
TWO-DIMENSIONAL GRAPHICS CARD (GPU) ON AN ALTERA FPGA

A Design Project Report

Presented to the Engineering Division of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering (Electrical and Computer)

by

Peter Alexander Greczner

Project Advisor: Dr. Bruce Land

Degree Date: May, 2010

Abstract

Master of Electrical and Computer Engineering Program

Cornell University

Design Project Report

Project Title: Two-Dimensional Graphics Card (GPU) on an Altera FPGA

Author: Peter Alexander Greczner

Abstract:

This project realizes a simple graphics processing unit (GPU) on an FPGA which
can be used as a GPU for Atmega microcontrollers to output graphics to a VGA
display. An Altera Cyclone II FPGA will be used to implement the GPU. The FPGA
and the host device will communicate via a RS-232 serial interface using a
handshaking command structure to ensure accuracy of instruction delivery. Final
output of the graphics will be displayed on a VGA compatible monitor. The result
of the project is a GPU as well as VGA driver for the host device that allows a user
to set up a graphical window to draw into and display on the VGA screen. The
GPU supports multiple drawing functions such as text writing, line drawing, and
rectangular fills. It also provides two different screen resolutions to draw into,
640x480 and 320x240, as well as capability for both single and double buffered
graphics. The end product allows a simple method for one to use a
microcontroller or other host device to create high quality graphical program
without sacrificing memory, speed, or timing constraints of said microcontroller.

Report Approved by

Project Advisor: ___ Date: _______

1. Executive Summary

A simple two-dimensional graphics processing unit (GPU) was implemented on an Altera Cyclone II

FPGA. The GPU is capable of understanding 80bit instructions sequentially sent to it via RS-232 serial

communication. The only requirement being from a user side is that they have installed the proper C

files and have a means of sending a byte over serial. As instruction requests are handled, they are

appropriately written into SRAM and later displayed on a VGA compatible monitor.

This GPU supports an extensible number of drawing modules since a common data-flow scheme is

inherent to all modules. Current modules include the functionality for the drawing of lines, circles,

rectangles, and polygons. As well as the filling of both circles and rectangles, and that of writing text to

the monitor.

The GPU is also able to support four different drawing modes. The modes are first divided into what

resolution the monitor displays. These are 640x480 pixels and 320x240 pixels. The second level of

division is that of either single or double buffering. A frame buffer was implemented on the GPU to

allow for a user to draw into a frame and not have the result displayed until they specify the update.

This process eliminates flickering that one would see from constantly refreshing the same buffer. The

single buffer mode was still included because it offers simplicity in some applications, specifically low-

latency applications.

Color depth is supported up to 12bit RGB in the single buffered 320x240 drawing mode. Single buffer

640x480 and double buffer 320x240 support 8bit RGB. Double buffer 640x480 supports 4bit RGB.

A hardware serial receiver and transmitter module was implemented at a baud rate of 115200 to

provide the communication between FPGA and host device. The serial communication supports 8bit

data, 1 start bit, and 1 stop bit. There is no flow control, and parity check is done via a simple CRC of the

packet, not byte by byte.

With a few minor modifications the GPU will provide the ability to draw into sprites and support

multiple fonts. One goal of the project was to implement a method of downloading instructions into an

instruction RAM (IRAM) and having a dedicated processor handle the graphics operations directly on the

GPU. At the time of this report, that functionality is only partially implemented and still being tested

and debugged.

The specific FPGA hardware used was the Altera Cyclone II DE2 EP2C35F672C6 development board.

2. Design Problem and Specifications

2.1 Design Problem Description

This project stemmed from addressing the problem of providing high resolution color graphics for

constrained embedded applications, such as a microcontroller. In the situation such as a microcontroller

you often need extra hardware to provide color graphics, but then you are still limited to memory

constraints of the microcontroller. In situations without extra hardware you may be limited to black and

white low resolution graphics over NTSC signal. Since many microcontrollers provide support for RS-232

serial communication, a question was posed of: can the graphics operations be offloaded via serial to a

GPU, and how would that GPU hardware be realized?

The proposed solution to this problem was to have an FPGA act as the GPU co-processor to the

embedded application and they would communicate via RS-232 serial.

2.2 Design Specifications

In development of the GPU the issues to address can be split into a few categories: performance
parameters, functionality, communication, and end-user design.

2.2-1 Performance Parameters

Performance Parameters includes what the user can expect to achieve from the GPU. These are things
such as frames per second and available resolutions.

Performance Parameter Design Specification

Frames per second 10 fps

Resolution 1 320x240

Resolution 2 640x480

Color Depth 16 predefined colors

Frame Buffers 2

Fonts 1 downloadable (MIF)

2.2-2 Drawing Functionality

 Shapes – filled and unfilled (Circles, Rectangles, Polygons, and lines)

 Character display – 8x8 pixel characters to be printable on the screen

 Sprites – using MIF’s allow for drawing into this frame

 Frames – two full resolution frames

 Drawing queue – queue of instructions that can be programmed to automatically get executed
each frame instead of the microcontroller continuingly specifying

Originally the design specified that there would be hardware polygon manipulation, but as the
development wore on it became apparent that hardware polygon manipulation is not something that
should be a primary goal of a two-dimensional graphics card. Due to complicated issues in

implementation of other parts of the project, this idea was scrapped from the initial proposal, in favor of
more completely developing the other aspects.

2.2-3 Communication

The communication between the FPGA and the microcontroller will take place over RS-232 serial
protocol. The microcontroller will output a command to the FPGA who will receive and send either an
ACK or NACK indicating successful or unsuccessful reception of the command.

2.2-4 End-user Design

The end-user will be able to write graphics by including a graphics module in their C program that
contains all the code necessary to write to the FPGA. Graphics functions will have a simple English
naming convention, such as fillRectangle(x1,y1,w,h,red,green,blue). An API will be available to explain in
detail how to write to the FPGA and what methods are available.

3. Range of Solutions

3.1 Image Memory

With the goal of providing multiple resolution color graphics which could be displayed on a VGA

compatible monitor, the choice of hardware solution was to be an FPGA. Other options such as color

NTSC and an extra hardware chip were discounted as mentioned above. The next logical step was to

decide on possible implementation approaches for aspects of the project.

One aspect of the project was where to store the image memory. The DE2 board allowed for four

possible approaches to this image memory: SRAM, SDRAM, Flash, and M4K blocks. SRAM has

512Kbytes of memory, SDRAM has 8Mbytes, Flash has 4Mbytes, and there are 104 M4K (4Kbytes blocks)

blocks. To support 16 colors (4 bits) in two frames at a resolution of 640x480 requires:

0.5bytes * 640 pixels * 480 pixels * 2 frames = 307.2Kbytes

Ultimately SRAM was chosen, and below is a description of the other possible approaches strengths and

weaknesses.

Each type of memory option has enough memory capable for storing both image frames. The next

criteria is how easy it will be to access each type of memory, since the graphics card will constantly be

reading and writing to the memory.

Flash memory isn’t memory that is used in constant write operations since it has a limited number of

write-erase cycles before it can no longer be used. Therefore, Flash memory was discounted.

The M4K blocks have an advantage that they could be individual accessible, in a grid like fashion, so

parallel computation could be achieved on each region of the image. This would work well in the case of

rectangle fills, which take the most processing times. However, functions such as line drawing would

still be sequential in nature, and figuring out which M4K block to select would be difficult. One other

disadvantage to M4K blocks is that 77 blocks would need to be used, and that would only leave 27 other

blocks for extensible features of the GPU, such as Fonts or Sprites. The complexity of the M4K blocks

along with the extra hardware resources they suffocated discounted them as the image memory choice.

SDRAM provides the most available memory for the images. It can also be dual ported for reads and

writes. However, the disadvantage is that the reads and writes have to be done in large blocks. The

hardware implementation for this type of memory is also very complex and based on the proposed

design of the drawing modules, it did not appear to be an appropriate choice.

SRAM was chosen as the best option for this project because it provided a sufficient amount of memory

without adding too much excess memory. It interfaced nicely with the VGA controller and was simple to

write to in that it supported single cycle reads and writes. One disadvantage was that it was only single

ported. However, this was deemed an acceptable sacrifice based on the other advantages SRAM posed

in terms of designing the GPU drawing modules.

3.2 Communication

The first communication choice to make was RS-232 versus USB. USB was discounted because it would

require extra hardware attachments to most, if not all, microcontrollers as well as complicated

hardware on the FPGA. However, the transmission rate would be very high and much less than the

transmission overhead that serial communication provides. But ultimately, RS-232 was chosen because

of the probability that most microcontrollers support some form of serial communication and it would

require the least amount of overhead. In my prior work on FPGA’s I had developed a RS-232 hardware

receiver and transmitter that needed some modifications and an overhaul to be more robust and

accurate for this project, but ultimately the baseline hardware was in place which made that option

advantageous also.

3.3 Video Display

To display the images on a screen there were two different options, to use NTSC television signals or to

use VGA signals. NTSC was discounted in favor of VGA because the original intent of the project was to

provide a user developing graphical applications on a microcontroller, such as in Cornell Engineering ECE

4760, the ability to have color graphics. The lab in which this class is held has an abundance of VGA

compatible monitors as opposed to color NTSC compatible televisions. VGA provided the most practical

approach and it was in line with the goal of the project.

3.4 Draw Mode Specific Modules versus Single Data Writing Module

There was the option of having a different drawing module for each of the drawing functions and for

each of the drawing modes. For example in that case there would be a line drawer for 640x480 single

buffer, double buffer, and 320x240 single buffer and double buffer. Then each of these modules would

have their output muxed based on if they should have been in use based on the current instruction. The

advantage to this is that writing to SRAM can be done directly within each module since each module

knows exactly how it needs to read and write its data based on drawing mode. Therefore, for

something like a 320x240 single buffer mode in which no reads are needed to be done in order to write

data, cycles are saved.

The second option was having universal drawing modules that output coordinates and data to a data

writing module. The data writing module knows what drawing mode it is in and writes accordingly. The

disadvantage here is that each drawing module needs to issue a signal indicating that the data writer

should write, and then it needs to listen for the data writer to signal that a write has finished. This adds

up to five extra states to each write operation. The advantage though, is that it allows for easier

extensibility of adding more drawing modules, and for easier debugging of current drawing modules,

since you only need to work about one line drawer having an error, not four or more different line

drawers having an error.

Ultimately the multiple drawing modules per drawing function method of data writing was discounted

due to unnecessary increased hardware and lack of extensibility. The method of using a single data

writer, while adding more states, made it easiest to write data accurately based on the different modes,

and provided a common interface for each drawing module to implement.

3.5 Purely Downloadable versus Serial Sequential

One option was to have the user download the entire graphics program into an instruction memory

(IRAM) and have it run off of that. The benefit to this is that it would provide the fastest execution

speed and possibly the best graphical results. However, the disadvantage is that of updating data on the

fly while the microcontroller is running its applications. It was not clear how the GPU would handle

interrupts and modify the program on the fly.

The alternative option was to have the graphics functions sent in line with the users host application.

This is most similar to how graphics work on a PC application have the advantage of always having

access to data used to create the graphics; i.e. no interrupts to change something in the DRAM of the

processor, since the microcontroller/host sends the updated value within the instruction.

The end design of this project implemented the serial sequential approach and attempted to also

implement the downloadable IRAM approach.

4. GPU Design

4.1 Overview

There are three levels of interaction in order to make the entire GPU application functional. There is the

communication of instructions between host program and the GPU. There is the execution of the

instruction within the GPU. Lastly, there is the displaying of the end result on the VGA monitor.

The general flow of information is that the host sends an instruction over serial to the GPU. The GPU

processes the instruction, and sends a N/ACK back to the host. See Schematic #3 for an overview of the

entire process.

4.2 Communication of Instructions

RS-232 was used as the method of communication of instructions between the host application and the

GPU. The first issue that had to be resolved before any instructions could be sent was the issue of what

comprises an instruction. The final instruction request is 80 bits long and a rationale for the length

follows.

The GPU set out to support the following drawing functions: fills for both circles and rectangles, draws

for circles, rectangles, and lines, text writing, frame updating, and setting the draw mode. These

comprise a total of eight instructions. However, when designing the instruction parameters I felt that

possibly I would need more than just three bits to represent the eight instructions should I find a need

to extend the functionalities. Therefore I chose to use six bits to represent the type of instruction to be

executed. Color is transmitted as 12 bits with four bits for each of the red, green, and blue components.

The x position and x end/width are 10 bits in length which is the minimum number of bits to represent a

range of 0-640. The y position and y end/height are 9 bits in length which is the minimum number of

bits to represent a range of 0-480. The checksum is a simple XOR of all packets sent to quickly check if

anything wrong in transmission has occurred. The reason it is so simple is because at these

transmissions speeds and at such a short transmission length, error probability is very minimal. Lastly

the two interesting components are the Extra 1 and Extra 2 bytes. I included those in the original design

should I need to extend functionality of something that I had not originally planned. In fact I ended up

using these to represent signals when attempting to implement the downloading of instructions to the

IRAM, as well as some bits to represent what current drawing mode we were in. The main purpose of

these extra bytes was to keep the design flexible to extra additions.

For the RS-232 serial communication I decided to use a baud rate of 115200. The data sent was 1 byte

at a time (8 bits) with one start bit and one stop bit. This meant that each byte required 10 total bits to

transmit. The rationale for this choice is that it is the highest supported baud rate on the PC that I was

testing the GPU on. At a baud rate of 115200 with each instruction comprising 80 bits, this means each

instruction takes (8+1+1)*10 = 100 bits to transmit. Minimum transmission of one instruction is

100/115200 seconds. To receive an acknowledgement of one byte takes (8+1+1)*1 = 10 bits / 115200

seconds. Maximum total instructions that can be sent per second equals 1047.3. Note that this means

that no actual execution on the GPU took place, just instruction to be sent and immediately have an

N/ACK follow. This value of 1047.3 instructions per second (IPS) will scale with the baud rate, and since

higher IPS means better framerate and that one can do more with graphics, the highest possible baud

rate was chosen.

The process for sending an instruction from host to the GPU is as follows. The host breaks up the

instruction into 10 bytes to be sent over serial to the GPU. The GPU SerialReceiver module is constantly

listening for new data on the serial port. Once a new byte comes in, it sets a flag to indicate that a new

byte of data is available. Listening to this flag is a PacketManager. The PacketManager is responsible for

taking each new byte of data and placing it into the appropriate spot in the packet; essentially,

reorganizing the instruction as the bytes come in. After the PacketManager has recreated the entire

instruction into a single 80-bit packet, it raises a flag to indicate that a new packet is available to process.

Listening to this flag is the RequestManager. The RequestManager is responsible for taking in each new

request that a user has sent and processing it according to the requests specifications. Once the request

has been processed the RequestManager signals the SerialTransmitter to transmit back a N/ACK to the

host to indicate either successful or unsuccessful processing. Refer to Schematic #1 in the appendix for

a visual flow explanation of the process.

To synchronize the baud rates between the GPU and the host application a module was created to

generate the baudrate that the SerialReceiver uses to listen to instructions. Using the 50MHz clock it is

not possible to directly derive a baudrate of 115200 through the use of a counter. Therefore one can

only approximate the baudrate to around 115200. Over time a skew will cause the receiver to miss a bit

of data that is transmitted. To correct for this most receivers listen at a factor of eight or more times the

baudrate for a start bit and then resynchronize to the standard baudrate. This ensures that no start bits

are missed and the amount of skew that will be evident over the 10 bits required to receive one byte of

data is negligible to caused missed data. Another baudrate generator is used to set the baudrate for the

serial transmitter. This does not require a higher baudrate for listening, since the transmitter is only

sending and it is the hosts duty to meet baudrate requirements.

4.3 Processing Instructions

4.3-1 Overview of Request Handling

Once an instruction is received it is given to the RequestManager which is responsible for managing the

instruction request until completion. The RequestManager has nine states which it uses to process an

instruction. Its primary state is listening for a new request. Once a new request is noticed it “grabs” the

packet from the PacketManager and the PacketManager then lowers its new packet flag because that

packet is now in use. After the packet is grabbed, the RequestManager parses the 80-bit instruction into

its different component registers. The values of these 9 registers are outputted from the

RequestManager into the top level module to be read by the drawing functions. At this point the

RequestManager decides if the current instruction is a drawing instruction or a frame-update

instruction. If it is a frame-update instruction it proceeds to the completion stage and tells the serial

transmitter to send an ACK back to the host. Otherwise, it decides which type of drawing instruction is

going to be executed and waits for that module to acknowledge that it is free for use. Once the wanted

module has acknowledge that it is ready for an instruction, the RequestManager sends a start command

to that module to begin its processing. All other drawing modules remain idle at this time. The

RequestManager then listens for the selected drawing module’s availability flag, and once the module

indicates it is available again, the RequestManager understands that the drawing instruction has

completed. At this point the RequestManager then signals the serial transmitter to send an ACK of

completion to the host. Refer to Schematic #2 in the appendix for a visual representation of this

process.

4.3-2 Processing a Drawing Instruction

Each drawing module has an inherent identification number that specifies which type of drawing

module it is. This is the same number that when an instruction comes in the six bits that specify the

instruction correspond to. The RequestManager starts the drawing by outputting which ID of the

drawing module it wants to use along with a start command. Then, only the drawing module who’s ID

matches that from the RequestManager will process the start command. All modules have the requisite

drawing information available to them, but only the module that is wanted will begin the drawing

function and set its current availability to unavailable.

Each module has a different function, but all have the same inherent structure to drawing. There are

three basic stages to performing a drawing function. The first is to listen for the start command. Once

this is received it begins its drawing loop and continues within this loop until completion in which it exits

back to the listening for a start command state. Also within the drawing loop is a stage that performs a

write to memory. Each time the module wants to write to memory it enters a specific state in which is

sets the data to be written to memory and choose the x and y addresses. It then remains in this state

until a write is complete and then exits back to the loop. During the looping state the module sets itself

as unavailable and in the listening for a start command state the module sets itself as available.

4.3-3 Handling a Data Write

To facilitate easier writing of data to memory based on what type of drawing mode is in use a

DataWriter module was created. The purpose of this module is to properly pack the data into SRAM. Its

other purpose is to separate memory functions from the drawing modules. This way drawing modules

only need to worry about coordinates, in case memory specifications were to change, and thus they

would not be affected in terms of functionality and performance.

Three muxes are implemented to feed the proper data into the DataWriter. These three muxes are for

the X and Y Coordinates, and the color values. Each module sends a current value for each of these and

the muxes select which one to output to the data writer based on which module the RequestManager

has selected.

The DataWriter has four stages which include: waitForRequest, loadData, writeData, sendACK. In the

waitForRequest state the DataWriter is listening for the drawing module to signal that it has data it

wants to write. Once it receives this signal the DataWriter packages the color value appropriately so it

can be written later into SRAM. In the loadData state, the DataWriter reads in from SRAM the current

value of data at the address we want to write and modify data at. This is necessary since in some

drawing modes data is packed more than one pixel per SRAM address. In the writeData state the

DataWriter takes in the previously read data and modifies it with the data that the drawing module

requested to be written and it writes this new data back into SRAM. Lastly, in the sendACK state, the

DataWriter sends a signal back to the drawing module that the write has completed so the drawing

module can continue on its operations.

The DataWriter is also responsible for refreshing the screen by listening for the coordinate request from

the VGA controller.

4.4 Displaying to the VGA Monitor

To display to the VGA monitor a VGA controller written by Bruce Land is used to select which current

pixel we want to read from SRAM and display on the screen. Based on the drawing mode in use and the

pixel requested the data line is unpacked to get the correct pixel and then this fraction of data is

repackaged and fed to the VGA red, green, and blue lines. The following code shows how each of the

four drawing modes has their red, green, and blue color values unpacked from SRAM and repackaged

based on the current Coord_X and Coord_Y (the outputs of the VGA controller) and then fed into the

VGA color lines.

// Show SRAM on the VGA

//320x240 single frame

assign mVGA_R1 = {SRAM_DQ[15:12], 6'b0} ;

assign mVGA_G1 = {SRAM_DQ[11:8], 6'b0} ;

assign mVGA_B1 = {SRAM_DQ[7:4], 6'b0} ;

//640x480 - single frame

assign mVGA_R2 = (Coord_X[0]) ? {SRAM_DQ[15:13], SRAM_DQ[15:13],SRAM_DQ[15:13],1'b1} :

{SRAM_DQ[7:5], SRAM_DQ[7:5],SRAM_DQ[7:5],1'b1} ;

assign mVGA_G2 = (Coord_X[0]) ? {SRAM_DQ[12:10], SRAM_DQ[12:10],SRAM_DQ[12:10],1'b1} :

{SRAM_DQ[4:2], SRAM_DQ[4:2],SRAM_DQ[4:2],1'b1};

assign mVGA_B2 = (Coord_X[0]) ? {SRAM_DQ[9:8],

SRAM_DQ[9:8],SRAM_DQ[9:8],SRAM_DQ[9:8],SRAM_DQ[9:8]} : {SRAM_DQ[1:0],

SRAM_DQ[1:0],SRAM_DQ[1:0],SRAM_DQ[1:0],SRAM_DQ[1:0]};

//320x240 - double frame

assign mVGA_R3 = ~readFrame ? {SRAM_DQ[15:13], SRAM_DQ[15:13],SRAM_DQ[15:13],1'b1} :

{SRAM_DQ[7:5], SRAM_DQ[7:5],SRAM_DQ[7:5],1'b1} ;

assign mVGA_G3 = ~readFrame ? {SRAM_DQ[12:10], SRAM_DQ[12:10],SRAM_DQ[12:10],1'b1} :

{SRAM_DQ[4:2], SRAM_DQ[4:2],SRAM_DQ[4:2],1'b1};

assign mVGA_B3 = ~readFrame ? {SRAM_DQ[9:8],

SRAM_DQ[9:8],SRAM_DQ[9:8],SRAM_DQ[9:8],SRAM_DQ[9:8]} : {SRAM_DQ[1:0],

SRAM_DQ[1:0],SRAM_DQ[1:0],SRAM_DQ[1:0],SRAM_DQ[1:0]};

//640x480 - double frame

assign mVGA_R4 = ~Coord_X[0] ? (readFrame ? ({10{SRAM_DQ[7]}}) : ({10{SRAM_DQ[3]}})) : (readFrame

? ({10{SRAM_DQ[11]}}) : ({10{SRAM_DQ[15]}}));

assign mVGA_G4 = ~Coord_X[0] ? (readFrame ? ({5{SRAM_DQ[6:5]}}) : ({5{SRAM_DQ[2:1]}})) :

(readFrame ? ({5{SRAM_DQ[10:9]}}) : ({5{SRAM_DQ[14:13]}}));

assign mVGA_B4 = ~Coord_X[0] ? (readFrame ? ({10{SRAM_DQ[4]}}) : ({10{SRAM_DQ[0]}})) : (readFrame

? ({10{SRAM_DQ[8]}}) : ({10{SRAM_DQ[12]}}));

assign mVGA_R = (drawMode == sixteenBit_single_320x240) ? mVGA_R1:

 (drawMode == eightBit_single_640x480) ? mVGA_R2:

 (drawMode == eightBit_double_320x240) ? mVGA_R3:

 (drawMode == fourBit_double_640x480) ? mVGA_R4: 10'd0;

assign mVGA_G = (drawMode == sixteenBit_single_320x240) ? mVGA_G1:

 (drawMode == eightBit_single_640x480) ? mVGA_G2:

 (drawMode == eightBit_double_320x240) ? mVGA_G3:

 (drawMode == fourBit_double_640x480) ? mVGA_G4: 10'd0;

assign mVGA_B = (drawMode == sixteenBit_single_320x240) ? mVGA_B1:

 (drawMode == eightBit_single_640x480) ? mVGA_B2:

 (drawMode == eightBit_double_320x240) ? mVGA_B3:

 (drawMode == fourBit_double_640x480) ? mVGA_B4: 10'd0;

4.5 Drawing Modules

All drawing modules follow the same basic “protocol” in terms of what data they receive, how they

process and what they output.

Common to all modules are that they receive an initial (X,Y) coordinate starting point and they receive

some sort of clarifier point or points. The clarifier could be a width and height for rectangles, a radius

for the circles, and end (X,Y) point for a line, etc. They also take in color data for what color they need to

draw presently. Each drawing module, as mentioned earlier, also has its own ID to identify itself. Also

common to all modules are that they output an (X,Y) address for drawing as well as a data value to write

to that (X,Y) address. The drawing modules output a signal to notify if they are currently available or

not. Lastly, the drawing modules output a write clock for use of the DataWriter and take in a flag from

the DataWriter indicating if a write has finished. See the appendix for further description on all inputs

and outputs of each drawing module.

Below is a presentation of the different drawing algorithms.

4.5-1 Rectangle Fills and Draws

The rectangle fill works by starting at the starting coordinate (X,Y) and iterating across X and down Y

until the coordinate (X+width,Y+height) is reached. Each pixel is written sequentially. In hindsight I

realized I could have designed the 640x480 version to fill two pixels at once since it is double packed and

that would cut fill completion time in half for that scenario of single buffered 640x480.

The rectangle draw works by iterating over each wall of the rectangle, north, south, east, and west.

These fills only support a single color fill, however an extension to the modules is possible if one were to

use one of the extra fields of the instruction to specify an end color and a gradient effect could be

achieved with minor modifications to the color data output of the modules.

4.5-2 Circle Fills and Draws

Circles are drawn using the Bresenham circle drawing algorithm which breaks up the circle into eight

quadrants in which the edges of the circle can be formed. Then using symmetry it loops through the

algorithm to form the exterior of the circle.

To fill a circle, the 8 different quadrants are paired to their symmetric partner across the vertical axis.

The partner on the left specifies a start point, and since Bresenham is symmetric, the other partner

specifies an end coordinate that is on the same Y line. Then the algorithm iterates from (Xp1, Y) to (Xp2,

Y), where p1 and p2 are the partner pairing of the quadrants.

Originally I attempted to have the circle fill module output an (X1, Y1) and (X2, Y2) points to the line

drawing module, but this made things unnecessarily complicated and introduced numerous

communication and timing constraints and problems. Eventually I realized that because the quadrants

were paired on the same horizontal, a simple loop would be sufficient for the fills.

4.5-3 Line Drawing

Lines are drawn using the integer Breshenham line drawing algorithm. This module was modified for

this project and adapted from a laboratory exercise in ECE 5760. Refer to the appendix for pseudo-code

of the line drawing algorithm.

4.5-4 Text Writing

The TextWriter module is responsible for writing characters to the string. A .MIF file containing 256

ASCII 8x8 characters is downloaded into ROM. The TextWriter addresses into this ROM based on which

character the instruction specifies. It then loops across the 8x8 character which consists of 1’s and 0’s.

A 1 indicates to draw a pixel, and a 0 indicates to ignore.

Future modification to this file could have the instruction specify the type of font being used and instead

of looping across 8x8, it loops across WxH where W is the width and H is the height of the font in use.

4.5-5 Sprite Drawing (in progress)

Drawing into a sprite was attempted in this project. At the current time of this report that work is still in

progress. The way it works is that a sprite is represented by a 32x32 pixel, 8 bit color RAM module. A

drawing instruction that comes in specifies that you want to draw into a certain sprite and instead of

feeding the X,Y coordinate and data into the DataWriter module, it muxes the information into the

Sprite RAM. To draw the sprite on the screen the sprite must be enabled and have a valid (X,Y) screen

coordinate. Then when the VGA controller is looping through the coordinates to display on the monitor,

the sprite module checks to see if its boundaries corresponds to that pixel and if it does, it immediately

draws on the screen instead of grabbing from SRAM.

4.6 Instruction Download and GPU Processor Mode

An original attempt of the project was to provide a processor to program and download the instructions

directly into an instruction queue of the GPU. The idea was to eliminate the serial overhead, except for

the one time downloading of instructions, and have the entire program run locally on the GPU, similar to

the nVidia CUDA architecture. However, issues with the normal drawing methods delayed the start of

this part of the project, and at the time of the report it is only partially implemented and not fully tested.

However, an explanation of what was done follows.

The processor that was created was a simple single cycle microprocessor that supported functions such

as branches, ALU ops, jumps, loads, stores. It had an IRAM and DRAM as well. A full list of all

instructions is included in the appendix.

When the RequestManager received a request it is decided whether this is a real-time request (should

be directly drawn on the screen) or if this is a processor specific request, such as an instruction

download. If it is a download, the RequestManager loads the current request into IRAM at a PC

specified by the instruction. The value of this PC was supposed to come from a “compiler” that I would

have written. The RequestManager also listens for a start processor command and when it receives that

it enables to GPU Processor mode and goes to the PC = 0 to start the downloaded program. Execution

then continues within the processor until the user specified an exit point, if there was one.

The processor itself is a standard single cycle microprocessor with some modifications to adapt to the

GPU’s drawing functions. The processor maintains its own PC and outputs that to IRAM which returns

the instruction back into the processor. The processor then decodes the instruction. If it decides that

the instruction is a non-drawing function, it continues to the ALU operation stage and then into the

memory and writeback stage. However, if it is a drawing operation a flag is thrown to indicate that we

need to stall the processor and execute a drawing instruction. The information for this instruction is

then created and sent to the direct drawing method in which it is executed. At the end of execution a

flag is returned to the processor indicated that all drawing has completed. The GPU processor is then

enabled and continues on its operations.

A visual representation of this process is included in the appendix by the name of Schematic #4.

4.7 Graphics Library in C

A graphics library has been written in the C programming language to facilitate communication with the

GPU over serial. It provides instructions for drawing each of the type of graphics functions and it

packages up the instructions into the appropriate bytes and is able to send them out over serial. The

only modification one needs to make to any of these files would be if the serial communication is

different for your specific process. Mine uses methods like writeByte, where one may want to use

something like fprintf instead. These are trivial changes and only need to be changed in one line of code

in the send instruction method. A list of instructions is included in the appendix along with an

explanation of how they work. A simple example of how to draw something to the GPU is as follows:

setDrawMode(M8bit_SINGLE_640x480);

int red;

int green;

int blue;

fillRectangle(0,0,640,480,0,15,0);

for(green = 0; green < 15; green ++)

for(red = 0; red < 15; red ++)

 drawLine(green*15+red,green*15+red,0,240,red, green, 0);

for(green = 0; green < 4; green ++)

 for(blue = 0; blue < 15; blue ++)

 drawLine(green*15+blue+255,green*15+blue+255,0,240,0,green,blue);

drawString(100-8*6,140,"Hello World!",0,0,0);

This piece of code first sets the type of drawing mode that we want the GPU to run, and that is a single

buffer 640x480 image. It then does a sequence of rectangular fills, line draws, and text writing. What is

nice about the code is that as long as the communication is set up in the underlying graphics library, the

user only has to worry about simple functions such as fillRectangle in their main application code.

4.8 Timing Issues

One of the major challenges of this project was numerous timing issues that I had to deal with. Almost

every single module was clocked and not every module used the same clock to process its data. The

serial modules ran on a clock equal to the baudrate. The drawing functions ran on the VGA control clock

that is used to drive the VGA controller. Other clock signals were generated artificially from within some

modules, such as the signal to grab a packet, or send a N/ACK to the transmitter. One more factor to

complicate things is that the VGA controller needs to read from SRAM to refresh the screen, and when

this is happening, no processing can be done in the form of writing to SRAM from one of the drawing

modules. This loss of synch causes some modules to pause, while others need not pause because they

don’t depend on VGA synch complications. This skew in some modules needing to pause while others

were free to run caused some initial problems in having every module communicate smoothly. This is

because sometimes an artificial clock signal would be lost during a loss of synch. These issues were

resolved through careful debugging and testing of the code to find complications of this type. One thing

that this project certainly helped me understand is how important meeting timing requirements and

understanding the timing of a system is to system performance.

5. Results and Conclusions

5.1 Original Goal Completion

Of the original goals of the project this GPU was successful in implementation of the following:

 Multiple resolution support, 320x240 and 640x480

 Color depth support, at least 16 colors in worst case palette

 Two frame buffers

 Multiple drawing functions, lines, circles, rectangles, text, and polygons

 Font support, 1 8x8 downloadable font

 10 FPS, successful in some applications; is application dependent

Of the original goals of the project this GPU was partially successful in implementation of the following:

 Sprite support, functionality was created but not finished

 Programmable Interface, the processor was created but not fully tested and implemented

5.2 Testing the GPU

The GPU performed a multitude of tests to check for accuracy of drawing algorithms, communication of

instructions, and to measure overall performance (such as IPS and FPS).

5.2-1 Accuracy of Drawing Algorithms

Tests were done in each of the four drawing modes on each of the different drawing modules. The

criterion in testing was to see if the modules drew their function correctly. For fills this meant that every

interior point was filled, and for the text writer, this meant that the proper character was written to the

string. These tests also checked that the objects were drawn at the correct location on the screen.

Figure – 320x240 Accuracy of Drawing Algorithm Test

There were two functions that did not work perfectly and a solution could not be found for these

functions. The first is that the circle and rectangle fills would occasionally miss one pixel to draw. The

likely explanation for this problem is a time/synchronization problem that results in one pixel not being

written to SRAM. The other problem was with the text writing module which would occasionally write

errant pixels to the screen. This problem was caused by the text writing module reading lines with a one

cycle lag from the request. This would cause the last line of the previous character to be the first line of

the next character. No problems occur when the last line is blank, but for a hanging letter such as ‘g’ or

‘j’, a bar would be drawn on top of the following character. This problem was resolved by introducing an

extra line request when the command is sent from the RequestManager.

Figure – Scene created in 640x480 resolution to show off all drawing functions

5.2-2 Performance Tests

A few performance tests were run to see the speed at which the GPU could execute instructions. The

theoretical max for best performance was 1047.3 instructions per second (IPS). To see what the real IPS

is for the GPU the following tests were run and execution time was measured in all cases:

 10,000 Lines – 10,000 random lines were drawn, used to represent where one might be drawing

a lot of polygons

 Full Screen Fill – 100 full screen rectangle fills were performed, used to represent most extreme

of drawing cases

 Random Fill – 250 rectangles of random size were filled on the screen, use to represent a high

stress drawing application that constantly erasing parts of the screen

 Small Rectangles and Lines – 1000 rectangles and lines were drawn on the screen, use to

represent an average type of drawing someone might do

 Point Draw – 5000 single point instructions, used to represent the least intensive of actual

drawing instructions

 Frame Update – 5000 frame updates were performed, used to represent the equivalent of a

NOP to find the real peak IPS for this GPU

Figure – Shows the performance in terms of IPS for Single Buffer tests

The result of the test show that in most cases the IPS for the GPU peaks around the 800 IPS range. The

outliers are the computationally heavy in terms of memory write tests of full screen rectangle fills and

many random rectangle fills. However in the tests used to represent what an aggregate application

might use, such as the Small Rects and lines, a high IPS was achieved.

To test the double buffered performance two simple tests were run, one in which a single bouncing ball

was updated, and the second in which ten bouncing balls were updated and refreshed on the screen.

Figure – Double buffer FPS test

The result was that in the case of 10 balls bouncing on the screen an FPS of around 10 could be

achieved. This was within the original goal of the project.

5.3 Conclusions

The GPU was extremely successful in completing many of the goals of the original proposal and made

good progress towards completion of the last few goals. I believe that the current state of the GPU

would work best for low-latency applications or those in which full screen fills do not occur often. Since

IPS peaks around 800, this means that your FPS could significantly vary depending on the type of

application you want to write. If your application requires 1000 instructions per frame to be executed,

then it simply will not be possible to achieve an FPS better than 1, and hopefully the application is low-

latency refresh, such as just printing data to the monitor. However, if your application is very simple, or

you implement your graphics algorithm in an intelligent way (i.e. only refreshing areas that have been

written too, instead of the whole screen) a high FPS is possible. Basically, the GPU cannot guarantee a

certain minimum FPS as I had originally intended it too due to serial overhead limitations.

However, I am not sure that that is a bad thing at all. Leaving the design up to the user to decide how to

best implement the graphics is not a bad component of the project. Also, although the GPU cannot

guarantee an FPS of 10, that does not mean that an FPS of 10 is not possible; it certainly is.

What I also believe works well in this project is the room for extension. The modules of the project were

created in a way that could allow for easy future expansion of new drawing functions. From the

beginning in which I added the two Extra 1 and Extra 2 fields should new functions arise, and the general

extensible nature of the drawing modules in which they all follow a specific protocol, can make it easy

for someone to take this project and make even more functionality.

Ultimately, this project did not implement the instruction queue and processor functionality to

completion. Had that processor gotten to the working stage I truly believe the results would have been

some high quality and high speed graphics. That isn’t to take away from the serial sequential method

which performs well, but future work in implementing the programmable processor could make this

GPU an even more attractive option.

This project set out to realize a two-dimensional graphics card on an FPGA that could be used as a GPU

for host devices such as microcontrollers in order to provide those applications with color graphics on a

VGA compatible monitor. This goal was met.

6. Appendix

6.1 Schematics

Schematic #1 – Overview of the communication between host and GPU

Schematic #2 – State diagram of how the RequestManager handles a request

Schematic #3 – Direct Draw method schematic showing the general data flow from host to GPU to VGA

Schematic #4 – The programmable flow method data flow schematic

6.2 Images and Results

Double Buffer Performance Tests

Single Buffer Performance Tests

GPU running on FPGA and outputting to VGA monitor

640x480 Scene Test

640x480 Drawing function Test

320x240 Drawing Function Test

6.3 Module Descriptions

 availableMux.v: muxes the availability bits of all the drawing modules based on a select bit from

the RequestManager

 BaudGenerator.v: generates the baud clock for the serial communication

 BaudGenerator_8Times.v: generates a baud clock at 8 times the required speed

 circle_draw.v: draws a circle on the screen

 circle_fill_better.v: fills a circle on the screen

 Color_MUX.v: muxes all of the color data from the drawing modules based on a select bit from

the RequestManager

 CRC.v: computes the XOR of the packet to create a CRC

 DataWriter.v: writes the current data to SRAM

 font1_rom.v: the 8x8 font ROM

 line_drawer.v: draws a line on the screen

 PacketManager_updated.v: the packet manager that collects the instruction as it receives the

individual parts from the SerialReceiver

 RequestManager_updated.v: manages all the requests that come in from the host device and

processes them accordingly

 SerialReceiver_improved_fastClock.v: the serial receiver module

 SerialTransmitter_updated.v: the serial transmitter module

 square_draw.v: draws a square on the screen

 square_fill.v: fills a square on the screen

 TextWriter.v: writes text to the screen

 TransmitClock.v: artificial clock used to grab a packet

 Xaddr_MUX.v: mux for the x address data that muxes based on a select bit from the

RequestManager

 Yaddr_MUX.v: mux for the yaddress data that muxes based on a select bit from the

RequestManager

6.4 Software User Guide

6.4-1 Function Library and Description

The following functions have been created in the C graphics library:

void fillRectangle(int x, int y, int w, int h, int r, int g, int b);

Use: fills a rectangle on the screen with the specified color, width, and height at (x,y)

 Parameters:

 x = starting x coordinate

 y = starting y coordinate

 w = width of rectangle

 h = height of rectangle

 r = red color (0-15)

 g = green color (0-15)

 b = blue color (0-15)

void fillCircle(int x, int y, int r, int red, int green, int blue);

Use: fills a circle on the screen with the specified color, and radius at (x,y)

 Parameters:

 x = starting x coordinate

 y = starting y coordinate

 r = radius

 red = red color (0-15)

 green = green color (0-15)

 blue = blue color (0-15)

void drawRectangle(int x, int y, int w, int h, int r, int g, int b);

Use: draws a rectangle on the screen with the specified color, width, and height at (x,y)

 Parameters:

 x = starting x coordinate

 y = starting y coordinate

 w = width of rectangle

 h = height of rectangle

 r = red color (0-15)

 g = green color (0-15)

 b = blue color (0-15)

void drawCircle(int x, int y, int r, int red, int green, int blue);

Use: draws a circle on the screen with the specified color, and radius at (x,y)

 Parameters:

 x = starting x coordinate

 y = starting y coordinate

 r = radius

 red = red color (0-15)

 green = green color (0-15)

 blue = blue color (0-15)

void drawLine(int x1, int x2, int y1, int y2, int r, int g, int b);

Use: draws a line from (x1,y1) to (x2,y2) with the specified color

 Parameters:

 x1 = point 1 of line x coordinate

 x2 = point 2 of line x coordinate

 y1 = point 1 of line y coordinate

 y2 = point 2 of line y coordinate

 r = red color (0-15)

 g = green color (0-15)

 b = blue color (0-15)

void drawChar(int x1, int y1, int charVal, int r, int g, int b);

Use: draws a character on the screen at (x1,y1) with the specified color

 Parameters:

 x1 = starting x coordinate of character

 y1 = starting y coordinate of character

 charVal = the ascii character value (0-255)

 r = red color (0-15)

 g = green color (0-15)

 b = blue color (0-15)

void drawString(int x1, int y1, char *string, int r, int g, int b);

Use: draws a string to the screen at (x1,y1) with specified color

 Parameters:

 x1 = starting x coordinate of string

 y1 = starting y coordinate of string

 *string = pointer to character array

 r = red color (0-15)

 g = green color (0-15)

 b = blue color (0-15)

void drawPolygon(int *x, int *y, int elems, int r, int g, int b);

Use: draws a polygon on the screen with vertices *x and *y

 Parameters:

 *x = integer array of the x points of the polygon

 *y = integer array of the y points of the polygon

 elems = number of elements in *x and *y arrays

 r = red color (0-15)

 g = green color (0-15)

 b = blue color (0-15)

void writeInstruction(int PC, char a, char b, char c, char d, char e, char f);

Use: to write an instruction into IRAM

void startProgram(void);

Use: to start execution of the IRAM program

void startDownload(void);

Use: to start downloading into IRAM

void finishDownload(void);

Use: to signal finish downloading into IRAM

void frameUpdate(void);

Use: to update to the current frame and switch to drawing into alternate frame

void setDrawMode(int dm);
Use: sets the drawing mode
 Parameters:
 dm = the drawing mode…
 *M16bit_SINGLE_320x240: single buffer 320x240 image

*M8bit_SINGLE_640x480: single buffer 640x480 image
*M8bit_DOUBLE_320x240: double buffer 320x240 image
*M4bit_DOUBLE_640x480: double buffer 640x480 image

void sendInstruction(int *instr);

Use: sends an instruction over serial to the GPU

 Parameters:

 *instr = integer array of the instruction to be sent

int computeChecksum(int *packet);

Use: computes a checksum of the current instruction to be sent

 Parameters:

 *packet = current packet of instruction to be sent

6.4-2 Example Program

#include <stdio.h>

#include "rs232.h"

#include "globals.h"

#include "Graphics_Functions.h"

#include <time.h>

//This program draws a simple scene of a house in a field

int main(int argc, char **argv)

{

 int error;

 int test_num = -3;

 printf("args %i\n",argc);

 if(argc > 1)

 test_num = atoi(argv[1]);

 printf("Serial Communication in C\n");

 printf("Opening Comport: COM1\n");

 error = OpenComport(0, 115200);

 if(error) {

 printf("Failed!!! Exiting\n");

 return 0;

 }

 unsigned char result;

 result = 0;

 int gray = 1;

 while(gray == 1 && test_num != 24)

 gray = PollComport(0,&result,1); //to flush out initial data

 setDrawMode(M8bit_SINGLE_640x480);

 fillRectangle(0,0,640,480,0,0,0);

 int sky = 0;

 int skyc = 15;

 double dskyc = 1.0/230.0;

 for(sky = 1; sky < 230; sky ++)

 {

 if((sky % 15) == 0) skyc --;

 drawLine(0,640,sky,sky,0,0,max(skyc,4));

 printf("(int)skyc: %i\n",skyc);

 }

 int grass = 0;

 int grassc = 0;

 double dgrassc = 1.0/250.0;

 for(grass = 230; grass <= 479; grass ++){

 if((grass % 15) == 0) grassc ++;

 drawLine(0,640,grass,grass,0,max(grassc,2),0);

 }

 fillRectangle(320-150,320-250,300,250,12,0,0);

 int brick = 0;

 for(brick = 320; brick >= (320-250); brick -=5)

 {

 drawLine(170,470,brick,brick,0,0,0);

 int x;

 for(x = 170 + ((brick%2)*10); x < 470; x += 15)

 if((rand()/(float)RAND_MAX) <= .5)

 {

 if(brick <= 315)

 {

 drawLine(x,x,brick,brick+5,0,0,0);

 }

 }

 }

 fillRectangle(320-150,320-250-25,300,25,0,0,0);

 fillRectangle(320-30,320-120,60,120,9,5,0);

 fillCircle(320+15,320-80,10,15,15,0);

 fillRectangle(320-120,320-225,50,50,15,15,15);

 drawRectangle(320-120,320-225,50,50,0,0,0);

 fillRectangle(320+80,320-225,50,50,15,15,15);

 drawRectangle(320+80,320-225,50,50,0,0,0);

 fillRectangle(500,400-165,65,165,9,5,0);

 fillCircle(533,400-165,80,0,12,0);

 fillRectangle(320-50,320,100,40,0,0,15);

 drawString(320-8*4,340,"Welcome!",15,15,8);

 int sun = 0;

 for(sun = 15; sun >= 8; sun --)

 fillCircle(100,40,sun*2,sun,sun,0);

 drawString(10,470,"Scene Demo - 640x480 - Peter Greczner",15,15,15);

}

6.5 Drawing Algorithm Reference

6.5-1 Bresenham Line Drawing Algorithm (pseudo-code)

function line(x0, x1, y0, y1)

 boolean steep := abs(y1 - y0) > abs(x1 - x0)

 if steep then

 swap(x0, y0)

 swap(x1, y1)

 if x0 > x1 then

 swap(x0, x1)

 swap(y0, y1)

 int deltax := x1 - x0

 int deltay := abs(y1 - y0)

 int error := deltax / 2

 int ystep

 int y := y0

 if y0 < y1 then ystep := 1 else ystep := -1

 for x from x0 to x1

 if steep then plot(y,x) else plot(x,y)

 error := error - deltay

 if error < 0 then

 y := y + ystep

 error := error + deltax

[1] http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm#Optimization

6.5-2 Bresenham Circle Drawing Algorithm (pseudo-code)

void circle(int xc, int yc, int r)

{

int x = 0;

int y = r;

int p = 3 - 2 * r;

 while (x <= y)

 {

 putpixel(xc + x, yc + y, getcolor());

 putpixel(xc - x, yc + y, getcolor());

 putpixel(xc + x, yc - y, getcolor());

 putpixel(xc - x, yc - y, getcolor());

 putpixel(xc + y, yc + x, getcolor());

 putpixel(xc - y, yc + x, getcolor());

 putpixel(xc + y, yc - x, getcolor());

 putpixel(xc - y, yc - x, getcolor());

 if (p < 0)

 p += 4 * x++ + 6;

 else

 p += 4 * (x++ - y--) + 10;

 }

}

[2] http://gamebub.com/cpp_algorithms.php#circle

6.6 Processor ISA Opcodes

Instruction Name Op Code

Add 100000

Subtract 100001

Shift Left 100010

Shift Right 100011

OR 100100

NOR 100101

AND 100110

NAND 100111

XOR 101000

BGT 101001

BLT 101010

BGE 101011

BLE 101100

BEQ 101101

BNE 101110

BEZ 101111

BNEZ 110000

J 110001

JR 110010

LD 110011

ST 110100

Circle Fill 000000

Circle Draw 000001

Square Fill 000010

Square Draw 000011

Line Draw 000100

Text Write 000101

Frame Update 000110

ADDI 110101

SUBI 110110

SLI 110111

SRI 111000

NOT 111001

JAL 111010

6.7 Code Reference

//globals.h

#define CIRCLE_FILL 0
#define CIRCLE_DRAW 1
#define SQUARE_FILL 2
#define SQUARE_DRAW 3
#define LINE_DRAW 4
#define TEXT_WRITE 5
#define FRAME_UPDATE 6
#define FRAME_SWITCH 6
#define DRAW_MODE 7
#define START_DOWNLOAD 8
#define FINISH_DOWNLOAD 15

//Drawing Modes
#define M16bit_SINGLE_320x240 0
#define M8bit_SINGLE_640x480 1
#define M8bit_DOUBLE_320x240 2
#define M4bit_DOUBLE_640x480 3

#define PACKET_LENGTH 10

#define DIRECT 0
#define LOAD 1

//Graphics_Functions.c

#include "Graphics_Functions.h"
#include "globals.h"
#include "rs232.h"
#include <string.h>

int packet[] = {0,0,0,0,0,0,0,0,0,0};
int instruction[] = {0,0,0,0,0,0,0,0};

int frame_sel = 0;
int draw_mode = M16bit_SINGLE_320x240;

void fillRectangle(int x, int y, int w, int h, int r, int g, int b)
{

instruction[0] = SQUARE_FILL;
instruction[1] = r*256 + g*16 + b;
instruction[2] = x;
instruction[3] = y;
instruction[4] = w;
instruction[5] = h;
instruction[6] = (draw_mode << 5) + (frame_sel << 3);
instruction[7] = 0;

sendInstruction(instruction);
}

void fillCircle(int x, int y, int r, int red, int green, int blue)
{

instruction[0] = CIRCLE_FILL;
instruction[1] = red*256 + green*16 + blue;
instruction[2] = x;
instruction[3] = y;
instruction[4] = r;
instruction[5] = 0;
instruction[6] = (draw_mode << 5) + (frame_sel << 3);
instruction[7] = 0;

sendInstruction(instruction);
}

void drawRectangle(int x, int y, int w, int h, int r, int g, int b)
{

instruction[0] = SQUARE_DRAW;
instruction[1] = r*256 + g*16 + b;
instruction[2] = x;
instruction[3] = y;
instruction[4] = w;
instruction[5] = h;
instruction[6] = (draw_mode << 5) + (frame_sel << 3);
instruction[7] = 0;

sendInstruction(instruction);

}

void drawCircle(int x, int y, int r, int red, int green, int blue)
{

instruction[0] = CIRCLE_DRAW;
instruction[1] = red*256 + green*16 + blue;
instruction[2] = x;
instruction[3] = y;
instruction[4] = r;
instruction[5] = 0;
instruction[6] = (draw_mode << 5) + (frame_sel << 3);
instruction[7] = 0;

sendInstruction(instruction);
}

void drawLine(int x1, int x2, int y1, int y2, int r, int g, int b)
{

instruction[0] = LINE_DRAW;
instruction[1] = r*256 + g*16 + b;
instruction[2] = x1;
instruction[3] = y1;
instruction[4] = x2;
instruction[5] = y2;
instruction[6] = (draw_mode << 5) + (frame_sel << 3);
instruction[7] = 0;

sendInstruction(instruction);
}

void drawPolygon(int *x, int *y, int elems, int r, int g, int b)
{

int i;
for(i = 1; i < elems; i ++)
{

drawLine(x[i],x[i-1],y[i],y[i-1], r, g, b);
printf("drawing line from (%d,%d) to (%d,%d)\n",x[i],y[i],x[i-1],y[i-1]);

}
if(elems >= 2)

drawLine(x[elems-1],x[0],y[elems-1],y[0], r, g, b);
printf("drawing line from (%i,%i) to (%i,%i)\n",x[elems-1],y[elems-1],x[0],y[0]);

}

void drawChar(int x1, int y1, int charVal, int r, int g, int b)
{

instruction[0] = TEXT_WRITE;
instruction[1] = r*256 + g*16 + b;
instruction[2] = x1;
instruction[3] = y1;
instruction[4] = charVal >> 2;
instruction[5] = (charVal & 0x3) << 2;
instruction[6] = (draw_mode << 5) + (frame_sel << 3);
instruction[7] = 0;

sendInstruction(instruction);
}

void writeInstruction(int PC, char a, char b, char c, char d, char e, char f)
{

instruction[0] = a;
instruction[1] = b;
instruction[2] = c;
instruction[3] = d;
instruction[4] = e;
instruction[5] = f;
instruction[6] = PC >> 4;
instruction[7] = (((PC&0xF) << 4) | 0x0F);
sendInstruction(instruction);

}

void startProgram(void)
{

int i;
for(i = 0; i < 8; i ++) instruction[i] = 0xFF;
sendInstruction(instruction);

}
void startDownload(void)
{

instruction[0] = START_DOWNLOAD;
sendInstruction(instruction);

}
void finishDownload(void)
{

instruction[0] = FINISH_DOWNLOAD;
sendInstruction(instruction);

}

void frameUpdate(void)
{

instruction[0] = FRAME_SWITCH;
sendInstruction(instruction);
switch(draw_mode)
{

case M16bit_SINGLE_320x240:
frame_sel = 0;
break;

case M8bit_SINGLE_640x480:
frame_sel = 0;
break;

case M8bit_DOUBLE_320x240:
frame_sel = (frame_sel == 0) ? 1 : 0;
break;

case M4bit_DOUBLE_640x480:
frame_sel = (frame_sel == 0) ? 1 : 0;
break;

}
}

void setDrawMode(int dm)
{

draw_mode = dm;
instruction[0] = DRAW_MODE;
instruction[6] = (draw_mode << 5) + (frame_sel << 3);
//sendInstruction(instruction);

}

void drawString(int x1, int y1, char *s, int r, int g, int b)
{

int i = 0;
for(i = 0; i < strlen(s); i ++)
{

int charVal = s[i]*8 - 8*16;
drawChar(x1+i*8,y1,charVal,r,g,b);

}
}

void sendInstruction(int *instr)
{

unsigned char result;

int tries = 0;

//int gray = 1;
//while(gray == 1)
// gray = PollComport(0,&result,1); //to flush out initial data

//do
//printf("********:: %i ::********\n",instr[4]);
int i;
{

result = 0;
packet[0] = ((instr[0] & 0x3F) << 2) | ((instr[1] & 0xC00) >> 10);
packet[1] = (instr[1] & 0x3FC) >> 2;
packet[2] = ((instr[1] & 0x3) << 6) | ((instr[2] & 0x3F0) >> 4);
packet[3] = ((instr[2] & 0xF) << 4) | ((instr[3] & 0x1E0) >> 5);
packet[4] = ((instr[3] & 0x1F) << 3) | ((instr[4] & 0x380) >> 7);
packet[5] = ((instr[4] & 0x7F) << 1) | ((instr[5] & 0x100) >> 8);
packet[6] = ((instr[5] & 0xFF));
packet[7] = instr[6] & 0xFF;
packet[8] = instr[7] & 0xFF;
packet[9] = 0;

for(i = 0; i < (PACKET_LENGTH-1); i ++)
{

packet[PACKET_LENGTH-1] ^= packet[i];
SendByte(0,(unsigned char)packet[i]);
//printf("%i: %i\n",i,packet[i]);

}

SendByte(0,(unsigned char)packet[PACKET_LENGTH-1]);

tries ++;
int pollResult = 0;

while(pollResult == 0){
pollResult =PollComport(0,&result,1);
//printf(".");

}
//printf("Got Ack: %d\n",result);
//printf("tries: %d result = %d, poll_res = %i\n",tries, result,pollResult);

}
/*int wait = 0;
for(i = 0; i < 10000000; i ++)

wait ++;
i = wait;*/
//while(result < 128);

}

void fillRectangle(int x, int y, int w, int h, int r, int g, int b);
void fillCircle(int x, int y, int r, int red, int green, int blue);
void drawRectangle(int x, int y, int w, int h, int r, int g, int b);
void drawCircle(int x, int y, int r, int red, int green, int blue);
void drawLine(int x1, int x2, int y1, int y2, int r, int g, int b);
void drawChar(int x1, int y1, int charVal, int r, int g, int b);
void drawString(int x1, int y1, char *string, int r, int g, int b);
void drawPolygon(int *x, int *y, int elems, int r, int g, int b);
void writeInstruction(int PC, char a, char b, char c, char d, char e, char f);
void startProgram(void);
void startDownload(void);
void finishDownload(void);
void frameUpdate(void);
void setDrawMode(int dm);
void sendInstruction(int *instr);
int computeChecksum(int *packet);

//Peter Greczner, Instruction Decoder

module Decoder(instruction, ctrl_ALU, ctrl_BS, isBranch, isLoad, isStore, isJump, isDraw,
isIMMOpp, SA, SB, SD, IMM, WE);

input wire [79:0] instruction;

output reg [3:0] ctrl_ALU;
output reg [3:0] ctrl_BS;
output reg isBranch;
output reg isLoad;
output reg isStore;
output reg isJump;
output reg isDraw;
output reg isIMMOpp;

output reg [4:0] SA, SB, SD;
output reg [31:0] IMM;
output reg WE;

parameter ADD = 6'b100000,
SUB = 6'b100001,
SL = 6'b100010,
SR = 6'b100011,
OR = 6'b100100,
NOR = 6'b100101,
AND = 6'b100110,
NAND= 6'b100111,
XOR = 6'b101000,
ADDI= 6'b110101,
SUBI= 6'b110110,
SLI = 6'b110111,
SRI = 6'b111000,
LD = 6'b110011,
ST = 6'b110100,
NOT = 6'b111001,
BGT = 6'b101001,
BLT = 6'b101010,
BGE = 6'b101011,
BLE = 6'b101100,
BEQ = 6'b101101,
BNE = 6'b101110,
BEZ = 6'b101111,
BNEZ= 6'b110000,
J = 6'b110001,
JR = 6'b110010,
JAL = 6'b111010,
CIRCLE_FILL = 6'b000000,
CIRCLE_DRAW = 6'b000001,
SQUARE_FILL = 6'b000010,
SQUARE_DRAW = 6'b000011,
LINE_DRAW = 6'b000100,
TEXT_WRITE = 6'b000101,
FRAME_UPDATE = 6'b000110;

parameter BS_bgt = 4'd0,

BS_blt = 4'd1,
BS_bge = 4'd2,
BS_ble = 4'd3,
//BS_ble = 4'd4,
BS_beq = 4'd5,
BS_bne = 4'd6,
BS_bez = 4'd7,
BS_bnez = 4'd8,
BS_j = 4'd9,
BS_jr = 4'd10,
BS_jal = 4'd11,
BS_nop = 4'd12;

parameter ALU_add = 4'd0,
ALU_sub = 4'd1,
ALU_sl = 4'd2,
ALU_sr = 4'd3,
ALU_and = 4'd4,
ALU_or = 4'd5,
ALU_xor = 4'd6,
ALU_nand= 4'd7,
ALU_not = 4'd8,
ALU_nor = 4'd9,
ALU_nop = 4'd10;

always @(instruction)
begin

case(instruction[79:74])
ADD: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 0;
WE = 1;
ctrl_ALU = ALU_add;
IMM = 0;
ctrl_BS = BS_nop;

end
SUB: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 0;
WE = 1;
ctrl_ALU = ALU_sub;
IMM = 0;

ctrl_BS = BS_nop;
end
SL: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 0;
WE = 1;
ctrl_ALU = ALU_sl;
IMM = 0;
ctrl_BS = BS_nop;

end
SR: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 0;
WE = 1;
ctrl_ALU = ALU_sr;
IMM = 0;
ctrl_BS = BS_nop;

end
OR: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 0;
WE = 1;
ctrl_ALU = ALU_or;
IMM = 0;
ctrl_BS = BS_nop;

end
NOR: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;

isIMMOpp = 0;
WE = 1;
ctrl_ALU = ALU_nor;
IMM = 0;
ctrl_BS = BS_nop;

end
AND: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 0;
WE = 1;
ctrl_ALU = ALU_and;
IMM = 0;
ctrl_BS = BS_nop;

end
NAND: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 0;
WE = 1;
ctrl_ALU = ALU_nand;
IMM = 0;
ctrl_BS = BS_nop;

end
XOR: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 0;
WE = 1;
ctrl_ALU = ALU_xor;
IMM = 0;
ctrl_BS = BS_nop;

end
ADDI: begin

SA = instruction[73:69];
SD = instruction[68:64];
SB = instruction[68:64];
isBranch = 0;

isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 1;
WE = 1;
ctrl_ALU = ALU_add;
IMM = instruction[63:32];
ctrl_BS = BS_nop;

end
SUBI: begin

SA = instruction[73:69];
SD = instruction[68:64];
SB = instruction[68:64];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 1;
WE = 1;
ctrl_ALU = ALU_sub;
IMM = instruction[63:32];
ctrl_BS = BS_nop;

end
SLI: begin

SA = instruction[73:69];
SD = instruction[68:64];
SB = instruction[68:64];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 1;
WE = 1;
ctrl_ALU = ALU_sl;
IMM = instruction[63:32];
ctrl_BS = BS_nop;

end
SRI: begin

SA = instruction[73:69];
SD = instruction[68:64];
SB = instruction[68:64];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 1;
WE = 1;
ctrl_ALU = ALU_sr;
IMM = instruction[63:32];
ctrl_BS = BS_nop;

end
ST: begin

SA = instruction[73:69];
SD = instruction[68:64];
SB = instruction[68:64];
isBranch = 0;
isLoad = 0;
isStore = 1;
isJump = 0;
isDraw = 0;
isIMMOpp = 1;
WE = 0;
ctrl_ALU = ALU_add;
IMM = instruction[63:32];
ctrl_BS = BS_nop;

end
LD: begin

SA = instruction[73:69];
SD = instruction[68:64];
SB = instruction[68:64];
isBranch = 0;
isLoad = 1;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 1;
WE = 1;
ctrl_ALU = ALU_add;
IMM = instruction[63:32];
ctrl_BS = BS_nop;

end
NOT: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 0;
WE = 1;
ctrl_ALU = ALU_not;
IMM = 0;
ctrl_BS = BS_nop;

end
BGT: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 1;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 1;
IMM = instruction[63:32];
WE = 0;

ctrl_ALU = ALU_add;
ctrl_BS = BS_bgt;

end
BLT: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 1;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 1;
IMM = instruction[63:32];
WE = 0;
ctrl_ALU = ALU_add;
ctrl_BS = BS_blt;

end
BGE: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 1;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 1;
IMM = instruction[63:32];
WE = 0;
ctrl_ALU = ALU_add;
ctrl_BS = BS_bge;

end
BLE: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 1;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 1;
IMM = instruction[63:32];
WE = 0;
ctrl_ALU = ALU_add;
ctrl_BS = BS_ble;

end
BEQ: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 1;
isLoad = 0;
isStore = 0;
isJump = 0;

isDraw = 0;
isIMMOpp = 1;
IMM = instruction[63:32];
WE = 0;
ctrl_ALU = ALU_add;
ctrl_BS = BS_beq;

end
BNE: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 1;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 1;
IMM = instruction[63:32];
WE = 0;
ctrl_ALU = ALU_add;
ctrl_BS = BS_bne;

end
BEZ: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 1;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 1;
IMM = instruction[63:32];
WE = 0;
ctrl_ALU = ALU_add;
ctrl_BS = BS_bez;

end
BNEZ: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 1;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 1;
IMM = instruction[63:32];
WE = 0;
ctrl_ALU = ALU_add;
ctrl_BS = BS_bnez;

end
J: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];

isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 1;
isDraw = 0;
isIMMOpp = 1;
IMM = instruction[63:32];
WE = 0;
ctrl_ALU = ALU_add;
ctrl_BS = BS_j;

end
JR: begin

SA = instruction[73:69];
SB = 0;
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 1;
isDraw = 0;
isIMMOpp = 0;
WE = 0;
ctrl_ALU = ALU_add;
ctrl_BS = BS_jr;
IMM = 0;

end
JAL: begin

SA = instruction[73:69];
SB = 0;
SD = 5'd31;
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 1;
isDraw = 0;
isIMMOpp = 0;
IMM = instruction[63:32];
WE = 1;
ctrl_ALU = ALU_add;
ctrl_BS = BS_jr;

end
CIRCLE_FILL: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 1;
isIMMOpp = 0;
WE = 0;
ctrl_ALU = ALU_nop;
IMM = 0;
ctrl_BS = BS_nop;

end

CIRCLE_DRAW: begin
SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 1;
isIMMOpp = 0;
WE = 0;
ctrl_ALU = ALU_nop;
IMM = 0;
ctrl_BS = BS_nop;

end
SQUARE_FILL: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 1;
isIMMOpp = 0;
WE = 0;
ctrl_ALU = ALU_nop;
IMM = 0;
ctrl_BS = BS_nop;

end
SQUARE_DRAW: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 1;
isIMMOpp = 0;
WE = 0;
ctrl_ALU = ALU_nop;
IMM = 0;
ctrl_BS = BS_nop;

end
LINE_DRAW: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 1;
isIMMOpp = 0;
WE = 0;

ctrl_ALU = ALU_nop;
IMM = 0;
ctrl_BS = BS_nop;

end
TEXT_WRITE: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 1;
isIMMOpp = 0;
WE = 0;
ctrl_ALU = ALU_nop;
IMM = 0;
ctrl_BS = BS_nop;

end
FRAME_UPDATE: begin

SA = instruction[73:69];
SB = instruction[68:64];
SD = instruction[63:59];
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 1;
isIMMOpp = 0;
WE = 0;
ctrl_ALU = ALU_nop;
IMM = 0;
ctrl_BS = BS_nop;

end
default: begin

SA = 0;
SB = 0;
SD = 0;
isBranch = 0;
isLoad = 0;
isStore = 0;
isJump = 0;
isDraw = 0;
isIMMOpp = 0;
WE = 0;
ctrl_ALU = ALU_and;
IMM = 0;
ctrl_BS = BS_nop;

end
endcase

end

endmodule

/*

Instruction - 79:74

Drawing Functions: 000XXX

Other Functions:
*Add, subtract, shift, or, nor, and, nand, xor
*BGT, BLT, BGTE, BLTE, BEQ, BNE, J, JR, BEZ, BNEZ
*LD, ST
*(SLT, SGT)

*/

//Peter Greczner, Data RAM

module DataRam(clock, reset, address, isStore, data_out, data_in);

input wire isStore;
input wire [31:0] data_in;
input wire clock, reset;
input wire [7:0] address;

reg [31:0] local_memory [0:255];

output reg [31:0] data_out;

always @(address)
begin

data_out <= local_memory[address];
end

always @(posedge clock)
begin

if(reset) begin

end
else begin

if(isStore) begin
local_memory[address] <= data_in;

end
end

end

endmodule

//Peter Greczner, Branch Select

module BranchSelect(isBranch, isJump, ctrl_BS, alu_EQ, alu_Z, alu_GT, alu_LT, takeBranch);

input wire isBranch, isJump, alu_EQ, alu_Z, alu_GT, alu_LT;
input wire [3:0] ctrl_BS;

output wire takeBranch;

assign takeBranch = ~(isBranch | isJump) ? 0 :
(ctrl_BS == BS_bgt) ? (alu_GT) :
(ctrl_BS == BS_blt) ? (alu_LT) :
(ctrl_BS == BS_bge) ? (alu_GT | alu_EQ) :
(ctrl_BS == BS_ble) ? (alu_LT | alu_EQ) :
(ctrl_BS == BS_beq) ? (alu_EQ) :
(ctrl_BS == BS_bne) ? (~alu_EQ) :
(ctrl_BS == BS_bnez) ? (~alu_Z) :
(ctrl_BS == BS_j) ? 1 :
(ctrl_BS == BS_jr) ? 1 :
(ctrl_BS == BS_jal) ? 1 : 0;

parameter BS_bgt = 4'd0,
BS_blt = 4'd1,
BS_bge = 4'd2,
BS_ble = 4'd3,
//BS_ble = 4'd4,
BS_beq = 4'd5,
BS_bne = 4'd6,
BS_bez = 4'd7,
BS_bnez = 4'd8,
BS_j = 4'd9,
BS_jr = 4'd10,
BS_jal = 4'd11;

endmodule

//Peter Greczner, ALU

module ALU(control, A, B, C, isZero, isNegative, isEqual, isGT, isLT);

input wire [3:0] control;
input wire signed [31:0] A,B;
output reg [31:0] C;

output wire isZero, isNegative, isEqual, isGT, isLT;
assign isNegative = 0;

assign isZero = (C == 0) ? 1: 0;
assign isEqual = (A == B) ? 1 : 0;

assign isGT = (A > B) ? 1 : 0;
assign isLT = (A < B) ? 1 : 0;

parameter add = 4'd0,
subtract = 4'd1,
shiftLeft = 4'd2,
shiftRight = 4'd3,
AND = 4'd4,
OR = 4'd5,
XOR = 4'd6,
NAND = 4'd7,
NOT = 4'd8,
NOR = 4'd9,
NOP = 4'd10;

always @ (control, A, B)
begin

case(control)
add: begin

C = A + B;
end

subtract: begin
C = A - B;

end

shiftLeft: begin
C = A << B;

end

shiftRight: begin
C = A >> B;

end

AND: begin
C = A & B;

end

OR: begin
C = A | B;

end

XOR: begin
C = A ^ B;

end

NAND: begin
C = ~(A & B);

end

NOT: begin
C = ~A;

end

NOR: begin
C = ~(A | B);

end
NOP: begin

C = 0;
end
default: begin

C = A | B;
end

endcase

end

endmodule

module TextWriter(VGA_SYNC, VGA_CLK,
data_reg,
reset,
my_id, id_req,
command,
color,
font_select,
letter_addr, letterX, letterY,
available,

xAddr, yAddr,
write_clk,
is_write_finished
);

input wire VGA_SYNC, VGA_CLK;

output reg [15:0] data_reg; //memory data register for SRAM
input wire [15:0] color;
input wire [1:0] command;
input wire reset;
input wire [3:0] my_id, id_req;
input wire [1:0] font_select;
input wire [11:0] letter_addr;
input wire signed [10:0] letterX, letterY;
output wire available;
reg available_reg;
assign available = available_reg;

output reg write_clk;
input wire is_write_finished;

output reg [9:0] xAddr;
output reg [8:0] yAddr;

reg [11:0] currLetterAddr;
reg [2:0] widthInd;
wire [7:0] currLetterData;

font1_rom f1r(currLetterAddr, letterClock, currLetterData);

reg [2:0] lineNumber;
reg [2:0] state, next_state;
reg letterClock;

parameter [2:0] waiting = 3'd0,
loadLetterLine = 3'd1,
printLetterLine = 3'd2,
looping = 3'd3,
write_state = 3'd4,
initial_clock = 3'd5;

always @ (posedge VGA_CLK) begin
if(reset) begin

data_reg <= 16'b0; //write all zeros (black)
available_reg <= 1'b0;
lineNumber <= 3'd0;
state <= waiting;
widthInd = 3'd0;
letterClock <= 1'b0;

end
else if (VGA_SYNC) begin

if(1'b1) begin
case(state)

write_state: begin
if(is_write_finished) begin

state <= next_state;
write_clk <= 1'b0;

end
end

waiting: begin
if(command[1] == 1'b0) begin available_reg <= 1'b1; end

if(command[1] == 1'b1 && (my_id == id_req)) begin
available_reg <= 1'b0;
lineNumber <= 3'd0;

state <= initial_clock;
letterClock <= 1'b1;
currLetterAddr <= letter_addr;
widthInd <= 3'd0;

end
end

initial_clock: begin
letterClock <= 1'b0;
state <= loadLetterLine;

end

loadLetterLine: begin
letterClock <= 1'b1;
state <= looping;

end

looping: begin
letterClock <= 1'b0;
available_reg <= 1'b0;

//Draw the Letter
if(currLetterData[~widthInd] == 1'b1) begin

data_reg <= color;

xAddr <= letterX[9:0] + widthInd;
yAddr <= letterY[8:0] + lineNumber;
state <= write_state;

write_clk <= 1'b1;
end
else begin //easy to implement w/background

end

//Loop Through Pixels
if(widthInd < 3'd7) begin

widthInd <= widthInd + 3'd1;
next_state <= looping;
if(~currLetterData[~widthInd] == 1'b1) begin state <= looping; end

end
else begin

if(lineNumber < 3'd7) begin
lineNumber <= lineNumber + 3'd1;
currLetterAddr <= letter_addr + {9'd0,(lineNumber+3'd1)};
widthInd <= 3'd0;

next_state <= loadLetterLine;
if(~currLetterData[~widthInd] == 1'b1) begin state <= loadLetterLine

; end
end
else begin

next_state <= waiting;
lineNumber <= 3'd0;
if(~currLetterData[~widthInd] == 1'b1) begin state <= waiting; end

end
end

end

default: begin
available_reg <= 1'b0;
lineNumber <= 3'd0;
state <= waiting;

end

endcase
end

end
else
begin

end
end

endmodule

module TransmitClock(tSend_clk_in, tSend_signal_out, tSend_reset_in);

input wire tSend_clk_in;
output wire tSend_signal_out;
reg tSend_out;

assign tSend_signal_out = tSend_out;

input wire tSend_reset_in;

//reg last_clk;

always @ (posedge tSend_clk_in, posedge tSend_reset_in) begin
if(tSend_reset_in) begin

//last_clk = 1'b0;
tSend_out = 1'b0;

end
else begin

if(tSend_clk_in) begin
tSend_out = 1'b1;

end
else begin

tSend_out = 1'b0;
end

end

end

endmodule

// megafunction wizard: %ALTPLL%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: altpll

// ==
// File Name: VGA_Audio_PLL.v
// Megafunction Name(s):
// altpll
// ==
// **
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
//
// 5.1 Build 176 10/26/2005 SJ Full Version
// **

//Copyright (C) 1991-2005 Altera Corporation
//Your use of Altera Corporation's design tools, logic functions
//and other software and tools, and its AMPP partner logic
//functions, and any output files any of the foregoing
//(including device programming or simulation files), and any
//associated documentation or information are expressly subject
//to the terms and conditions of the Altera Program License
//Subscription Agreement, Altera MegaCore Function License
//Agreement, or other applicable license agreement, including,
//without limitation, that your use is for the sole purpose of
//programming logic devices manufactured by Altera and sold by
//Altera or its authorized distributors. Please refer to the
//applicable agreement for further details.

// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
module VGA_Audio_PLL (

areset,
inclk0,
c0,
c1,
c2);

input areset;
input inclk0;
output c0;
output c1;
output c2;

wire [5:0] sub_wire0;
wire [0:0] sub_wire6 = 1'h0;
wire [2:2] sub_wire3 = sub_wire0[2:2];
wire [1:1] sub_wire2 = sub_wire0[1:1];
wire [0:0] sub_wire1 = sub_wire0[0:0];
wire c0 = sub_wire1;
wire c1 = sub_wire2;
wire c2 = sub_wire3;

wire sub_wire4 = inclk0;
wire [1:0] sub_wire5 = {sub_wire6, sub_wire4};

altpll altpll_component (
.inclk (sub_wire5),
.areset (areset),
.clk (sub_wire0)
// synopsys translate_off
,
.scanclk (),
.pllena (),
.sclkout1 (),
.sclkout0 (),
.fbin (),
.scandone (),
.clkloss (),
.extclk (),
.clkswitch (),
.pfdena (),
.scanaclr (),
.clkena (),
.clkbad (),
.scandata (),
.enable1 (),
.scandataout (),
.extclkena (),
.enable0 (),
.scanwrite (),
.locked (),
.activeclock (),
.scanread ()
// synopsys translate_on
);

defparam
altpll_component.clk0_divide_by = 15,
altpll_component.clk0_duty_cycle = 50,
altpll_component.clk0_multiply_by = 14,
altpll_component.clk0_phase_shift = "0",
altpll_component.clk1_divide_by = 3,
altpll_component.clk1_duty_cycle = 50,
altpll_component.clk1_multiply_by = 2,
altpll_component.clk1_phase_shift = "0",
altpll_component.clk2_divide_by = 15,
altpll_component.clk2_duty_cycle = 50,
altpll_component.clk2_multiply_by = 14,
altpll_component.clk2_phase_shift = "-9921",
altpll_component.compensate_clock = "CLK0",
altpll_component.inclk0_input_frequency = 37037,
altpll_component.intended_device_family = "Cyclone II",
altpll_component.lpm_type = "altpll",
altpll_component.operation_mode = "NORMAL",
altpll_component.pll_type = "FAST";

endmodule

// ==
// CNX file retrieval info
// ==
// Retrieval info: PRIVATE: ACTIVECLK_CHECK STRING "0"
// Retrieval info: PRIVATE: BANDWIDTH STRING "1.000"
// Retrieval info: PRIVATE: BANDWIDTH_FEATURE_ENABLED STRING "0"
// Retrieval info: PRIVATE: BANDWIDTH_FREQ_UNIT STRING "MHz"
// Retrieval info: PRIVATE: BANDWIDTH_PRESET STRING "Low"
// Retrieval info: PRIVATE: BANDWIDTH_USE_AUTO STRING "1"
// Retrieval info: PRIVATE: BANDWIDTH_USE_CUSTOM STRING "0"
// Retrieval info: PRIVATE: BANDWIDTH_USE_PRESET STRING "0"
// Retrieval info: PRIVATE: CLKBAD_SWITCHOVER_CHECK STRING "0"
// Retrieval info: PRIVATE: CLKLOSS_CHECK STRING "0"
// Retrieval info: PRIVATE: CLKSWITCH_CHECK STRING "1"
// Retrieval info: PRIVATE: CNX_NO_COMPENSATE_RADIO STRING "0"
// Retrieval info: PRIVATE: CREATE_CLKBAD_CHECK STRING "0"
// Retrieval info: PRIVATE: CREATE_INCLK1_CHECK STRING "0"
// Retrieval info: PRIVATE: CUR_DEDICATED_CLK STRING "c0"
// Retrieval info: PRIVATE: CUR_FBIN_CLK STRING "e0"
// Retrieval info: PRIVATE: DEVICE_SPEED_GRADE STRING "Any"
// Retrieval info: PRIVATE: DEV_FAMILY STRING "Cyclone II"
// Retrieval info: PRIVATE: DIV_FACTOR0 NUMERIC "1"
// Retrieval info: PRIVATE: DIV_FACTOR1 NUMERIC "6"
// Retrieval info: PRIVATE: DIV_FACTOR2 NUMERIC "1"
// Retrieval info: PRIVATE: DUTY_CYCLE0 STRING "50.00000000"
// Retrieval info: PRIVATE: DUTY_CYCLE1 STRING "50.00000000"
// Retrieval info: PRIVATE: DUTY_CYCLE2 STRING "50.00000000"
// Retrieval info: PRIVATE: EXT_FEEDBACK_RADIO STRING "0"
// Retrieval info: PRIVATE: GLOCKED_COUNTER_EDIT_CHANGED STRING "1"
// Retrieval info: PRIVATE: GLOCKED_FEATURE_ENABLED STRING "1"
// Retrieval info: PRIVATE: GLOCKED_MODE_CHECK STRING "0"
// Retrieval info: PRIVATE: GLOCK_COUNTER_EDIT NUMERIC "1048575"
// Retrieval info: PRIVATE: HAS_MANUAL_SWITCHOVER STRING "1"
// Retrieval info: PRIVATE: INCLK0_FREQ_EDIT STRING "27.000"
// Retrieval info: PRIVATE: INCLK0_FREQ_UNIT_COMBO STRING "MHz"
// Retrieval info: PRIVATE: INCLK1_FREQ_EDIT STRING "27.000"
// Retrieval info: PRIVATE: INCLK1_FREQ_EDIT_CHANGED STRING "1"
// Retrieval info: PRIVATE: INCLK1_FREQ_UNIT_CHANGED STRING "1"
// Retrieval info: PRIVATE: INCLK1_FREQ_UNIT_COMBO STRING "MHz"
// Retrieval info: PRIVATE: INT_FEEDBACK__MODE_RADIO STRING "1"
// Retrieval info: PRIVATE: LOCKED_OUTPUT_CHECK STRING "0"
// Retrieval info: PRIVATE: LONG_SCAN_RADIO STRING "1"
// Retrieval info: PRIVATE: LVDS_MODE_DATA_RATE STRING "Not Available"
// Retrieval info: PRIVATE: LVDS_MODE_DATA_RATE_DIRTY NUMERIC "0"
// Retrieval info: PRIVATE: LVDS_PHASE_SHIFT_UNIT0 STRING "deg"
// Retrieval info: PRIVATE: LVDS_PHASE_SHIFT_UNIT1 STRING "deg"
// Retrieval info: PRIVATE: LVDS_PHASE_SHIFT_UNIT2 STRING "ps"
// Retrieval info: PRIVATE: MIRROR_CLK0 STRING "0"
// Retrieval info: PRIVATE: MIRROR_CLK1 STRING "0"
// Retrieval info: PRIVATE: MIRROR_CLK2 STRING "0"
// Retrieval info: PRIVATE: MULT_FACTOR0 NUMERIC "1"
// Retrieval info: PRIVATE: MULT_FACTOR1 NUMERIC "5"
// Retrieval info: PRIVATE: MULT_FACTOR2 NUMERIC "1"
// Retrieval info: PRIVATE: NORMAL_MODE_RADIO STRING "1"
// Retrieval info: PRIVATE: OUTPUT_FREQ0 STRING "25.200"
// Retrieval info: PRIVATE: OUTPUT_FREQ1 STRING "18.000"

// Retrieval info: PRIVATE: OUTPUT_FREQ2 STRING "25.200"
// Retrieval info: PRIVATE: OUTPUT_FREQ_MODE0 STRING "1"
// Retrieval info: PRIVATE: OUTPUT_FREQ_MODE1 STRING "1"
// Retrieval info: PRIVATE: OUTPUT_FREQ_MODE2 STRING "1"
// Retrieval info: PRIVATE: OUTPUT_FREQ_UNIT0 STRING "MHz"
// Retrieval info: PRIVATE: OUTPUT_FREQ_UNIT1 STRING "MHz"
// Retrieval info: PRIVATE: OUTPUT_FREQ_UNIT2 STRING "MHz"
// Retrieval info: PRIVATE: PHASE_SHIFT0 STRING "0.00000000"
// Retrieval info: PRIVATE: PHASE_SHIFT1 STRING "0.00000000"
// Retrieval info: PRIVATE: PHASE_SHIFT2 STRING "-90.00000000"
// Retrieval info: PRIVATE: PHASE_SHIFT_UNIT0 STRING "deg"
// Retrieval info: PRIVATE: PHASE_SHIFT_UNIT1 STRING "deg"
// Retrieval info: PRIVATE: PHASE_SHIFT_UNIT2 STRING "deg"
// Retrieval info: PRIVATE: PLL_ADVANCED_PARAM_CHECK STRING "0"
// Retrieval info: PRIVATE: PLL_ARESET_CHECK STRING "1"
// Retrieval info: PRIVATE: PLL_AUTOPLL_CHECK NUMERIC "1"
// Retrieval info: PRIVATE: PLL_ENA_CHECK STRING "0"
// Retrieval info: PRIVATE: PLL_ENHPLL_CHECK NUMERIC "0"
// Retrieval info: PRIVATE: PLL_FASTPLL_CHECK NUMERIC "0"
// Retrieval info: PRIVATE: PLL_LVDS_PLL_CHECK NUMERIC "0"
// Retrieval info: PRIVATE: PLL_PFDENA_CHECK STRING "0"
// Retrieval info: PRIVATE: PLL_TARGET_HARCOPY_CHECK NUMERIC "0"
// Retrieval info: PRIVATE: PRIMARY_CLK_COMBO STRING "inclk0"
// Retrieval info: PRIVATE: SACN_INPUTS_CHECK STRING "0"
// Retrieval info: PRIVATE: SCAN_FEATURE_ENABLED STRING "0"
// Retrieval info: PRIVATE: SHORT_SCAN_RADIO STRING "0"
// Retrieval info: PRIVATE: SPREAD_FEATURE_ENABLED STRING "0"
// Retrieval info: PRIVATE: SPREAD_FREQ STRING "50.000"
// Retrieval info: PRIVATE: SPREAD_FREQ_UNIT STRING "KHz"
// Retrieval info: PRIVATE: SPREAD_PERCENT STRING "0.500"
// Retrieval info: PRIVATE: SPREAD_USE STRING "0"
// Retrieval info: PRIVATE: SRC_SYNCH_COMP_RADIO STRING "0"
// Retrieval info: PRIVATE: STICKY_CLK0 STRING "1"
// Retrieval info: PRIVATE: STICKY_CLK1 STRING "1"
// Retrieval info: PRIVATE: STICKY_CLK2 STRING "1"
// Retrieval info: PRIVATE: SWITCHOVER_COUNT_EDIT NUMERIC "1"
// Retrieval info: PRIVATE: SWITCHOVER_FEATURE_ENABLED STRING "1"
// Retrieval info: PRIVATE: USE_CLK0 STRING "1"
// Retrieval info: PRIVATE: USE_CLK1 STRING "1"
// Retrieval info: PRIVATE: USE_CLK2 STRING "1"
// Retrieval info: PRIVATE: USE_CLKENA0 STRING "0"
// Retrieval info: PRIVATE: USE_CLKENA1 STRING "0"
// Retrieval info: PRIVATE: USE_CLKENA2 STRING "0"
// Retrieval info: PRIVATE: ZERO_DELAY_RADIO STRING "0"
// Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all
// Retrieval info: CONSTANT: CLK0_DIVIDE_BY NUMERIC "15"
// Retrieval info: CONSTANT: CLK0_DUTY_CYCLE NUMERIC "50"
// Retrieval info: CONSTANT: CLK0_MULTIPLY_BY NUMERIC "14"
// Retrieval info: CONSTANT: CLK0_PHASE_SHIFT STRING "0"
// Retrieval info: CONSTANT: CLK1_DIVIDE_BY NUMERIC "3"
// Retrieval info: CONSTANT: CLK1_DUTY_CYCLE NUMERIC "50"
// Retrieval info: CONSTANT: CLK1_MULTIPLY_BY NUMERIC "2"
// Retrieval info: CONSTANT: CLK1_PHASE_SHIFT STRING "0"
// Retrieval info: CONSTANT: CLK2_DIVIDE_BY NUMERIC "15"
// Retrieval info: CONSTANT: CLK2_DUTY_CYCLE NUMERIC "50"
// Retrieval info: CONSTANT: CLK2_MULTIPLY_BY NUMERIC "14"

// Retrieval info: CONSTANT: CLK2_PHASE_SHIFT STRING "-9921"
// Retrieval info: CONSTANT: COMPENSATE_CLOCK STRING "CLK0"
// Retrieval info: CONSTANT: INCLK0_INPUT_FREQUENCY NUMERIC "37037"
// Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone II"
// Retrieval info: CONSTANT: LPM_TYPE STRING "altpll"
// Retrieval info: CONSTANT: OPERATION_MODE STRING "NORMAL"
// Retrieval info: CONSTANT: PLL_TYPE STRING "FAST"
// Retrieval info: USED_PORT: @clk 0 0 6 0 OUTPUT VCC "@clk[5..0]"
// Retrieval info: USED_PORT: @extclk 0 0 4 0 OUTPUT VCC "@extclk[3..0]"
// Retrieval info: USED_PORT: areset 0 0 0 0 INPUT GND "areset"
// Retrieval info: USED_PORT: c0 0 0 0 0 OUTPUT VCC "c0"
// Retrieval info: USED_PORT: c1 0 0 0 0 OUTPUT VCC "c1"
// Retrieval info: USED_PORT: c2 0 0 0 0 OUTPUT VCC "c2"
// Retrieval info: USED_PORT: inclk0 0 0 0 0 INPUT GND "inclk0"
// Retrieval info: CONNECT: @inclk 0 0 1 0 inclk0 0 0 0 0
// Retrieval info: CONNECT: c0 0 0 0 0 @clk 0 0 1 0
// Retrieval info: CONNECT: c1 0 0 0 0 @clk 0 0 1 1
// Retrieval info: CONNECT: c2 0 0 0 0 @clk 0 0 1 2
// Retrieval info: CONNECT: @inclk 0 0 1 1 GND 0 0 0 0
// Retrieval info: CONNECT: @areset 0 0 0 0 areset 0 0 0 0
// Retrieval info: GEN_FILE: TYPE_NORMAL VGA_Audio_PLL.v TRUE FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL VGA_Audio_PLL.inc FALSE FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL VGA_Audio_PLL.cmp FALSE FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL VGA_Audio_PLL.bsf FALSE FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL VGA_Audio_PLL_inst.v FALSE FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL VGA_Audio_PLL_bb.v FALSE FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL VGA_Audio_PLL_waveforms.html TRUE FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL VGA_Audio_PLL_wave*.jpg FALSE FALSE

module XAddr_MUX(
xCF, xCD, xSD, xSF, xLD, xTW, xIDLE,
clock, select,
xOut

);

input wire [9:0] xCF, xCD, xSD, xSF, xLD, xTW, xIDLE;
input wire clock;
input wire [3:0] select;
output wire [9:0] xOut;
reg [9:0] xReg;
assign xOut = xReg;

parameter [3:0] circle_fill = 4'd0,
circle_draw = 4'd1,
square_fill = 4'd2,
square_draw = 4'd3,
line_draw = 4'd4,
text_write = 4'd5,
frame_update = 4'd6,
idle = 4'd15;

always @(posedge clock) begin
case(select)

circle_fill: begin xReg <= xCF; end
circle_draw: begin xReg <= xCD; end
square_fill: begin xReg <= xSF; end
square_draw: begin xReg <= xSD; end
line_draw: begin xReg <= xLD; end
text_write: begin xReg <= xTW; end
idle: begin xReg <= xIDLE; end
default: begin

xReg <= 0;
end

endcase
end

endmodule

module YAddr_MUX(
yCF, yCD, ySD, ySF, yLD, yTW, yIDLE,
clock, select,
yOut

);

input wire [8:0] yCF, yCD, ySD, ySF, yLD, yTW, yIDLE;
input wire clock;
input wire [3:0] select;
output wire [8:0] yOut;
reg [8:0] yReg;
assign yOut = yReg;

parameter [3:0] circle_fill = 4'd0,
circle_draw = 4'd1,
square_fill = 4'd2,
square_draw = 4'd3,
line_draw = 4'd4,
text_write = 4'd5,
frame_update = 4'd6,
idle = 4'd15;

always @(posedge clock) begin
case(select)

circle_fill: begin yReg <= yCF; end
circle_draw: begin yReg <= yCD; end
square_fill: begin yReg <= ySF; end
square_draw: begin yReg <= ySD; end
line_draw: begin yReg <= yLD; end
text_write: begin yReg <= yTW; end
idle: begin yReg <= yIDLE; end
default: begin

yReg <= 0;
end

endcase
end

endmodule

//Peter Greczner - Simple Instruction RAM

module SimpleIRAM(clock, write, instr_in, pc, pc_write, instr_out, isDraw, reset);

input wire clock, write, reset;
output wire isDraw;

input wire [11:0] pc, pc_write;

input wire [79:0] instr_in;
output reg [79:0] instr_out;

assign isDraw = (instr_out[79] == 1'b1) ? 0 : 1;

reg [79:0] instr_list [0:1024];

always @(pc)
begin

instr_out <= instr_list[pc[9:0]];
end

always @(posedge clock)
begin

if(write) begin
instr_list[pc[9:0]] <= instr_in;

end
end

endmodule

//Peter Greczner, Register File

module RegisterFile(A_addr, B_addr, D_addr, w_en, A_data, B_data, D_data, clk);

input wire [4:0] A_addr, B_addr, D_addr;
input wire w_en, clk;

output wire [31:0] A_data, B_data;
input wire [31:0] D_data;

assign A_data = registers[A_addr];
assign B_data = registers[B_addr];

reg [31:0] registers [0:31];

always @(posedge clk)
begin

if(w_en)
begin

registers[D_addr] <= D_data;
end

end

endmodule

//Peter Greczner, PC

module ProgramCounter(clock, enabled, PC_out, PC_in, reset, isDraw, isDrawDone);

input wire clock;
input wire enabled;
input wire reset;
input wire isDraw, isDrawDone;
input wire [11:0] PC_in;
output reg [11:0] PC_out;

always @ (posedge clock, posedge reset)
begin

if(reset)
begin

PC_out <= 12'b0;
end
else if(enabled & ~(isDraw & isDrawDone)) begin

PC_out <= PC_in;
end

end

endmodule

//Peter Greczner, PC

module Processor(
clock_50,
draw_complete,
reset,
enable,
instruction,
pc,
isDrawInstruction
);

input wire clock_50;
input wire draw_complete;
input wire reset;
input wire enable;

output wire isDrawInstruction;
assign isDrawInstruction = isDraw;

input wire [79:0] instruction;
output wire pc;
assign pc = pc_out;

wire pc_enable;
assign pc_enable = enable & draw_complete;
wire [11:0] pc_in;
wire [11:0] pc_out;
ProgramCounter pc1(

.clock(clock_50),

.reset(reset),

.enabled(pc_enable),

.PC_out(pc_out),

.PC_in(pc_in),

.isDraw(isDraw),

.isDrawDone(draw_complete)
);

wire [3:0] ctrl_ALU;
wire [3:0] ctrl_BS;
wire isBranch, isStore, isJump, isDraw, isIMMOpp, isLoad;
wire [4:0] SA, SB, SD;
wire [31:0] IMM;
wire WE;
Decoder dec1(.instruction(instruction),

.ctrl_ALU(ctrl_ALU),

.ctrl_BS(ctrl_BS),

.isBranch(isBranch),

.isLoad(isLoad),

.isStore(isStore),

.isJump(isJump),

.isDraw(isDraw),

.isIMMOpp(isIMMOpp),

.SA(SA),

.SB(SB),

.SD(SD),

.IMM(IMM),

.WE(WE)
);

wire [31:0] A_data, B_data, D_data;
RegisterFile regfile1(

.A_addr(SA),

.B_addr(SB),

.D_addr(SD),

.w_en(WE),

.A_data(A_data),

.B_data(B_data),

.D_data(D_data),

.clk(clock_50)
);

wire [31:0] alu_res;
wire isZero, isNegative, isEqual, isGT, isLT;
wire [31:0] B_input;
assign B_input = isIMMOpp ? IMM : B_data;
ALU alu1(

.control(ctrl_ALU),

.A(A_data),

.B(B_input),

.C(alu_res),

.isZero(isZero),

.isNegative(isNegative),

.isEqual(isEqual),

.isGT(isGT),

.isLT(isLT)
);

wire [31:0] data_mem;
assign D_data = isLoad ? data_mem : alu_res;
DataRam dr1(

.clock(clock_50),

.reset(reset),

.address(alu_res[7:0]),

.isStore(isStore),

.data_out(data_mem),

.data_in(B_data)
);

wire takeBranch;
BranchSelect bs1(

.isBranch(isBranch),

.isJump(isJump),

.ctrl_BS(ctrl_BS),

.alu_EQ(isEqual),

.alu_Z(isZero),

.alu_GT(isGT),

.alu_LT(isLT),

.takeBranch(takeBranch)

);

PCUpdater pcu1(
.ctrl_BS(ctrl_BS),
.takeBranch(takeBranch),
.alu_res(alu_res),
.PC_now(pc_out),
.PC_next(pc_in)
);

endmodule

//Peter Greczner, PC Updater

module PCUpdater(ctrl_BS, takeBranch, alu_res, PC_now, PC_next);

input wire [3:0] ctrl_BS;
input wire takeBranch;
input wire [31:0] alu_res;
input wire [11:0] PC_now;

output reg [11:0] PC_next;

always @(ctrl_BS, alu_res, PC_now, takeBranch)
begin

if(~takeBranch)
begin

PC_next = PC_now + 1;
end
else begin

PC_next = alu_res;
end

end

endmodule

module GPU_Greczner
(

//////////////////// Clock Input ////////////////////
CLOCK_27, // 27 MHz
CLOCK_50, // 50 MHz
EXT_CLOCK, // External Clock
//////////////////// Push Button ////////////////////
KEY, // Pushbutton[3:0]
//////////////////// DPDT Switch ////////////////////
SW, // Toggle Switch[17:0]
//////////////////// 7-SEG Dispaly ////////////////////
HEX0, // Seven Segment Digit 0
HEX1, // Seven Segment Digit 1
HEX2, // Seven Segment Digit 2
HEX3, // Seven Segment Digit 3
HEX4, // Seven Segment Digit 4
HEX5, // Seven Segment Digit 5
HEX6, // Seven Segment Digit 6
HEX7, // Seven Segment Digit 7
//////////////////////// LED ////////////////////////
LEDG, // LED Green[8:0]
LEDR, // LED Red[17:0]
//////////////////////// UART ////////////////////////
UART_TXD, // UART Transmitter
UART_RXD, // UART Receiver
//////////////////////// IRDA ////////////////////////
IRDA_TXD, // IRDA Transmitter
IRDA_RXD, // IRDA Receiver
///////////////////// SDRAM Interface ////////////////
DRAM_DQ, // SDRAM Data bus 16 Bits
DRAM_ADDR, // SDRAM Address bus 12 Bits
DRAM_LDQM, // SDRAM Low-byte Data Mask
DRAM_UDQM, // SDRAM High-byte Data Mask
DRAM_WE_N, // SDRAM Write Enable
DRAM_CAS_N, // SDRAM Column Address Strobe
DRAM_RAS_N, // SDRAM Row Address Strobe
DRAM_CS_N, // SDRAM Chip Select
DRAM_BA_0, // SDRAM Bank Address 0
DRAM_BA_1, // SDRAM Bank Address 0
DRAM_CLK, // SDRAM Clock
DRAM_CKE, // SDRAM Clock Enable
//////////////////// Flash Interface ////////////////
FL_DQ, // FLASH Data bus 8 Bits
FL_ADDR, // FLASH Address bus 22 Bits
FL_WE_N, // FLASH Write Enable
FL_RST_N, // FLASH Reset
FL_OE_N, // FLASH Output Enable
FL_CE_N, // FLASH Chip Enable
//////////////////// SRAM Interface ////////////////
SRAM_DQ, // SRAM Data bus 16 Bits
SRAM_ADDR, // SRAM Address bus 18 Bits
SRAM_UB_N, // SRAM High-byte Data Mask
SRAM_LB_N, // SRAM Low-byte Data Mask
SRAM_WE_N, // SRAM Write Enable
SRAM_CE_N, // SRAM Chip Enable

SRAM_OE_N, // SRAM Output Enable
//////////////////// ISP1362 Interface////////////////
OTG_DATA, // ISP1362 Data bus 16 Bits
OTG_ADDR, // ISP1362 Address 2 Bits
OTG_CS_N, // ISP1362 Chip Select
OTG_RD_N, // ISP1362 Write
OTG_WR_N, // ISP1362 Read
OTG_RST_N, // ISP1362 Reset
OTG_FSPEED, // USB Full Speed, 0 = Enable, Z = Disable
OTG_LSPEED, // USB Low Speed, 0 = Enable, Z = Disable
OTG_INT0, // ISP1362 Interrupt 0
OTG_INT1, // ISP1362 Interrupt 1
OTG_DREQ0, // ISP1362 DMA Request 0
OTG_DREQ1, // ISP1362 DMA Request 1
OTG_DACK0_N, // ISP1362 DMA Acknowledge 0
OTG_DACK1_N, // ISP1362 DMA Acknowledge 1
//////////////////// LCD Module 16X2 ////////////////
LCD_ON, // LCD Power ON/OFF
LCD_BLON, // LCD Back Light ON/OFF
LCD_RW, // LCD Read/Write Select, 0 = Write, 1 = Read
LCD_EN, // LCD Enable
LCD_RS, // LCD Command/Data Select, 0 = Command, 1 = Data
LCD_DATA, // LCD Data bus 8 bits
//////////////////// SD_Card Interface ////////////////
SD_DAT, // SD Card Data
SD_DAT3, // SD Card Data 3
SD_CMD, // SD Card Command Signal
SD_CLK, // SD Card Clock
//////////////////// USB JTAG link ////////////////////
TDI, // CPLD -> FPGA (data in)
TCK, // CPLD -> FPGA (clk)
TCS, // CPLD -> FPGA (CS)
TDO, // FPGA -> CPLD (data out)
//////////////////// I2C ////////////////////////////
I2C_SDAT, // I2C Data
I2C_SCLK, // I2C Clock
//////////////////// PS2 ////////////////////////////
PS2_DAT, // PS2 Data
PS2_CLK, // PS2 Clock
//////////////////// VGA ////////////////////////////
VGA_CLK, // VGA Clock
VGA_HS, // VGA H_SYNC
VGA_VS, // VGA V_SYNC
VGA_BLANK, // VGA BLANK
VGA_SYNC, // VGA SYNC
VGA_R, // VGA Red[9:0]
VGA_G, // VGA Green[9:0]
VGA_B, // VGA Blue[9:0]
//////////// Ethernet Interface ////////////////////////
ENET_DATA, // DM9000A DATA bus 16Bits
ENET_CMD, // DM9000A Command/Data Select, 0 = Command, 1 = Data
ENET_CS_N, // DM9000A Chip Select
ENET_WR_N, // DM9000A Write
ENET_RD_N, // DM9000A Read
ENET_RST_N, // DM9000A Reset
ENET_INT, // DM9000A Interrupt

ENET_CLK, // DM9000A Clock 25 MHz
//////////////// Audio CODEC ////////////////////////
AUD_ADCLRCK, // Audio CODEC ADC LR Clock
AUD_ADCDAT, // Audio CODEC ADC Data
AUD_DACLRCK, // Audio CODEC DAC LR Clock
AUD_DACDAT, // Audio CODEC DAC Data
AUD_BCLK, // Audio CODEC Bit-Stream Clock
AUD_XCK, // Audio CODEC Chip Clock
//////////////// TV Decoder ////////////////////////
TD_DATA, // TV Decoder Data bus 8 bits
TD_HS, // TV Decoder H_SYNC
TD_VS, // TV Decoder V_SYNC
TD_RESET, // TV Decoder Reset
//////////////////// GPIO ////////////////////////////
GPIO_0, // GPIO Connection 0
GPIO_1 // GPIO Connection 1

);

//////////////////////// Clock Input ////////////////////////
input CLOCK_27; // 27 MHz
input CLOCK_50; // 50 MHz
input EXT_CLOCK; // External Clock
//////////////////////// Push Button ////////////////////////
input [3:0] KEY; // Pushbutton[3:0]
//////////////////////// DPDT Switch ////////////////////////
input [17:0] SW; // Toggle Switch[17:0]
//////////////////////// 7-SEG Dispaly ////////////////////////
output [6:0] HEX0; // Seven Segment Digit 0
output [6:0] HEX1; // Seven Segment Digit 1
output [6:0] HEX2; // Seven Segment Digit 2
output [6:0] HEX3; // Seven Segment Digit 3
output [6:0] HEX4; // Seven Segment Digit 4
output [6:0] HEX5; // Seven Segment Digit 5
output [6:0] HEX6; // Seven Segment Digit 6
output [6:0] HEX7; // Seven Segment Digit 7
//////////////////////////// LED ////////////////////////////
output [8:0] LEDG; // LED Green[8:0]
output [17:0] LEDR; // LED Red[17:0]
//////////////////////////// UART ////////////////////////////
output UART_TXD; // UART Transmitter
input UART_RXD; // UART Receiver
//////////////////////////// IRDA ////////////////////////////
output IRDA_TXD; // IRDA Transmitter
input IRDA_RXD; // IRDA Receiver
/////////////////////// SDRAM Interface ////////////////////////
inout [15:0] DRAM_DQ; // SDRAM Data bus 16 Bits
output [11:0] DRAM_ADDR; // SDRAM Address bus 12 Bits
output DRAM_LDQM; // SDRAM Low-byte Data Mask
output DRAM_UDQM; // SDRAM High-byte Data Mask
output DRAM_WE_N; // SDRAM Write Enable
output DRAM_CAS_N; // SDRAM Column Address Strobe
output DRAM_RAS_N; // SDRAM Row Address Strobe
output DRAM_CS_N; // SDRAM Chip Select
output DRAM_BA_0; // SDRAM Bank Address 0
output DRAM_BA_1; // SDRAM Bank Address 0
output DRAM_CLK; // SDRAM Clock

output DRAM_CKE; // SDRAM Clock Enable
//////////////////////// Flash Interface ////////////////////////
inout [7:0] FL_DQ; // FLASH Data bus 8 Bits
output [21:0] FL_ADDR; // FLASH Address bus 22 Bits
output FL_WE_N; // FLASH Write Enable
output FL_RST_N; // FLASH Reset
output FL_OE_N; // FLASH Output Enable
output FL_CE_N; // FLASH Chip Enable
//////////////////////// SRAM Interface ////////////////////////
inout [15:0] SRAM_DQ; // SRAM Data bus 16 Bits
output [17:0] SRAM_ADDR; // SRAM Address bus 18 Bits
output SRAM_UB_N; // SRAM High-byte Data Mask
output SRAM_LB_N; // SRAM Low-byte Data Mask
output SRAM_WE_N; // SRAM Write Enable
output SRAM_CE_N; // SRAM Chip Enable
output SRAM_OE_N; // SRAM Output Enable
//////////////////// ISP1362 Interface////////////////////////
inout [15:0] OTG_DATA; // ISP1362 Data bus 16 Bits
output [1:0] OTG_ADDR; // ISP1362 Address 2 Bits
output OTG_CS_N; // ISP1362 Chip Select
output OTG_RD_N; // ISP1362 Write
output OTG_WR_N; // ISP1362 Read
output OTG_RST_N; // ISP1362 Reset
output OTG_FSPEED; // USB Full Speed, 0 = Enable, Z = Disable
output OTG_LSPEED; // USB Low Speed, 0 = Enable, Z = Disable
input OTG_INT0; // ISP1362 Interrupt 0
input OTG_INT1; // ISP1362 Interrupt 1
input OTG_DREQ0; // ISP1362 DMA Request 0
input OTG_DREQ1; // ISP1362 DMA Request 1
output OTG_DACK0_N; // ISP1362 DMA Acknowledge 0
output OTG_DACK1_N; // ISP1362 DMA Acknowledge 1
//////////////////// LCD Module 16X2 ////////////////////////////
inout [7:0] LCD_DATA; // LCD Data bus 8 bits
output LCD_ON; // LCD Power ON/OFF
output LCD_BLON; // LCD Back Light ON/OFF
output LCD_RW; // LCD Read/Write Select, 0 = Write, 1 = Read
output LCD_EN; // LCD Enable
output LCD_RS; // LCD Command/Data Select, 0 = Command, 1 = Data
//////////////////// SD Card Interface ////////////////////////
inout SD_DAT; // SD Card Data
inout SD_DAT3; // SD Card Data 3
inout SD_CMD; // SD Card Command Signal
output SD_CLK; // SD Card Clock
//////////////////////// I2C ////////////////////////////////
inout I2C_SDAT; // I2C Data
output I2C_SCLK; // I2C Clock
//////////////////////// PS2 ////////////////////////////////
input PS2_DAT; // PS2 Data
input PS2_CLK; // PS2 Clock
//////////////////// USB JTAG link ////////////////////////////
input TDI; // CPLD -> FPGA (data in)
input TCK; // CPLD -> FPGA (clk)
input TCS; // CPLD -> FPGA (CS)
output TDO; // FPGA -> CPLD (data out)
//////////////////////// VGA ////////////////////////////
output VGA_CLK; // VGA Clock

output VGA_HS; // VGA H_SYNC
output VGA_VS; // VGA V_SYNC
output VGA_BLANK; // VGA BLANK
output VGA_SYNC; // VGA SYNC
output [9:0] VGA_R; // VGA Red[9:0]
output [9:0] VGA_G; // VGA Green[9:0]
output [9:0] VGA_B; // VGA Blue[9:0]
//////////////// Ethernet Interface ////////////////////////////
inout [15:0] ENET_DATA; // DM9000A DATA bus 16Bits
output ENET_CMD; // DM9000A Command/Data Select, 0 = Command, 1 = Data
output ENET_CS_N; // DM9000A Chip Select
output ENET_WR_N; // DM9000A Write
output ENET_RD_N; // DM9000A Read
output ENET_RST_N; // DM9000A Reset
input ENET_INT; // DM9000A Interrupt
output ENET_CLK; // DM9000A Clock 25 MHz
//////////////////// Audio CODEC ////////////////////////////
output/*inout*/AUD_ADCLRCK; // Audio CODEC ADC LR Clock
input AUD_ADCDAT; // Audio CODEC ADC Data
inout AUD_DACLRCK; // Audio CODEC DAC LR Clock
output AUD_DACDAT; // Audio CODEC DAC Data
inout AUD_BCLK; // Audio CODEC Bit-Stream Clock
output AUD_XCK; // Audio CODEC Chip Clock
//////////////////// TV Devoder ////////////////////////////
input [7:0] TD_DATA; // TV Decoder Data bus 8 bits
input TD_HS; // TV Decoder H_SYNC
input TD_VS; // TV Decoder V_SYNC
output TD_RESET; // TV Decoder Reset
//////////////////////// GPIO ////////////////////////////////
inout [35:0] GPIO_0; // GPIO Connection 0
inout [35:0] GPIO_1; // GPIO Connection 1

//
////////////////////////////////////
//DLA state machine variables
wire reset;
wire we; // we for SRAM
wire [17:0] addr_reg; //memory address register for SRAM
wire [15:0] data_reg; //memory data register for SRAM
assign reset = ~KEY[0];
//
///

// LCD ON
assign LCD_ON = 1'b0;
assign LCD_BLON = 1'b0;

// All inout port turn to tri-state
assign DRAM_DQ = 16'hzzzz;
assign FL_DQ = 8'hzz;
assign SRAM_DQ = 16'hzzzz;
assign OTG_DATA = 16'hzzzz;
assign SD_DAT = 1'bz;
assign ENET_DATA = 16'hzzzz;
assign GPIO_0 = 36'hzzzzzzzzz;
assign GPIO_1 = 36'hzzzzzzzzz;

wire VGA_CTRL_CLK;
wire AUD_CTRL_CLK;
wire [9:0] mVGA_R, mVGA_R1, mVGA_R2, mVGA_R3, mVGA_R4;
wire [9:0] mVGA_G, mVGA_G1, mVGA_G2, mVGA_G3, mVGA_G4;
wire [9:0] mVGA_B, mVGA_B1, mVGA_B2, mVGA_B3, mVGA_B4;
wire [19:0] mVGA_ADDR; //video memory address
wire [9:0] Coord_X, Coord_Y; //display coods
wire DLY_RST;

assign TD_RESET = 1'b1; // Allow 27 MHz input

Reset_Delay r0 (.iCLK(CLOCK_50),.oRESET(DLY_RST));

VGA_Audio_PLL p1 (.areset(~DLY_RST),.inclk0(CLOCK_27),.c0(VGA_CTRL_CLK),.c1(
AUD_CTRL_CLK),.c2(VGA_CLK));

VGA_Controller u1 (// Host Side
.iCursor_RGB_EN(4'b0111),
.oAddress(mVGA_ADDR),
.oCoord_X(Coord_X),
.oCoord_Y(Coord_Y),
.iRed(mVGA_R),
.iGreen(mVGA_G),
.iBlue(mVGA_B),
// VGA Side
.oVGA_R(VGA_R),
.oVGA_G(VGA_G),
.oVGA_B(VGA_B),
.oVGA_H_SYNC(VGA_HS),
.oVGA_V_SYNC(VGA_VS),
.oVGA_SYNC(VGA_SYNC),
.oVGA_BLANK(VGA_BLANK),
// Control Signal
.iCLK(VGA_CTRL_CLK),
.iRST_N(DLY_RST));

// SRAM_control
assign SRAM_ADDR = addr_reg;
assign SRAM_DQ = (we)? 16'hzzzz : data_reg ;
assign SRAM_UB_N = 0; // hi byte select enabled
assign SRAM_LB_N = 0; // lo byte select enabled
assign SRAM_CE_N = 0; // chip is enabled
assign SRAM_WE_N = we; // write when ZERO
assign SRAM_OE_N = 0; //output enable is overidden by WE

parameter [2:0] sixteenBit_single_320x240 = 3'd0,
eightBit_single_640x480 = 3'd1,
eightBit_double_320x240 = 3'd2,
fourBit_double_640x480 = 3'd3,
fiveBit_triple_320x240 = 3'd4,
fourBit_quad_320x240 = 3'd5,
twoBit_quad_640x480 = 3'd6,
foreground_background = 3'd7;

// Show SRAM on the VGA
//320x240 single frame
assign mVGA_R1 = {SRAM_DQ[15:12], 6'b0} ;
assign mVGA_G1 = {SRAM_DQ[11:8], 6'b0} ;
assign mVGA_B1 = {SRAM_DQ[7:4], 6'b0} ;
//640x480 - single frame
assign mVGA_R2 = (Coord_X[0]) ? {SRAM_DQ[15:13], SRAM_DQ[15:13],SRAM_DQ[15:13],1'b1} : {SRAM_DQ
[7:5], SRAM_DQ[7:5],SRAM_DQ[7:5],1'b1} ;
assign mVGA_G2 = (Coord_X[0]) ? {SRAM_DQ[12:10], SRAM_DQ[12:10],SRAM_DQ[12:10],1'b1} : {SRAM_DQ
[4:2], SRAM_DQ[4:2],SRAM_DQ[4:2],1'b1};
assign mVGA_B2 = (Coord_X[0]) ? {SRAM_DQ[9:8], SRAM_DQ[9:8],SRAM_DQ[9:8],SRAM_DQ[9:8],SRAM_DQ[9
:8]} : {SRAM_DQ[1:0], SRAM_DQ[1:0],SRAM_DQ[1:0],SRAM_DQ[1:0],SRAM_DQ[1:0]};
//320x240 - double frame
assign mVGA_R3 = ~readFrame ? {SRAM_DQ[15:13], SRAM_DQ[15:13],SRAM_DQ[15:13],1'b1} : {SRAM_DQ[7
:5], SRAM_DQ[7:5],SRAM_DQ[7:5],1'b1} ;
assign mVGA_G3 = ~readFrame ? {SRAM_DQ[12:10], SRAM_DQ[12:10],SRAM_DQ[12:10],1'b1} : {SRAM_DQ[4
:2], SRAM_DQ[4:2],SRAM_DQ[4:2],1'b1};
assign mVGA_B3 = ~readFrame ? {SRAM_DQ[9:8], SRAM_DQ[9:8],SRAM_DQ[9:8],SRAM_DQ[9:8],SRAM_DQ[9:8
]} : {SRAM_DQ[1:0], SRAM_DQ[1:0],SRAM_DQ[1:0],SRAM_DQ[1:0],SRAM_DQ[1:0]};
//640x480 - double frame
assign mVGA_R4 = ~Coord_X[0] ? (readFrame ? ({10{SRAM_DQ[7]}}) : ({10{SRAM_DQ[3]}})) : (
readFrame ? ({10{SRAM_DQ[11]}}) : ({10{SRAM_DQ[15]}}));
assign mVGA_G4 = ~Coord_X[0] ? (readFrame ? ({5{SRAM_DQ[6:5]}}) : ({5{SRAM_DQ[2:1]}})) : (
readFrame ? ({5{SRAM_DQ[10:9]}}) : ({5{SRAM_DQ[14:13]}}));
assign mVGA_B4 = ~Coord_X[0] ? (readFrame ? ({10{SRAM_DQ[4]}}) : ({10{SRAM_DQ[0]}})) : (
readFrame ? ({10{SRAM_DQ[8]}}) : ({10{SRAM_DQ[12]}}));

assign mVGA_R = (drawMode == sixteenBit_single_320x240) ? mVGA_R1:
(drawMode == eightBit_single_640x480) ? mVGA_R2:
(drawMode == eightBit_double_320x240) ? mVGA_R3:
(drawMode == fourBit_double_640x480) ? mVGA_R4: 10'd0;

assign mVGA_G = (drawMode == sixteenBit_single_320x240) ? mVGA_G1:
(drawMode == eightBit_single_640x480) ? mVGA_G2:
(drawMode == eightBit_double_320x240) ? mVGA_G3:
(drawMode == fourBit_double_640x480) ? mVGA_G4: 10'd0;

assign mVGA_B = (drawMode == sixteenBit_single_320x240) ? mVGA_B1:
(drawMode == eightBit_single_640x480) ? mVGA_B2:
(drawMode == eightBit_double_320x240) ? mVGA_B3:
(drawMode == fourBit_double_640x480) ? mVGA_B4: 10'd0;

wire LD_available, CD_available, CF_available, SD_available, SF_available, TW_available,
FU_available;

parameter [3:0] circle_fill = 4'd0,
circle_draw = 4'd1,
square_fill = 4'd2,
square_draw = 4'd3,
line_draw = 4'd4,
text_write = 4'd5,
frame_update = 4'd6;

line_drawer LD1(
.x1(xstart_req),
.y1(ystart_req),
.x2(xend_width_req),
.y2(yend_height_req),
.VGA_SYNC(~VGA_VS | ~VGA_HS),
.VGA_CLK(VGA_CTRL_CLK),
.data_reg(cLD),
.reset(reset),
.color({color_req,4'h0}),
.command({cmd_req,1'b0}),
.available(LD_available),
.my_id(line_draw),
.id_req(avail_select),
.xAddr(xLD),
.yAddr(yLD),
.is_write_finished(isWriteFinished),
.write_clk(wLD)
);

circle_draw CD1(
.x1(xstart_req),
.y1({1'b0,ystart_req}),
.radius(xend_width_req),
.VGA_SYNC(~VGA_VS | ~VGA_HS),
.VGA_CLK(VGA_CTRL_CLK),
.data_reg(cCD),
.reset(reset),
.color({color_req,4'h0}),
.command({cmd_req,1'b0}),
.available(CD_available),
.my_id(circle_draw),
.id_req(avail_select),
.xAddr(xCD),
.yAddr(yCD),
.is_write_finished(isWriteFinished),
.write_clk(wCD)
);

square_draw SD1(
.x1(xstart_req),
.y1(ystart_req),
.width(xend_width_req),
.height(yend_height_req),
.VGA_SYNC(~VGA_VS | ~VGA_HS),
.VGA_CLK(VGA_CTRL_CLK),
.data_reg(cSD),
.reset(reset),
.color({color_req,4'h0}),
.command({cmd_req,1'b0}),
.available(SD_available),
.my_id(square_draw),
.id_req(avail_select),

.xAddr(xSD),

.yAddr(ySD),

.is_write_finished(isWriteFinished),

.write_clk(wSD)
);

square_fill SF1(
.x1(xstart_req),
.y1(ystart_req),
.width(xend_width_req),
.height(yend_height_req),
.VGA_SYNC(~VGA_VS | ~VGA_HS),
.VGA_CLK(VGA_CTRL_CLK),
.data_reg(cSF),
.reset(reset),
.color({color_req,4'h0}),
.command({cmd_req,1'b0}),
.available(SF_available),
.my_id(square_fill),
.id_req(avail_select),
.xAddr(xSF),
.yAddr(ySF),
.is_write_finished(isWriteFinished),
.write_clk(wSF)
);

circle_fill_better CFB1(
.x1(xstart_req),
.y1({1'b0,ystart_req}),
.radius(xend_width_req),
.VGA_SYNC(~VGA_VS | ~VGA_HS),
.VGA_CLK(VGA_CTRL_CLK),
.reset(reset),
.color({color_req,4'h0}),
.command({cmd_req,1'b0}),
.data_reg(cCF),
.available(CF_available),
.my_id(circle_fill),
.id_req(avail_select),
.xAddr(xCF),
.yAddr(yCF),
.is_write_finished(isWriteFinished),
.write_clk(wCF)
);

TextWriter tw1(
.VGA_SYNC(~VGA_VS | ~VGA_HS),
.VGA_CLK(VGA_CTRL_CLK),
.data_reg(cTW),
.reset(reset),
.my_id(text_write),
.id_req(avail_select),
.command({cmd_req,1'b0}),
.color({color_req,4'h0}),
.font_select(2'b0),

.letter_addr({xend_width_req,yend_height_req[8:7]}),

.letterX(xstart_req),

.letterY(ystart_req),

.available(TW_available),

.xAddr(xTW),

.yAddr(yTW),

.is_write_finished(isWriteFinished),

.write_clk(wTW)
);

DataWriter dw1(
.x_addr(xAddr), //x coordinate of pixel to draw to
.y_addr(yAddr), //y coordinate of pixel to draw to
.color_data(cValue), //the color data
.isFinished(isWriteFinished), //flag if the write has completed
.clock(VGA_CTRL_CLK), //the clock to handle the writing
.sync(~VGA_VS | ~VGA_HS), //to keep us in sync with VGA
.reset(~KEY[0]), // a reset signal
.write_req_clk(write_clock), //clock that starts a new write request
.read_addr_out(addr_reg), //the address we want to read data from
.data_write_out(data_reg), //the new data that we will write to SRAM
.we_out(we), //the write enable signal (0 = write, 1 = read)
.read_data_in(SRAM_DQ), //the data that was read
//.currFrame_out(LEDR[17:16]),
.drawMode_sel(drawMode),
.frame_sel(writeFrame),
.Coord_X(Coord_X),
.Coord_Y(Coord_Y)

);
wire [2:0] drawMode;

assign drawMode = extra1_req[7:5];
//assign frame_sel = extra1_req[4:3];

wire [9:0] xCF, xCD, xSD, xSF, xLD, xTW, xIDLE, xAddr;
wire [8:0] yCF, yCD, ySD, ySF, yLD, yTW, yIDLE, yAddr;
wire [15:0] cCF, cCD, cSD, cSF, cLD, cTW, cIDLE, cValue;
wire isWriteFinished;
wire write_clock;
wire wCF, wCD, wSD, wSF, wLD, wTW, wIDLE;

assign write_clock = wCF | wCD | wSD | wSF | wLD | wTW;

XAddr_MUX xam1(
.xCF(xCF),
.xCD(xCD),
.xSD(xSD),
.xSF(xSF),
.xLD(xLD),
.xTW(xTW),
.xIDLE(xIDLE),
.clock(VGA_CTRL_CLK),

.select(avail_select),

.xOut(xAddr)
);

YAddr_MUX yam1(
.yCF(yCF),
.yCD(yCD),
.ySD(ySD),
.ySF(ySF),
.yLD(yLD),
.yTW(yTW),
.yIDLE(yIDLE),
.clock(VGA_CTRL_CLK),
.select(avail_select),
.yOut(yAddr)

);

Color_MUX cm1(
.cCF(cCF),
.cCD(cCD),
.cSD(cSD),
.cSF(cSF),
.cLD(cLD),
.cTW(cTW),
.cIDLE(cIDLE),
.clock(VGA_CTRL_CLK),
.select(avail_select),
.cOut(cValue)

);

wire avail_result;
wire [3:0] avail_select;

availableMUX AM1(.clk(VGA_CTRL_CLK),
.availability_out(avail_result),
.CD_available(CD_available),
.CF_available(CF_available),
.SF_available(SF_available),
.SD_available(SD_available),
.LD_available(LD_available),
.TW_available(TW_available),
.FU_available(FU_available),
.select(avail_select),
.enable(1'b1)

);

//assign LEDR[15:9] = {CD_available, CF_available, SF_available, SD_available, LD_available, TW_available, FU_available};
//assign LEDR[3:0] = avail_select;
wire [11:0] color_req;
wire [9:0] xstart_req, xend_width_req;
wire [8:0] ystart_req, yend_height_req;
wire [7:0] extra1_req, extra2_req;
wire [5:0] instr_req;
wire cmd_req;

wire grabPacketClock;
wire sendDataClock;
wire readFrame;
wire writeFrame;
RequestManager_update rmu1(
//RequestHandler rh1(

.clock(VGA_CTRL_CLK),

.packet_in(currentPacket),//currentPacket),

.packet_crc_in(currentPacketCRC),

.packet_available(pavail),

.ocolor(color_req),

.oxstart(xstart_req),

.oystart(ystart_req),

.oxend_width(xend_width_req),

.oyend_height(yend_height_req),

.oextra1(extra1_req),

.oextra2(extra2_req),

.oinstr(instr_req),

.reset(~KEY[0]),

.grab_out(grabPacketClock),

.nodeWanted(avail_select),

.nodeWanted_isAvailable(avail_result),

.command_out(cmd_req),

.sync(~VGA_VS | ~VGA_HS),

.transmit_clock(sendDataClock),

.isTransmitting(currentlySendingData),

.my_state(LEDG[7:4]),

.packetID(packetID),

.frame_read(readFrame),

.frame_write(writeFrame),
//.SW(SW),
//.IRAM_out(IRAM_out),
//.drawMode(drawMode)//,
//.bug_check(LEDR[7:0])
);

wire took_packet;
wire packet_avail;
wire [79:0] IRAM_out;

assign LEDR[17:0] = SW[2:0] == 3'd0 ? IRAM_out[79:62] :
SW[2:0] == 3'd1 ? IRAM_out[61:44] :
SW[2:0] == 3'd2 ? IRAM_out[43:26] :
SW[2:0] == 3'd3 ? IRAM_out[25:8] :
SW[2:0] == 3'd4 ? {10'd0,IRAM_out[7:0]} : currentPacket[25:8];

sdram_pll neg_3ns (CLOCK_50, DRAM_CLK);

wire baudClock, baudClock_8Times, baudClock_fast8;
wire[7:0] lastSerialReceived;
wire [7:0] dataCounter;
wire [8:0] receive_error_check;

wire dataReady;
wire errorFlag;
wire packet_timeout; // signal that the current packet has timedout
wire [79:0] packet1; //the current packet data
wire packet1_ready; //signal that the current packet is ready
wire packet1_crc_result; //the CRC result of the current packet
wire transmit_idle;
wire [79:0] last_packet; //the last packet received
wire [7:0] crc;
wire [7:0] lastCRC; //the last CRC result received
wire sendInProgress; //is the module currently sending

//The baud generator
BaudGenerator bg1(.clock_in(CLOCK_50),

.baud_clock_out(baudClock)
);

//8 times baud generator
BaudGenerator_8Times bg8t1(.clock_in(CLOCK_50),

.baud_clock_out(baudClock_8Times)
);

//better 8 times as fast baud generator
BaudGenerator_fast bgf1(.clock_in(CLOCK_50),

.baud_clock_out(baudClock_fast8)
);

//the serial receiver
SerialReceiver_improved_fastClock sr_i1(

.CLOCK_50(CLOCK_50),

.UART_RXD(UART_RXD),

.lastReceived(lastSerialReceived),

.dataReady_out(dataReady),

.errorFlag_out(errorFlag),

.reset(~KEY[0]),

.error_check(receive_error_check),

.timeout(packet_timeout),

.baud_clock(baudClock),

.baud_8_clock(baudClock_fast8)
);

//The Packet manager module
wire [79:0] currentPacket;
wire currentPacketCRC;
wire currentPacket_isAvailable;
wire [7:0] packetID;
PacketManager_updated pmu1(

.data_clock(dataReady),

.data_in(lastSerialReceived),

.latestPacket(currentPacket),

.packetCRC(currentPacketCRC),

.packetIsAvailable(currentPacket_isAvailable),

.reset(~KEY[0]),

.grab_clock(grabPacketClock),

.fast_clock(VGA_CTRL_CLK),

.PR(LEDG[1]),

.packetID(packetID)

);
wire pavail;
wire [79:0] pdata;
/*PacketHolder ph1(

.packet_in_avail(currentPacket_isAvailable),

.packet_out_avail(pavail),

.packet_request_in(grabPacketClock)//~KEY[2])
);*/

TransmitClock tc2(
.tSend_clk_in(currentPacket_isAvailable),//~KEY[3]),
.tSend_signal_out(pavail),
.tSend_reset_in(~KEY[0] | grabPacketClock)

);

wire currentlySendingData;
SerialTransmitter_updated STU1(

.CLOCK_50(CLOCK_50),

.UART_TXD(UART_TXD),

.toTransmit({2'b0,currentPacket[79:74]}),
//{8{currentPacketCRC}}),//SW[7:0]),//

.reset(~KEY[0]),

.sendNew(transclk),//sendDataClock),

.baud_clock(baudClock),

.sendInProgress(gotSend)//currentlySendingData)
);

wire transclk;
wire gotSend;
//assign LEDR[11] = gotSend;
TransmitClock tc1(

.tSend_clk_in(sendDataClock | ~KEY[3]),//~KEY[3]),

.tSend_signal_out(transclk),

.tSend_reset_in(~KEY[0] | gotSend)
);

//assign LEDR[8:6] = drawMode;
//assign LEDR[5:0] = instr_req;
//assign LEDR[10:9] = {readFrame,writeFrame};
//assign LEDR[15:8] = packetID[7:0];
assign LEDG[0] = pavail;
//assign LEDG[1] = currentPacketCRC;
assign LEDG[2] = currentPacketCRC;

endmodule //top module

// megafunction wizard: %ROM: 1-PORT%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: altsyncram

// ==
// File Name: font1_rom.v
// Megafunction Name(s):
// altsyncram
//
// Simulation Library Files(s):
// altera_mf
// ==
// **
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
//
// 9.1 Build 222 10/21/2009 SJ Full Version
// **

//Copyright (C) 1991-2009 Altera Corporation
//Your use of Altera Corporation's design tools, logic functions
//and other software and tools, and its AMPP partner logic
//functions, and any output files from any of the foregoing
//(including device programming or simulation files), and any
//associated documentation or information are expressly subject
//to the terms and conditions of the Altera Program License
//Subscription Agreement, Altera MegaCore Function License
//Agreement, or other applicable license agreement, including,
//without limitation, that your use is for the sole purpose of
//programming logic devices manufactured by Altera and sold by
//Altera or its authorized distributors. Please refer to the
//applicable agreement for further details.

// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
module font1_rom (

address,
clock,
q);

input [11:0] address;
input clock;
output [7:0] q;

wire [7:0] sub_wire0;
wire [7:0] q = sub_wire0[7:0];

altsyncram altsyncram_component (
.clock0 (clock),
.address_a (address),
.q_a (sub_wire0),
.aclr0 (1'b0),
.aclr1 (1'b0),

.address_b (1'b1),

.addressstall_a (1'b0),

.addressstall_b (1'b0),

.byteena_a (1'b1),

.byteena_b (1'b1),

.clock1 (1'b1),

.clocken0 (1'b1),

.clocken1 (1'b1),

.clocken2 (1'b1),

.clocken3 (1'b1),

.data_a ({8{1'b1}}),

.data_b (1'b1),

.eccstatus (),

.q_b (),

.rden_a (1'b1),

.rden_b (1'b1),

.wren_a (1'b0),

.wren_b (1'b0));
defparam

altsyncram_component.clock_enable_input_a = "BYPASS",
altsyncram_component.clock_enable_output_a = "BYPASS",
altsyncram_component.init_file = "eight.mif",
altsyncram_component.intended_device_family = "Cyclone II",
altsyncram_component.lpm_hint = "ENABLE_RUNTIME_MOD=NO",
altsyncram_component.lpm_type = "altsyncram",
altsyncram_component.numwords_a = 4096,
altsyncram_component.operation_mode = "ROM",
altsyncram_component.outdata_aclr_a = "NONE",
altsyncram_component.outdata_reg_a = "CLOCK0",
altsyncram_component.widthad_a = 12,
altsyncram_component.width_a = 8,
altsyncram_component.width_byteena_a = 1;

endmodule

// ==
// CNX file retrieval info
// ==
// Retrieval info: PRIVATE: ADDRESSSTALL_A NUMERIC "0"
// Retrieval info: PRIVATE: AclrAddr NUMERIC "0"
// Retrieval info: PRIVATE: AclrByte NUMERIC "0"
// Retrieval info: PRIVATE: AclrOutput NUMERIC "0"
// Retrieval info: PRIVATE: BYTE_ENABLE NUMERIC "0"
// Retrieval info: PRIVATE: BYTE_SIZE NUMERIC "8"
// Retrieval info: PRIVATE: BlankMemory NUMERIC "0"
// Retrieval info: PRIVATE: CLOCK_ENABLE_INPUT_A NUMERIC "0"
// Retrieval info: PRIVATE: CLOCK_ENABLE_OUTPUT_A NUMERIC "0"
// Retrieval info: PRIVATE: Clken NUMERIC "0"
// Retrieval info: PRIVATE: IMPLEMENT_IN_LES NUMERIC "0"
// Retrieval info: PRIVATE: INIT_FILE_LAYOUT STRING "PORT_A"
// Retrieval info: PRIVATE: INIT_TO_SIM_X NUMERIC "0"
// Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone II"
// Retrieval info: PRIVATE: JTAG_ENABLED NUMERIC "0"
// Retrieval info: PRIVATE: JTAG_ID STRING "NONE"
// Retrieval info: PRIVATE: MAXIMUM_DEPTH NUMERIC "0"

// Retrieval info: PRIVATE: MIFfilename STRING "eight.mif"
// Retrieval info: PRIVATE: NUMWORDS_A NUMERIC "4096"
// Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0"
// Retrieval info: PRIVATE: RegAddr NUMERIC "1"
// Retrieval info: PRIVATE: RegOutput NUMERIC "1"
// Retrieval info: PRIVATE: SYNTH_WRAPPER_GEN_POSTFIX STRING "0"
// Retrieval info: PRIVATE: SingleClock NUMERIC "1"
// Retrieval info: PRIVATE: UseDQRAM NUMERIC "0"
// Retrieval info: PRIVATE: WidthAddr NUMERIC "12"
// Retrieval info: PRIVATE: WidthData NUMERIC "8"
// Retrieval info: PRIVATE: rden NUMERIC "0"
// Retrieval info: CONSTANT: CLOCK_ENABLE_INPUT_A STRING "BYPASS"
// Retrieval info: CONSTANT: CLOCK_ENABLE_OUTPUT_A STRING "BYPASS"
// Retrieval info: CONSTANT: INIT_FILE STRING "eight.mif"
// Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone II"
// Retrieval info: CONSTANT: LPM_HINT STRING "ENABLE_RUNTIME_MOD=NO"
// Retrieval info: CONSTANT: LPM_TYPE STRING "altsyncram"
// Retrieval info: CONSTANT: NUMWORDS_A NUMERIC "4096"
// Retrieval info: CONSTANT: OPERATION_MODE STRING "ROM"
// Retrieval info: CONSTANT: OUTDATA_ACLR_A STRING "NONE"
// Retrieval info: CONSTANT: OUTDATA_REG_A STRING "CLOCK0"
// Retrieval info: CONSTANT: WIDTHAD_A NUMERIC "12"
// Retrieval info: CONSTANT: WIDTH_A NUMERIC "8"
// Retrieval info: CONSTANT: WIDTH_BYTEENA_A NUMERIC "1"
// Retrieval info: USED_PORT: address 0 0 12 0 INPUT NODEFVAL address[11..0]
// Retrieval info: USED_PORT: clock 0 0 0 0 INPUT NODEFVAL clock
// Retrieval info: USED_PORT: q 0 0 8 0 OUTPUT NODEFVAL q[7..0]
// Retrieval info: CONNECT: @address_a 0 0 12 0 address 0 0 12 0
// Retrieval info: CONNECT: q 0 0 8 0 @q_a 0 0 8 0
// Retrieval info: CONNECT: @clock0 0 0 0 0 clock 0 0 0 0
// Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all
// Retrieval info: GEN_FILE: TYPE_NORMAL font1_rom.v TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL font1_rom.inc FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL font1_rom.cmp FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL font1_rom.bsf FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL font1_rom_inst.v FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL font1_rom_bb.v TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL font1_rom_waveforms.html TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL font1_rom_wave*.jpg FALSE
// Retrieval info: LIB_FILE: altera_mf

// Draws a line from (x1, y1) to (x2, y2) to SRAM when draw is asserted.
// Gives control of SRAM to VGA when VGA is not syncing (~VGA_SYNC)
module line_drawer(x1, y1, x2, y2, VGA_SYNC, VGA_CLK,

data_reg, reset, color, command,
available,
my_id,
id_req,
xAddr, yAddr,
write_clk,
is_write_finished
);

input wire signed [10:0] x1, y1, x2, y2;
input wire VGA_SYNC, VGA_CLK;

output reg [15:0] data_reg; //memory data register for SRAM

input wire reset;
input wire [15:0] color;
input wire [1:0] command;
output wire available;
input wire [3:0] my_id, id_req;

output reg write_clk;
input wire is_write_finished;

output reg [9:0] xAddr;
output reg [8:0] yAddr;

//state machine
reg [2:0] state, next_state;

// absolute values of dx, dy, e
wire signed [10:0] absdx, absdy;
assign absdx = (x2>x1) ? (x2-x1) : (x1-x2);
assign absdy = (y2>y1) ? (y2-y1) : (y1-y2);

// initial value of e should be negative
wire signed [10:0] nege;
assign nege = ((absdy - absdx) < 0) ? (absdy-absdx) : (absdx-absdy);

// whether or not x is the DA
wire xDA;
assign xDA = (absdx > absdy);

// signs of dx and dy (0 = positive, 1 = negative)
wire dxsign, dysign;
assign dxsign = ((x2-x1) < 0);
assign dysign = ((y2-y1) < 0);

// value to increment e by
wire signed [10:0] einc;
assign einc = (xDA) ? (absdy) : (absdx);

// value to decrement e by
wire signed [10:0] edec;

assign edec = (xDA) ? (absdx) : (absdy);

// value to increment i and j by
wire signed [10:0] iinc, jinc;
assign iinc = (xDA) ? (dxsign ? (-1) : (1)) : (dysign ? (-1): (1));
assign jinc = (xDA) ? (dysign ? (-1) : (1)) : (dxsign ? (-1): (1));

// finish indicates when line is finished drawing
wire finish, xfinish, yfinish;
// if x-increment is negative, stop when i is less than x2, etc.
assign xfinish = (dxsign) ? (i < x2) : (i > x2);
// if y-increment is negative, stop when i is less than x2, etc.
assign yfinish = (dysign) ? (i < y2) : (i > y2);
// if DA is x, check x for done drawing, else check y
assign finish = (xDA) ? (xfinish) : (yfinish);

reg available_reg;
assign available = available_reg;

// for Bresenham's Algorithm
reg signed [10:0] dy, dx, e, j, i;

//state names
parameter

setup = 3'd0, // initialize Bresenham's algorithm
draw_line = 3'd1, // draw the line
ignore = 3'd3,
halt = 3'd2,
write_state = 3'd4; // wait for next drawline command

always @ (posedge VGA_CLK)
begin

if (reset) //synch reset assumes KEY0 is held down 1/60 second
begin

data_reg <= 16'b0; //write all zeros (black)
state <= halt;
available_reg <= 1'b0;
write_clk <= 1'b0;
next_state <= write_state;

end

//modify display during sync
else if (VGA_SYNC)
begin

case(state)

write_state: begin
if(is_write_finished) begin

state <= next_state;
write_clk <= 1'b0;

end
end

//setup line drawing
setup:
begin

available_reg <= 1'b0; //indicate that module is in use

dy <= absdy;
dx <= absdx;
e <= nege;

// i always gets increments
// j gets incremented when e>0
if (xDA)
begin

i <= x1;
j <= y1;

end
else
begin

i <= y1;
j <= x1;

end

state <= draw_line;
end

//draw the line
draw_line:
begin

if (finish)
begin

state <= halt;
//we <= 1'b1;

end
else
begin

//we <= 1'b0;
// if x is DA, i is x, y is j
if (xDA)
begin

data_reg <= color;

xAddr <= i[9:0];
yAddr <= j[8:0];
next_state <= draw_line;
write_clk <= 1'b1;
state <= write_state;

end
// if y is DA, j is x, y is i
else
begin

data_reg <= color;

xAddr <= j[9:0];
yAddr <= i[8:0];
next_state <= draw_line;
write_clk <= 1'b1;
state <= write_state;

end

if (e >= 0)
begin

j <= j + jinc;
e <= e - edec + einc;
i <= i + iinc;

end
else
begin

i <= i + iinc;
e <= e + einc;

end
end

end
ignore: begin

available_reg <= 1'b1;
if(~command[1]) begin

state <= halt;
end

end
//wait for next draw line command
halt:
begin

if (command[1] && (my_id == id_req))
begin

state <= setup;
available_reg <= 1'b0;

end

//we <= 1'b1;
if(~command[1])available_reg <= 1'b1; //indicate that module is free for use

end

default:
begin

available_reg <= 1'b0;
end

endcase
end
else
begin

end
end

endmodule

module PacketManager_updated(
data_clock,
data_in,
latestPacket,
packetCRC,
packetIsAvailable,
reset,
grab_clock,
fast_clock,
PR,
packetID
);

input wire data_clock;
input wire [7:0] data_in;
input wire reset;
input wire grab_clock;
input wire fast_clock;

output wire [79:0] latestPacket;
output wire packetCRC;
output wire packetIsAvailable;
output wire PR;
assign PR = packetReady;

reg packetReady, packetIsAvail;
reg [79:0] currentPacket, lastPacket;
reg [3:0] packetIndex;
output reg [7:0] packetID;
reg CRC;

reg [2:0] state;

parameter [2:0] waiting = 3'd0,
looping = 3'd1,
waitForGrab = 3'd2;

//assign packetIsAvailable = packetIsAvail ^ packetReady;
assign packetIsAvailable = packetReady;
assign latestPacket = lastPacket;
assign packetCRC = CRC;

always @(posedge fast_clock) begin
if(reset | ~data_clock) begin

packetIsAvail <= 1'b0;
end
else begin

if(grab_clock) begin
packetIsAvail <= 1'b1;

end

end
end

always @(posedge data_clock, posedge reset)
begin

if(reset) begin
currentPacket <= 80'b0;
packetIndex <= 4'b0;
packetReady <= 1'b0;
lastPacket <= 80'b0;
CRC <= 1'b0;
state <= waiting;
packetID <= 0;

end
else begin

case(state)
waiting: begin

currentPacket <= currentPacket | {72'b0, data_in};
packetIndex <= packetIndex + 1;
state <= looping;
packetReady <= 1'b0;

end
looping: begin

if(packetIndex < 4'd9) begin
currentPacket <= ((currentPacket << 8) | {72'b0,data_in});
packetIndex <= packetIndex + 1;

end
else begin //the last packet to arrive

lastPacket <= ((currentPacket << 8) | {72'b0,data_in});
CRC <= (data_in == (currentPacket[7:0] ^ currentPacket[15:8] ^ currentPacket

[23:16]
^ currentPacket[31:24] ^ currentPacket[39:32] ^ currentPacket[47:40]
^ currentPacket[55:48] ^ currentPacket[63:56] ^ currentPacket[71:64

])) ?
1'b1: 1'b0;

packetReady <= 1'b1;
state <= waiting;
currentPacket <= 80'b0;
packetIndex <= 4'd0;
if(packetID < 8'd255) begin

packetID <= packetID + 8'd1;
end
else begin

packetID <= 8'd0;
end

end
end
waitForGrab: begin

//if(grab_clock) begin
state <= waiting;
packetReady <= 1'b0;

//end
end

endcase

end
end

endmodule

//Request manager takes in the latest packet and processes it as a request
//This means it separates the packet data into the proper components
//It also sends an instruction to the serial transmitter on what to return to the sender
//It also checks to see if the available module is available, and if not waits on it
module RequestManager_update(

clock,
packet_in,
packet_crc_in,
packet_available,
oxstart,
oystart,
oxend_width,
oyend_height,
ocolor,
oinstr,
oextra1,
oextra2,
reset,
grab_out,
nodeWanted,
nodeWanted_isAvailable,
command_out,
sync,
transmit_clock,
isTransmitting,
my_state,
packetID,
frame_read,
frame_write,
bug_check
);

input wire clock;
input wire [79:0] packet_in;
input wire packet_crc_in;
input wire packet_available;
input wire reset;
input wire nodeWanted_isAvailable;
input wire sync;
input wire isTransmitting;
input wire [7:0] packetID;

output reg [5:0] oinstr;
output reg [11:0] ocolor;
output reg [9:0] oxstart, oxend_width;
output reg [8:0] oystart, oyend_height;
output reg [7:0] oextra1, oextra2;
output reg grab_out;
output reg [3:0] nodeWanted;
output reg command_out;
output reg transmit_clock;

output wire [3:0] my_state;
assign my_state = state;

output wire frame_read, frame_write;
reg readFrame, writeFrame;
assign frame_read = readFrame;
assign frame_write = writeFrame;

reg [3:0] state;
reg [7:0] bugCounter;
output wire [7:0] bug_check = lastPacketID;

parameter [3:0] waitForPacket = 4'd0,
grabPacket = 4'd1,
processPacketInformation = 4'd2,
waitForAvailableNode = 4'd3,
sendCommand = 4'd4,
waitForNodeActive = 4'd5,
waitForNodeComplete = 4'd6,
sendCRCResultBack = 4'd7,
packetNotHere = 4'd8;

reg [7:0] lastPacketID;

always @(posedge clock) begin

if(reset) begin
state <= waitForPacket;
oinstr <= 6'b0;
ocolor <= 12'b0;
oxstart <= 10'b0;
oxend_width <= 10'b0;
oystart <= 9'b0;
oyend_height <= 9'b0;
oextra1 <= 8'b0;
oextra2 <= 8'b0;
grab_out <= 1'b0;
nodeWanted <= 4'b0;
command_out <= 1'b0;
transmit_clock <= 1'b0;
lastPacketID <= 8'd255;
readFrame <= 1'b0;
writeFrame <= 1'b1;

end
else begin
//if(sync | 1'b1) begin

case(state)
waitForPacket: begin

if(packet_available) begin
state <= grabPacket;
grab_out <= 1'b0;

end
transmit_clock <= 1'b0;

end

grabPacket: begin
grab_out <= 1'b1;

state <= processPacketInformation;
lastPacketID <= packetID;

end

processPacketInformation: begin
oinstr <= packet_in[79:74];
ocolor <= packet_in[73:62];
oxstart <= packet_in[61:52]; //x_start
oystart <= packet_in[51:43]; //y_start
oxend_width <= packet_in[42:33]; //x_end/width
oyend_height <= packet_in[32:24]; //y_end/height
oextra1 <= packet_in[23:16]; //extra_1
oextra2 <= packet_in[15:8]; //extra_2
grab_out <= 1'b0;
bugCounter <= 0;
if(packet_in[79:74] == 6'd6) begin

state <= packetNotHere;
readFrame <= ~readFrame;
writeFrame <= ~writeFrame;
transmit_clock <= 1'b1;

end
else begin

state <= waitForAvailableNode;
end

end

waitForAvailableNode: begin
begin

nodeWanted <= oinstr[3:0];
if(nodeWanted_isAvailable) begin

state <= sendCommand;
end

end
end

sendCommand: begin
command_out <= 1'b1;
state <= waitForNodeActive;

end

waitForNodeActive: begin
if(~nodeWanted_isAvailable) begin

state <= waitForNodeComplete;
command_out <= 1'b0;

end
end

waitForNodeComplete: begin
if(nodeWanted_isAvailable) begin

state <= packetNotHere;
transmit_clock <= 1'b1;

end
end

packetNotHere: begin
if(packet_available == 1'b0) begin

state <= sendCRCResultBack;
end

end

sendCRCResultBack: begin //

state <= waitForPacket;
transmit_clock <= 1'b0;

end

default: begin
state <= waitForPacket;

end
endcase

//end//end if(sync)
end //end else statement

end

endmodule

module Reset_Delay(iCLK,oRESET);
input iCLK;
output reg oRESET;
reg [19:0] Cont;

always@(posedge iCLK)
begin

if(Cont!=20'hFFFFF)
begin

Cont <= Cont+20'd1;//edit from +1 to + 20'd1
oRESET <= 1'b0;

end
else
oRESET <= 1'b1;

end

endmodule

module SerialReceiver_improved_fastClock(
input CLOCK_50,
input UART_RXD,
output [7:0] lastReceived,
input reset,
output errorFlag_out,
output dataReady_out,
output [7:0] dataCounter,
output [17:0] bigCounter,
output [6:0] errs,
output [3:0] state_out,
output [8:0] error_check,
input timeout,
input baud_clock,
input baud_8_clock
);

assign errs = errs_reg;
assign bigCounter = bigCounter_reg;
reg [6:0] errs_reg;
reg [12:0] waiter = 13'b0000000000000; //counter to reduce clock rate

reg clk_new = 0; //changes the state of an led every time a bit is sent

reg [7:0] rxd;

reg [3:0] currBit;
reg [8:0] errorCheck;
reg [3:0] errorBit;

assign lastReceived = rxd;
reg [17:0] bigCounter_reg;
reg [3:0] receiveState;

assign error_check = errorCheck;

parameter [3:0] waitForStartBit = 4'd0,
collectData = 4'd1,
waitForStopBit = 4'd2,
error_1 = 4'd3;

assign state_out = receiveState[3:0];

reg errorFlag;
reg dataReady;

assign dataReady_out = dataReady;
assign errorFlag_out = errorFlag;

reg [7:0] dataCounter_reg;
assign dataCounter = dataCounter_reg;

reg [4:0] bitClock;
wire internalBaudClock;

assign internalBaudClock = (bitClock==4'd10);

always @(posedge CLOCK_50)
if(receiveState==waitForStartBit)

bitClock <= 4'b0000;
else
if(baud_8_clock)

bitClock <= {bitClock[2:0] + 4'b0001} | {bitClock[3], 3'b000};

reg [1:0] RxD_sync_inv;
always @(posedge CLOCK_50) if(baud_8_clock) RxD_sync_inv <= {RxD_sync_inv[0], ~UART_RXD};
// we invert RxD, so that the idle becomes "0", to prevent a phantom character to be received at startup

reg [1:0] RxD_cnt_inv;
reg RxD_bit_inv;

always @(posedge CLOCK_50)
if(baud_8_clock)
begin

if(RxD_sync_inv[1] && RxD_cnt_inv!=2'b11) RxD_cnt_inv <= RxD_cnt_inv + 2'h1;
else
if(~RxD_sync_inv[1] && RxD_cnt_inv!=2'b00) RxD_cnt_inv <= RxD_cnt_inv - 2'h1;

if(RxD_cnt_inv==2'b00) RxD_bit_inv <= 1'b1;//was 0
else
if(RxD_cnt_inv==2'b11) RxD_bit_inv <= 1'b0;//was 1

end

always @ (posedge CLOCK_50)
begin

if(reset) begin
receiveState <= 4'd0;
dataReady <= 0;
errorFlag <= 0;
currBit <= 0;
rxd <= 0;
dataCounter_reg <= 0;
bigCounter_reg <= 0;
errs_reg <= 0;

end
else begin

if(receiveState == waitForStartBit && baud_8_clock) begin
if(~RxD_bit_inv) begin

currBit <= 4'd0;
receiveState <= collectData;
errorFlag <= 0;
dataReady <= 0;

end
end
if(receiveState != waitForStartBit && internalBaudClock && baud_8_clock) begin

case(receiveState)
collectData: begin

rxd[currBit] <= RxD_bit_inv;
currBit <= currBit + 4'd1;
if(currBit == 4'd7) begin

receiveState <= waitForStopBit;
end

end

waitForStopBit: begin
if(RxD_bit_inv) begin

errorFlag <= 0;
receiveState <= waitForStartBit;
dataReady <= 1;
dataCounter_reg <= dataCounter_reg + 8'd1;
bigCounter_reg <= bigCounter_reg + 1;
errorCheck <= 0;
errorBit <= 0;

end
else begin

errorFlag <= 1;
errs_reg <= errs_reg + 1;
receiveState <= error_1;
errorCheck <= {rxd,RxD_bit_inv};
errorBit <= 0;
//dataReady <= 1;

end

end
error_1: begin

//it needs to resynch
errorCheck <= {errorCheck[7:0], RxD_bit_inv};

if(errorBit < 7) begin
errorBit <= errorBit + 1;
dataReady <= 0;

end
else begin

if(errorCheck == 9'h1FF) //all idle bits
begin

receiveState <= waitForStartBit;
errorFlag <= 0;
dataReady <= 1;

end
if(errorCheck[7] == 1'b0 && RxD_bit_inv == 1'b1) begin

receiveState <= waitForStartBit;
errorFlag <= 0;
dataReady <= 1;

end
end

end
endcase

end
end

end

endmodule

module SerialTransmitter_updated(
input CLOCK_50,
output UART_TXD,
input [7:0] toTransmit,
input reset,
input sendNew,
input baud_clock,
output sendInProgress
);

reg [7:0] txd, last_txd;
reg [3:0] currBit;
reg [3:0] transmitState;

parameter [3:0] idleWait = 4'd0,
sendStartBit = 4'd1,
sendData = 4'd2,
sendStopBit = 4'd3;

reg txd_out;
reg should_send;
reg sendInProgressReg;

assign UART_TXD = txd_out;
assign sendInProgress = sendInProgressReg;

always @(posedge CLOCK_50)
begin

if(sendNew & ~reset & ((transmitState == idleWait))) begin
should_send <= 1'b1;

end
if(reset) begin

transmitState <= 4'd0;
currBit <= 0;
txd <= 0;
txd_out <= 1;
should_send <= 0;
sendInProgressReg <= 0;

end
else begin

if (baud_clock) //9600 times a second (aprox)
begin

case(transmitState)
idleWait: begin

txd_out <= 1'b1;
sendInProgressReg <= 1'b0;
if(should_send) begin

txd <= toTransmit;
last_txd <= toTransmit;
transmitState <= sendStartBit;
should_send <= 0;

end
end

sendStartBit: begin
txd_out <= 1'b0; //the start bit
transmitState <= sendData;
currBit <= 4'd0;
sendInProgressReg <= 1'b1;

end

sendData: begin
txd_out <= txd[currBit];
currBit <= currBit + 4'd1;
if(currBit == 4'd7) begin

transmitState <= sendStopBit;
end

end

sendStopBit: begin
txd_out <= 1'b1;
sendInProgressReg <= 1'b0;
transmitState <= idleWait;

end

endcase

end

end

end
endmodule

module square_draw(x1,y1,width, height, VGA_SYNC, VGA_CLK,
data_reg, reset, color, command,
available,
my_id,
id_req,
xAddr, yAddr,
write_clk,
is_write_finished
);

input wire signed [10:0] x1,y1;
input wire signed [10:0] width, height;
input wire VGA_SYNC;
input wire VGA_CLK;
input wire [3:0] my_id, id_req;

output reg [15:0] data_reg; //memory data register for SRAM

input wire reset;
input wire [15:0] color;
input wire [1:0] command;
output wire available;
reg available_reg;
assign available = available_reg;

output reg write_clk;
input wire is_write_finished;

output reg [9:0] xAddr;
output reg [8:0] yAddr;

reg signed [10:0] x, x_end;
reg signed [10:0] y, y_end;

reg [4:0] draw_state, next_state;
parameter start = 5'd0,

loop = 5'd1,
finish = 5'd2,
north = 5'd3,
south = 5'd4,
east = 5'd5,
west = 5'd6,
write_state = 5'd7;

always @ (posedge VGA_CLK) begin
if(reset) begin

draw_state <= finish;

data_reg <= 16'b0; //write all zeros (black)
available_reg <= 1'b0;
write_clk <= 1'b0;

end
else if (VGA_SYNC) begin

case (draw_state)

write_state: begin
if(is_write_finished) begin

draw_state <= next_state;
write_clk <= 1'b0;

end
end

north: begin

if(x < x_end) begin

xAddr <= x[9:0];
yAddr <= y[8:0];
next_state <= north;
draw_state <= write_state;
write_clk <= 1'b1;
data_reg <= color;
x <= x + 11'd1;

end
else begin

xAddr <= x[9:0];
yAddr <= y[8:0];
next_state <= south;
draw_state <= write_state;
write_clk <= 1'b1;
data_reg <= color;
y <= y_end;
x <= x1;

end
end

south: begin
if(x < x_end) begin

xAddr <= x[9:0];
yAddr <= y[8:0];
next_state <= south;
draw_state <= write_state;
write_clk <= 1'b1;
data_reg <= color;
x <= x + 11'd1;

end
else begin

xAddr <= x[9:0];
yAddr <= y[8:0];
next_state <= east;
draw_state <= write_state;
write_clk <= 1'b1;
data_reg <= color;

x <= x1;
y <= y1;

end

end

east: begin
if(y < y_end) begin

xAddr <= x[9:0];
yAddr <= y[8:0];
next_state <= east;
draw_state <= write_state;
write_clk <= 1'b1;
data_reg <= color;
y <= y + 11'd1;

end
else begin

xAddr <= x[9:0];
yAddr <= y[8:0];
next_state <= west;
draw_state <= write_state;
write_clk <= 1'b1;
data_reg <= color;

x <= x_end;
y <= y1;

end
end

west: begin
if(y < y_end) begin

xAddr <= x[9:0];
yAddr <= y[8:0];
next_state <= west;
draw_state <= write_state;
write_clk <= 1'b1;
data_reg <= color;
y <= y + 11'd1;

end
else begin

xAddr <= x[9:0];
yAddr <= y[8:0];
next_state <= finish;
draw_state <= write_state;
write_clk <= 1'b1;
data_reg <= color;

end
end

finish: begin
if(command[1] && (my_id == id_req)) begin

draw_state <= north;
x <= x1;
y <= y1;
x_end <= x1 + width;

y_end <= y1 + height;
available_reg <= 1'b0;

end
else begin

available_reg <= 1'b1;
end

end

default: begin

draw_state <= finish;
end

endcase
end
else
begin

end
end

endmodule

module square_fill(x1,y1,width, height, VGA_SYNC, VGA_CLK,
data_reg, reset, color, command,
available,
my_id,
id_req,
xAddr, yAddr,
write_clk,
is_write_finished
);

input wire signed [10:0] x1,y1;
input wire signed [10:0] width, height;
input wire VGA_SYNC;
input wire VGA_CLK;
input wire [3:0] my_id, id_req;

output reg [15:0] data_reg; //memory data register for SRAM

input wire reset;
input wire [15:0] color;
input wire [1:0] command;
output wire available;
reg available_reg;
assign available = available_reg;

output reg write_clk;
input wire is_write_finished;

output reg [9:0] xAddr;
output reg [8:0] yAddr;

reg signed [10:0] x, x_end;
reg signed [10:0] y, y_end;

reg [4:0] draw_state, next_state;
parameter start = 5'd0,

loop = 5'd1,
finish = 5'd2,
north = 5'd3,
south = 5'd4,
east = 5'd5,
west = 5'd6,
write_state = 5'd7;

always @ (posedge VGA_CLK) begin
if(reset) begin

draw_state <= finish;

data_reg <= 16'b0; //write all zeros (black)
available_reg <= 1'b0;
write_clk <= 1'b0;

end
else if (VGA_SYNC) begin

case (draw_state)

write_state: begin
if(is_write_finished) begin

draw_state <= next_state;
write_clk <= 1'b0;

end
end

loop: begin

if(x < x_end) begin

xAddr <= x[9:0];
yAddr <= y[8:0];
write_clk <= 1'b1;
draw_state <= write_state;
next_state <= loop;
data_reg <= color;
x <= x + 11'd1;

end
else begin

xAddr <= x[9:0];
yAddr <= y[8:0];
write_clk <= 1'b1;
draw_state <= write_state;

data_reg <= color;
x <= x1;
if(y < y_end) begin

y <= y + 11'd1;
next_state <= loop;

end
else begin

next_state <= finish;
end

end
end

finish: begin
if(command[1] && (my_id == id_req)) begin

draw_state <= loop;
x <= x1;
y <= y1;
x_end <= x1 + width;
y_end <= y1 + height;
available_reg <= 1'b0;

end
else begin

available_reg <= 1'b1;
end

end

default: begin

draw_state <= finish;
end

endcase
end
else
begin

end
end

endmodule

//Module Availability MUX

module availableMUX(select, availability_out,
LD_available,
CD_available, CF_available,
SD_available, SF_available,
TW_available,
FU_available,
clk,
enable);

input wire [3:0] select;
input wire enable;

output wire availability_out;
reg availablity_out_reg;
assign availability_out = availablity_out_reg;

input wire LD_available, CD_available, CF_available, SD_available, SF_available, TW_available,
FU_available;
input wire clk;

parameter [3:0] circle_fill = 4'd0,
circle_draw = 4'd1,
square_fill = 4'd2,
square_draw = 4'd3,
line_draw = 4'd4,
text_write = 4'd5,
frame_update = 4'd6,
idle = 4'd15;

always @ (posedge clk) begin
if(enable) begin

case(select)
circle_fill: begin

availablity_out_reg <= CF_available;
end
circle_draw: begin

availablity_out_reg <= CD_available;
end
square_fill: begin

availablity_out_reg <= SF_available;
end
square_draw: begin

availablity_out_reg <= SD_available;
end
line_draw: begin

availablity_out_reg <= LD_available;
end
text_write: begin

availablity_out_reg <= TW_available;
end
frame_update: begin

availablity_out_reg <= FU_available;
end
idle: begin

availablity_out_reg <= 1'b0;
end
default: begin

availablity_out_reg <= 1'b0;
end

endcase
end

end

endmodule

module BaudGenerator(clock_in,
baud_clock_out);

input wire clock_in;
output wire baud_clock_out;

//Code Referenced from www.fpga4fun.com/SerialInterface2.html
parameter ClkFrequency = 50000000; // MHz
parameter Baud = 115200;
parameter BaudGeneratorAccWidth = 16;
//parameter BaudGeneratorInc = (Baud << BaudGeneratorAccWidth) / ClkFrequency;
parameter BaudGeneratorInc = ((Baud << (BaudGeneratorAccWidth - 4)) + (ClkFrequency>>5))/(
ClkFrequency>>4);

reg [BaudGeneratorAccWidth:0] BaudGeneratorAcc;
always @(posedge clock_in) begin

BaudGeneratorAcc <= BaudGeneratorAcc[BaudGeneratorAccWidth-1:0] + BaudGeneratorInc;
end

wire BaudTick = BaudGeneratorAcc[BaudGeneratorAccWidth];

assign baud_clock_out = BaudTick;

endmodule

module BaudGenerator_8Times(clock_in,
baud_clock_out);

input wire clock_in;
output wire baud_clock_out;

//Code Referenced from www.fpga4fun.com/SerialInterface2.html
parameter ClkFrequency = 50000000; // MHz
parameter Baud = 307200;
parameter BaudGeneratorAccWidth = 16;
//parameter BaudGeneratorInc = (Baud << BaudGeneratorAccWidth) / ClkFrequency;
parameter BaudGeneratorInc = ((Baud << (BaudGeneratorAccWidth - 4)) + (ClkFrequency>>5))/(
ClkFrequency>>4);

reg [BaudGeneratorAccWidth:0] BaudGeneratorAcc;
always @(posedge clock_in) begin

BaudGeneratorAcc <= BaudGeneratorAcc[BaudGeneratorAccWidth-1:0] + BaudGeneratorInc;
end

wire BaudTick = BaudGeneratorAcc[BaudGeneratorAccWidth];

assign baud_clock_out = BaudTick;

endmodule

module BaudGenerator_fast(clock_in,
baud_clock_out);

input wire clock_in;
output wire baud_clock_out;

//Code Referenced from www.fpga4fun.com/SerialInterface2.html
parameter ClkFrequency = 50000000; // MHz
parameter Baud = 921600;
parameter BaudGeneratorAccWidth = 16;
//parameter BaudGeneratorInc = (Baud << BaudGeneratorAccWidth) / ClkFrequency;
parameter BaudGeneratorInc = ((Baud<<(BaudGeneratorAccWidth-7))+(ClkFrequency>>8))/(ClkFrequency
>>7);

reg [BaudGeneratorAccWidth:0] BaudGeneratorAcc;
always @(posedge clock_in) begin

BaudGeneratorAcc <= BaudGeneratorAcc[BaudGeneratorAccWidth-1:0] + BaudGeneratorInc;
end

wire BaudTick = BaudGeneratorAcc[BaudGeneratorAccWidth];

assign baud_clock_out = BaudTick;

endmodule

module circle_draw(x1,y1,radius, VGA_SYNC, VGA_CLK,
data_reg, reset, color, command,
available,
my_id,
id_req,
xAddr, yAddr,
write_clk,
is_write_finished
);

input wire signed [10:0] x1,y1;
input wire signed [10:0] radius;
input wire VGA_SYNC;
input wire VGA_CLK;
input wire [3:0] my_id, id_req;
output reg [15:0] data_reg; //memory data register for SRAM

input wire reset;
input wire [15:0] color;
input wire [1:0] command;
output wire available;
reg available_reg;
assign available = available_reg;

output reg write_clk;
input wire is_write_finished;

output reg [9:0] xAddr;
output reg [8:0] yAddr;

reg signed [10:0] x;
reg signed [10:0] y;
reg signed [10:0] p;
reg signed [10:0] draw_x, draw_y;

reg [4:0] draw_state, next_state;
parameter start = 5'd0,

loop = 5'd1,
finish = 5'd2,
calc = 5'd3,
q1 = 5'd4,
q2 = 5'd5,
q3 = 5'd6,
q4 = 5'd7,
q5 = 5'd8,
q6 = 5'd9,
q7 = 5'd10,
q8 = 5'd11,
write_state = 5'd12;

always @ (posedge VGA_CLK) begin
if(reset) begin

draw_state <= finish;

data_reg <= 16'b0; //write all zeros (black)
available_reg <= 1'b0;

write_clk <= 1'b0;
end
else if (VGA_SYNC) begin

case (draw_state)

write_state: begin
if(is_write_finished) begin

draw_state <= next_state;
write_clk <= 1'b0;

end
end

calc: begin

if(x < y) begin
//put the pixels
draw_x <= x1 + x;
draw_y <= y1 + y;
draw_state <= q1;

//draw_state <= finish;
end
else begin

draw_state <= finish;
//we <= 1'b1;

end

end

q1: begin

draw_x <= x1 - x;
draw_y <= y1 + y;

xAddr <= draw_x[9:0];
yAddr <= draw_y[8:0];
next_state <= q2;
draw_state <= write_state;
write_clk <= 1'b1;

data_reg <= color;

end

q2: begin

draw_x <= x1 + x;
draw_y <= y1 - y;

xAddr <= draw_x[9:0];
yAddr <= draw_y[8:0];
next_state <= q3;
draw_state <= write_state;
write_clk <= 1'b1;
data_reg <= color;
//draw_state <= q3;

end

q3: begin

draw_x <= x1 - x;
draw_y <= y1 - y;

xAddr <= draw_x[9:0];
yAddr <= draw_y[8:0];
next_state <= q4;
draw_state <= write_state;
write_clk <= 1'b1;
data_reg <= color;
//draw_state <= q4;

end

q4: begin

draw_x <= x1 + y;
draw_y <= y1 + x;

xAddr <= draw_x[9:0];
yAddr <= draw_y[8:0];
next_state <= q5;
draw_state <= write_state;
write_clk <= 1'b1;
data_reg <= color;

end

q5: begin

draw_x <= x1 - y;
draw_y <= y1 + x;

xAddr <= draw_x[9:0];
yAddr <= draw_y[8:0];
next_state <= q6;
draw_state <= write_state;
write_clk <= 1'b1;
data_reg <= color;
//draw_state <= q6;

end

q6: begin

draw_x <= x1 + y;
draw_y <= y1 - x;

xAddr <= draw_x[9:0];
yAddr <= draw_y[8:0];
next_state <= q7;
draw_state <= write_state;
write_clk <= 1'b1;
data_reg <= color;

end

q7: begin

draw_x <= x1 - y;
draw_y <= y1 - x;

xAddr <= draw_x[9:0];
yAddr <= draw_y[8:0];
next_state <= q8;
draw_state <= write_state;
write_clk <= 1'b1;
data_reg <= color;

end

q8: begin

xAddr <= draw_x[9:0];
yAddr <= draw_y[8:0];
next_state <= calc;
draw_state <= write_state;
write_clk <= 1'b1;
data_reg <= color;
if (p < 0) begin

p <= p + x + x + x + x + 11'd6;
x <= x + 11'd1;

end
else begin

p <= p + x + x + x + x - y - y - y - y + 11'd10;
x <= x + 11'd1;
y <= y - 11'd1;

end

end

finish: begin
if(command[1] && (my_id == id_req)) begin

draw_state <= calc;
x <= 11'b0;
y <= radius;
p <= 11'd3 - radius - radius;
available_reg <= 1'b0;

end
else begin

available_reg <= 1'b1;
end

end

default: begin

draw_state <= finish;
end

endcase

end
else
begin

end
end

endmodule

module circle_fill_better(x1,y1,radius, VGA_SYNC, VGA_CLK,
reset, color, command,
data_reg,
available,
my_id,
id_req,
xAddr, yAddr,
write_clk,
is_write_finished
);

input wire signed [10:0] x1,y1;
input wire signed [10:0] radius;
input wire VGA_SYNC;
input wire VGA_CLK;

output reg write_clk;
input wire is_write_finished;

input wire [3:0] my_id, id_req;

output reg [9:0] xAddr;
output reg [8:0] yAddr;

reg signed [10:0] x1start, y1start, x2start, y2start;

output reg [15:0] data_reg; //memory data register for SRAM

output wire available;
reg available_reg;
assign available = available_reg;

input wire reset;
input wire [15:0] color;
input wire [1:0] command;

reg signed [10:0] x;
reg signed [10:0] y;
reg signed [10:0] p;
reg signed [10:0] draw_x, draw_y;

reg [4:0] draw_state;
reg [4:0] next_state;
parameter start = 5'd0,

loop = 5'd1,
finish = 5'd2,
calc = 5'd3,
q1 = 5'd4,
q2 = 5'd5,
q3 = 5'd6,
q4 = 5'd7,

q5 = 5'd8,
q6 = 5'd9,
q7 = 5'd10,
q8 = 5'd11,
wait12done = 5'd12,
wait34done = 5'd13,
wait56done = 5'd14,
wait78done = 5'd15,
set12 = 5'd16,
set34 = 5'd17,
set56 = 5'd18,
set78 = 5'd19,
write_state = 5'd20;

always @ (posedge VGA_CLK) begin
if(reset) begin

draw_state <= finish;

data_reg <= 16'b0; //write all zeros (black)
available_reg <= 1'b0;
write_clk <= 1'b0;

end
else if (VGA_SYNC) begin

case (draw_state)

write_state: begin
if(is_write_finished) begin

draw_state <= next_state;
write_clk <= 1'b0;

end
end

calc: begin

if(x <= y) begin
draw_state <= set12;

end
else begin

draw_state <= finish;
end

end

set12: begin

x1start <= x1 + x;
y1start <= y1 + y;
x2start <= x1 - x;
y2start <= y1 + y;
draw_state <= wait12done;

end

wait12done: begin

if(x2start < x1start) begin

xAddr <= x2start[9:0];
yAddr <= y1start[8:0];
write_clk <= 1'b1;
draw_state <= write_state;
next_state <= wait12done;
data_reg <= color;
x2start <= x2start + 11'd1;

end
else begin

xAddr <= x2start[9:0];
yAddr <= y1start[8:0];
write_clk <= 1'b1;
draw_state <= write_state;
next_state <= set34;
data_reg <= color;
//draw_state <= set34;

end

end

set34: begin

x1start <= x1 + x;
y1start <= y1 - y;
x2start <= x1-x;
y2start <= y1-y;
draw_state <= wait34done;

end

wait34done: begin

if(x2start < x1start) begin

xAddr <= x2start[9:0];
yAddr <= y1start[8:0];
write_clk <= 1'b1;
draw_state <= write_state;
next_state <= wait34done;
data_reg <= color;
x2start <= x2start + 11'd1;

end
else begin

xAddr <= x2start[9:0];
yAddr <= y1start[8:0];
write_clk <= 1'b1;
draw_state <= write_state;
next_state <= set56;
data_reg <= color;

end
end

set56: begin

x1start <= x1+y;
y1start <= y1+x;
x2start <= x1-y;
y2start <= y1+x;
draw_state <= wait56done;

end

wait56done: begin

if(x2start < x1start) begin

xAddr <= x2start[9:0];
yAddr <= y1start[8:0];
write_clk <= 1'b1;
draw_state <= write_state;
next_state <= wait56done;
data_reg <= color;
x2start <= x2start + 11'd1;

end
else begin

xAddr <= x2start[9:0];
yAddr <= y1start[8:0];
write_clk <= 1'b1;
draw_state <= write_state;
next_state <= set78;
data_reg <= color;

end
end

set78: begin

x1start <= x1+y;
y1start <= y1-x;
x2start <= x1-y;
y2start <= y1-x;
draw_state <= wait78done;

end

wait78done: begin

if(x2start < x1start) begin

xAddr <= x2start[9:0];
yAddr <= y1start[8:0];
write_clk <= 1'b1;
draw_state <= write_state;
next_state <= wait78done;
data_reg <= color;
x2start <= x2start + 11'd1;

end
else begin

xAddr <= x2start[9:0];
yAddr <= y1start[8:0];
write_clk <= 1'b1;
draw_state <= write_state;
next_state <= q8;
data_reg <= color;
//draw_state <= q8;

end

end

q8: begin

if (p < 0) begin
p <= p + x + x + x + x + 11'd6;
x <= x + 11'd1;

end
else begin

p <= p + x + x + x + x - y - y - y - y + 11'd10;
x <= x + 11'd1;
y <= y - 11'd1;

end
draw_state <= calc;

end

finish: begin
if(command[1] && (my_id == id_req)) begin

draw_state <= calc;
x <= 11'b0;
y <= radius;
p <= 11'd3 - radius - radius;
available_reg <= 1'b0;

end
else begin

available_reg <= 1'b1;
end

end

default: begin
draw_state <= finish;

end
endcase

end
else
begin

end

end

endmodule

module Color_MUX(
cCF, cCD, cSD, cSF, cLD, cTW, cIDLE,
clock, select,
cOut

);

input wire [15:0] cCF, cCD, cSD, cSF, cLD, cTW, cIDLE;
input wire clock;
input wire [3:0] select;
output wire [15:0] cOut;
reg [15:0] cReg;
assign cOut = cReg;

parameter [3:0] circle_fill = 4'd0,
circle_draw = 4'd1,
square_fill = 4'd2,
square_draw = 4'd3,
line_draw = 4'd4,
text_write = 4'd5,
frame_update = 4'd6,
idle = 4'd15;

always @(posedge clock) begin
case(select)

circle_fill: begin cReg <= cCF; end
circle_draw: begin cReg <= cCD; end
square_fill: begin cReg <= cSF; end
square_draw: begin cReg <= cSD; end
line_draw: begin cReg <= cLD; end
text_write: begin cReg <= cTW; end
idle: begin cReg <= cIDLE; end
default: begin

cReg <= 16'hF000;
end

endcase
end

endmodule

//CRC Module

module CRC(
packet_in,
packet_ready_in,
crc_result_out,
reset,
crc_out
);

output wire crc_result_out;
input wire [79:0] packet_in;
input wire packet_ready_in;
input wire reset;

wire [7:0] xor_result;
output wire [7:0] crc_out;
wire one_true;

assign xor_result =
packet_in[79:72] ^ packet_in[71:64] ^ packet_in[63:

56] ^
packet_in[55:48] ^ packet_in[47:40] ^ packet_in[39:

32] ^
packet_in[31:24] ^ packet_in[23:16] ^ packet_in[15:8

];

assign one_true = (xor_result == packet_in[7:0]) ? 1'b1 : 1'b0;

assign crc_result_out = one_true /*& two_true*/ & ~reset;
assign crc_out = xor_result;

endmodule

module DataWriter(
x_addr, //x coordinate of pixel to draw to
y_addr, //y coordinate of pixel to draw to
color_data, //the color data
isFinished, //flag if the write has completed
clock, //the clock to handle the writing
sync, //to keep us in sync with VGA
reset, // a reset signal
write_req_clk, //clock that starts a new write request
read_addr_out, //the address we want to read data from
data_write_out, //the new data that we will write to SRAM
we_out, //the write enable signal (0 = write, 1 = read)
read_data_in, //the data that was read
currFrame_out,
frame_sel,
drawMode_sel,
Coord_X,
Coord_Y

);

input wire clock, reset, sync;
input wire [9:0] Coord_X, Coord_Y;
input wire write_req_clk;

input wire [2:0] drawMode_sel;
input wire frame_sel;

input wire [9:0] x_addr;
input wire [8:0] y_addr;
input wire [15:0] color_data;
input wire [15:0] read_data_in;

output wire [1:0] currFrame_out;
assign currFrame_out = {frame_sel,frame_sel};

output reg isFinished;
output reg [17:0] read_addr_out;
output reg we_out;
output reg [15:0] data_write_out;

parameter [2:0] sixteenBit_single_320x240 = 3'd0,
eightBit_single_640x480 = 3'd1,
eightBit_double_320x240 = 3'd2,
fourBit_double_640x480 = 3'd3,
fiveBit_triple_320x240 = 3'd4,
fourBit_quad_320x240 = 3'd5,
twoBit_quad_640x480 = 3'd6,
foreground_background = 3'd7;

reg [1:0] writeMode;

parameter [1:0] waitForRequest = 2'd0,
loadData = 2'd1,

writeData = 2'd2,
sendACK = 2'd3;

reg [15:0] color_formated;
reg wasWriting;

always @(posedge clock) begin
if(reset) begin

isFinished <= 1'b1;
writeMode <= waitForRequest;
read_addr_out <= 0;
we_out <= 1'b1;
data_write_out <= 0;
color_formated <= 0;
case(drawMode_sel)

sixteenBit_single_320x240: begin read_addr_out <= {Coord_X[9:1],Coord_Y[9:1]} ;end
eightBit_single_640x480: begin read_addr_out <= {Coord_X[9:1],Coord_Y[8:0]

/*Coord_Y[9:1]*/} ;end
eightBit_double_320x240: begin read_addr_out <= {Coord_X[9:1],Coord_Y[9:1]} ;end
fourBit_double_640x480: begin read_addr_out <= {Coord_X[9:1],Coord_Y[8:0]/*Coord_Y[9:1]*/

} ;end
endcase

we_out <= 1'b0;
data_write_out <= 16'hFFFF;
wasWriting <= 1'b0;

end
else begin

if(sync) begin
case(writeMode)

waitForRequest: begin
isFinished <= 1'b0;
if(write_req_clk | wasWriting) begin

writeMode <= loadData;
wasWriting <= 1'b1;
case(drawMode_sel)

sixteenBit_single_320x240: begin color_formated <= color_data; end
eightBit_single_640x480: begin color_formated <= {color_data[15:

13],color_data[11:9],color_data[7:6],color_data[15:13],color_data[11:9],color_data[7:6]}; end
//RRRGGGBB

eightBit_double_320x240: begin color_formated <= {color_data[15:
13],color_data[11:9],color_data[7:6],color_data[15:13],color_data[11:9],color_data[7:6]}; end
//RRRGGGBB

fourBit_double_640x480: begin color_formated <= {4{color_data[15
],color_data[11:10],color_data[7]}}; end //RGGB

fiveBit_triple_320x240: begin color_formated <= {({3{color_data[
15:14],color_data[11:10],color_data[7]}}),1'b0}; end //RRGGB

fourBit_quad_320x240: begin color_formated <= {4{color_data[15
],color_data[11:10],color_data[7]}}; end //RGGB

twoBit_quad_640x480: begin color_formated <= 0; end
foreground_background: begin color_formated <= 0; end
default: begin color_formated <= 16'h0F00; end

endcase

end
end
loadData: begin //TODO BOUND CHECK

we_out <= 1'b1; //we want to read
case(drawMode_sel)

sixteenBit_single_320x240: begin read_addr_out <= {x_addr[8:0],y_addr[8
:0]}; end

eightBit_single_640x480: begin read_addr_out <= {x_addr[9:1],y_addr[8
:0]}; end //{1'b0,y_addr[8:1]}}; end

eightBit_double_320x240: begin read_addr_out <= {x_addr[8:0],y_addr[8
:0]}; end

fourBit_double_640x480: begin read_addr_out <= {x_addr[9:1],y_addr[8
:0]}; end

fiveBit_triple_320x240: begin read_addr_out <= {x_addr[8:0],y_addr[8
:0]}; end

fourBit_quad_320x240: begin read_addr_out <= {x_addr[8:0],y_addr[8
:0]}; end

twoBit_quad_640x480: begin read_addr_out <= {x_addr[9:1],{1'b0,
y_addr[8:1]}}; end

foreground_background: begin read_addr_out <= {x_addr[8:0],y_addr[8
:0]}; end//CHANGE

default: begin read_addr_out <= 0; end
endcase
writeMode <= writeData;
wasWriting <= 1'b1;

end
writeData: begin

we_out <= 1'b0; //we want to write
case(drawMode_sel) //assuming color_data is already formatted

sixteenBit_single_320x240: begin data_write_out <= color_formated; end
eightBit_single_640x480: begin data_write_out <= (x_addr[0] == 1'b1)

? {(read_data_in & 16'hFF00) | (16'h00FF & color_formated)} : {(read_data_in & 16'h00FF) | (
16'hFF00 & color_formated)}; end

eightBit_double_320x240: begin data_write_out <= (frame_sel == 1'b1)
? {(read_data_in & 16'hFF00) | (16'h00FF & color_formated)} : {(read_data_in & 16'h00FF) | (
16'hFF00 & color_formated)}; end

fourBit_double_640x480: begin data_write_out <= x_addr[0] ?
(frame_sel ?

((read_data_in & 16'hFF0F) | (16'h00F0 & color_formated)) : ((read_data_in & 16'hFFF0) | (
16'h000F & color_formated))) :

(frame_sel ?
((read_data_in & 16'hF0FF) | (16'h0F00 & color_formated)) : ((read_data_in & 16'h0FFF) | (
16'hF000 & color_formated))); end

fiveBit_triple_320x240: begin data_write_out <= color_data; end //TODO
fourBit_quad_320x240: begin data_write_out <= color_data; end //TODO
twoBit_quad_640x480: begin data_write_out <= color_data; end //TODO
foreground_background: begin data_write_out <= color_data; end //TODO
default: begin data_write_out <= 16'h00F0; end

endcase
writeMode <= sendACK;
wasWriting <= 1'b0;

end
sendACK: begin

we_out <= 1'b1; //not writing anymore, so set to read to be safe
isFinished <= 1'b1;
writeMode <= waitForRequest;

wasWriting <= 1'b0;
end

endcase
end
else
begin

case(drawMode_sel)
sixteenBit_single_320x240: begin read_addr_out <= {Coord_X[9:1],Coord_Y[9:1]} ;

end
eightBit_single_640x480: begin read_addr_out <= {Coord_X[9:1],Coord_Y[8:0]

/*Coord_Y[9:1]*/} ;end
eightBit_double_320x240: begin read_addr_out <= {Coord_X[9:1],Coord_Y[9:1]} ;end
fourBit_double_640x480: begin read_addr_out <= {Coord_X[9:1],Coord_Y[8:0]

/*Coord_Y[9:1]*/} ;end
endcase
writeMode <= waitForRequest;//loadData;
//isFinished <= 1'b1;
we_out <= 1'b1;

end
end

end

endmodule

