarse synchronization stage is 

completed (it occurs at the location of the 4th timing offset metric peak in the Preamble 1) the 

accumulator of the serial multiplier/accumulator mechanism for the frequency offset metric 

calculation (see Appendix Section 8.1 Figure 13) is disabled via its enable signal 

enable_Sym1FreqPDaccumSEQ.  

The inputs to the vectoring CORDIC unit are changed from the coarse timing offset metric, 

which is no longer needed, to the frequency offset metric in order to convert the frequency offset 

metric to the frequency offset value. It is achieved by changing a selection signal of the vectoring 

CORDIC input MUX from its default value 0 – TO PTO metric to 1- coarse FCO metric PFCO.  

Latency of the vectoring CORDIC unit is two clock cycles therefore two cycles later  the enable 

signal (loadfreqPDCB) for a register storing the frequency offset, from which Para-CORDIC-based 

de-rotator (see Appendix Section 8.1 Figure 16) de-rotates the received samples, is set high.  

 

 



53 
 

2.  De-rotation 
 

Starting from a sample determined by the coarse synchronization as a start of an OFDM symbol 

each sample is de-rotated by increasing modulo 64 subcarrier frequency index.  

The de-rotator is implemented using Para-CORDIC algorithm (see Appendix Section 8.1 Figure 16). 

 

3. Calculation of cross-correlation between the de-rotated Preamble 2 samples and 

the reference Preamble 2 for fine timing offset determination 
 

In the fine timing offset synchronization I use 11-sample long delay window around the 

start of an OFDM symbol, as determined by the coarse synchronization, for the cross-correlation 

calculation (+/-5 samples from the start of an OFDM symbol).  

The cross-correlation unit comprises of eleven chains of identical components required to 

calculate cross-correlation for one delay offset (each chain corresponds to one offset value from the 

start of an OFDM symbol determined by the coarse synchronization). These components include 

(see Appendix Section 8.1 Figure 15): 

 A counter for indexing a look-up table with the reference Preamble 2. A reset signal for the 

counter comes from the inverted trigger signal for the cross-correlation start 

(enable_crosscorrSEQ) therefore at the first sample of the cross-correlation calculation for a 

particular delay (out of 11 possible cross-correlation delays) it indexes the first sample of 

the Preamble 2 as desired. 

 Clipped cross-correlator. The clipped-correlator uses only the signs of cross-correlated 

samples. The function of the clipped-cross-correlator can be described using the following 

MATLAB pseudocode: 

 if (sign(real(signal(i)))==sign(real(preamble(i))) &&  sign(imag(signal(i)))==sign(imag(preamble(i)))) 

      cross-correlation=1; 

 else 

      cross-correlation=0; 

 end 

 

 An accumulator - accumulates cross-correlation summation values produced by the clipped 

cross-correlator as long as an enable signal for the cross-correlation stays high 

(enable_crosscorrSEQ). The length of the Preamble 2 is 64 therefore the enable signal is 

kept high for 64 clock cycles to yield correct cross-correlation result.  



54 
 

As can be seen from the cross-correlator circuit diagram in Appendix Section 8.1 Figure 15 

there is only one enable single for the entire cross-correlator unit and is applied directly only to 

the cross-correlation chain corresponding to -5 offset from the start of an OFDM symbol. Each 

successive offset’s enable signal is derived from this enable signal using a delay element. In this 

way each successive offset starts and ends the cross-correlation calculation one sample later 

producing correct result for each offset value. 

4.  Calculation of the fine frequency offset metric from the de-rotated samples for 

fine frequency offset determination. 
 

The same architecture as the cross-correlator unit with 11 chains of identical components 

for each offset value from the start of an OFDM symbol has the fine frequency offset unit (see 

Appendix Section 8.1 Figure 14). It is also based on a serial multiplier/accumulator mechanism 

used in the coarse frequency offset calculation.  

“Fine TO and FCO calculation” state at each clock cycle performs a comparison between 

successive offsets’ cross-correlation values to find a maximum. The offset corresponding to the 

maximum cross-correlation value (max_CC_idx signal) indicates the final location of the start of 

an OFDM symbol (equivalent to the start of FFT window). Max_CC_idx is used a selection signal 

for: 

 an output MUX inside the fine frequency offset unit which routes an appropriate 

accumulator’s output out of 11 possible offsets to the vectoring CORDIC unit for the 

frequency offset metric-to-value conversion 

 an input MUX for the de-rotator which selects the samples corresponding to the start of 

an OFDM symbol for rotation by the fine frequency offset   

 

4.4.4 CHANNEL ESTIMATION 
 

  The function of the next state following “Fine TO and FCO calculation” – “Initialization for 

final decoding” is to trigger the serial input mechanism inside the FFT unit at the start of the pilot 

symbol. 

"Pilot decoding" state is responsible for channel estimation process.   

The FFT samples of the pilot symbol are converted to polar coordinates using the vectoring 

CORDIC unit. Therefore one sample prior to appearance of the first FFT sample of the pilot symbol a 

selection signal for an input MUX of the vectoring CORDIC unit is set to the FFT unit output.  

Latency of the vectoring CORDIC module for modulus calculation is four cycles therefore at 

the third clock cycle a reset control for a counter used for indexing the reference pilot samples is 

set.  



55 
 

The output of the vectoring CORDIC is connected to a division unit implemented using a 

separate vectoring CORDIC of linear type. The division unit divides the modulus of the FFT of the 

received pilot sample by the modulus of the reference pilot sample to produce the channel 

frequency response at a given subcarrier index (frequency). 

The phase of the channel frequency response is easily calculated by subtraction of the 

reference pilot angle from the delayed by two samples angle output of the vectoring CORDIC unit 

(latency of the vectoring CORDIC unit for the angle calculation is two cycles therefore in order to 

synchronize modulus and angle division results two samples delay is inserted). 

Latency of the division unit is two cycles therefore on the second clock cycle from the 

beginning of the division process the enable signal (enable_update_channelSEQ) triggers an update 

of the channel frequency response samples. The enable signal stays high for the next 64 cycles to 

enable an update of all 64 subcarriers’ channel frequency response in a shift register storing the 

channel frequency response samples.  

When the master control counter reaches the count of 10 a trigger signal (startFFTCB).  is 

set to start the serial input shifting mechanism of the FFT unit for the next OFDM symbol (data 

symbol this time). 

 

4.4.5 DATA DECODING 
 

"Data decoding" state is in charge of data symbol decoding. It has similar structure to "Pilot 

decoding" state with a minor difference after division of the FFT of the received sample by the 

channel response. In contrast to pilot decoding, the result is converted back to rectangular 

coordinates to reduce complexity of 16-QAM de-mapper. 

The mechanism of data decoding is exactly the same as for the channel estimation 

counterpart up to the end of the division operation. The only difference concerns a divisor. Now 

instead of the reference pilot symbol a channel response at a given subcarrier’s frequency, which 

has been obtained and stored during the channel estimation process, is accessed and used as a 

divisor. 

In addition to that, the main discrepancy in operations of the pilot and the data decoding 

mechanisms concerns processing after division. As mentioned in the introduction in order to ease 

up the process of de-mapping QAM symbols the result of division is converted back to rectangular 

coordinates (if one choose to use QPSK mapping of the source symbols then this step is 

unnecessary and the rest of decoding mechanism is equivalent to the pilot decoding counterpart).  

Due to the fact that already existing in the system Para-CORDIC module is constantly 

engaged in de-rotation of samples by the frequency offset it could not be re-used for a polar-to-

rectangular coordinate conversion. As a consequence, there is a separate Para-CORDIC module 



56 
 

introduced in the system for the sole purpose of a polar-to-rectangular coordinate conversion in the 

data decoding process. 

Latency of Para-CORDIC based polar-to-rectangular converter is two cycles and there is an 

additional cycle for the decision device – 16-QAM de-mapper.  

During the additional clock cycle for the de-mapper the enable signal for the decoder 

(enable_decoder_outputSEQ ) is set. The function of the enable signal for the decoder is to output 

decoded symbols only during the decoding process and output some user-defined dummy value 

otherwise (during synchronization and other internal processing tasks). This way the decoded data 

stream can be processed and parsed at a higher (possibly software) level to extract the transmitted 

symbols. 

5 TESTING 
 

A subset of algorithms selected during the initial research stage of the project was first 

implemented in floating-point MATLAB functions to verify their functionality and performance. My 

goal was to write a MATLAB code in a structured way such that following this stage – hardware 

implementation could easily follow the flow of the MATLAB programs.  

Next, I proceeded to hardware programming of the algorithms in hardware descriptive 

language Verilog. For debugging of Verilog code I used co-simulation feature of MATLAB Simulink 

and ModelSim (Verilog simulator) software. The co-simulation feature allows to instantiate a 

Verilog module inside a Simulink model, feed it with Simulink test signals and output the hardware 

signals to the MATLAB workspace for further processing. One can specify where the radix point is 

in a fixed-point representation of the inputs fed to a Verilog module and also how to interpret 

Verilog unit’s outputs. 

The procedure used for debugging of Verilog code: 

 place MATLAB debugging breakpoints at the transition points of a given algorithm to probe 

variables of interest (for instance, probe x, y and z coordinates in CORDIC algorithm before 

and after each iteration) 

 "take out" internal signals from a Verilog module and output them to the MATLAB 

workspace 

 proceed step-by-step through the MATLAB debugging breakpoints comparing values of the 

floating-point MATLAB  variables and corresponding Verilog module's signals 

Besides facilitating a comparison process through a direct conversion of the fixed-point Verilog 

outputs to a floating-point representation the co-simulation feature also allowed me to test 

hardware implementation with a large amount of random input values to identify special case 

errors and fix them to ensure functionality of the algorithm for all possible input combinations 



57 
 

encountered in the transceiver. The test bench used for this purpose consists of two parallel 

branches: 

 a branch consisting of a floating-point MATLAB implementation of a given algorithm 

 a branch with a Verilog module 

Both branches were fed with the same test vector. The outputs were compared and both mean 

error and mean squared error were computed to assess whether the module produces correct 

result within its integer and fractional precision. 

 

The next step following verification of the hardware implementation of algorithms concerned 

Simulink model of the entire transceiver which aside from being a deliverable of the project 

consists a test platform for the whole system. This stage of verification process consisted of the 

following stages: 

 creation of a floating-point model and verification of transceiver's functionality using 

floating-point MATLAB based implementation of the core components, such as FFT, 

CORDIC-based de-rotator and rectangular-to-polar/polar-to-rectangular converters. For 

this purpose I converted all traditional instant-output MATLAB functions to S-functions (or 

in simpler cases I used a concatenation of a MATLAB function with a delay element) in 

order to reflect latency of the corresponding hardware components in producing the 

outputs. 

 conversion of the floating-point model to a fixed-point hardware-based model via 

replacement of the ideal floating-point components with Verilog modules using 

Simulink/Modelsim co-simulation feature and matching the outputs to the working 

floating-point implementation 

6 RESULTS 
 

The results obtained during various verification stages, described in Section 5, serve the 

purpose of assessment of achievement of the main goal set for the project, namely, reusability of the 

project’s materials for students interested in communication field. Reusability concerns both 

algorithms used to build the transceiver as well as the whole system itself. 

6.1 RESULTS FOR ASSESSMENT OF REUSABILITY OF THE HARDWARE IMPLEMENTATION 

OF THE ALGORITHMS USED IN THE OFDM TRANSCEIVER’S DESIGN 
 

Reusability of the transceiver’s algorithms was assessed through a comparison of the ideal 

floating-point implementation of a given algorithm (MATLAB function) and a corresponding 

hardware (Verilog code) implementation.  



58 
 

The reusability criterion for the algorithms used in the transceiver’s design can be formulated 

as follows: 

 If a hardware implementation produces results which match the results of an ideal floating-

point MATLAB-based implementation then the reusability goal is achieved. 

  Using Simulink/Modelsim co-simulation feature and verification procedure described in 

Section 5 I was able to assess both qualitatively and quantitatively the matching between the ideal 

MATLAB-based implementation and the hardware (Verilog code) implementation of a given 

algorithm for a large number of random test inputs (for visualization purposes I used only a set of 

100 test input values).  

Qualitative assessment was done by the means of a graphical representation of the 

comparison results of both implementations’ outputs. I overlaid the plots of target quantities of a 

given algorithm for the entire range of the test input(s) values produced by each implementation.   

The output target and the test input quantities as well as a reference to a corresponding 

comparison plot for each algorithm are listed in Table 10. 

Algorithm Test Input Quantities Target Output 
Quantities 

Comparison Plot 

CORDIC Algorithm 
in vectoring mode 

 x and y 
coordinates of a 
test complex 
number 

 angle of a test 
complex number 

 modulus of a test 
complex number 

Figures 4-7 

CORDIC Algorithm 
in rotation mode 
(Para-CORDIC) 

 a rotation angle 
 x and y 

coordinates of a 
fixed test vector 
(only the rotation 
angle is varying) 

 x and y 
coordinates of a 
fixed test vector 
after rotation by a 
test angle 

Figures 8-9 

Fast-Fourier 
Transform (FFT) 

 N complex 
numbers (N - FFT 
order) – time 
domain signal 

 N complex 
numbers – 
frequency domain 
signal 

Figures 10-11 

Table 10: Algorithms' test input and target output quantities. 

The matching between both the ideal MATLAB-based and the hardware (Verilog Code) 

implementations is evident from the plots.  

In order to more rigorously quantify the matching between the two implementations I used 

mean error and mean squared error metrics for quantitative assessment. The quantitative 

assessment’s data is listed in: 

 Table 11. for the CORDIC Algorithm in vectoring mode 

 Table 12 for the CORDIC Algorithm in rotation mode (Para-CORDIC) 

 Table 13 for the Fast-Fourier Transform algorithm 



59 
 

 If a given algorithm’s output was computed by the means of one operation the matching 

condition would be explicitly stated in terms of the error’s magnitude with respect to input bit 

precision. In that case the condition for a match would be that the error is less than the smallest 

representable number in the input’s fixed-point representation. Due to the fact that all test input 

signals are represented in 8.8 fixed-point representation (8 bits for the integer part and 8 bits for 

the fractional part) the error should be less than 2-8= 0.0039. 

 However, none of the algorithms is computed in one step and truncation effect occurring in 

the intermediate stages requires complicated numerical analysis to determine the error’s upper 

bound. Unfortunately, such an analysis is beyond the scope of this project. 

 Nevertheless, the mean error values and the mean squared error values for each algorithm 

are close to the error’s lower bound for one-step operation and it can be concluded that the  

hardware implementation of the algorithms matches the ideal floating-point MATLAB- based 

implementation in terms of functionality. Therefore the reusability condition set for the hardware 

implementation of the algorithms is met. 

 

Figure 4: The overlaid angle results (100 test input values) for both the floating-point MATLAB-based and the 

hardware (Verilog code) implementations of the CORDIC algorithm in vectoring mode. 

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Input Test Set Index

A
n

g
le

 

 

Angle (Floating-point MATLAB function)

Angle (Hardware Verilog Code)



60 
 

 

Figure 5: The difference in the angle results (100 test input values) between the floating-point MATLAB-based 

and the hardware (Verilog code) implementations of the CORDIC algorithm in vectoring mode. 

 

Figure 6: The overlaid modulus results for both the floating-point MATLAB-based and the hardware (Verilog 

code) implementations of the CORDIC algorithm in vectoring mode. 

0 20 40 60 80 100 120
-4

-2

0

2

4

6

8

10

12

14
x 10

-3

Input Test Set Index

D
if
fe

re
n

c
e

 

 

Difference between floating-point MATLAB function and hardware Verilog angle outputs

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

Input Test Set Index

M
o

d
u

lu
s

 

 

Modulus (Floating-point MATLAB function)

Modulus (Hardware Verilog Code))



61 
 

 

Figure 7: The difference in the modulus results (100 test input values) between the floating-point MATLAB-based 

and the hardware (Verilog code) implementations of the CORDIC algorithm in vectoring mode. 

 

 

Target Output 
Quantity  

CORDIC Algorithm In Vectoring Mode   
Difference Between The Floating-Point MATLAB-based Implementation 
And The Hardware (Verilog Code) Implementation 
Hardware 16-bit Fixed-point 
Representation 

Mean Error Mean Squared 
Error 

Input Output 
(angle/modulus) 

Integer 
Part  

Fractional 
Part 

Integer 
Part  

Fractional 
Part 

Angle 8 bits 8 bits 3 13 0.0010 1.0577x10-6 

Modulus 8 bits 8 bits 8 8 0.0172 2.9493x10-4 

Table 11: The difference between the floating-Point MATLAB-based implementation and the Hardware (Verilog 

Code) implementation of the CORDIC algorithm in vectoring mode. 

 

0 20 40 60 80 100 120
-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Input Test Set Index

D
if
fe

re
n

c
e

 

 

Difference between floating-point MATLAB function and hardware Verilog modulus outputs



62 
 

 

Figure 8: The overlaid rotated x and y coordinates' results (100 test input values) for both the floating-point 

MATLAB-based and the hardware (Verilog code) implementations of the CORDIC algorithm in rotation mode 

(Para-CORDIC). 

 

Figure 9: The difference in the rotated x and y coordinates' results (100 test input values) between the floating-

point MATLAB-based and the hardware (Verilog code) implementations of the CORDIC algorithm in rotation 

mode (Para-CORDIC). 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Normalized to 2pi Rotation Angle In Radians

A
m

p
lit

u
d

e

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Normalized to 2pi Rotation Angle In Radians

A
m

p
lit

u
d

e

 

 

Rotated vector's x coordinate (Floating-point MATLAB function)

Rotated vector's x coordinate (Hardware Verilog Code)

Rotated vector's y coordinate (Floating-point MATLAB function)

Rotated vector's x coordinate (Hardware Verilog Code)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Normalized to 2pi Rotation Angle In Radians

D
if
fe

re
n

c
e

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Normalized to 2pi Rotation Angle In Radians

D
if
fe

re
n

c
e

 

 

Difference between floating-point MATLAB function and hardware Verilog rotated vector's x coordinate

Difference between floating-point MATLAB function and hardware Verilog rotated vector's y coordinate



63 
 

Target Output 
Quantities 

CORDIC Algorithm In Rotation  Mode  (Para-CORDIC) 
Difference Between The Floating-Point MATLAB-based Implementation 
And The Hardware (Verilog code) Implementation 

Hardware 16-bit Fixed-point 
Representation 

Mean Error Mean Squared 
Error 

Input Output 
(angle/modulus) 

Integer 
Part  

Fractional 
Part 

Integer 
Part  

Fractional 
Part 

Vector’s  X 
Coordinate 

8 bits 8 bits 8 8 0.0075 5.5751x10-5 

Vector’s Y 
Coordinate  

8 bits 8 bits 8 8 0.0084 7.0795 x10-5 

Table 12:  Difference between the floating-Point MATLAB-based implementation and the Hardware (Verilog 

Code) implementation of the CORDIC algorithm in rotation mode (Para-CORDIC). 

 

Figure 10: The overlaid FFT real part results and the FFT imaginary part results (1 set of the FFT test input data) 

for both the floating-point MATLAB-based and the hardware (Verilog code) implementations of the Fast-Fourier 

Transform algorithm. 

0 10 20 30 40 50 60 70
-10

0

10

20

30

40

50

60

70

Frequency Index

A
m

p
lit

u
d

e

 

 

Real part of 64-point FFT (Floating-point MATLAB function)

Real part of 64-point FFT (Hardware Verilog Code)

0 10 20 30 40 50 60 70
-5

0

5

Frequency Index

A
m

p
lit

u
d

e

 

 

Imaginary part of 64-point FFT (Floating-point MATLAB function)

Imaginary part of 64-point FFT (Hardware Verilog Code)



64 
 

 

Figure 11: The difference in the FFT real part results and the FFT imaginary part results (1 set of the FFT test 

input data) for both the floating-point MATLAB-based and the hardware (Verilog code) implementations of the 

Fast-Fourier Transform algorithm. 

Target Output 
Quantity 

Fast-Fourier Transform (FFT) 
Difference Between The Floating-Point MATLAB-based Implementation 
And The Hardware (Verilog code) Implementation 

Hardware 16-bit Fixed-point 
Representation 

Mean Error Mean Squared 
Error 

Input Output 
(angle/modulus) 

Integer 
Part  

Fractional 
Part 

Integer 
Part  

Fractional 
Part 

FFT Real Part 8 bits 8 bits 8 8 0.0154   2.3811x10-4 

FFT Imaginary 
Part  

8 bits 8 bits 8 8 0.0141 1.9822 x10-4 

Table 13:  Difference between the floating-Point MATLAB-based implementation and the Hardware (Verilog 

Code) implementation of the Fast-Fourier Transform algorithm. 

  

6.2 RESULTS FOR ASSESSMENT OF REUSABILITY OF THE OFDM TRANSCEIVER 
 

The assessment of reusability of the entire system was realized through evaluation of the 

transceiver’s ability to estimate and compensate for synchronization errors which is reflected in 

error-free decoding of the transmitted data symbols in various channel conditions.  

0 10 20 30 40 50 60 70
-0.05

0

0.05

0.1

0.15

Frequency Index

D
if
fe

re
n

c
e

 

 

Difference between floating-point MATLAB function and hardware Verilog FFT's real parts

0 10 20 30 40 50 60 70
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Frequency Index

D
if
fe

re
n

c
e

 

 

Difference between floating-point MATLAB function and hardware Verilog FFT's imaginary parts



65 
 

I tested the transceiver in channels of a varying degree of the multipath effect. The 

multipath effect is determined by the number of coefficients and their relative magnitudes with 

respect to the line-of-sight component (the first coefficient in the channel impulse response) in the 

channel impulse response.  The more the terms in the channel impulse response the more the 

copies of the transmitted signal with various delays corresponding to the coefficients’ positions in 

the channel impulse response are being combined at the receiver.  Severity of the negative effect on 

decoding of the resulting superposition of signals depends on how close in magnitude the copies 

are with respect to the earliest component (the line-of-sight component). If the coefficients in the 

channel impulse response constitute a significant percentage of the line-of-sight component’s 

magnitude then distinctive features of the underlying analog signal which differentiate the 

transmitted data symbols are lost (due to the “smearing” effect of the overlapping copies) and as a 

result, more detection errors occur. 

 The channels (in increasing degree of the multipath effect) used in evaluation of the 

system’s robustness to synchronization errors are: 

 ideal channel – impulse response h=[1 0] 

 mild multipath channel – impulse response h=[1 0.1 0.05 0.002 0.001] 

 severe multipath channel - impulse response h=[0.8 0.2 0.1 0.05 0.02] 

 I used a similar approach as in the case of algorithms’ hardware implementation evaluation. 

The proof of meeting the reusability condition set for the transceiver was obtained both through 

qualitative (graphical representation) and quantitative (numerical metrics) assessment. The 

qualitative evaluation consists of a graphical representation of a comparison of the transmitted and 

the decoded data symbols (Appendix Section 8.2.1 Figure 17, Appendix Section 8.2.2 Figure 21 and 

Appendix Section 8.2.3 Figure 25), their difference (Appendix Section 8.2.1 Figure 18, Appendix 

Section 8.2.2 Figure 22 and Appendix Section 8.2.3 Figure 26) and the mapping of the decoded 

symbols onto 16-QAM constellation (Appendix Section 8.2.1 Figure 19, Appendix Section 8.2.2 

Figure 23 and Appendix Section 8.2.3 Figure 27). The quantitative evaluation consists of the 

following numerical metrics (Appendix Section 8.2.1 Table 15, Appendix Section 8.2.2 Table 16 and 

Appendix Section 8.2.3 Table 17): 

 symbol error rate – indicates how many symbols were decoded in error out of all 

transmitted symbols. It quantifies the composite effect of errors on both in-phase (real 

part) and quadrature (imaginary part) components of the data 16-QAM symbol.  

  mean error and mean squared error of the real and the imaginary parts of the data 

symbols – quantifies an error along each axis in the 16-QAM source symbol constellation 

diagram. 

 

As can be seen from both the graphical representation of the comparison results and the 

numerical results in both the ideal and the mild multipath channels the transceiver achieves 

perfect decoding – no errors. In the case of severe multipath channel the results are also 

promising. The transceiver achieves almost perfect decoding (symbol error rate is only 1.95%). It 

has to be pointed out that the errors which occurred in the case of transmission through the 

severe multipath channel are not resulting from the transceiver structure. There errors are 



66 
 

inherent to the channel distortion of the transmitted signal (the “smearing” effect in severe 

multipath channels). The “smearing” effect can be observed in the plots illustrating the timing 

offset metric for the first synchronization preamble (Preamble 1).  Due to the “smearing” effect the 

area of the first autocorrelation peak (the region affected the most by the delay spread of the 

multipath channel)in the case of the severe multipath channel is populated with a larger number 

of erroneous peaks than  in the case of the ideal or the mild multipath channels.  As can be seen in 

Appendix Section 8.2.3 Figure 28 the magnitude of erroneous peaks approaches the magnitude of 

the actual first autocorrelation peak. In the corresponding plots (Appendix Section 8.2.1 Figure 20 

and Appendix Section 8.2.2 Figure 24) for the ideal and the mild multipath channels there is a 

distinct peak corresponding to the true autocorrelation peak and it is surrounded by fewer and 

most importantly,  much smaller erroneous peaks. The smearing effect can also be observed in the 

plots illustrating the mapping of the decoded data symbols on the 16-QAM constellation (Appendix 

Section 8.2.1 Figure 19, Appendix Section 8.2.2 Figure 23 and Appendix Section 8.2.3 Figure 27).  

The higher the severity of the multipath effect the thicker the dots comprised of the overlaid data 

symbols (prior to the 16-QAM de-mapper) around 16-QAM constellation points are. However, in 

all three cases  (ideal, mild and severe multipath channels) all data symbols are kept within each 

constellation point’s decision region therefore a perfect decoding (and in the case of the severe 

channel close to perfect) has been achieved.  

In Tables - Appendix Section 8.2.1 Table 15, Appendix Section 8.2.2 Table 16 and Appendix 

Section 8.2.3 Table 17 there is included information about the effectiveness of estimation of the 

frequency offset. As can be seen from the total estimate values (combined coarse and fine 

synchronization estimates which are also listed separately in the tables) the transceiver accurately 

estimates the fractional frequency offset in all three test cases. Tiny discrepancies between the 

actual frequency offset value and the estimates in the case of the mild and the severe multipath 

channels (4.133 % difference for the mild multipath channel and 6.933% difference for the severe 

multipath channel) result from the fact that distortion caused by the multipath effect (the 

smearing effect) affects also synchronization information enclosed in the transmitted symbols 

(thumb-tack autocorrelation property of a PN sequence, conjugate symmetry of the preambles). 

Since the synchronization mechanism by no means can predict what happened during the 

transmission and revert the changes made by the channel the loss in synchronization information 

is reflected in accuracy of estimates. Nevertheless, the robustness of the synchronization 

mechanism in spite of distortion caused by the smearing effect is evident from closeness of the 

estimates to the actual value of the frequency offset in all degrees of severity of the multipath 

effect. 

 

I also simulated the effects of synchronization errors by disabling the synchronization 

mechanism. I considered each synchronization error separately and also their combined effect.  I 

used the same graphical and numerical representations of the assessment data as in the case of the 

transceiver’s performance testing in various multipath channels. Table 14 lists all the considered 

cases of synchronization errors along with the references to each case’s graphical and numerical 

representations of the assessment data. 

 

 



67 
 

Case Assessment Data 

Graphical Representation Numerical Representation 

Ideal channel with an 
uncompensated frequency 
offset   

Appendix Section 8.2.4 Figures 
29-31 

Appendix Section 8.2.4 Table 
18 

Ideal channel with a symbol 
timing offset (FFT window 
leads) 

Appendix Section 8.2.5 Figures 
32-34 

Appendix Section 8.2.5 Table 
19 

Ideal channel with a symbol 
timing offset (FFT window 
lags) 

Appendix Section 8.2.6 Figures 
35-37 

Appendix Section 8.2.6 Table 
20 

Ideal channel with both a 
symbol timing offset (FFT 
windows leads) and an 
uncompensated frequency 
offset 

Appendix Section 8.2.7 Figures 
38-40 

Appendix Section 8.2.7 Table 
21 

Table 14: The list of the simulated cases of synchronization errors and the references to their assessment data. 

Through the results illustrating the effect of each synchronization error I gained a valuable 

insight into importance of the fundamental principle of the OFDM modulation – orthogonality 

principle between OFDM subcarriers. The results obtained convinced me of necessity of a perfect 

synchronization in the case of OFDM-based receivers. As can be seen from the plots and the 

performance metrics, such as symbol error rate, OFDM demodulation is extremely sensitive to 

synchronization impairments. Even small synchronization errors cause loss of orthogonality 

between subcarriers and in effect completely deteriorate performance of the OFDM receiver 

rendering it useless for any serious applications – the symbol error rate ranges from 0.54 to 0.80.  

As can be seen in Appendix Section 8.2.4 Figure 31, Appendix Section 8.2.5 Figure 34, 

Appendix Section 8.2.6 Figure 37 and Appendix Section 8.2.7 Figure 40 the consequence of the loss 

of orthogonality between subcarriers is the scattering effect of the decoded data symbols 

throughout the decision regions of the 16-QAM constellation points and as a result decoding of the 

“garbage” data.  

Moreover, from a comparison of the separate and combined effects of the synchronization 

errors it can be concluded that a single synchronization error introduces such a large error floor 

that it really does not matter whether the system fails in only one synchronization error 

detection/correction or all of them due to the fact that in all of the cases the resulting performance 

is at an unacceptable level for any sort of applications. 

 

As can be concluded from the results the transceiver is robust to various synchronization 

errors. It correctly estimates synchronization errors and compensates for them which ultimately 

leads to error-free decoding of the source data symbols. 

 

7 CONCLUSION 
 



68 
 

Taking into account diversity of disparate communication theory and hardware 

implementation concepts employed in the OFDM transceiver design I consider this project as an 

ideal culminating design experience for my final year as a M. Eng student.  

I exercised both the roles of a system engineer and a hardware engineer in realization of the 

project which provided me with invaluable experience highly sought in a professional engineering 

environment. I succeeded in both of the roles as the overall system and the hardware 

implementation of various algorithms met the desired expectations. A comparison to the reference 

system – 802.11a modem on which the transceiver’s parameters were based yields promising 

results. I managed to design synchronization mechanism using only two preambles (2 64-sample 

long preambles for fine and coarse synchronization) as opposed to five preambles used in 802.11a 

standard (3 16-sample long short preambles for coarse synchronization and 2 64-sample long 

preambles for fine synchronization).  In addition to that, by implementing the fastest available 

variations of algorithms used in construction of the OFDM transceiver the higher data rates can be 

achieved than in the case of 802.11a modems. I design the system for 27 MHz sampling clock rate 

(one of the oscillators’ frequency in Altera Cyclone II FPGA) whereas in 802.11a modems 20 MHz 

sampling frequency is used. 

The main goal of the project – reusability of the project’s materials by students with similar 

interest and background in communication theory and digital hardware was achieved by 

verification of the system’s functionality.  

The possibility of reusing my design by students to supplement their communication 

systems’ study outside the classroom made the OFDM transceiver design an appropriate choice for 

my M. Eng project.   

 

REFERENCES 
 

[1] Byungjoon Park, Hyunsoo Cheon, Changeon Kang, Daesik Hong. “A simple  preamble for 

OFDM timing offset estimation.” Vehicular Technology Conference, 2002. Proceedings. VTC. Vol. 2. 

2002: 729 - 732 

[2] Chiueh, Tzi-Dar, and Per-Yun Tsai. OFDM Baseband Receiver Design for Wireless 

Communications. 1st ed. : Wiley, 2007  

[3] De Caro, D., N. Petra, A. G. M. Strollo. “A 380 MHz Direct Digital Synthesizer/Mixer With 

Hybrid CORDIC Architecture in 0.25 µm CMOS”. Solid-State Circuits, IEEE Journal. Issue 1. 2007: 

151-160 

[4] Fazel, Khaled, and Stefan Kaiser. Multi-Carrier and Spread Spectrum Systems: From OFDM 

and MC-CDMA to LTE and WiMAX. 2nd ed. : Wiley, 2008 



69 
 

[5] Juang, Tso-Bing, Hsiao Shen-Fu, Tsai  Ming-Yu. “Para-CORDIC: parallel CORDIC rotation 

algorithm.” Circuits and Systems I: Regular Papers. Volume 51. Issue 8. 2004: 1515 - 1524 

[6] Maharatna, Koushik, Eckhard Grass, and Ulrich Jagdhold. A 64-Point Fourier Transform 

Chip for High-Speed 

[7] Meyer-Baese , Uwe. Digital Signal Processing with Field Programmable Gate Arrays (Signals 

and Communication Technology). 3rd ed. : Springer, 2007 

[8] Minn, H.; M. Zeng, V.K. Bhargava. “On timing offset estimation for OFDM systems.” 

Communications Letters, IEEE. Vol. 4. Issue 7. 2000: 242 - 244 

[9] Muller, Jean-Michel. Elementary Functions: Algorithms and Implementation. 2nd ed. : 

Birkhäuser Boston, 2005 

[10] Osorio, R.R., E. Antelo, J.D. Bruguera, J. Villalba, E.L. Zapata. “Digit on-line large radix CORDIC 

rotator.” Application Specific Array Processors. 1995: 246 - 257  

[11] Schmidl, T.M., D.C. Cox. “Robust frequency and timing synchronization for OFDM.” 

Communications, IEEE. Vol. 45. Issue 12. 1997: 1613 - 1621  

[12] Torosyan, A., Fu Dengwei, A.N., Jr. Willson. “A 300 MHz quadrature direct digital 

synthesizer/mixer in 0.25 µm CMOS.” Solid-State Circuits Conference, 2002. Digest of Technical 

Papers. ISSCC. 2002 IEEE International. Vol. 1. 2002: 132 - 133 

[13] Villalba, J., J.C. Arrabal, E.L. Zapata, E. Antelo, J.D Bruguera. “Radix-4 vectoring CORDIC 

algorithm and architectures.” Application Specific Systems, Architectures and Processors 1996. 

ASAP 96. 1996: 55 - 64 

[14] Wang , Qiang, Cheng  Tao, Wei Huang. “Efficient Implementation of Synchronization in 

OFDM System Based on FPGA.” Advanced Communication Technology. Vol. 1. 2007: 178 - 181 

 

 

 



70 
 

8 APPENDIX 

8.1 CIRCUIT DIAGRAMS 

 

Figure 12: Circuit diagram of the OFDM receiver. 

 

 

COARSE SYNCHRONIZATION 

FINE SYNCHRONIZATION 

EQUALIZATION/DATA DECODING CHANNEL ESTIMATION 



71 
 

 

 

Figure 13: Circuit diagram of the Coarse Frequency Offset Metric Calculation Unit - serial multiplier/accumulator mechanism. 



72 
 

 

Figure 14: Circuit diagram of the Fine Frequency Offset Metric Calculation Unit. 



73 
 

 

Figure 15: Circuit diagram of the Clipped Cross-correlator Unit. 



74 
 

 

Figure 16: Circuit diagram of the Para-CORDIC based de-rotator. 



75 
 

8.2 TESTING RESULTS 

8.2.1 IDEAL CHANNEL 
 

IDEAL CHANNEL 

Channel Impulse Response = [1 0] 

Fractional Frequency Offset (FCO) = 0.3 
Symbol 

Error Rate 

Error between the real parts 

of transmitted and decoded 

data symbols 

Error between the imaginary 

parts of transmitted and 

decoded data symbols 

Coarse 

Frequency 

Offset 

(FCOcoarse) 

Fine 

Frequency 

Offset 

(FCOfine) 

Total 

Frequency 

Offset 

(FCOtotal) Mean Error Mean 

Squared 

Error 

Mean Error Mean 

Squared 

Error 

0 0 0 0 0 0.27313 0.02326 0.29640 

Table 15: The test results of the transceiver in the ideal channel. 

 

Figure 17 Comparison of the real and the imaginary parts of the transmitted and the decoded data symbols. 

0 100 200 300 400 500 600 700 800
-3

-2

-1

0

1

2

3

Data Symbol Index

R
e
a
l 
P

a
rt

 A
m

p
lit

u
d
e

 

 

0 100 200 300 400 500 600 700 800
-3

-2

-1

0

1

2

3

Data Symbol Index

Im
a
g
in

a
ry

 P
a
rt

 A
m

p
lit

u
d
e

 

 

Real part of transmitted data symbols

Real part of decoded data symbols

Imaginary part of transmitted data symbols

Imaginary part of decoded data symbols



76 
 

 

 

Figure 18 Difference between the real and the imaginary parts of the transmitted and the decoded data symbols. 

 

 

Figure 19: The received data symbols prior to 16-QAM de-mapper mapped onto 16-QAM constellation diagram. 

0 100 200 300 400 500 600 700 800
-1

-0.5

0

0.5

1

Data Symbol Index

A
m

p
lit

u
d
e
 o

f 
R

e
a
l 
P

a
rt

s
 D

if
fe

re
n
c
e

 

 

0 100 200 300 400 500 600 700 800
-1

-0.5

0

0.5

1

Data Symbol Index

A
m

p
lit

u
d
e
 o

f 
Im

a
g
in

a
ry

 P
a
rt

s
 D

if
fe

re
n
c
e

 

 

Difference between real parts of transmitted and decoded data symbols

Difference between imaginary parts of transmitted and decoded data symbols



77 
 

 

Figure 20: Timing Offset Metric for the Preamble 1. 

8.2.2 MILD MULTI-PATH CHANNEL 
 

MILD MULTT-PATH CHANNEL 

Channel Impulse Response = [1 0.1 0.05 0.002 0.001] 

Fractional Frequency Offset (FCO) = 0.3 
Symbol Error 

Rate 

Error between the real parts 

of transmitted and decoded 

data symbols 

Error between the 

imaginary parts of 

transmitted and decoded 

data symbols 

Coarse 

Frequency 

Offset 

(FCOcoarse) 

Fine 

Frequency 

Offset 

(FCOfine) 

Total 

Frequency 

Offset 

(FCOtotal) 

Mean Error Mean 

Squared 

Error 

Mean Error Mean 

Squared 

Error 

𝟎

𝟕𝟔𝟗
= 𝟎 

0 0 0 0 0.2728 0.0148 0.2876 

Table 16: The test results of the transceiver in the mild multipath channel. 

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

Clock cycle

T
im

in
g
 O

ff
s
e
t 

M
e
tr

ic
 M

a
g
n
it
u
d
e

 

 

Timing offset metric for the preamble 1

Autocorrelation threshold



78 
 

 

Figure 21: Comparison of the real and the imaginary parts of the transmitted and the decoded data symbols. 

 

Figure 22: Difference between the real and the imaginary parts of the transmitted and the decoded data symbols. 

0 100 200 300 400 500 600 700 800
-3

-2

-1

0

1

2

3

Data Symbol Index

R
e
a
l 
P

a
rt

 A
m

p
lit

u
d
e

 

 

Real part of transmitted data symbols

Real part of decoded data symbols

0 100 200 300 400 500 600 700 800
-3

-2

-1

0

1

2

3

Data Symbol Index

Im
a
g
in

a
ry

 P
a
rt

 A
m

p
lit

u
d
e

 

 

Imaginary part of transmitted data symbols

Imaginary part of decoded data symbols

0 100 200 300 400 500 600 700 800
-1

-0.5

0

0.5

1

Data Symbol Index

A
m

p
lit

u
d
e
 o

f 
R

e
a
l 
P

a
rt

s
 D

if
fe

re
n
c
e

 

 

Difference between real parts of transmitted and decoded data symbols

0 100 200 300 400 500 600 700 800
-1

-0.5

0

0.5

1

Data Symbol Index

A
m

p
lit

u
d
e
 o

f 
Im

a
g
in

a
ry

 P
a
rt

s
 D

if
fe

re
n
c
e

 

 

Difference between imaginary parts of transmitted and decoded data symbols



79 
 

 

Figure 23: The received data symbols prior to 16-QAM de-mapper mapped onto 16-QAM constellation diagram. 

 

Figure 24: Timing Offset Metric for the Preamble 1. 

 

 

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

Clock cycle

T
im

in
g
 O

ff
s
e
t 

M
e
tr

ic
 M

a
g
n
it
u
d
e

 

 

Timing offset metric for the preamble 1

Autocorrelation threshold



80 
 

8.2.3 SEVERE MULTI-PATH CHANNEL 
 

SEVERE MULTT-PATH CHANNEL 

Channel Impulse Response = [0.8 0.2 0.1 0.05 0.02] 

Fractional Frequency Offset (FCO) = 0.3 
Symbol Error 

Rate 

Error between the real parts of 

transmitted and decoded data 

symbols 

Error between the 

imaginary parts of 

transmitted and decoded 

data symbols 

Coarse 

Frequency 

Offset 

(FCOcoarse) 

Fine 

Frequency 

Offset 

(FCOfine) 

Total 

Frequency 

Offset 

(FCOtotal) 

Mean 

Error 

Mean Squared 

Error 

Mean 

Error 

Mean 

Squared 

Error 

𝟏𝟓

𝟕𝟔𝟗
= 𝟎.𝟎𝟏𝟗𝟓 

0.0078 6.0877x10-5 0.0117 1.3697 x10-4 0.2660 0.0131 0.2792 

Table 17: The test results of the transceiver in the severe multipath channel. 

 

Figure 25: Comparison of the real and the imaginary parts of the transmitted and the decoded data symbols. 

0 100 200 300 400 500 600 700 800
-3

-2

-1

0

1

2

3

Data Symbol Index

R
e
a
l 
P

a
rt

 A
m

p
lit

u
d
e

 

 

Real part of transmitted data symbols

Real part of decoded data symbols

0 100 200 300 400 500 600 700 800
-3

-2

-1

0

1

2

3

Data Symbol Index

Im
a
g
in

a
ry

 P
a
rt

 A
m

p
lit

u
d
e

 

 

Imaginary part of transmitted data symbols

Imaginary part of decoded data symbols



81 
 

 

Figure 26: Difference between the real and the imaginary parts of the transmitted and the decoded data symbols. 

 

Figure 27: The received data symbols prior to 16-QAM de-mapper mapped onto 16-QAM constellation diagram. 

0 100 200 300 400 500 600 700 800
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Data Symbol Index

A
m

p
lit

u
d
e
 o

f 
R

e
a
l 
P

a
rt

s
 D

if
fe

re
n
c
e

 

 

Difference between real parts of transmitted and decoded data symbols

0 100 200 300 400 500 600 700 800
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Data Symbol Index

A
m

p
lit

u
d
e
 o

f 
Im

a
g
in

a
ry

 P
a
rt

s
 D

if
fe

re
n
c
e

 

 

Difference between imaginary parts of transmitted and decoded data symbols



82 
 

 

Figure 28: Timing Offset Metric for the Preamble 1. 

 

8.2.4 IDEAL CHANNEL WITH AN UNCOMPENSATED FREQUENCY OFFSET 
 

IDEAL CHANNEL WITH AN UNCOMPENSTAD FREQUECY OFFSET 

Channel Impulse Response = [1 0] 

Fractional Frequency Offset (FCO) = 0.3 

Symbol Error 

Rate 

Error between the real parts 

of transmitted and decoded 

data symbols 

Error between the 

imaginary parts of 

transmitted and decoded 

data symbols 

Coarse 

Frequency 

Offset 

(FCOcoarse) 

Fine 

Frequency 

Offset 

(FCOfine) 

Total 

Frequency 

Offset 

(FCOtotal) 

Mean Error Mean 

Squared 

Error 

Mean Error Mean 

Squared 

Error 

𝟓𝟕𝟔

𝟕𝟔𝟗
= 𝟎.𝟕𝟒𝟗𝟎 

0.5085 0.2585 0.5020 0.2520 N/A N/A N/A 

Table 18: The test results of the transceiver in the ideal channel with an uncompensated frequency offset - the 

frequency offset synchronization mechanism is disabled. 

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

Clock cycle

T
im

in
g
 O

ff
s
e
t 

M
e
tr

ic
 M

a
g
n
it
u
d
e

 

 

Timing offset metric for the preamble 1

Autocorrelation threshold



83 
 

 

Figure 29: Comparison of the real and the imaginary parts of the transmitted and the decoded data symbols. 

 

Figure 30: Difference between the real and the imaginary parts of the transmitted and the decoded data symbols. 

0 100 200 300 400 500 600 700 800
-3

-2

-1

0

1

2

3

Data Symbol Index

R
e
a
l 
P

a
rt

 A
m

p
lit

u
d
e

 

 

0 100 200 300 400 500 600 700 800
-3

-2

-1

0

1

2

3

Data Symbol Index

Im
a
g
in

a
ry

 P
a
rt

 A
m

p
lit

u
d
e

 

 

Real part of transmitted data symbols

Real part of decoded data symbols

Imaginary part of transmitted data symbols

Imaginary part of decoded data symbols

0 100 200 300 400 500 600 700 800
-6

-4

-2

0

2

4

6

Data Symbol Index

A
m

p
lit

u
d
e
 o

f 
R

e
a
l 
P

a
rt

s
 D

if
fe

re
n
c
e

 

 

Difference between real parts of transmitted and decoded data symbols

0 100 200 300 400 500 600 700 800
-6

-4

-2

0

2

4

6

Data Symbol Index

A
m

p
lit

u
d
e
 o

f 
Im

a
g
in

a
ry

 P
a
rt

s
 D

if
fe

re
n
c
e

 

 

Difference between imaginary parts of transmitted and decoded data symbols



84 
 

 

Figure 31: The received data symbols prior to 16-QAM de-mapper mapped onto 16-QAM constellation diagram. 

8.2.5 IDEAL CHANNEL WITH A SYMBOL TIMING OFFSET (FFT WINDOW LEADS) 
 

IDEAL CHANNEL WITH A SYMBOL TIMING OFFSET (FFT WINDOW LEADS) 

Channel Impulse Response = [1 0] 

Fractional Frequency Offset (FCO) = 0.3 

Symbol timing offset = 4 (FFT window leads by 4 samples) 
Symbol Error 

Rate 

Error between the real parts 

of transmitted and decoded 

data symbols 

Error between the 

imaginary parts of 

transmitted and decoded 

data symbols 

Coarse 

Frequency 

Offset 

(FCOcoarse) 

Fine 

Frequency 

Offset 

(FCOfine) 

Total 

Frequency 

Offset 

(FCOtotal) 

Mean Error Mean 

Squared 

Error 

Mean Error Mean 

Squared 

Error 

𝟒𝟏𝟐

𝟕𝟔𝟗
= 𝟎.𝟓𝟑𝟓𝟖 

0.2913 0.0848 0.3355 0.1126 0.2731 0.0043 0.2775 

Table 19: The test results of the transceiver in the ideal channel with a symbol timing offset (FFT window leads) – 

the symbol timing offset synchronization mechanism is disabled. 



85 
 

 

Figure 32: Comparison of the real and the imaginary parts of the transmitted and the decoded data symbols. 

 

 

Figure 33: Difference between the real and the imaginary parts of the transmitted and the decoded data symbols. 

 

0 100 200 300 400 500 600 700 800
-3

-2

-1

0

1

2

3

Data Symbol Index

R
e
a
l 
P

a
rt

 A
m

p
lit

u
d
e

 

 

Real part of transmitted data symbols

Real part of decoded data symbols

0 100 200 300 400 500 600 700 800
-3

-2

-1

0

1

2

3

Data Symbol Index

Im
a
g
in

a
ry

 P
a
rt

 A
m

p
lit

u
d
e

 

 

Imaginary part of transmitted data symbols

Imaginary part of decoded data symbols

0 100 200 300 400 500 600 700 800
-6

-4

-2

0

2

4

6

Data Symbol Index

A
m

p
lit

u
d
e
 o

f 
R

e
a
l 
P

a
rt

s
 D

if
fe

re
n
c
e

 

 

Difference between real parts of transmitted and decoded data symbols

0 100 200 300 400 500 600 700 800
-6

-4

-2

0

2

4

6

Data Symbol Index

A
m

p
lit

u
d
e
 o

f 
Im

a
g
in

a
ry

 P
a
rt

s
 D

if
fe

re
n
c
e

 

 

Difference between imaginary parts of transmitted and decoded data symbols



86 
 

 

Figure 34: The received data symbols prior to 16-QAM de-mapper mapped onto 16-QAM constellation diagram. 

 

8.2.6 IDEAL CHANNEL WITH A SYMBOL TIMING OFFSET (FFT WINDOW LAGS) 
 

IDEAL CHANNEL WITH A SYMBOL TIMING OFFSET (FFT WINDOW LAGS) 

Channel Impulse Response = [1 0] 

Fractional Frequency Offset (FCO) = 0.3 

Symbol timing offset = 4 (FFT window lags by 4 samples) 
Symbol Error 

Rate 

Error between the real parts 

of transmitted and decoded 

data symbols 

Error between the 

imaginary parts of 

transmitted and decoded 

data symbols 

Coarse 

Frequency 

Offset 

(FCOcoarse) 

Fine 

Frequency 

Offset 

(FCOfine) 

Total 

Frequency 

Offset 

(FCOtotal) 

Mean Error Mean 

Squared 

Error 

Mean Error Mean 

Squared 

Error 

𝟒𝟖𝟖

𝟕𝟔𝟗
= 𝟎.𝟔𝟑𝟒𝟔 

0.3979 0.1583 0.4174 0.1742 0.2731 -0.0568 0.2164 

Table 20: The test results of the transceiver in the ideal channel with a symbol timing offset (FFT window lags) – 

the symbol timing offset synchronization mechanism is disabled. 



87 
 

 

Figure 35: Comparison of the real and the imaginary parts of the transmitted and the decoded data symbols. 

 

Figure 36: Difference between the real and the imaginary parts of the transmitted and the decoded data symbols. 

0 100 200 300 400 500 600 700 800
-3

-2

-1

0

1

2

3

Data Symbol Index

R
e
a
l 
P

a
rt

 A
m

p
lit

u
d
e

 

 

0 100 200 300 400 500 600 700 800
-3

-2

-1

0

1

2

3

Data Symbol Index

Im
a
g
in

a
ry

 P
a
rt

 A
m

p
lit

u
d
e

 

 

Real part of transmitted data symbols

Real part of decoded data symbols

Imaginary part of transmitted data symbols

Imaginary part of decoded data symbols

0 100 200 300 400 500 600 700 800
-6

-4

-2

0

2

4

6

Data Symbol Index

A
m

p
lit

u
d
e
 o

f 
R

e
a
l 
P

a
rt

s
 D

if
fe

re
n
c
e

 

 

0 100 200 300 400 500 600 700 800
-6

-4

-2

0

2

4

6

Data Symbol Index

A
m

p
lit

u
d
e
 o

f 
Im

a
g
in

a
ry

 P
a
rt

s
 D

if
fe

re
n
c
e

 

 

Difference between real parts of transmitted and decoded data symbols

Difference between imaginary parts of transmitted and decoded data symbols



88 
 

 

Figure 37: The received data symbols prior to 16-QAM de-mapper mapped onto 16-QAM constellation diagram. 

 

8.2.7 IDEAL CHANNEL WITH BOTH A SYMBOL TIMING OFFSET (FFT WINDOW LEADS) AND AN 

UNCOMPENSATED FREQUENCY OFFSET 
 

IDEAL CHANNEL WITH BOTH A SYMBOL TIMING OFFSET (FFT WINDOW LEADS) 

AND AN UNCOMPENSATED FREQUENCY OFFSET 

Channel Impulse Response = [1 0] 

Fractional Frequency Offset (FCO) = 0.3 

Symbol timing offset = 4 (FFT window leads by 4 samples) 
Symbol Error 

Rate 

Error between the real parts 

of transmitted and decoded 

data symbols 

Error between the 

imaginary parts of 

transmitted and decoded 

data symbols 

Coarse 

Frequency 

Offset 

(FCOcoarse) 

Fine 

Frequency 

Offset 

(FCOfine) 

Total 

Frequency 

Offset 

(FCOtotal) 

Mean Error Mean 

Squared 

Error 

Mean Error Mean 

Squared 

Error 

𝟔𝟏𝟖

𝟕𝟔𝟗
= 𝟎.𝟖𝟎𝟑𝟔 

0.5241 0.2746 0.5800 0.3364 N/A N/A N/A 

Table 21: The test results of the transceiver in the ideal channel with both a symbol timing offset (FFT window 

leads) and an uncompensated frequency offset– the symbol timing offset and the frequency offset 

synchronization mechanisms are disabled. 



89 
 

 

Figure 38: Comparison of the real and the imaginary parts of the transmitted and the decoded data symbols. 

 

Figure 39: Difference between the real and the imaginary parts of the transmitted and the decoded data symbols. 

0 100 200 300 400 500 600 700 800
-3

-2

-1

0

1

2

3

Data Symbol Index

R
e
a
l 
P

a
rt

 A
m

p
lit

u
d
e

 

 

Real part of transmitted data symbols

Real part of decoded data symbols

0 100 200 300 400 500 600 700 800
-3

-2

-1

0

1

2

3

Data Symbol Index

Im
a
g
in

a
ry

 P
a
rt

 A
m

p
lit

u
d
e

 

 

Imaginary part of transmitted data symbols

Imaginary part of decoded data symbols

0 100 200 300 400 500 600 700 800
-6

-4

-2

0

2

4

6

Data Symbol Index

A
m

p
lit

u
d
e
 o

f 
R

e
a
l 
P

a
rt

s
 D

if
fe

re
n
c
e

 

 

Difference between real parts of transmitted and decoded data symbols

0 100 200 300 400 500 600 700 800
-6

-4

-2

0

2

4

6

Data Symbol Index

A
m

p
lit

u
d
e
 o

f 
Im

a
g
in

a
ry

 P
a
rt

s
 D

if
fe

re
n
c
e

 

 

Difference between imaginary parts of transmitted and decoded data symbols



90 
 

 

Figure 40: The received data symbols prior to 16-QAM de-mapper mapped onto 16-QAM constellation diagram. 

 

 


