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Abstract: 

Out of Violet’s electrical subsystems, the Power subsystem is the most critical because it is 

housed on a single board that supplies power to all other subsystems and is designed in-house. 

The Power System functions include using solar panels to collect energy, storing energy in 

batteries with appropriate protection systems, sampling components’ and subsystems’ sensors to 

monitor their power consumption, distributing power from solar cells and batteries, acting as a 

controller for the Flight Computer, and communicating with the Flight Computer through data 

packets. Hence, the Power microcontroller (MCU) serves as power controller and power 

monitor. Revision 1 of the Power Board layout was completed, and the populated board was 

tested in a Flat-sat setup. MCU code was written to execute the major control, monitoring, and 

communication functions. Correct functionality of the software functions was verified on a 

STK500-based testbench, which closely resembles the interfaces of the power system in the 

satellite. In the near future, further testing of the software will be done on a Revision 2 Power 

Board with a programmed MCU in order to model flight-like conditions. 
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EXECUTIVE SUMMARY 

 The goal of this project was to design key components of the Power subsystem of the 

Violet Satellite Project, specifically the layout of the Power Board and the software for the 

Power Microcontroller (MCU). Violet is an interdisciplinary team (see violet.cusat.cornell.edu) 

of Cornell engineering students who are building a nano-satellite for launch in 2012 after ranking 

second in the Air Force Research Laboratory’s University Nanosat-6 Flight Competition.  

Most components of Violet’s Power subsystem, including the switches that connect other 

subsystems to power sources, DC-DC converters, and current and voltage sensor circuits, are 

housed on a single Power Board that supplies power from solar panels and NiCad batteries to all 

the other subsystems of the satellite. Although many other subsystems had reached mature stages 

of design when this project was started, the Power Board part of the Power subsystem had only 

reached the schematic stage. Hence, the design of the Power Board was greatly constrained by 

the existing designs of other subsystems and the interfaces of the Board. The major constraint on 

the Power Board layout design was this rectangular metal box that the Board and all its 

components had to fit inside. The metal box was already part of the structural model of Violet, so 

it was a rigid constraint. The first iteration, i.e. Revision 1, of the layout of the dense, 10-layer 

Power Board was completed. A Revision 1 Board was fabricated and populated with most of the 

components, and it was tested to verify that the connections agreed with the schematic, and that 

there were no unintended shorts. A few mistakes were found with the Revision 1 Board due to 

mistakes in the schematic, which the layout was derived from, and so, a Revision 2 layout was 

completed by other members of the Violet team, which is outside the scope of this project. 

The Power Board has a microcontroller because several functions of the Power 

subsystem need to be carried out by a local, dedicated computer instead of using the limited 

resource of Violet’s Flight Computer. The Power MCU functions include distributing and 

monitoring power from solar cells and batteries, acting as a controller of power switches and the 

magnetic torquer for the Flight Computer, and communicating with the Flight Computer through 

data packets. Hence, the Power MCU has three major functional roles: sampling the 

components’ and subsystems’ sensor values, controlling the switches and the power drawn from 

the power sources, and communicating with the Flight Computer via the Command and Data 

Handling Board using a reliable, packet-based protocol called the Violet Communication 

Protocol (VCP). These major functions of the Power MCU were implemented in the current 

version of the MCU code; however, the battery state-of-charge monitoring function and 

associated functions have not been implemented yet since Violet’s Power sub-team is still 

determining the details of the state-of-charge computing algorithm. Unfortunately the testing for 

this project was limited by the availability of flight-grade hardware. The functions in the current 

code have been verified by preliminary tests conducted on the STK500, but further testing under 

more flight-like conditions should be done in the future. 
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INTRODUCTION 

Since it is one of the more challenging aspects of Violet’s electrical design, a functional 

Power Board is critically important to Violet’s mission success as the nano-satellite is expected 

to launch in late 2012. My original goal was to have the MCU code done and working on a 

Revision 1 Power Board by early January for the UNP-6 Final Competition Review, which is 

where the Violet team leads will present, and the Violet satellite design will be judged. Due to 

limited availability of hardware, I actually ended up completing most of my code testing on a 

STK500 system as a prototype for the actual Power subsystem. 

  Out of Violet’s electrical subsystems, the Power subsystem is the most critical because it 

is housed on a single, central board, which supplies power to all other subsystems and will be 

designed entirely by Violet team members as opposed to acquiring a commercial power system. 

The Power subsystem must be robust and very reliable as it is one of the major single points of 

failure that can disrupt the successful operation of the satellite in space. Hence, it is an excellent 

project to apply the best practices of board-level hardware and MCU software design.  

Figure 1: System Block Diagram of the Power Board and its interfaces 

 

To Flight 

Computer 



[6] 

 

 

As shown in Figure 1, the Power Board will have to interface with the other components 

of the satellite and will have the following functions: 

 

 Using solar panels to collect energy 

 Storing energy in batteries with appropriate protection systems 

 Distributing and monitoring power from the solar cells and batteries 

 Employing inhibits, or launch lockout devices, that isolate the satellite from any power 

source prior to and during launch  

 Acting as a controller for the Flight Computer and the ground station 

 Controlling the magnetic torque 

 

All of the control aspects of these functions will be carried out by the Atmel ATmega128 

microcontroller (MCU) on the Power Board. Thus, the MCU will serve as both power regulator 

and power controller. It will maintain safe battery charge level at all times and supply power to 

various subsystems and components. Safe battery charging will also require a charging algorithm 

to be implemented on the MCU.  

To make monitoring easier to implement, the Power Board MCU will handle the 

processing of power telemetry signals. The MCU will sample current, voltage, and temperature 

to detect any faulty behavior of satellite components, which is indicated by large power 

consumption and could endanger the satellite as whole.  

The MCU will also allow the Flight Computer and the ground station to control the 

power switches that connect the power sources, batteries and solar cells, to components. The 

Flight Computer will have greater processing power than the Power MCU and will be able to 

determine when to power on/off a component. When controlling a power switch is desired, the 

Flight Computer will send the appropriate command to the Command & Data Handling (CDH) 

Board and then to the Power MCU. The MCU will use switch circuits to control all the 

individual power lines to each component. Additionally, the Power MCU will control the precise 

motion of the magnetic torquers. A magnetic torquer is a device that uses electromagnetic coils 

to control the attitude of the satellite by coupling the magnetic field produced by the coils to the 

Earth’s ambient magnetic field. 

PCB LAYOUT OF POWER BOARD 

 

As described in the previous section, the Power Board interfaces with the solar cells, the 

batteries, the inhibits, the CDH Board, the magnetic torquer, and other major components of the 

satellite. Because the power system requirements (see VIOLET-PWR-001) involve 

measurements and control, the power board contains a MCU which controls the operation of the 
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entire system.  The main voltage bus lines deliver either regulated or unregulated power to each 

subsystem. The MCU controls switches that determine whether the subsystem receives power 

through the voltage bus lines. Sensor circuits provide the MCU with real time data about 

subsystems’ power consumption. Analog multiplexors (MUXs) allow the MCU to monitor and 

process this large amount of data. These are some of the components that are on the Power 

Board. For a more detailed description of the circuits on the Power Board, refer to Violet 

document VIOLET-PWR-003, ―Power Board Design.‖ Also, VIOLET-PWR-001 gives the 

system requirements of the power system.  

 Design Requirements 

More than 400 chips and discrete parts were placed and routed within a 98.00 mm by 

187.91 mm area as part of the PCB layout. The Board schematic appears in Appendix I. The 

board dimensions were a ―hard‖ design constraint determined by the Structures sub-team of 

Violet for the shielded metal box that houses the power board. Another ―hard‖ design constraint 

was the location of the 5 off-board connectors, which could not be changed since Structures had 

made the metal enclosures, and the Harness sub-team had determined the final arrangement of all 

the connections/wires throughout the satellite. The Violet document VIOLET-PD-PWR-200, 

which I got from the Structures sub-team, shows these constraints and appears in Appendix I.  

The layout EDA tool used was Orcad Layout, which the Violet team owns a license for. The 

layout process considered the following design specifications: 

 The mechanical/physical specifications of VIOLET-PD-PWR-200, including the board 

dimensions and the location and size of off-board connectors, must be met. 

 The number of layers used must be minimized to reduce board fabrication costs. 

 The number of vias and the length of traces must be minimal to reduce fabrication costs. 

 The trace widths must account for the high current that some of the devices will carry. 

 The layout must include features that consider electromagnetic effects and reduce noise 

on signal lines, ―cross-talk‖ between analog and digital lines, and interaction between 

high voltage and low voltage signals. 

 

An earlier version of the power board layout had been fully routed with all of the 

components placed, but none of the trace widths were adjusted for high currents. Minimal trace 

width of 0.005 inches, or 5 mils, can carry ~0.5 Amps of current and was used for all of the 

traces of this board. That board design used 10 layers and was never fabricated because of doubts 

of its functionality, and because there was no immediate need for a Power Board. The fact that 

the first revision of the layout that I completed occupies 10 layers is a significant 

accomplishment since my layout actually accounts for high currents through certain traces. 
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Layout Design and Implementation 

 This section gives a ten step process that was followed to complete the Revision 1 layout. 

Since the Power Board is densely populated with components and occupied 10 layers—why so 

many layers were needed will be explained in this section—it was important to follow such steps 

to successfully complete the time-intensive layout design. 

 

Step 1:  To start the layout, I needed to know the maximum amount of current that each trace on 

the power board could be carrying. Luke Ackerman and Evan Respaut calculated the expected 

maximum current through all the traces of the Power Board and provided me with the Excel file. 

Since the minimum trace width of 4pcb.com’s fabrication process was 0.005 inches, or 5 mils, 

which could carry ~0.5 Amps current, I only had to calculate the trace widths for lines carrying 

0.5 Amps or more current. 4pcb.com is the PCB manufacturer that the Violet team uses. 

The widths of all high-current traces on the power board were calculated using 4pcb.com’s trace 

width calculator.  

 

Step 2:  Routing of the high power switching blocks was done first because the large width traces 

limited the minimum area that these switching blocks could occupy. The high power switches 

include CMG_PWR, FC_PWR_5, MAE_PWR, RF1_PWR, RF2_PWR, FC_PWR_3.3, and 

VCC, supplying power to the most power hungry components on the satellite. These switching 

blocks were laid out on the top and bottom sides of the PCB, and the blocks that had similar trace 

width sizing, e.g. MAE_PWR and FOG_PWR_5V, were laid out on opposite sides of the board. 

I thought that this would be a good strategy for reducing the board area taken up by the switches. 

Since each block has almost the same kinds of components, the surface mount components could 

actually fit on top of each other perfectly. Then the other power switching blocks were routed, 

again having switching blocks on both the top and bottom sides of the board. Table 1 shows the 

voltage used by each subsystem of the satellite and connected across the power switches. 

 

Table 1: Power Line Requirements 

Subsystem Voltage(V) 

Interface MCU 3.3 

GPS1 5 

GPS2 5 

Flight Computer 5 

Spectrometer 5 

Sun Sensor 12 (unregulated) 

Magnetic Torquer 12 (unregulated) 

Maestro 12 (unregulated) 

Radio1 12 (unregulated) 

Radio2 12 (unregulated) 

CMG 12 (unregulated) 
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Spectrometer 12 

Camera 12 

Magnetometer 15 

LN-200 +/- 5, +/- 15 

 

Step 3:  All of the other circuits on the board that had to be placed close together and could form 

blocks were placed in a way that minimized area consumed and still made routing possible. The 

solar cell current sense blocks fall under this category. 

 

Step 4:  Now the placement of components on the board could be finalized. Before blocks were 

moved around, they were first assigned to ―groups‖ using a feature of OrCad Layout that allows 

you to group components that you would like to move/place together. This made it possible to 

easily move a routed block to other parts of the board without messing up the traces and vias that 

had been made inside the block.  

As I said earlier, the off-board connectors were a hard design constraint that could not be moved, 

so their location strongly influenced the placement of components. A switching block that made 

connections to one of the off-board connectors was placed near that off-board connector. Thus, 

the left side of the board was almost entirely occupied by switching blocks, which were 

connecting to the micro-D connectors adjacent to the left end of the board. 

The analog MUXs were spaced apart from each other and placed to the right of the switching 

blocks, which send voltage and current telemetry signals to the MUXs’ inputs. The MUXs were 

spaced apart to allow for routes that had to go across them. I expected the layers around the 

MUXs to be occupied, and the layout to become very dense there since many signals had to be 

routed to the MUXs’ pins. 

The MCU was placed to the right of the MUXs, leaving enough space between the MUXs and 

MCU for routing that would pass through this area. Again, I expected this to be a high density 

part of the board because these surface mount chips with many pins were all connected together. 

Then the analog MUXs and MCU were rotated in such a way that the output lines from the 

MUXs could be routed in parallel (like a bus) to their corresponding MCU pins. The MCU ended 

up occupying the center of the board, which was ideal since it connected to many different 

components/points on the board. 

The DC-DC converters all had to be placed on the top side of the board because there was ~0.2 

inches of clearance for bottom-side components in the metal enclosure housing the board. I 

placed them along the bottom and right parts of the board because they had few connections, and 

some of their high-current connections had to go to the connectors. I expected to route these 

high-current traces along the perimeter of the board. Also, these locations kept the high power 

lines of the DC-DC converters away from the MCU and low power, digital circuitry. 

The solar current sensors did not occupy a lot of board area, but they all had to connect to an 

analog MUX that interfaced with the MCU, so they were placed on the bottom side of the board 
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opposite from the DC-DC converter on the top side. This allowed for a way to route the current 

sense lines to the MUX that was closest to the bottom edge of the board. 

The relays were placed on the right side of the board in order to keep them separate from the low 

voltage and digital circuits on the other parts of the board. The major traces through the relays 

were very high current – in fact they had the highest trace width lines on the board – so they 

would be impossible to route by traces. Since there trace widths were huge, I expected to use 

copper pours to serve as routes for these connections. Keeping them close together and away 

from everything else reduced the amount of area that they occupied and made it possible to route 

them. 

 

Step 5:  All of the blocks that had not been internally (to the block) routed were routed at this 

step. The power switching blocks were already internally routed. 

 

Step 6:  Luke, Evan, and I discussed what to do with the relays at this point. After looking at the 

placement of the relays, we realized that there would be several overlapping copper pours, which 

would determine the minimum number of internal layers for routing this board. The overlapping 

copper pours that made the high-current relay connections occupied 5 different inner layers, so I 

used 5 routing layers along with the top and bottom layer for routing this board. I did not know 

how to make a copper pour connect two pins on the same net, so Evan made the copper pours 

that connected the un-routable-with-traces nets of the relays. 

 

Step 7:  Any high current traces on the board were then routed. I tried to reduce the number of 

vias and transitions to other layers, but in certain parts of the board, especially near the off-board 

connectors where the layout became very dense, the high current traces had to traverse into 

another inner layer sometimes. 

 

Step 8:  The routing between the MUXs’ output and the MCU was done manually in order to 

ensure the routing was done in the simplest way possible. 

 

Step 9:  At this point, approximately 65% of the routes on the entire board were complete 

according to the ―Statistics‖ tab of OrCad Layout. Layout’s auto-router was used to route the 

remainder of the board. By adjusting the settings, I made the auto-router limit the amount of vias 

it used. When the auto-router was complete only ~15 routes were still missing. These routes 

were completed manually. The board was completely routed at this point, but the layout had to 

go through 4pcb.com’s DFM (Design for Manufacture) checker. Table 2 shows each layer of the 

board and briefly describes its purpose. 

 

Table 2: Layers of the Power Board 

Layer Purpose 

TOP General routing; Has all the DC-DC converters, through-hole components, and off-board 
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connectors 

BOT General routing; Has many surface mount chips, e.g. the MUXs, MCU, and H-bridges 

GND Plane layer for Ground 

PWR Plane layer for Vcc = 5 V 

VUR Plane layer for unregulated voltage, which powers high power components and is used 

by DC-DC converters 

IN1 Routing layer used mostly for horizontal traces 

IN2 Routing layer used mostly for vertical traces 

IN3 Routing layer used mostly for horizontal traces 

IN4 Routing layer used mostly for vertical traces 

IN5 Routing layer used mostly for horizontal traces 

 

Step 10:  4pcb.com has a useful tool that checks the layout Gerber files for DFM errors. I 

uploaded the Gerber files generated after Step 9, and I waited for an email from 4pcb.com with 

the DFM report. The DFM checker found several errors. Many of these occurred because of 

traces and pins being too close together, so some traces were tweaked to pass the DFM checker. 

These DFM errors were reduced in a few iterations by Evan Respaut and me. When there were 

no significant DFM errors, the layout files were uploaded to 4pcb.com’s website, and Luke had 

Violet’s purchasing personnel put the order through for three boards. The boards cost ~$1000 at 

this quantity, and Luke, the Electrical sub-team lead, determined three boards is all we would 

need for the Final Competition Review of the Nanosat-6 competition in January 2011. 

Discussion 

In this section, I discuss some of the issues I had completing revision 1 of the layout. As I 

said in the opening page of this report, many of the footprints were incorrect when I started to 

layout. Evan Respaut updated most of the footprints because he was familiar with them, and he 

was more familiar with adjusting the footprints’ padstacks. I learned from him how to modify 

footprints and made changes to a few of the footprints myself. The DC-DC converters and the 

off-board connector footprints all had their footprints modified. I originally did not expect to 

have to change any footprints, so this was one of the unanticipated developments of PCB layout. 

Several component footprints had to be modified after I had started routing because the 

footprint made it impossible to route in its current placement, or because the footprint size was 

too small for the current that it was carrying; for example, a surface mount resistor with a ~20 

mils pad size was supposed to carry 3 A peak current, which requires a trace width > 100 mils 

(these numbers are not exact, just for example purposes). I think such problems could have been 

avoided if the Violet team member who was responsible for selecting parts for the power board 

had done the current calculations.  
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Changing component footprints after routing had been started was unexpected. To me, it 

showed how important it was to consider layout and the actual board design when you are 

choosing parts because, if you don’t consider layout early, parts will have to be changed out as 

they did for this revision of the Power Board. Many of the components that had their footprint 

changed were passives, like the resistors and capacitors that are used throughout the power 

sensing and switching circuitry. Luke and Evan pointed these components out to me. Also, a few 

of the DC-DC converters did not have capacitors to properly bias them according to their 

datasheet, so these capacitors were added. I noticed discrepancies like this one by examining the 

schematic as I was routing traces connected to the DC-DC converters, and I looked up the 

datasheet because I did not think the schematic was correct. This was a mistake made in previous 

semesters of power system development that I was able to correct during the layout stages. 

After autorouting once, I found that the area around the analog MUXs was very densely 

populated, and the high density was actually preventing the autorouter from completing all the 

routes. So I moved the analog MUX that takes the solar current sensors as input to the bottom-

right corner of the board, where it is located in the final layout, in order to reduce the density in 

the middle of the board. I ran the autorouter again, and this time it completed most of the routing. 

 
Figure 2: Layout of Power Board, Revision 1 (screenshot in OrCad) 

Testing of Revision 1 Board 

I tested the Revision 1 board for the correct electrical connections and no unexpected 

shorts. In addition, the voltages output by each of the DC-DC converters was measured and 

equaled the designated supply voltages. Other than a few mistakes found in the schematic, the 
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Revision 1 Board was designed and made correctly. Luke Ackerman also conducted tests 

required by the Violet team since the Revision 1 board is considered a piece of flight hardware.  

 

 
Figure 3: Populated Revision 1 Power Board for Flat-Sat Test 

POWER MCU SOFTWARE 

Many of the functions for the power subsystem require the ability to monitor and record 

voltages and currents. Safe battery charging also requires an implementation of a charging 

algorithm. For these reasons, the power system employs a programmable microcontroller unit 

(MCU). With the aid of multiplexors, one MCU is enough to monitor all the currents and 

voltages for the entire satellite. In addition to monitoring voltages and currents, the MCU can 

control all the individual power lines to each component through switch circuits. For a higher 

degree of integration, the MCU is mounted on the power board itself. 

Thus, the Power MCU has the important role of power regulator and power controller. It 

maintains safe battery charge level at all times and routes power to components. The MCU also 

samples current, voltage, and temperature using sensor circuits and can detect any faulty 

behavior of satellite components that is indicated by irregular current, voltage, temperature or 

power consumption, which can harm the satellite as whole. In addition to providing regulated 

power, the Power MCU also allows the Flight Computer and the ground station to control 

switches connecting batteries to components. The Flight Computer has stronger processing 

power and can communicate with the Power MCU to turn on/off any component. When toggling 

a switch is desired, the Flight Computer can simply route command through CDH Board to the 

Power MCU. 
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 Design Requirements 

 Most of the functions that need to be implemented on the Power Board MCU are derived 

from the Power system requirements listed in VIOLET-PWR-001 and explained in the Power 

Board design document VIOLET-PWR-003. The following bulleted list summarizes these 

functional requirements of the MCU software: 

 

 Read current, voltage, and temperature sensors by controlling the analog MUXs and 

sampling with the analog-to-digital converter of the MCU. The values should be scaled 

by a conversion factor appropriate for the range of expected analog values. 

 Control the switches on the power lines to each subsystem. 

 Compute current to the batteries and calculate the state of charge of the batteries. 

 Charge and discharge the batteries with the power from the solar panels. 

 Control the magnetic torque. 

 Form data packets and communicate with the CDH Board according to the Violet 

Communication Protocol (defined in a Violet CDH document). 

 Allow the Flight Computer or the ground station (through the CDH board) to tell the 

MCU which switches to turn on/off. 
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Figure 4: Services on the Power MCU 
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Software Design & Implementation 

 The full, commented Power MCU code appears at the very end of the Appendix. The 

code includes functions to accomplish the three major functional roles of the MCU shown in 

Figure 4. The following five sub-sections of the report describe the design of the C code that is 

implemented for the Power microcontroller. It is written in enough detail to serve as a guide to 

the next engineering student who enhances the Power microcontroller code. Variable and 

function names from the code are written in blue to make them stand out. 

Task Scheduler 

The file power.c is home to the main function of the Power code. This main function 

enters a never-ending while loop that calls various functions at the appropriate time intervals 

after executing the initialize function. The initialize function sets the initial values of the 

input/output ports of the MCU, sets the UART baud rate and other register settings, and sets 

starting values for several global variables. Note that the communication service employs a state 

machine that starts off in the state where the Power MCU is ready to receive VCP commands 

and the getPacket function call enables the UART receive ISR. This start state is necessary for 

the MCU since it must receive VCP commands from the Flight Computer when it turns on. 

The timing of the top-level control, sampling, and communication functions relies on 

compare-match interrupt service routines (ISR) of hardware Timer 0 and Timer 1, both of which 

use a 16 MHz crystal as a clock source. Based on the Timer register settings, the Timer 0 

compare-match ISR decrements time1, a software counter variable, every 11.75 µs, and the 

Timer 1 ISR decrements the other software counter variables every 1 ms. These software 

counters are reset each time they reach 0 in the never-ending while loop of the main function. 

Thus, this multi-tasking embedded program calls on the appropriate top-level functions at 

specific time intervals shown in Table 3. 

Table 3: Timing of the MCU’s Top-Level Functions 

Power MCU Service Function Name(s) Period of Function Call 

Sampling read_VIT, storeValue 2.94 ms 

Communication vcp_comm 10 ms 

Control switchControl, torqueControl 50 ms 

 

As part of the sampling service, the read_VIT and storeValue functions sample values 

from the current, voltage, and/or temperature sensors of one subsystem/component of the Violet 

satellite and update the corresponding value stored in the MCU memory, respectively. Due to 

time1’s reset/initial value, this pair of functions is called every 2.94 ms approximately. The top-

level communication function vcp_comm is called every 10 ms based on the timing of the time2 
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counter. The state machine implemented in vcp_comm needs to be adjusted frequently—hence 

10 ms—in order to implement reliable UART communication. The top-level control functions 

switchControl and torqueControl, which affect the state of the subsystem/component power 

switches and the magnetic torquers respectively, are called every 50 ms, giving sufficient 

function calls per second to react to VCP commands from the Flight Computer. 

SVIT: The Array of SVIT_t 

 Declared in power.h and defined in power.c, the SVIT array is an array of the state of the 

36 Violet components of concern to the Power subsystem. Such an organized data structure is 

necessary because the different services of the MCU must both know the current state of a 

component’s switch or sensors and update the state of a component’s switch or sensors after one 

of the services has completed an action. The SVIT array element is a struct called SVIT_t: 

Table 4: Data contained in a SVIT_t struct 

Variable 

Name 

Size in 

bytes (type) 

Description 

name 8 (char []) the shorthand subsystem or component name 

switchNum 3 (char []) the port pin connected to this component’s power switch 

S 1 (char) the current state of the switch {1 = on, 0 = off} 

error 1 (char) the byte used to encode the detected errors 

Vmux 1 (char) the ADC/PORTF pin of the MCU that this voltage sensor’s 

analog MUX is tied to 

VmuxBit 1 (char) the input of the MUX that this voltage sensor is tied to 

V 2 (int) the most recently stored value for this voltage 

ScaleFactorV 2 (int) the conversion factor for this voltage signal from the digital 

value output by the ADC to the value stored in memory 

Imux 1 (char) the ADC/PORTF pin of the MCU that this current sensor’s 

analog MUX is tied to 

ImuxBit 1 (char) the input of the MUX that this current sensor is tied to 

I 2 (int) the most recently stored value for this current 

ScaleFactorI 2 (int) the conversion factor for this current signal from the digital 

value output by the ADC to the value stored in memory 

Tmux 1 (char) the ADC/PORTF pin of the MCU that this temperature sensor’s 

analog MUX is tied to 

TmuxBit 1 (char) the input of the MUX that this temperature sensor is tied to 

T 2 (int) the most recently stored value for this temperature 

 

 Note that there is no ―ScaleFactorT‖ stored in SVIT_t because all the temperature sensors 

share the same conversion factor, and this common conversion factor is defined as the constant 

TempScaleFactor in power_sample.c. Thus, each component requires 29 bytes to keep track of 

its state, and the entire 36-element SVIT array occupies 1044 bytes of the MCU data memory 

(SRAM), a significant overhead. The following three sub-sections on the different services of the 
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Power MCU will describe how each variable in the SVIT_t struct is used to keep track of the 

state of a component’s power switch or sensors. The initial values of the two-dimensional SVIT 

array, which is defined in power.c, appears in Appendix II. 

Design of Sampling Service 

 The Sampling service reads voltage, current, and temperature sensor outputs from Violet 

components and stores them into the Power MCU memory. In power_sample.c, the top-level 

functions read_VIT and storeValue sample values from the sensors of one component and update 

the component’s corresponding values stored in MCU memory with the just-sampled data, 

respectively. Since this pair of functions is called every 2.94 ms approximately and operate on 

the sensors of a single component, it takes about 100 ms to update the stored sensor values of the 

34 components of interest to the Power subsystem. Since the flight computer will request to read 

sensor values at most once per second (1 Hz), sampling each sensor ~10 times per second is an 

adequate rate. Note that the two batteries are not included in this count because their stored 

sensor values are updated every 2.94 ms, each time the pair of functions is called, in order to 

have sufficient samples per second to compute the NiCad batteries’ state of charge accurately. 

 In read_VIT, index_svit is the variable used to index through the SVIT array. The first if 

statement resets index_svit to 0 if it exceeds the size of the array and also increments it by 1. The 

next two if statements increment index_svit, so the two battery components are skipped over. 

The next couple statements use the MCU’s analog-to-digital converter (ADC) in the function 

read_VIT_helper to store the digital value of the ADC conversion into variables currentValue, 

voltageValue, and tempValue. Since all components do not have temperature sensors, the if 

statement before the tempValue line checks if there actually is a temperature sensor to sample 

from. The read_VIT_helper function takes the ADC pin and the input of the analog MUX—

variables from this sensor’s SVIT_t struct—as arguments in order to electrically connect the 

desired sensor to the selected ADC pin, which is carried out by selectMUX. The first argument 

of selectMUX indicates which analog MUX, or ADC pin, is to be selected, and the second 

argument decides the select input bits of that analog MUX. The rest of read_VIT_helper adjusts 

the ADC registers to sample in a blocking manner and returns the conversion’s digital value. The 

2.94 ms period of read_VIT is long enough that there should be no significant delay due to the 

ADC blocking since the ADC clock frequency of 16 MHz / 128 = 125 kHz implies blocking 

should last about 120 µs. At the bottom of read_VIT, the ADC conversion process is executed 

for both batteries. 

 In storeValue, the digital value retrieved from the ADC is first multiplied by the sensor’s 

conversion or scaling factor—a variable in the component’s SVIT_t struct for voltage and 

current sensors—to get a ―scaled‖ digital value. setValue takes this ―scaled‖ value and a pointer 

to a COMPONENT_t struct corresponding to the current component, or index_svit value, as 
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arguments. The instance of the COMPONENT_t struct holds an array of the last 8 samples 

taken. setValue replaces the oldest of these 8 samples with the new ―scaled‖ digital value and 

computes a new return value, which is stored in the appropriate variable of the SVIT_t struct in 

the higher-level storeValue function. The return value is the simple moving average of the most 

recent 8 samples, including the newly added, ―scaled‖ digital value. The rest of the storeValue 

function repeats the process for the two batteries. 

Filtering for the SVIT Array’s Stored Value 

 
Figure 5: Different filters applied to noisy sinusoidal signal with many outliers (dotted blue);  

Green – SMA with window size of 7 points; Magenta – SMA excluding local outliers;                 

Black – Simple Moving Median 
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heavily influenced by outliers, which can be caused by impulse noise, sensor malfunction, or 

other temporary effects. To illustrate why outliers have a significant effect, I made a Matlab 

simulation of a sinusoidal, time-varying signal with several discrete points that act as outliers. 

This signal and outputs of three different kinds of filters are shown in Figure 5. The code for the 

Matlab simulation appears in the Appendix. Clearly the SMA in green does a poor job of 

tracking the sinusoidal signal. The SMA in magenta, which excludes outliers out of the last 7 

points that are more than 3 standard deviations from the mean of the sample of the last 7 points 

in the window, has several points shifted if there are several noise spikes in the local window. 

The idea of this filter is that the SMA calculation should not take into account the noise spikes; 

however, if there are several noise spikes, this filter’s output can be affected by them. The simple 

moving median (SMM), which outputs the median of the last 7 points seems to be the best filter 

since the noise spikes are never found to be the median of the local window. This kind of filter 

can be used if there is a concern that noise spikes could corrupt the SMA, which is a legitimate 

concern for some of the Power subsystem’s sensors.  

Therefore, the SVIT array keeps track of the sensor output using a SMA and a SMM. If 

the SMA result suggests the sensor value has gone outside the acceptable bounds, then the SMM 

result is used to verify that the sensor value has gone out of bounds. If the SMM is indeed out of 

bounds, then the Power MCU is certain the sensor value is out of bounds, sets the appropriate 

error bit, and takes the appropriate action.  

Bounds Checking on Sensor Values 
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Figure 6: State diagram of switches 

 

As suggested by the state diagram in Figure 6, the MCU controls a power switch 

according to how much power the corresponding subsystem/component draws. For example, if 
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the critical state is reached, the MCU turns that switch off because its subsystem is drawing 

excessive power and/or is draining the limited energy stored in the battery. Hence, the MCU 

must implement bounds checking on all the current and voltage sensor data. 

If the sensor value is within given minimum and maximum allowable values, then the 

MCU will not turn the switch off, i.e. the switch is in the normal state. Exceeding these 

allowable value bounds causes the MCU to turn the switch off and enter the critical state. If the 

sensor value is within the given minimum and maximum allowable values and outside a more 

narrow set of bounds, then the MCU will raise a flag as a sign that the corresponding subsystem 

is consuming less or more power than is expected under normal operation. The Flight Computer 

will view this as a warning, and the MCU will not immediately take control of that switch. If the 

sensor value is within the narrow set of bounds, then the subsystem’s power usage corresponds 

to the conditions of its normal operation. 

Design of Control Service 

 The top-level control functions switchControl and torqueControl are written in 

power_control.c. The switchControl function sets the value of a port pin that is tied to a 

component’s power switch based on the first argument, which is the index of the component, and 

the second argument, which decides if the switch is to be on or off. If the argument onOffFlag is 

1, then the port pin is set to 1, turning the component’s switch on; if onOffFlag is 0, then the port 

pin is set to 0, turning the switch off. Most of the switchControl function consists of a switch 

control structure that is used to select the correct port pin based on the switchNum variable of the 

component’s SVIT_t struct. The SET and CLR macros are used to make the actual setting of the 

port pin more accessible to the code’s reader. The switchFound flag, which is defaulted to 1, 

indicates if the port pin was found in the switch control structure and set; if the port pin is not 

found, switchFound should be 0. The last action of switchControl is to set the value of the S 

variable of this SVIT_t struct, given that the correct switch was found. 

 The torqueControl function takes three 8-bit inputs that set how the three magnetic 

torquers on the Violet satellite should be driven by pulse width modulation (PWM). These 8-bit 

arguments must be sign and magnitude numbers. The most significant bit decides what direction 

to drive the torquer, i.e. {0 = positive, 1 = negative}. The lower 7 bits determine the magnitude 

on a scale from 0 to 127. Each torquer has a software counter used to set its PWM signal, and the 

if statements at the beginning of torqueControl simply reset these PWM counters if they get 

above 127. If the software counter is less than the input byte, the magnetic torquer can be driven 

in three different ways. If the sign of the last input byte, which is stored as tn_pwm_on (n is the 

number of the magnetic torquer), differs from the current input byte, then the torquer is driven 

into a brake state, so it can change directions later. Then if the sign of the input byte is negative, 

the MCU sets the A input of the H-bridge that drives the torquer in the counter-clockwise 
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direction. If the sign is positive, the MCU sets the B input of the H-bridge that drives the torquer 

in the clockwise direction. In the case where the software counter exceeds the input byte value, 

the MCU sets the H-bridge into a free-wheeling state, so no additional torque is generated. The 

actual setting of the H-bridge inputs is accomplished by the drive_torqn functions, which set the 

MCU port pins tied to the H-bridge inputs to achieve the torquer state specified by the argument 

of drive_torqn. 

Design of Communication Service 

 The code related to the communication service of the MCU appears in power_comm.c. 

The top-level communication function vcp_comm implements a finite state machine that 

determines whether the MCU can transmit or receive a VCP packet at any given time. The Violet 

Communication Protocol (VCP) is a reliable communication protocol implemented for inter-chip 

communication on the Violet satellite. The following sub-section gives a brief introduction to 

VCP and its packet structure.  

Primer on Violet Communication Protocol (VCP) 

 VCP is a KISS-based (stands for ―keep it simple stupid‖) communication protocol that 

encloses data packets inside a KISS frame. This means VCP packets start with a special start 

byte (0xC0) and end with a special end byte (0xC0). Inside these two KISS frame bytes, a VCP 

command packet from the Flight Computer to the Power MCU will have the structure shown 

below in Table 5. The ―source‖ byte is the address that the packet is supposed to go to if the 

packet originates from the Flight Computer, or the address that the packet is sent from if it is 

going to the Flight Computer. The length byte contains the length of the entire VCP packet. The 

CRC byte is the cyclic redundancy check error-detecting code that is computed based on the 

bytes in the data packet. For command packets sent to the Power MCU, the first byte of the data 

field will be command byte as shown in Table 5, and the data bytes will contain whatever 

additional arguments that command needs to execute. For packets sent by the Power MCU, e.g. 

the telemetry packet of the state of the switches and sensors, the only difference is that there is 

no command byte, so the data bytes occupy the space between the length and CRC fields. 

Appendix III shows a table of the VCP commands that the Power MCU can receive. 

Table 5: Packet structure of a VCP Command Packet 

Packet PWR Switch Control Protocol 

Field Source Length Command Data CRC 

Subfield 1 byte 2 bytes 1 byte N bytes 2 bytes 

Packet Size 6 + N bytes 
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Finite State Machine for Communication 

 The state machine shown below explains the behavior of the communication service. 

There are five states that depend on the values of rx0_ready, tx0_ready, vcp_newACK, and 

vcp_newTEL. rx0_ready is a flag that indicates that a new packet has been received when it is 1. 

tx0_ready is a flag that indicates that a new packet has been sent, and the transmitter is not busy 

when it equals 1. vcp_newACK is a handshake between the receive and transmit modes set to 1 

after the Power MCU has received a VCP command. Similarly vcp_newTEL is a handshake 

between receive and transmit modes set to 1 every one second when the MCU needs to send a 

telemetry packet informing the Flight Computer about the status of all the switches and sensors. 

 

Figure 7: Finite State Machine of VCP Communication over a single USART 
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Initially, the MCU is in the RX-ing state, i.e. rx0_ready = 0, tx0_ready = 1, and 

vcp_newACK = vcp_newTEL = 0. The states of the communication service are: 

 RX-ING: the MCU is ready to receive a VCP packet and will enter the UART RX ISR 

when prompted by a newly received byte 

 RX DONE: the MCU is done receiving a VCP packet, i.e. the last byte has been received 

 TX ACK: the MCU is about to transmit an ACK (acknowledgement) packet in response 

to a VCP command packet that was recently received and executed 

 TX TEL: the MCU is about to transmit a TEL (telemetry) packet, which it periodically 

sends to inform the Flight Computer about the status of the Power subsystem 

 TX-ING: the MCU is ready to transmit a packet and enters the UART UDRE ISR 

Receiving a VCP Packet 

 In the USART0 RX ISR, bytes that are received in the UDR0 register are written to the 

message field of the vcp_ptrbuffer instance PWR0 using the vcpptr_rx function, which is defined 

in vcplib.c. When the last (0xC0) byte of the packet is detected by the if statement in the ISR, the 

RX ISR is disabled, and the rx0_ready flag is set to 1. So, the next time vcp_comm is called, the 

MCU executes the rx0_ready branch of the control structure, calling on the parseMessage and 

getPacket functions in that order. The parseMessage function extracts the data bytes of the 

packet and adjusts global variables to execute the desired command. The switch control structure 

in parseMessage accounts for the various VCP commands shown in Appendix III. getPacket 

clears the rx0_ready flag since the receiver is no longer busy and then enables the receive ISR. 

Because the Power MCU ought to send an acknowledgement (ACK) of all the commands that it 

has received to the Flight Computer, the handshake variable vcp_newACK must be set to 1 after 

getPacket is called, so the service can enter the next state where it sends an ACK packet. 

Sending a VCP Packet 

 Whether an ACK packet or a telemetry packet is being sent, the sequence of events is 

pretty similar. The major difference is the vcp_newACK handshake is used to enable 

transmission of ACK packets, and the vcp_newTEL handshake is used to enable transmission of 

TEL packets. Note that, due to the if/else if control structure of the state machine, the TX ACK 

state always takes precedence over the TX TEL state; that is, if vcp_newACK and vcp_newTEL 

are both 1, then the TX ACK code that executes for vcp_newACK = 1 will execute first. The 

functions writeACKMessage and writeTELMessage write bytes of the message into a finite sized 

message buffer, tx0_buff. 
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 The function putPacket writes whatever is in tx0_buff to the message field of the 

vcp_ptrbuffer PWR0 and writes one-byte-at-a-time to the UART using the USART UDRE ISR. 

tx0_ready is set to 0 to indicate that the transmitter is going to transmit, and tx0_index is reset in 

order to start reading from the beginning of the tx0_buff array the next time it is read. The 

instance of vcp_ptrbuffer PWR0 must be cleared in case there is still data from a received 

packet, and the address of the VCP packet to be transmitted must be set before calling the 

vcpptr_tx function. In the first while loop, the bytes of tx0_buff are then written into the message 

field of PWR0 using the vcpptr_tx function. Then in the second while loop, the bytes of PWR0’s 

message are written to UDR0 using the writeByte function that enables the USART0 transmit 

ISR. PWR0’s message buffer is set up to be circular in order to write bytes to it without fear of 

bytes being dropped. Lastly the appropriate handshake variable is cleared, and the instance of the 

vcp_ptrbuffer is cleared in the vcp_comm function. 

Communication from the Power MCU to the Flight Computer 

The MCU generates a report about once per second or based on the VCP command bytes 

0x06 to 0x08. If it’s sending out a packet based on a VCP command, the MCU echoes back the 

command byte followed by the requested data. When the MCU gets a control command from the 

Flight Computer rather than report command, the MCU will still transmit an acknowledgement 

message to the Flight Computer, which a byte that shows whether operation was successful or 

not followed by the received command.  

When the MCU is commanded to report all the sensor output, it generates a packet for 

each of the 36 subsystems/components instead of a single packet containing all the sensor 

outputs. Such smaller packets must be used because the MCU cannot handle packets larger than 

255 bytes. Each packet contains all the data values stored for that subsystem/component at the 

last sampling time before the incoming command was processed by the MCU. Thus, the flight 

computer will receive data at the same level of detail as seen by the Power MCU although it will 

be delayed. 

Discussion 

 

 The controller functions of the Power MCU have been verified to be functioning 

correctly. The recently-added reader and communicator functions have been tested on the 

STK500 board using test setups that model the interfaces of flight hardware. Several necessary 

features, such as bounds checking and scaling factor for the ADC conversion, have been 

included in the sampling function code although specific numerical values have been excluded. 

These numerical values can only be determined through sampling actual sensor values, which 

lies outside the scope of this project and my responsibilities on the Violet team. 
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The battery charge-monitoring algorithm and associated functions need to be added to the 

MCU code since the state-of-charge algorithm has yet to be determined. Further testing must be 

done with the Power MCU under ―flight-like‖ conditions. That is, the Power MCU should be 

programmed on a fully-populated Power Board, and the Power Board needs to be interfaced with 

the sensors and the CDH interface board. The CDH interface board should be connected to the 

Flight Computer or another machine acting like a Flight Computer. Since Revision 2 of the 

Power Board will arrive soon, this ―flight-like‖ test should be done with the Power MCU on the 

Revision 2 board. I will be staying over the summer to hand off the Power MCU project to 

another Violet team member, who will most likely be the person to conduct these tests. 

TESTING RESULTS 

Testing of Sampling Service 

 Originally I had planned to do all my testing on the Power Board Rev. 1 with a MCU 

programmed with my final version of the code. But because some of the components—for 

example the off-board connectors and the analog MUXs—are pretty expensive, the Violet team 

used some critical Rev. 1 components on the Rev. 2 board. Since the Rev. 2 board is considered 

flight hardware, special handling and tests must be done before it is used for system-level tests 

due to the AFRL’s University Nanosat Program rules. The team members trained to complete 

these tests were not able to finish the flight hardware qualification procedures before they left 

Ithaca for the summer because the Rev. 2 populated PCB did not arrive. Unfortunately this 

limited my access to the hardware that I would have liked to test on. Therefore, I conducted tests 

on an STK500 and made interfaces that modeled Violet’s actual interfaces when needed. 

 I was not able to set up the actual hardware structure of the sampling service, i.e. the 

100+ current, voltage, and temperature sensors connected to the ADC0, ADC1, and ADC2 ports 

of the MCU via 32-input analog multiplexers, since I was not able to use the analog multiplexers 

and all the sensors. Two simple tests were completed that showed the proper operation of the 

MCU with regard to sampling the sensors.  

First, I recorded the signals on the output ports of the MCU, which will be tied to the 

ADC0 analog multiplexer’s select inputs, and I found that the select bit values were being 

adjusted at the correct rate corresponding to how often the read_VIT function is called. The 

traces of these ADC0 MUX select bits is shown in Figure 8. Note that the time-varying pattern of 

how the five bits count is not from 0 to 31. The counting pattern of these bits depends on the 

SVIT table’s entries. Remember that each time the read_VIT function executes, it increments the 

SVIT index by one, and each read_VIT function call samples a current sensor, a voltage sensor, 

and perhaps a temperature sensor. Each of these sensors could be on any one of the three analog 

MUXs, so sometimes read_VIT never adjusts the MCU outputs that connect to the ADC0 mux; 
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hence, the relatively long flat-line portions in Figure 8. In summary, the signals correspond to the 

MUX select bit values reading horizontally (each read_VIT call) and going down (increment the 

index variable) on the SVIT table, only including the ADC0 MUX’s sensors. 

 
Figure 8: MCU output signals that connect to ADC0 MUX’s select inputs measured with scope 

 

 Second, a voltage sensor circuit was connected to the MCU’s ADC0 pin. This sensor 

basically looks like a voltage divider made of resistors to the MCU. The actual voltage range 

measured by the sensor must be scaled down by the voltage divider to a level acceptable to the 

MCU. An oscilloscope was used to measure the value of this sensor’s output as the input of the 

sensor was turned on and off over time. The blue line in Figure 9 represents the sensor’s output 

voltage, and the green line corresponds to the value computed by the simple moving average 

filter and stored in the SVIT table of MCU memory. The green line is actually the SVIT table’s 

stored sensor value after dividing out that sensor’s voltage scaling factor, so that it is in the 

vicinity of 2 V. As you can see, the ADC0’s digital value closely tracks the sensor output signal 

and is less susceptible to noise thanks to the simple moving average filter. In addition, the fact 

that the scaled-down version of the SVIT table’s value can track the sharp transitions seen in 

Figure 9 is a good feature because the sampling service should have a very fast response to 

changes in the sensor’s input value. 
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Figure 9: Sensor output in blue; This sensor’s rescaled, stored value from the SVIT table in green 

 

Testing of Control Service 
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verified. I tested that the switch_control function executed correctly by sending VCP commands 

from my computer over a serial line to the STK500. I will discuss this test in detail in the next 

sub-section of testing of the communication system. 

A preliminary MCU function test was done on the Rev. 1 Power Board in January 2011 

in preparation for the University Nanosat Program’s Final Competition Review (FCR). The 
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completed by then. By making a turn-on call to switch_control in the MCU’s main method, Luke 

Ackerman and I observed that the voltage on the selected switch’s line rose to 12 V as expected. 

A DC-DC converter on the Revision 1 board served as the 12 V source. I used a multimeter to 

make this measurement and unfortunately did not save the transient signal with an oscilloscope. 

At the time, I was expecting to work more with the Rev. 1 Board after FCR. 

Here, I want to explain some results that show correct execution of the pulse width 

modulating function that controls the magnetic torquers. The MCU drives the magnetic torquers, 

which are inductive elements, through an H-bridge interface chip. Due to my limited access to 

the flight hardware, I was not able to set up the actual torquers connected with the H-bridges. I 

wanted to be sure that the MCU output would drive the H-bridge inputs correctly, so I made a 

Matlab simulation of the code that generates the PWM signal instead. The Matlab code appears 

in the Appendix. In the Matlab simulation, only one torquer’s PWM signal is produced since the 

code for control of each of the 3 torquers is identical. The torque control function actually 

generates two PWM signals for each magnetic torquer because the H-bridge has two inputs that 

each relate to one direction of the torquer’s rotation. The three figures in Appendix V show 

correct modulation of simulated input A (shown in blue) and input B (green) of the H-bridge 

chip. In Appendix V.i shows the PWM signal in response to an input sequence of +32, +64, 

+127, +64. Since all the numbers are positive, input A is on the whole time, and input B is only 

turned on when the software PWM counter has reached the current input sequence value, i.e. the 

torquer is in the TORQUER_FREE state. That is why input B is low for most of the time in the 

2-3 second window for input +127. 

Testing of Communication Service 

 Initially it was difficult to figure out a good way to test the communication functions in 

the MCU code because the CDH microcontroller code was not completely written. Remember 

that the Power MCU talks to the Flight Computer through VCP packets, and the CDH board with 

its microcontroller acts as an interface that passes VCP packets to the correct destination. 

Because the communication functions adhered to a strict packet-based protocol, i.e. Violet 

Communication Protocol (VCP), the MCU communicator functions could be functionally 

verified by checking if the Power MCU handled messages, which resembled VCP packets, sent 

over a serial line correctly. Fortunately, Violet already had a Python script that had been written 

to send bytes across a serial line. This Python script was originally written by Jesse Thompson, a 

member of the CDH team, to send commands to control the CMGs (control moment gyroscopes) 

that steer the Violet spacecraft in space. To perform the test, I ran the script on my computer, 

which was connected to the Power MCU on the STK500 via a RS-232 line. I input a sequence of 

bytes that is binary-equivalent to a realistic VCP packet that the Power MCU could see. The 

script shows the packet that I sent, and it listens to the serial line for a response from the Power 

MCU. As shown in Figure 10, the Power MCU sends a packet in response to the sent command. 
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Thus, the various cases of commands/messages to and from the Power MCU were verified by 

employing this Python script. Appendix IV contains a table of the different types of VCP 

commands and the expected ACK packet if the command is interpreted correctly. 

 
Figure 10: Screenshot of Python script sending and receiving packets from Power MCU 
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Because the commands sent by this Python script did not work reliably at first, I was 

concerned that there was a problem with the Power MCU’s communication service code. I 

thought it could be a problem with the state machine, or it could be a problem with the 

transmission buffer. The MCU’s response to commands was initially a little buggy. The MCU 

would execute a single turn-switch-on command, and this could be easily verified by connecting 

the chosen port pin to an LED on the STK500. But after that first command, it would execute the 

other commands and would not send any ACK packet or an incorrect packet. Because the switch 

behavior was correctly executed, I did not think there was an issue with the state machine and 

instead focused on the transmission buffer code. The bug in my code had to do with the 

tx0_buff’s index counter, tx0_index. I did not reset it back to 0 at the beginning of the putPacket 

function, even though I wrote bytes into tx0_buff starting from the zeroth byte. Hence, the 

transmitter was writing a lot of blank bytes from the tx0_buff into PWR0’s message and sending 

that out the UART for packets after the first ACK packet.   

When I had corrected this bug in the transmission buffer code, I ran the Python script 

with the inputs and outputs shown in Figure 10. As you can see, a sequence of several VCP 

commands was executed correctly and the corresponding ACK packets were sent. I also took a 

snapshot of the signal sent out the USART0 TX pin with an oscilloscope. The two screenshots in 

Appendix VI were for two instances of the same command, 0x01 0x0A (close the switch of the 

component with SVIT array index = 10). As you can see, the transmitted ACK signals appear to 

be identical. 

CONCLUSION 

In conclusion, several key deliverables were achieved as part of my MEng project. The 

layout of the first version of the Violet Power Board was completed in the Fall 2010 semester, 

and this Revision 1 Board was fabricated and populated with most components. By performing 

hardware verification tests, a few mistakes were found in the Revision 1 Board, and 

subsequently, a Revision 2 Board layout was designed by other Violet team members. In terms 

of software, the latest version of the Power MCU code was verified for correct functionality on 

the STK500 board using test conditions modeled on operations in space. The battery charge-

monitoring algorithm still needs to be added to the MCU code once that algorithm is fully 

determined by members of Violet’s Power sub-team. The latest version of the MCU code needs 

to be tested under more flight-like conditions, such as testing a programmed MCU on the 

Revision 2 Board. The initial Power Board layout and current version of the Power MCU code 

represent important milestones in a reliable, centralized power system for the Violet satellite. 
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APPENDIX 

I. Power Board Schematic & Mechanical Specification Drawing 

 

Schematic of Power Board, Revision 1 
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Schematic of Power Board, Revision 2 
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Mechanical Specification Drawing, VIOLET-PD-PWR-200 
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II. SVIT Table 

      Switch Voltage Current Temperature 

Master 
Index Component Name Port Pin Mux Bit Mux Bit Mux  Bit 

0 Spectrometer spec D 4 1 16 1 6 X X 

1 Star Tacker star D 5 1 23 1 7 2 7 

2 FC (5V) fc5 
A 0 

1 19 1 1 X X 

3 FC (3.3V) fc3.3 2 13 2 14 X X 

4 GPS 1 gps1 A 1 1 21 1 1 X X 

5 GPS 2 gps2 A 2 1 26 1 2 X X 

6 IB ib B 5 1 29 1 3 X X 

7 Heater 1 heat1 B 6 1 14 1 31 X X 

8 Heater 2 heat2 B 7 1 27 1 4 X X 

9 CMG  cmg G 2 1 15 1 8 X X 

10 Sun Sensor sunsen C 7 1 25 1 9 X X 

11 Radio 1 radio1 C 6 1 24 1 10 X X 

12 Radio 2 radio2 C 5 1 17 1 11 X X 

13 Maestro maestro C 4 1 22 1 12 2 8 

14 Magnetometer mag C 3 0 4 0 6 X X 

15 FOG (15V) fog15 C 1 
1 18 1 13 

X X 

16 FOG (5V) fog5 C 2 X X 

17 Torquer 1 torq1 X X 1 28 1 5 X X 

18 Torquer 2 torq2 X X 2 15 2 16 X X 

19 Torquer 3 torq3 X X 2 17 2 18 X X 

20 Battery 1 batt1 X X 0 1 0 2 2 9,10 

21 Battery 2 batt2 X X 1 20 1 30 2 11,12 

22 Solar (Full) solar X X 0 7 0 3 X X 

23 Solar 1 solar1 X X 0 18 0 20 2 0 

24 Solar 2 solar2 X X 0 19 0 21 2 1 

25 Solar 3 solar3 X X 0 10 0 22 2 2 

26 Solar 4 solar4 X X 0 15 0 23 2 3 

27 Solar 5 solar5 X X 0 9 0 24 2 4 

28 Solar 6 solar6 X X 0 14 0 25 X X 

29 Solar 7 solar7 X X 0 16 0 26 X X 

30 Solar 8 solar8 X X 0 8 0 27 X X 

31 Solar 9 solar9 X X 0 13 0 28 2 5 

32 Solar 10 solar10 X X 0 12 0 29 X X 

33 Solar 11 solar11 X X 0 11 0 30 X X 

34 Solar 12 solar12 X X 0 17 0 31 X X 

35 Power Board  pb X X 0 5 0 0 2 6 
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III. VCP Commands 

 

Command 
Byte 

Code 
Description 

CS0 0x00 Turns off the specified component or subsystem (opens switch). 

CS1 0x01 Turns on the specified component or subsystem (closes switch). 

CST 0x02 Resets the specified component or subsystem (toggles switch). 

CSF 0x03 Forces the switch of the specified component or subsystem to close. 

CT 0x04 
Control amount of current flowing in the Torquers. Three data bytes have 

input values for all three Torquers. 

BE 0x05 

This command is for CDH only. The Power Board reports state of the 

board to the beacon of the CDH Chip. Detailed functionality of beacon is 

explained in VIOLET-CDH-012, CDH Chip Design.  

RTP 0x06 
Sends a telemetry packet that contains the most recent SVIT-array data 

stored in the MCU memory. 

RSS 0x07 
Sends a packet that contains the most recent state of all the component 

or subsystem switches in the SVIT array. 

RES 0x08 
Sends a packet that contains the most recent values for the error bytes of 

the components in the SVIT array. 
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IV. Table of VCP Command Packets and Expected ACK Packets 

 

Command 

{command byte in 

hex} 

Command Packet  

sent to Power MCU 

Acknowledgement (ACK) Packet  

sent from Power MCU 

SWITCH OFF 

{0x00} 

0xC0 0x01 0x00 0x09 

0x00 0xSN 0xCR 0xCR 

0xC0 

0xC0 0x01 0x00 0x0A 0xER 0x00 0xSN 

0xCR 0xCR 0xC0 

SWITCH ON 

{0x01} 

0xC0 0x01 0x00 0x09 

0x01 0xSN 0xCR 0xCR 

0xC0 

0xC0 0x01 0x00 0x0A 0xER 0x01 0xSN 

0xCR 0xCR 0xC0 

SWITCH RESET 

{0x02} 

0xC0 0x01 0x00 0x09 

0x02 0xSN 0xCR 0xCR 

0xC0 

0xC0 0x01 0x00 0x0A 0xER 0x02 0xSN 

0xCR 0xCR 0xC0 

FORCE SWITCH 

ON 

{0x03} 

0xC0 0x01 0x00 0x09 

0x03 0xSN 0xCR 0xCR 

0xC0 

0xC0 0x01 0x00 0x0A 0xER 0x03 0xSN 

0xCR 0xCR 0xC0 

TORQUE 

CONTROL 

{0x04} 

0xC0 0x01 0x00 0x0B 

0x04 0xT1 0xT2 0xT3 

0xCR 0xCR 0xC0 

0xC0 0x01 0x00 0x0C 0xER 0x04 0xT1 

0xT2 0xT3 0xCR 0xCR 0xC0 

BEACON 

{0x05} 

0xC0 0x01 0x00 0x08 

0x05 0xCR 0xCR 0xC0 

0xC0 0x01 0x00 0x09 0xER 0x05 0xCR 

0xCR 0xC0 

SEND 

TELEMETRY 

PACKET 

{0x06} 

0xC0 0x01 0x00 0x08 

0x06 0xCR 0xCR 0xC0 

0xC0 0x01 0xLL 0xLL 0xER 0x06 [SVIT 

array data as bytes] 0xCR 0xCR 0xC0 

REPORT SWITCH 

STATUS 

{0x07} 

0xC0 0x01 0x00 0x08 

0x07 0xCR 0xCR 0xC0 

0xC0 0x01 0x00 0x19 0xER 0x07 [switch 

values from SVIT array as one-bits, 4 bytes 

total] 0xCR 0xCR 0xC0 

REPORT ERROR 

STATUS 

{0x08} 

0xC0 0x01 0x00 0x08 

0x08 0xCR 0xCR 0xC0 

0xC0 0x01 0x00 0x2D 0xER 0x08 [error 

bytes of SVIT array’s components, 36 bytes 

total] 0xCR 0xCR 0xC0 

 

Key for byte values that represent non-numerical quantities (not actual hexadecimal value): 

Note: 0x01 byte after first 0xC0 is the address byte. 

0xSN = switch number byte   0xCR = cyclic redundancy check byte 

0xT1 = torquer 1 input byte   0xER = error byte 

0xT2 = torquer 2 input byte   0xLL = length byte, two bytes total 

0xT3 = torquer 3 input byte     
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V. Simulated PWM Outputs for Magnetic Torquer Control 

 

 

i. Input A and Input B of Torquer’s H-bridge from simulation input {+32, +64, +127, +64} 
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ii. Input A and Input B of Torquer’s H-bridge from simulation input {+32, -64, -127, 0} 
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iii. Input A and Input B of Torquer’s H-bridge from simulation input {-64, +16, -48, +96} 
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VI. ACK Packet In Response to Same Input 

Oscilloscope images of the ACK packet transmitted on the USART0 TX pin after the MCU 

received a 0x01 0x0A command packet 
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VII. Matlab Code for Simulation of Outlier Problem 

 

t = linspace(0, 6, 1001); 
x = zeros(size(t)); 
 
x = (5/2)*cos(t*2*pi*(1/2)) + 5/2; 
%plot(t, x, 'g'); 
 
rho = 0.2; % ratio of perturbated values 
sigma = 2; % amplitude of perturbation 
p = round(rho * size(t,2)); % number of pertubated values 
% indexes of the perturbated values 
sel = randperm(size(t,2)); 
sel = sel(1:p); 
sel = sel(:); 
% perturbation of the signal 
f = x(:); 
for i = 1 : length(sel) 
    f(sel(i)) = f(sel(i)) + 2*(rand() - 1/2)*sigma; 
    if (f(sel(i)) > 5) 
        f(sel(i)) = 5; 
    end 
    if (f(sel(i)) < 0) 
        f(sel(i)) = 0; 
    end 
end 
hold on 
plot(t, f, ':'); 
 
% f_sma = the output of SMA with window size 7 
f_sma = f(:); 
Wa = 7; % window size of last 7 points 
for i = Wa : length(f_sma) 
    sum = 0; 
    for j = i-(Wa-1) : i 
        sum = sum + f_sma(j); 
    end 
    f_sma(i) = sum / Wa; 
end 
plot(t, f_sma, 'g') 
 
% f_smm = the output of SMM with window size of 7 
f_smm = f(:); 
k = 3; % half width 
Wm = 2*k + 1; % width 
for i = Wm : length(f_smm) 
    sorted = f(i-(Wm-1):i); 
    sorted = sort(sorted, 1, 'ascend'); 
    f_smm(i) = sorted(k+1); 
end 
plot(t, f_smm, 'k') 
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% f_exo = the output of SMA with local outliers excluded 
f_exo = f(:); 
We = 7; 
for i = We : length(f_exo) 
    sum = 0; 
    sqsum = 0; 
    for j = i-(We-1) : i 
        sum = sum + f(j); 
        sqsum = sqsum + (f(j) * f(j)); 
    end 
    average = sum / We; 
    stddev = sqrt((sqsum / We) - (average * average)); 
    exsum = 0; 
    num_ex = 0; 
    for j = i-(We-1) : i 
        if (f(j) > average + (3*stddev)) 
            num_ex = num_ex + 1; 
            continue; 
        elseif (f(j) < average - (3*stddev)) 
            num_ex = num_ex + 1; 
            continue; 
        else 
            exsum = exsum + f(j); 
        end 
    end 
    f_exo(i) = exsum / (We - num_ex); 
end 
plot(t, f_exo, 'm') 
xlabel('Time (arbitrary unit)') 
ylabel('Current (A)') 
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VIII. Matlab Function for Simulating PWM-based Torquer Control 

 

function pwm_sim(t1_part1, t1_part2, t1_part3, t1_part4); 
 
t = linspace(0,5,20001); 
i = 1; 
time = t(i); 
 
PC0 = zeros(size(t)); 
PG1 = zeros(size(t)); 
 
t1_counter = 0; 
i = 1; 
t1_pwm_on = t1_part1; 
t1Input = t1_part1; 
while (i <= length(t)) 
    if (t(i) < 1) 
        t1Input = t1_part1; 
    elseif (t(i) < 2) 
        t1Input = t1_part2; 
    elseif (t(i) < 3) 
        t1Input = t1_part3; 
    else 
        t1Input = t1_part4; 
    end 
     
    t1_counter = t1_counter + 1; 
    if (abs(t1_counter) > 127) 
        t1_counter = 0; 
    end 
     
    if (t1_counter < abs(t1Input)) 
        if (sign(t1_pwm_on) ~= sign(t1Input)) 
            %drive_torq1(TORQUER_BRAKE); 
            PC0(i) = 0; 
            PG1(i) = 0; 
        end 
        if (sign(t1Input) > 0) 
            %drive_torq1(TORQUER_SETA); 
            PC0(i) = 1; 
            PG1(i) = 0; 
        else 
            %drive_torq1(TORQUER_SETB); 
            PC0(i) = 0; 
            PG1(i) = 1; 
        end 
    else 
        %drive_torq1(TORQUER_FREE); 
        PC0(i) = 1; 
        PG1(i) = 1; 
    end 
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    t1_pwm_on = t1Input; 
    i = i + 1; 
end 
 
%subplot(2,1,1), plot(t,PC0,'b') 
%subplot(2,1,2), plot(t,PG1,'g') 
plot(t,PC0,'b', t,PG1,'g') 
axis([0 5 -0.1 1.1]) 
xlabel('Time (sec)') 
ylabel('Voltage (V)') 
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IX. Power Microcontroller Code 

power.h 

 

/*********************** INCLUDED LIBRARIES **************************/ 
#include <stdio.h> 
#include <inttypes.h> 
#include <string.h> 
#include <stdlib.h> 
#include <math.h> 
#include <avr/pgmspace.h> 
#include <avr/io.h> 
#include <avr/interrupt.h> 
#include "uart.h" 
#include <stdint.h> 
#include "vcp/vcplib.h" 
#include "vcp/common.h" 
 
 
/********************************* CONSTANTS **************************/ 
#define CLK          16000000L 
#define CONST_TIMER0_COMPA  187 
#define CONST_TIMER1_COMPA  249 
#define TIME_CONST   64*CONST_COMPA*TIME_SENSE/CLK  //scalar by 64, 249 COMPA, 16 MHZ 
 
#define TIME_SENSE   249   
#define TIME_UPDATE_SOC 499 
#define TIME_COMM   9  
#define TIME_WRITE   9 
#define TIME_SWITCH  49 
 
#define MUX_NULL 3 
#define MUXBIT_NULL 32 
#define SVIT_SIZE  36 
#define TEMP_SIZE 12 
#define INDEX_BATT1 20 
#define INDEX_BATT2 21 
 
#define READ(U, N) ((U) >> (N) & 1u) 
#define SET(U, N) ((void)((U) |= 1u << (N))) 
#define CLR(U, N) ((void)((U) &= ~(1u << (N)))) 
#define FLIP(U, N) ((void)((U) ^= 1u << (N))) 
 
#define CMD_BYTE_INDEX 2 
#define COMP_BYTE_INDEX 3 
#define TQ1_BYTE_INDEX 3 
#define FEND_B_COUNT 2 
#define ADDR_B_COUNT 1 
#define CRC_B_COUNT 2 
#define WRAPPER_BYTE_COUNT (FEND_B_COUNT + ADDR_B_COUNT + CRC_B_COUNT) 
#define PWR0_BUF_SIZE 128 
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//#include "v2temp.h" 
//#include <avr/pgmspace.h> 
// used 22Kohms 
#define starting_index  12 
#define ending_index  990 
#define len    ending_index - starting_index  + 1 
/**********************************************************************/ 
 
 
// SAMPLING STRUCTURE DEFINITION 
typedef struct COMPONENT_struct 
{ 
 unsigned char  S_INDEX; 
 unsigned short SAMPLE[8]; 
} COMPONENT_t; 
 
// BOUNDS STRUCTURE DEFINITION 
typedef struct BOUNDS_struct 
{ 
 const int LowerBound; 
 const int UpperBound; 
 const int AbsLowerBound; 
 const int AbsUpperBound; 
} BOUNDS_t; 
 
// SENSOR COMPONENT STRUCTURE DEFINITION 
typedef struct SVIT_struct 
{ 
 char name[8];  // the shorthand subsystem name as shown in the SVIT 
spreadsheet 
 char switchNum[3]; // the port pin (lowercase) tied to this subsystem's 
switch 
 char S;    // the current state of the switch (1 = on, 0 
= off) 
 char error;   // the byte used to encode the detected errors for 
this subsystem/component 
  
 char Vmux;  // which analogMUX/PORTF pin is this signal on? 
 char VmuxBit; // which of the analogMUX's inputs is this signal? 
 int  V;   // most recently stored value for this 
voltage 
 int  ScaleFactorV; // conversion facter for this voltage signal 
 //BOUNDS_t BoundsV; 
  
 char Imux;  // which analogMUX/PORTF pin is this signal on? 
 char ImuxBit; // which of the analogMUX's inputs is this signal? 
 int  I;   // most recently stored value for this 
current 
 int  ScaleFactorI; // conversion factor for this current signal 
 //BOUNDS_t BoundsI; 
  
 char Tmux;  // which analogMUX/PORTF pin is this signal on? 
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 char TmuxBit; // which of the analogMUX's inputs is this signal? 
 int  T;   // most recently stored value for this 
temperature 
 //BOUNDS_t BoundsT; 
} SVIT_t; 
 
// BATTERT STATE-OF-CHARGE STRUCTURE DEFINITION 
typedef struct BATTERY_struct 
{ 
 COMPONENT_t   METHOD0; 
 COMPONENT_t   METHOD1; 
 unsigned long SOC; 
 COMPONENT_t   TEMP_SAMPLE; 
 int    TEMPERATURE; 
} BATTERY_t; 
 
 
//unsigned int currentValue, voltageValue, tempValue; 
COMPONENT_t I_SAMPLE[SVIT_SIZE]; // number of components and 8 samples each! 
COMPONENT_t V_SAMPLE[SVIT_SIZE]; // number of components and 8 samples each! 
COMPONENT_t T_SAMPLE[TEMP_SIZE]; // number of components and 8 samples each! 
SVIT_t SVIT[SVIT_SIZE]; // two-dimensional SVIT array declaration 
BATTERY_t BATTERY0, BATTERY1; // two batteries' SOC struct declarations 
 
 
// POWER.C function declarations 
void initialize(void); 
 
// POWER_SAMPLE.C function declarations 
void read_VIT(void); 
unsigned int read_VIT_helper(char MUX_NUM, char MUX_SEL); 
void selectMUX(char MUX_NUM, char MUX_SEL); 
void storeValue(void); 
int setValue(COMPONENT_t * c, unsigned int v, char ivtFlag); 
void updateSOC(BATTERY_t * batt); 
unsigned int filter(int sample, char SVITindex); 
int getTemp(int voltage); 
 
// POWER_CONTROL.C function declarations 
void switchControl(int num, char onOffFlag); 
void torqueControl(char torq1Input, char torq2Input, char torq3Input); 
void drive_torq1(char state); 
void drive_torq2(char state); 
void drive_torq3(char state); 
 
// POWER_COMM.C function declarations 
void uart_read0_term(void); 
void uart_write0_term(void); 
void vcp_comm(void); 
void vcp_write(void); 
void putPacket(void); 
void getPacket(void); 
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char parseMessage(); 
void writeACKMessage(void); 
void sendTelemetry(void); 
void sendSwitchStatus(void); 
void sendErrors(void); 
void sendBeacon(void); 
void writeTELMessage(void); 
void clearTxBuffer(void); 
 
volatile int time1, time2, time3, time4, time5; //task scheduling timeout counters 
 
vcp_ptrbuffer PWR0; // pointer to vcp buffer used for RXing/TXing VCP packet 
over UART 
 
// USART0 ISR variables 
//  RXC ISR variables 
volatile char rx0_status; // return value of vcpptr_rx function 
volatile unsigned int rx0_index; // current string index 
volatile char rx0_buff[20]; // input string 
volatile char rx0_ready; // flag for receive done 
volatile char rx0_char; // current character 
//  TX ISR variables 
volatile char tx0_status;  // return value of vcpptr_tx function 
volatile unsigned int tx_in, tx_out; //  
volatile unsigned int tx0_index; // current string index 
volatile char tx0_buff[PWR0_BUF_SIZE]; // output string 
volatile char tx0_ready; // flag for transmit done 
volatile char tx0_char; // current character 
char vcp_newACK; // vcp_read-->vcp_write handshake 
char vcp_newTEL; // flag to indicate new Telemetry/Errors/SwitchStatus message is 
ready to TX 
 
char* telMessage; // pointer to memory location of start of TEL packet message 
int v; 
char ack, command; // acknowledgement byte, command byte 
int index_svit, index_temp; // index for the SVIT array, index for the T_SAMPLE 
array 
int componentNum; // SVIT index of the component to be controlled by switch_control 
in while(1) loop 
char endSwitchState; // final state of switch being controlled 
char t1value, t2value, t3value; // input values for torque_control of the 3 
torquers 
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power.c 

 

/***************************************************** 
 Project : Power MCU Code 
 Version : 3.0.1 
 Date    : 4/1/2011 
 Author  : Rajesh Atluri 
 Company : Cornell Violet Satellite Project 
   
 Chip type           : ATmega128 
 Program type        : Application 
 Clock frequency     : 16.000000 MHz 
 Memory model        : - 
 External SRAM size  : - 
 Data Stack size     : - 
 *****************************************************/ 
 
#include "power.h" 
 
  
// UART file descriptor, putchar and getchar are in uart.c  
FILE uart_str = FDEV_SETUP_STREAM(uart_putchar, uart_getchar, _FDEV_SETUP_RW); 
  
 /* NOTE:  MUST MAKE SIGNIFICANT CHANGES TO SVIT ARRAY FOR ERROR HANDLING (e.g. 
FLAG BITS) */ 
// MOD: THIS svit ARRAY HAS fc5'S CURRENT ON MUX1.0 AND gps1'S CURRENT ON MUX1.1 
// MOD: switches of spec and star are "d4" and "d5" respectively. fog15's switch "c1" 
 
// SVIT array, currently 36-elements of SVIT_t structs 
SVIT_t SVIT[] = { 
{"spec",    "d4", 0, 0x00, /*{0,256,0,256},*/  1, 16, 0, 1,   1,  6, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"star",    "d5", 0, 0x00, /*{0,256,0,256},*/  1, 23, 0, 1,   1,  7, 0, 1,   2,  7, 
0}, 
{"fc5",     "a0", 0, 0x00, /*{0,256,0,256},*/  1, 19, 0, 1,   1,  0, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"fc3.3",   "a0", 0, 0x00, /*{0,256,0,256},*/  2, 13, 0, 1,   2, 14, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"gps1",    "a1", 0, 0x00, /*{0,256,0,256},*/  1, 21, 0, 1,   1,  1, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"gps2",   "a2", 0, 0x00, /*{0,256,0,256},*/  1, 26, 0, 1,   1,  2, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"ib",      "b5", 0, 0x00, /*{0,256,0,256},*/  1, 29, 0, 1,   1,  3, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"heat1",   "b6", 0, 0x00, /*{0,256,0,256},*/  1, 14, 0, 1,   1, 31, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"heat2",   "b7", 0, 0x00, /*{0,256,0,256},*/  1, 27, 0, 1,   1,  4, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"cmg",     "g2", 0, 0x00, /*{0,256,0,256},*/  1, 15, 0, 1,   1,  8, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"sunsen",  "c7", 0, 0x00, /*{0,256,0,256},*/  1, 25, 0, 1,   1,  9, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
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{"radio1",  "c6", 0, 0x00, /*{0,256,0,256},*/  1, 24, 0, 1,   1, 10, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"radio2",  "c5", 0, 0x00, /*{0,256,0,256},*/  1, 17, 0, 1,   1, 11, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"maestro", "c4", 0, 0x00, /*{0,256,0,256},*/  1, 22, 0, 1,   1, 12, 0, 1,   2,  8, 
0}, 
{"mag",  "c3", 0, 0x00, /*{0,256,0,256},*/  0,  4, 0, 1,   0,  6, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"fog15",  "c1", 0, 0x00, /*{0,256,0,256},*/  1, 18, 0, 1,   1, 13, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"fog5", "c2", 0, 0x00, /*{0,256,0,256},*/  1, 18, 0, 1,   1, 13, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"torq1",  "",   0, 0x00, /*{0,256,0,256},*/  1, 28, 0, 1,   1,  5, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"torq2",  "",   0, 0x00, /*{0,256,0,256},*/  2, 15, 0, 1,   2, 16, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"torq3",  "",   0, 0x00, /*{0,256,0,256},*/  2, 17, 0, 1,   2, 18, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"batt1", "",   0, 0x00, /*{0,256,0,256},*/  0,  1, 0, 1,   0,  2, 0, 1,   2,  9, 
0}, // says 9, 10 for Bit on SVIT.xlsx; average them 
{"batt2",  "",   0, 0x00, /*{0,256,0,256},*/  1, 20, 0, 1,   1, 30, 0, 1,   2, 11, 
0}, // says 11, 12 for Bit on SVIT.xlsx; average them 
{"solar",  "",   0, 0x00, /*{0,256,0,256},*/  0,  7, 0, 1,   0,  3, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"solar1", "",   0, 0x00, /*{0,256,0,256},*/  0, 18, 0, 1,   0, 20, 0, 1,   2,  0, 
0}, 
{"solar2",  "",   0, 0x00, /*{0,256,0,256},*/  0, 19, 0, 1,   0, 21, 0, 1,   2,  1, 
0}, 
{"solar3",  "",   0, 0x00, /*{0,256,0,256},*/  0, 10, 0, 1,   0, 22, 0, 1,   2,  2, 
0}, 
{"solar4",  "",   0, 0x00, /*{0,256,0,256},*/  0, 15, 0, 1,   0, 23, 0, 1,   2,  3, 
0}, 
{"solar5",  "",   0, 0x00, /*{0,256,0,256},*/  0,  9, 0, 1,   0, 24, 0, 1,   2,  
4, 0}, 
{"solar6",  "",   0, 0x00, /*{0,256,0,256},*/  0, 14, 0, 1,   0, 25, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"solar7",  "",   0, 0x00, /*{0,256,0,256},*/  0, 16, 0, 1,   0, 26, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"solar8",  "",   0, 0x00, /*{0,256,0,256},*/  0,  8, 0, 1,   0, 27, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"solar9",  "",   0, 0x00, /*{0,256,0,256},*/  0, 13, 0, 1,   0, 28, 0, 1,   2,  5, 
0}, 
{"solar10", "",   0, 0x00, /*{0,256,0,256},*/  0, 12, 0, 1,   0, 29, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"solar11", "",   0, 0x00, /*{0,256,0,256},*/  0, 11, 0, 1,   0, 30, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"solar12", "",   0, 0x00, /*{0,256,0,256},*/  0, 17, 0, 1,   0, 31, 0, 1,   
MUX_NULL, MUXBIT_NULL, 0}, 
{"pb",   "",   0, 0x00, /*{0,256,0,256},*/  0,  5, 0, 1,   0,  0, 0, 1,   
2,  6, 0}     }; 
 
 
 // TIMER 0 ISR 
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 ISR (TIMER0_COMP_vect) 
 { 
 if (time1 > 0) --time1; 
 } 
  
 // Timer 1 ISR 
 ISR (TIMER1_COMPA_vect) 
 { 
 if (time2 > 0)  --time2; 
 if (time3 > 0)  --time3; 
 if (time4 > 0)  --time4; 
 if (time5 > 0) --time5; 
 } 
  
  
 // PROGRAM'S MAIN METHOD 
 int main(void) 
 { 
 initialize(); 
  
 // TASK SCHEDULING INFINITE WHILE LOOP 
 while(1) 
 { 
  if (time1 == 0) 
  { 
   time1 = TIME_SENSE; 
   read_VIT(); 
   storeValue(); 
  } 
  if (time2 == 0) 
  { 
   time2 = TIME_COMM; 
   vcp_comm(); 
    
   //uart_read0_term(); FOR READING STRINGS TO HYPERTERM/TERMINAL 
  } 
  if (time3 == 0) 
  { 
   time3 = TIME_WRITE; 
   //vcp_write(); 
    
   //uart_write0_term(); FOR WRITING STRINGS TO HYPERTERM/TERMINAL 
   //uart_write1(); 
  } 
  if (time4 == 0) 
  { 
   time4 = TIME_UPDATE_SOC; 
   // UNDEVELOPED FUNCTIONS 
   //updateSOC(&BATTERY0); 
   //updateSOC(&BATTERY1); 
    
   // de-package the data and call right function 
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   //RAS_package(&PWR2, I_SAMPLE, V_SAMPLE, T_SAMPLE); 
   //UCSR1B |= (1 << UDRIE1); // start TX ISR 
   //t_index1 = 0; 
  } 
  if (time5 == 0) 
  { 
   time5 = TIME_SWITCH; 
   if (endSwitchState == 2) 
   { 
    if (SVIT[componentNum].S) 
     switchControl(componentNum, 0); 
    endSwitchState = 1; 
   } 
   //else if (SVIT[componentNum].S != endSwitchState) 
    switchControl(componentNum, endSwitchState); 
  } 
  torqueControl(t1value, t2value, t3value); 
 } 
 } 
   
 void initialize(void) 
 { 
 cli(); 
  
 // initialize input pins and output port registers 
 DDRA =  0xff; 
 PORTA = 0x00; 
 DDRB =  0xff; 
 PORTB = 0x00; 
 DDRC =  0xff; 
 PORTC = 0x00; 
 DDRD =  0b11111011; 
 PORTD = 0b11000000; 
 DDRE =  0b11111110; 
 PORTE = 0b00000000; 
 DDRF = 0xf0; 
 PORTF = 0x00; 
 DDRG = 0x1f; 
 PORTG = 0x00; 
  
 // set up uart 
 uart_init(); 
 stdout = stdin = stderr = &uart_str; 
 //fprintf(stdout, "%x%x%x", 0xC0, 0xFF, 0xC0); 
   
 // TIMERS AND ADC initialization 
  
 /*********************** T I M E R S ***********************/ 
 /* Timer 0 initialization 
 * Clock source: External 16 MHz clock 
 * Mode: Normal top = CTC (Clear Timer on Compare) 
 * COMP value = 16 
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 * Prescalar = 1 
 * Compare Match Interrupt Period = 1 us 
 */ 
 //TCNT0 = 0x00; 
 //ASSR = (1 << AS0); // External Clock on 
 TIMSK = (1 << OCIE0); // Enable CTC interrupt 
 OCR0 = CONST_TIMER0_COMPA; //set the compare reg. to 16 timer ticks 
 TCCR0 = (1 << WGM01) | (1 << WGM00) | (1 << CS00); // start timer at Fcpu/1 
  
 /* Timer 1 initialization 
 * Clock source: External 16 MHz clock 
 * Mode: Normal top = CTC (Clear Timer on Compare) 
 * COMPA value = 249 
 * Prescalar = 1/64 
 * COMPA Match Interrupt Period = 1 ms approx. 
 */ 
 TIMSK |= (1 << OCIE1A); // Enable CTC interrupt 
 OCR1A = CONST_TIMER1_COMPA; // set the compare reg. to 250 timer ticks 
 TCCR1B = (1 << WGM12) | (1 << CS11) | (1 << CS10); // start timer at Fcpu/64 
 /*********************** T I M E R S ***********************/ 
  
 /*********************** ADC0-ADC2 initialization ***********************/ 
 //ADMUX = (1 << REFS1) | (1 << REFS0) | (0 << ADLAR); // ADC ref of 
2.56V, Right justified values 
 ADCSRA = ((1 << ADEN) | (1 << ADSC)) + 7; // enable ADC, start first 
conversion (takes longer than others),  
            // and 
make ADC clock 16E6/128 = 125 kHZ 
  
 index_svit = 0; 
 index_temp = 0; 
  
 // ASSUME BATTERY0 and BATTERY1 are 100% charged initially 
 BATTERY0.SOC = 0xffffffff; 
 BATTERY1.SOC = 0xffffffff; 
  
 // initalize VCP pointer buffer 
 uint8 BUFFER0[PWR0_BUF_SIZE]; 
 vcpptr_init(&PWR0, BUFFER0, PWR0_BUF_SIZE); 
 // set up circular buffer state variables 
 tx_in = 0; 
 tx_out = 0; 
 rx0_index = 0; 
 tx0_index = 0; 
 rx0_ready = 0; // no (RX buffer) input ready initially 
 tx0_ready = 1; // the (TX buffer) output and the transmitter are ready 
initially 
 vcp_newACK = 0; // initialize ACK handshake to its RX-state value 
 vcp_newTEL = 0; // initialize TEL handshake to its RX-state value 
  
 // initialize the task timers/counters 
 time1 = TIME_SENSE; 
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 time2 = TIME_COMM; 
 time3 = TIME_WRITE; 
 time4 = TIME_UPDATE_SOC; 
 time5 = TIME_SWITCH; 
  
 sei(); // crank up the ISRs 
  
 getPacket(); // initialize comm. service to receive packets 
 } 
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power_control.c 

 

#include "power.h" 
 
#define TORQUER_FREE 0 
#define TORQUER_BRAKE 1 
#define TORQUER_SETA 2 
#define TORQUER_SETB 3 
 
// NOTE TO SELF: try using "#define paste(front, back) front ## back" to reduce the 
number 
// of lines taken up by the switchControl function 
 
/*  function that turns on/off the switch with index of num (orig. int, now char)  
 in the SVIT struct array. The outer if statement is included to make sure the  
 port pin is only changed if its current state differs from the final state  
 indicated by onOffFlag. (turns on if onOffFlag = 1, turns off if onOffFlag = 
0) */ 
void switchControl(int num, char onOffFlag) 
{ 
 char switchFound = 1; 
 //if (SVIT[num].S != onOffFlag) { 
  switch (SVIT[num].switchNum[0]) { 
   case 'a': 
    switch (SVIT[num].switchNum[1]) { 
     case '2': 
      if (onOffFlag) SET(PORTA, PA2); 
      else CLR(PORTA, PA2); 
      break; 
     case '1': 
      if (onOffFlag) SET(PORTA, PA1); 
      else CLR(PORTA, PA1); 
      break; 
     case '0': 
      if (onOffFlag) SET(PORTA, PA0); 
      else CLR(PORTA, PA0); 
      break; 
     default: 
      switchFound = 0; 
      break; 
    } 
    break; 
   case 'b': 
    switch (SVIT[num].switchNum[1]) { 
     case '7': 
      if (onOffFlag) SET(PORTB, PB7); 
      else CLR(PORTB, PB7); 
      break; 
     case '6': 
      if (onOffFlag) SET(PORTB, PB6); 
      else CLR(PORTB, PB6); 
      break; 



[56] 

 

 

     case '5': 
      if (onOffFlag) SET(PORTB, PB5); 
      else CLR(PORTB, PB5); 
      break; 
     default: 
      switchFound = 0; 
      break; 
    } 
    break; 
   case 'c': 
    switch (SVIT[num].switchNum[1]) { 
     case '7': 
      if (onOffFlag) SET(PORTC, PC7); 
      else CLR(PORTC, PC7); 
      break; 
     case '6': 
      if (onOffFlag) SET(PORTC, PC6); 
      else CLR(PORTC, PC6); 
      break; 
     case '5': 
      if (onOffFlag) SET(PORTC, PC5); 
      else CLR(PORTC, PC5); 
      break; 
     case '4': 
      if (onOffFlag) SET(PORTC, PC4); 
      else CLR(PORTC, PC4); 
      break; 
     case '3': 
      if (onOffFlag) SET(PORTC, PC3); 
      else CLR(PORTC, PC3); 
      break; 
     case '2': 
      if (onOffFlag) SET(PORTC, PC2); 
      else CLR(PORTC, PC2); 
      break; 
     case '1': 
      if (onOffFlag) SET(PORTC, PC1); 
      else CLR(PORTC, PC1); 
     default: 
      switchFound = 0; 
      break; 
    } 
    break; 
   case 'd': 
    switch (SVIT[num].switchNum[1]) { 
     case '5': 
      if (onOffFlag) SET(PORTD, PD5); 
      else CLR(PORTD, PD5); 
      break; 
     case '4': 
      if (onOffFlag) SET(PORTD, PD4); 
      else CLR(PORTD, PD4); 
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      break; 
     default: 
      switchFound = 0; 
      break; 
    } 
    break; 
   case 'g': 
    switch (SVIT[num].switchNum[1]) { 
     case '2': 
      if (onOffFlag) SET(PORTG, PG2); 
      else CLR(PORTG, PG2); 
      break; 
     default: 
      switchFound = 0; 
      break; 
    } 
    break; 
   default: 
    switchFound = 0; 
    break; 
  } 
  if (switchFound) { 
   SVIT[num].S = onOffFlag; 
  } 
 //} 
} 
 
 
// NOTE: Does torqueControl require a timer to be set into PWM mode or just a task 
timer? 
unsigned char t1_pwm_counter, t2_pwm_counter, t3_pwm_counter; // initialize to 0 
(counts 0 to 0x7f) 
unsigned char t1_pwm_on, t2_pwm_on, t3_pwm_on; // initialize to +0 
 
/* function that controls the magnetic torquer using software-counter-based PWM */ 
void torqueControl(char torq1Input, char torq2Input, char torq3Input) 
{ 
 t1_pwm_counter++; 
 t2_pwm_counter++; 
 t3_pwm_counter++; 
 if ((t1_pwm_counter & 0x7f) > 127) { t1_pwm_counter &= 0x80; } 
 if ((t2_pwm_counter & 0x7f) > 127) { t2_pwm_counter &= 0x80; } 
 if ((t3_pwm_counter & 0x7f) > 127) { t3_pwm_counter &= 0x80; } 
 /* SEMAPHORE LOCK */ 
 if (t1_pwm_counter < torq1Input) { 
  if ((t1_pwm_on & 0x80) != (torq1Input & 0x80))  
  { 
   drive_torq1(TORQUER_BRAKE); 
   //delay_us(10); 
  } 
  if (torq1Input & 0x80) drive_torq1(TORQUER_SETA); 
  else drive_torq1(TORQUER_SETB); 
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 } else drive_torq1(TORQUER_FREE); 
 if (t2_pwm_counter < torq2Input) { 
  if ((t2_pwm_on & 0x80) != (torq2Input & 0x80))  
  { 
   drive_torq2(TORQUER_BRAKE); 
   //delay_us(10); 
  } 
  if (torq2Input & 0x80) drive_torq2(TORQUER_SETA); 
  else drive_torq2(TORQUER_SETB); 
 } else drive_torq2(TORQUER_FREE); 
 if (t3_pwm_counter < torq3Input) { 
  if ((t3_pwm_on & 0x80) != (torq3Input & 0x80))  
  { 
   drive_torq3(TORQUER_BRAKE); 
   //delay_us(10); 
  } 
  if (torq3Input & 0x80) drive_torq3(TORQUER_SETA); 
  else drive_torq3(TORQUER_SETB); 
 } else drive_torq3(TORQUER_FREE); 
 t1_pwm_on = torq1Input; 
 t2_pwm_on = torq2Input; 
 t3_pwm_on = torq3Input; 
 /* SEMAPHORE UNLOCK */ 
} 
/*  the following 3 functions set the output ports connected to  
 each of the 3 torquer's H-bridge interface chips */ 
void drive_torq1(char state) 
{ 
 if (state == TORQUER_FREE) { 
  SET(PORTC, PC0); 
  SET(PORTG, PG1); 
 } else if (state == TORQUER_BRAKE) { 
  CLR(PORTC, PC0); 
  CLR(PORTG, PG1); 
 } else if (state == TORQUER_SETA) { 
  SET(PORTC, PC0); 
  CLR(PORTG, PG1);   
 } else if (state == TORQUER_SETB) { 
  CLR(PORTC, PC0); 
  SET(PORTG, PG1); 
 } 
} 
void drive_torq2(char state) 
{ 
 if (state == TORQUER_FREE) { 
  SET(PORTG, PG0); 
  SET(PORTD, PD0); 
 } else if (state == TORQUER_BRAKE) { 
  CLR(PORTG, PG0); 
  CLR(PORTD, PD0); 
 } else if (state == TORQUER_SETA) { 
  SET(PORTG, PG0); 
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  CLR(PORTD, PD0);   
 } else if (state == TORQUER_SETB) { 
  CLR(PORTG, PG0); 
  SET(PORTD, PD0); 
 } 
} 
void drive_torq3(char state) 
{ 
 if (state == TORQUER_FREE) { 
  SET(PORTG, PG3); 
  SET(PORTG, PG4); 
 } else if (state == TORQUER_BRAKE) { 
  CLR(PORTG, PG3); 
  CLR(PORTG, PG4); 
 } else if (state == TORQUER_SETA) { 
  SET(PORTG, PG3); 
  CLR(PORTG, PG4);   
 } else if (state == TORQUER_SETB) { 
  CLR(PORTG, PG3); 
  SET(PORTG, PG4); 
 } 
} 
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power_comm.c 

 

#include "power.h" 
 
char newPacketLength; 
int telSentCount; 
 
// UART 8-bit-character-ready receive ISR 
ISR(USART0_RX_vect) 
{ 
 rx0_char = UDR0; // get an 8-bit char 
 rx0_status = vcpptr_rx(&PWR0, rx0_char); 
 rx0_buff[rx0_index++] = rx0_char; 
 if ((rx0_status & VCP_TERM) == VCP_TERM) 
 { 
  UCSR0B ^= (1 << RXCIE0); // clear RX enable 
  rx0_ready = 1; // receive done 
 } 
} 
 
// UART 8-bit-character-ready transmit ISR 
ISR(USART0_UDRE_vect) 
{ 
 if (tx_in == tx_out) 
  UCSR0B &= ~(1 << UDRIE0); // disable TX interrupt 
 else 
 { 
  //loop_until_bit_is_set(UCSR0A, UDRE0); 
  UDR0 = tx0_char = (&PWR0)->message[tx_out]; 
  tx_out++; 
  if (tx_out == PWR0_BUF_SIZE) 
   tx_out = 0; 
  /*if (tx_out >= newPacketLength) 
  { 
   UCSR0B ^= (1 << UDRIE0); // clear TX enable 
   tx0_ready = 1; // transmit done 
  }*/ 
 } 
} 
 
/*  Writes the input byte into the UART using a circular buffer approach 
 and activates the UART transmit ISR */ 
int writeByte(char c) 
{ 
 char i = tx_in; 
 i++; 
 if (i == PWR0_BUF_SIZE) 
  i = 0; 
 (&PWR0)->message[tx_in] = c; 
  
 while (i == tx_out); // until at least 1 byte free 
  // tx_out modified by interrupt! 
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 tx_in = i; 
 UCSR0B |= (1 << UDRIE0); 
 //UCSR0A |= (1 << UDRE0); 
 loop_until_bit_is_set(UCSR0A, UDRE0); 
  
 return 0; 
} 
 
/* Writes the message in tx0_buff to the message field of the vcpptr_buffer 
 and sends the message one byte at a time */ 
void putPacket(void) 
{ 
 tx0_ready = 0; // mark tranmitter as busy 
 tx0_index = 0; 
 vcpptr_clear(&PWR0); 
 (&PWR0)->address = VCP_POWER; // packets from Power MCU have VCP_POWER 
address (see vcplib.h) 
   
 while (tx0_index < newPacketLength - WRAPPER_BYTE_COUNT) 
 {  
  tx0_status = vcpptr_tx(&PWR0, tx0_buff[tx0_index++], (&PWR0)-
>flags); 
 } 
 tx0_status = vcpptr_tx(&PWR0, tx0_buff[tx0_index++], VCP_TERM); 
  
 int tx_out_init = tx_out; 
 while (tx_out - tx_out_init < newPacketLength) 
 { 
  writeByte((&PWR0)->message[tx_out]); 
 } 
 
 UCSR0B ^= (1 << UDRIE0); // clear TX enable 
 tx0_ready = 1; // transmit done 
 clearTxBuffer(); 
  
} 
 
/* writes an acknowledgement message into the tx0_buff buffer */ 
void writeACKMessage(void) 
{ 
 newPacketLength = (char)((&PWR0)->index) + WRAPPER_BYTE_COUNT + 1; 
 tx0_buff[0] = (char)(newPacketLength >> 8); 
 tx0_buff[1] = (char)newPacketLength; 
 tx0_buff[2] = ack; 
 int j; 
 for (j = 0; j < (&PWR0)->index - 2; j++) 
 { 
  tx0_buff[j+3] = ((&PWR0)->message[j+2]); 
 } 
} 
 
/* writes the message in the telMessage buffer into the tx0_buff buffer */ 
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void writeTELMessage(void) 
{ 
  
 if (sizeof(&telMessage) + WRAPPER_BYTE_COUNT > PWR0_BUF_SIZE) 
 { 
   
 } 
 else 
 { 
  char dataByteCount = sizeof(&telMessage) + WRAPPER_BYTE_COUNT; 
  tx0_buff[0] = (char)(dataByteCount >> 8); 
  tx0_buff[1] = (char)dataByteCount; 
  int j; 
  for (j = 0; j < (dataByteCount - WRAPPER_BYTE_COUNT); j++) 
  { 
   tx0_buff[j+2] = telMessage[j]; 
  } 
  telSentCount = sizeof(&telMessage); 
 } 
 newPacketLength = telSentCount + WRAPPER_BYTE_COUNT; 
} 
 
// TOP-LEVEL FUNCTION OF THE VCP-PACKET-BASED COMMUNICATION OVER UART 
void vcp_comm(void) 
{ 
 if (rx0_ready) // is the RX buffer string ready to read? 
 { 
  // extract message bytes from rx0_buff 
  ack = parseMessage(); 
  getPacket(); // set up procedure to get the next string input and read 
it using RX ISR 
  vcp_newACK = 1; // signal that a new command has been received 
 } 
 else if (tx0_ready && vcp_newACK) // see if the last transmit is done and 
if there is a new ACK message to TX 
 { 
  writeACKMessage(); 
  //vcp_package((&PWR0)->message, &((&PWR0)->size), (&PWR0)->address, 
(uint8ptr)tx0_buff, sizeof(tx0_buff)); 
  putPacket(); // send ACK packet using transmit ISR 
   
  vcp_newACK = 0; // clear the handshake from the above state 
  vcpptr_clear(&PWR0); 
 } 
 else if (tx0_ready && vcp_newTEL && !vcp_newACK) // see if the last 
transmit is done and if there is a new TEL message to TX 
 { 
  telSentCount = 0; 
  do { 
   writeTELMessage(); 
  } while (telSentCount < sizeof(&telMessage)); 
  putPacket(); 
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  vcp_newTEL = 0; 
  vcpptr_clear(&PWR0); 
 } 
 /*else if (tx0_ready == rx0_ready) 
 { 
  tx0_ready = 0; 
  rx0_ready = 0; 
  UCSR0B |= (1 << RXCIE0); // turn on receive ISR 
 }*/ 
} 
 
/* adjusts variables to enable RXing of VCP packet and enables RX ISR */ 
void getPacket(void) 
{ 
 rx0_ready = 0; // mark RX buffer as not ready 
 rx0_index = 0; // reset index 
 UCSR0B |= (1 << RXCIE); // turn on receive ISR 
} 
 
/* breaks down PWR0's message buffer into certain fields and executes the sent 
command */ 
char parseMessage(void) 
{ 
 char cmdStatus = 0; 
 command = (&PWR0)->message[CMD_BYTE_INDEX]; 
 if (command <= 0x03) 
  componentNum = (&PWR0)->message[COMP_BYTE_INDEX]; //componentNum = 
(int)msg[COMP_BYTE_INDEX];//componentNum = ((&PWR0)->message[COMP_BYTE_INDEX]); 
 else  
  componentNum = 999; 
 //char t1value, t2value, t3value; 
 switch(command) 
 { 
  case 0x00: //"CS0" - SWITCH OFF 
   endSwitchState = 0; 
   cmdStatus = 0x00; 
   break; 
  case 0x01: //"CS1" - SWITCH ON 
   endSwitchState = 1; 
   cmdStatus = 0x00; 
   break; 
  case 0x02: //"CST" - SWITCH RESET 
   endSwitchState = 2; 
   cmdStatus = 0x00; 
   break; 
  case 0x03: //"CSF" - FORCE SWITCH ON 
   endSwitchState = 1; 
   cmdStatus = 0x00; 
   break; 
  case 0x04: //"CT" - TORQUE CONTROL 
   t1value = (&PWR0)->message[TQ1_BYTE_INDEX]; 
   t2value = (&PWR0)->message[TQ1_BYTE_INDEX + 1]; 
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   t3value = (&PWR0)->message[TQ1_BYTE_INDEX + 2]; 
   //torqueControl(t1value, t2value, t3value); 
   break; 
  case 0x05: //"BE" - BEACON 
    
   break; 
  case 0x06: //"RTP" - SEND TELEMETRY PACKET 
   sendTelemetry(); 
   break; 
  case 0x07: //"RSS" - REPORT SWITCH STATUS 
   sendSwitchStatus(); 
   break; 
  case 0x08: //"RES" - REPORT ERROR STATUS 
   sendErrors(); 
   break; 
  default: 
   cmdStatus = 0xff; 
   break; 
 } 
 return cmdStatus; 
} 
 
 
// formats and writes a telemetry packet with data from the SVIT struct into the 
telMessage buffer 
void sendTelemetry(void) 
{ 
 //unsigned char vcpTXflags; 
 int i; 
 for (i = 0; i < SVIT_SIZE; i++) 
 { 
  sprintf(telMessage, "%s,%s,%x,%x\t%d\t%d\t%d\n\r",  
   SVIT[i].name, SVIT[i].switchNum, SVIT[i].S, SVIT[i].error, 
SVIT[i].V, SVIT[i].I, SVIT[i].T); 
 } 
 vcp_newTEL = 1; 
} 
 
// formats and writes the status of switches into the telMessage buffer 
void sendSwitchStatus(void) 
{ 
 int i; 
 for (i = 0; i < SVIT_SIZE; i++) 
 { 
  sprintf(telMessage, "%x", SVIT[i].S); 
  if (i < SVIT_SIZE - 1) 
   sprintf(telMessage, ","); 
 } 
  
 vcp_newTEL = 1; 
} 
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// formats and writes the components' error bytes into the telMessage buffer 
void sendErrors(void) 
{ 
 int i; 
 for (i = 0; i < SVIT_SIZE; i++) 
 { 
  sprintf(telMessage, "%x", SVIT[i].error); 
  if (i < SVIT_SIZE - 1) 
   sprintf(telMessage, ","); 
 } 
   
 vcp_newTEL = 1; 
} 
 
// AS OF NOW THE BEACON FUNCTION HAS YET TO BE DEFINED 
void sendBeacon(void) 
{ 
 
} 
 
// clears the tx0_buff buffer so it can get a new message into it 
void clearTxBuffer(void) 
{ 
 int i; 
 for (i = 0; i <= newPacketLength; i++) 
 { 
  tx0_buff[i] = 0; 
 } 
} 
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power_sample.c 

 

#include "power.h" 
 
const int TempScaleFactor = 1; // conversion factor for all temperature 
signals 
 
// variables that store the digital value output by the MCU's A-to-D Converter (ADC) 
unsigned int currentValue, voltageValue, tempValue; 
unsigned int batt1CurrentValue, batt1VoltageValue, batt1TempValue; 
unsigned int batt2CurrentValue, batt2VoltageValue, batt2TempValue; 
// variables that equal the ADC output value multiplied by the appropriate sensor 
scaling factor 
unsigned int currentScaledValue, voltageScaledValue, tempScaledValue; 
unsigned int batt1CurrentScaled, batt1VoltageScaled, batt1TempScaled; 
unsigned int batt2CurrentScaled, batt2VoltageScaled, batt2TempScaled; 
 
/* TOP LEVEL FUNCTION THAT EXECUTES AN ANALOG-TO-DIGITAL CONVERSION OF THE 
 MEASURED OUTPUT OF THE SESNSORS OF THE CURRENTLY INDEXED SVIT COMPONENT  
 AND OF THE BATTERIES */ 
void read_VIT(void) 
{ 
 /* 
 * We will use 10-bit precision, right justified (ADLAR = 0) 
 * PINF0/ADC0 = MUX with output VOLT_SEN_OUT 
 * PINF1/ADC1 = MUX with output CUR_SEN_OUT 
 * PINF2/ADC2 = MUX with output SEN_THERM_OUT 
 */ 
 if (index_svit++ >= SVIT_SIZE) 
  index_svit = 0; 
 if (index_svit == INDEX_BATT1) 
  index_svit++; 
 if (index_svit == INDEX_BATT2) 
  index_svit++; 
  
 currentValue = read_VIT_helper(SVIT[index_svit].Imux, 
SVIT[index_svit].ImuxBit); 
 voltageValue = read_VIT_helper(SVIT[index_svit].Vmux, 
SVIT[index_svit].VmuxBit); 
 if (SVIT[index_svit].Tmux != MUX_NULL) 
  tempValue = read_VIT_helper(SVIT[index_svit].Tmux, 
SVIT[index_svit].TmuxBit); 
   
 batt1CurrentValue = read_VIT_helper(SVIT[INDEX_BATT1].Imux, 
SVIT[INDEX_BATT1].ImuxBit); 
 batt1VoltageValue = read_VIT_helper(SVIT[INDEX_BATT1].Vmux, 
SVIT[INDEX_BATT1].VmuxBit); 
 batt1TempValue = read_VIT_helper(SVIT[INDEX_BATT1].Tmux, 
SVIT[INDEX_BATT1].TmuxBit); 
  
 batt2CurrentValue = read_VIT_helper(SVIT[INDEX_BATT2].Imux, 
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SVIT[INDEX_BATT2].ImuxBit); 
 batt2VoltageValue = read_VIT_helper(SVIT[INDEX_BATT2].Vmux, 
SVIT[INDEX_BATT2].VmuxBit); 
 batt2TempValue = read_VIT_helper(SVIT[INDEX_BATT2].Tmux, 
SVIT[INDEX_BATT2].TmuxBit); 
} 
 
// MUX_NUM is from {0, 1, 2} for the analog multiplexor that is being sampled from 
// MUX_SEL is 0-31 for the input of the MUX that is selected and sampled 
 
// sets the ADC registers of the MCU and actually performs the analog-to-digital 
conversion 
unsigned int read_VIT_helper(char MUX_NUM, char MUX_SEL) 
{ 
 unsigned int temp; 
 selectMUX(MUX_NUM, MUX_SEL); 
 ADMUX = (1 << REFS0) | MUX_NUM; // sets voltage ref. to AVCC with external 
capacitor at AREF  
         // and selects one of the 
3 ADC sampling channels 
 ADCSRA |= (1 << ADSC); // start conversion 
 while (ADCSRA & (1 << ADSC)); // blocking while waiting for end of 
conversion 
 temp = ADCL; // we must read ADCL first according to spec sheet 
 temp |= (ADCH << 8); // reading ADCH will refresh ADC register 
 return temp; 
} 
 
// drives the MCU port pins, connected to the select inputs of the activated MUX, 
// with MUX_SEL depending on MUX_NUM, which indicates the activated MUX 
/* #define MUX_SELECT(bit, port, pbit) ((bit) ? (port |= (1 << pbit)) : (port &= ~(1 
<< pbit))) OLD */ 
void selectMUX(char MUX_NUM, char MUX_SEL) 
{ 
 if (MUX_NUM == 0) 
 { 
  //PORTA &= 0xf8; 
  if(READ(MUX_SEL, 0)) SET(PORTA, PA3); 
  else CLR(PORTA, PA3); 
  if(READ(MUX_SEL, 1)) SET(PORTA, PA4); 
  else CLR(PORTA, PA4); 
  if(READ(MUX_SEL, 2)) SET(PORTA, PA5); 
  else CLR(PORTA, PA5); 
  if(READ(MUX_SEL, 3)) SET(PORTA, PA6); 
  else CLR(PORTA, PA6); 
  if(READ(MUX_SEL, 4)) SET(PORTA, PA7); 
  else CLR(PORTA, PA7); 
 } 
 else if (MUX_NUM == 1) 
 { 
  //PORTE &= 0xf8; 
  if(READ(MUX_SEL, 0)) SET(PORTE, PE7); 
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  else CLR(PORTE, PE7); 
  if(READ(MUX_SEL, 1)) SET(PORTE, PE6); 
  else CLR(PORTE, PE6); 
  if(READ(MUX_SEL, 2)) SET(PORTE, PE5); 
  else CLR(PORTE, PE5); 
  if(READ(MUX_SEL, 3)) SET(PORTE, PE4); 
  else CLR(PORTE, PE4); 
  if(READ(MUX_SEL, 4)) SET(PORTE, PE3); 
  else CLR(PORTE, PE3); 
 } 
 else if (MUX_NUM == 2) 
 { 
  //PORTB &= 0x1f; 
  if(READ(MUX_SEL, 0)) SET(PORTB, PB4); 
  else CLR(PORTB, PB4); 
  if(READ(MUX_SEL, 1)) SET(PORTB, PB3); 
  else CLR(PORTB, PB3); 
  if(READ(MUX_SEL, 2)) SET(PORTB, PB2); 
  else CLR(PORTB, PB2); 
  if(READ(MUX_SEL, 3)) SET(PORTB, PB1); 
  else CLR(PORTB, PB1); 
  if(READ(MUX_SEL, 4)) SET(PORTB, PB0); 
  else CLR(PORTB, PB0); 
 } 
} 
 
/* TOP LEVEL FUNCTION THAT SCALES THE ADC CONVERSION'S OUTPUT AND APPLIES 
 A FILTER TO THIS SCALED VALUE BEFORE STORING IT IN THE APPROPRIATE  
 ELEMENT OF THE SVIT TABLE */ 
void storeValue() 
{ 
 currentScaledValue = currentValue * SVIT[index_svit].ScaleFactorI; 
 SVIT[index_svit].I = setValue(&I_SAMPLE[index_svit], currentScaledValue, 
0); 
 voltageScaledValue = voltageValue * SVIT[index_svit].ScaleFactorV; 
 SVIT[index_svit].V = setValue(&V_SAMPLE[index_svit], voltageScaledValue, 
1); 
 if (SVIT[index_svit].Tmux != MUX_NULL) 
 { 
  tempScaledValue = tempValue * TempScaleFactor; 
  SVIT[index_svit].T = setValue(&T_SAMPLE[index_temp++], 
tempScaledValue, 2); 
  if (index_temp >= TEMP_SIZE) index_temp = 0; 
 } 
  
 batt1CurrentScaled = batt1CurrentValue * SVIT[INDEX_BATT1].ScaleFactorI; 
 SVIT[INDEX_BATT1].I = setValue(&I_SAMPLE[INDEX_BATT1], 
batt1CurrentScaled, 0); 
 batt1VoltageScaled = batt1VoltageValue * SVIT[INDEX_BATT1].ScaleFactorV; 
 SVIT[INDEX_BATT1].V = setValue(&V_SAMPLE[INDEX_BATT1], 
batt1VoltageScaled, 1); 
 batt1TempScaled = batt1TempValue * TempScaleFactor; 
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 SVIT[INDEX_BATT1].T = setValue(&T_SAMPLE[INDEX_BATT1], batt1TempScaled, 
2); 
  
 batt2CurrentScaled = batt2CurrentValue * SVIT[INDEX_BATT2].ScaleFactorI; 
 SVIT[INDEX_BATT2].I = setValue(&I_SAMPLE[INDEX_BATT2], 
batt2CurrentScaled, 0); 
 batt2VoltageScaled = batt2VoltageValue * SVIT[INDEX_BATT2].ScaleFactorV; 
 SVIT[INDEX_BATT2].V = setValue(&V_SAMPLE[INDEX_BATT2], 
batt1VoltageScaled, 1); 
 batt2TempScaled = batt2TempValue * TempScaleFactor; 
 SVIT[INDEX_BATT2].T = setValue(&T_SAMPLE[INDEX_BATT2], batt2TempScaled, 
2); 
} 
 
/* NOTE: SVIT array's I/V/T are not valid SMA values until after 8 executions of 
setValue() */ 
 
// returns the newly computed SMA of the most recent 8 samples (including the one 
from the previous read_VIT() call). 
// Assumes that SVIT array's stored value is the last computed SMA. 
// Updates 1 of the 8 samples stored in the SAMPLES array of the COMPONENT_t struct. 
// ivtFlag: 0 = current, 1 = voltage, 2 = temperature 
int setValue(COMPONENT_t * c, unsigned int v, char ivtFlag) 
{  
 int newStoredValue, oldStoredValue; 
 if (ivtFlag == 0) oldStoredValue = SVIT[index_svit].I; 
 else if (ivtFlag == 1) oldStoredValue = SVIT[index_svit].V; 
 else if (ivtFlag == 2) oldStoredValue = SVIT[index_svit].T; 
 newStoredValue = oldStoredValue + ((v - (c -> SAMPLE[c -> S_INDEX])) >> 
3); 
 //c -> SAMPLE[c -> S_INDEX] = v; // the dropped sample is replaced by the most 
recently taken sample 
 //c -> S_INDEX++; 
 if (c -> S_INDEX > 7) 
  c -> S_INDEX = 0; 
 return newStoredValue; 
} 
 
/* VALUE_RET function carried over from old power.c */ 
unsigned int retValue(COMPONENT_t * c) 
{ 
 unsigned int ret, i; 
 ret = 0; 
 for (i = 0; i < 8; i++) 
 { 
  ret += c -> SAMPLE[i]; 
 } 
 return (ret >> 3); 
} 
 
// updates the batter SOC variables in the SVIT struct 
// if SOC(Vcell) is a monotonically decreasing function, then 
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// x^n/(k-x^n) can model the curve well 
void updateSOC(BATTERY_t * batt) 
{ 
 unsigned int x = retValue(&batt -> METHOD0); 
 unsigned int y = retValue(&batt -> METHOD1); 
 batt -> TEMPERATURE = getTemp( retValue(&batt -> TEMP_SAMPLE) ); 
 if (x > y) 
  batt -> SOC = (batt -> SOC) + x; 
 else 
  batt -> SOC = (batt -> SOC) + y; 
} 
 
 
// voltage-to-temperature conversion array stored in Flash memory 
prog_int16_t ADC2TEMP[len] = {  
12498 , 
12269 , 
12056 , 
 
… 
… 
… 
 
-5278 , 
-5332 , 
-5388  
}; 
 
// returns the temperature value corresponding to the voltage input from ADC2TEMP 
array 
int getTemp(int voltage) 
{ 
 if (voltage < starting_index || voltage > ending_index) 
 { 
  return -1; 
 } 
 return pgm_read_word(((uint16_t)(ADC2TEMP)) + (voltage - 
starting_index)*2); 
} 
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