SOLAR HOT WATER HEATER NET
ENERGY MONITOR

A Design Project Report Presented to the Engineering Division of
the Graduate School of Cornell University in Partial Fulfillment of
the Requirements for the Degree of Master of Engineering
(Electrical)

by
Xun Yang
Project Advisor: Dr. Bruce Land

Degree Date: May 2011

MEng Design Report Xun Yang 1

Abstract

Master of Electrical Engineering Program
Cornell University

Design Project Report

Project Title: Solar Hot Water Heater Net Energy Monitor
Author: Xun Yang

Abstract: An embedded device is created to monitor the net energy of the solar water heater
system in order to understand the heater’s performance and daily household hot water
energy usage. The device is created based on an AVR mega644 microcontroller. It collects
the data from the solar water heater including the water temperature and output water
flow speed in order to make the energy calculation. All collect data is periodically logged on
a SD card and is further imported to PC and analyzed in a MATLAB program with extreme
ease. The project eventually offers an intuitive digital interface for the solar heater and
makes the interaction easier which enables the users to better understand the energy
harvest and consumption and make contributions to the green planet.

MEng Design Report Xun Yang 2

Table of Contents

ADSETACE .ttt e ettt e e ettt e e e sttt et e e e et bteeeeeeenatas 1
Table Of CONTENES. ...eeiiiiiiiiiiiiiii ittt e e ettt e e et e e e s e sibbaeeeesesanes 2
TADLE Of FLGUIES ...cooeiviiiiiiiie ettt e e ettt e e e e eeeaaeeeeeeerass bbb e eeeaaasaeseens 4
PN 011 7 U] F PSS SPPPUSURN 5
| 5ok oY 1B Lot o) o WU PUPRU RO 5
OVETVIEW ..evetieieeeiiiiiieeeeeeeiittteeeeeeattteteeeeaanttaaeeeeeaasssateeeeeeaanseseeeeseannssseeesesansssaeaeesesannssneaeeeenan 5
BacKgroUNdouniiiiii e e e e e et 6

D LTS3 ¥y USROS UPPRN 6
L R o) o F: 1 L= TP PPPSPRP 6

i N Y<T0) o TS S RUPPRRN 7
Functional SErUCTUTE «...ooceeviiiiiiiiie et e e e e e 8
Hardware/ Software Tradeoffscoouiiiiiiiiiiiee e eeee e 8
7o) 2 B SR PRSP 9
SOFtWATE SEIUCTUTE 1eeeeeiiiiiiiee e ettt e e ettt e e e e ettt eeeeeseabbeaeessennnnbeeeeeennnnnes 9

JY B0 s B 0 oY 3 =0 o s O USROS 9
DN N eTo (O B R3] v L) o WU 9
USET INTEITACEvveeieeee ettt e et e e e e ettt e e e s e snttreeeeeessnnsaeaeeaens 10
DaAta LIOZEING ..o ciiiieeeeeecieee et e e e e e e e e e e e e s 11
TIIMNE KEEPINIG ..evvvitiiiiieeeeeeeeee et cree et e e e e e e e et e e ettt e e e eeeeaaeeeesese s b bt aneeeaaassessessesnrnnnns 13
W ALET ILEEOT ...ttt e et et e e e e e e e e s e ettt eaeeeeeeeeas 13
RTC Initial Configuration.............uuuiieiieeeiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee ettt e e e eeeeaeeeeeeeessasaraanns 13
SEALUS INAICALOT ..eveiiiiiiiiiiieee et e e e et e e s e et e e e e e e 13
High Level Time SChedulingooovviiiiiiiiiiiiiiiiieeeeeeeecccieie e e e e e e e e e aeeeeeees 14
Lo@ Data ANALYSIS . ..uiiiieiiiiiiiiieieicciei e e e e e e e e e e e eeeeaaaaaeaeeabar 14
HATAWATE «.eeieiiieeeee ettt e ettt e e ettt et e e e et bae e e e e eaare e 15
HAardware SEFUCLUTE «....oooiiiiiiiii ettt e et e e e e e e e e e e e e eeeeans 15
MICTOCONTIOIIET .coiiiiiiiiiieiie ittt e ettt et e e e e e aeaaaeeeeeeeeens 16
TEMPEIATUTE SEILSOT ..uuneiiiiiieeeeeeiieeeeee e e e ettt eee e e e et eeeeeeeeaaeeeeseeaaeeeesseraeeesesaanaeesesrees 16
LCD AISPLAY oottt e e e e e e ——————— 17

SD CATA ceieeiiiiieiee ettt e e e et e e e e e ettt e e e e e ettt te e e et areaeeeeenntataeaeeeannes 17
Real Time Clock (RTC) ...c.ocviiuieiietieieeeeeeeete ettt ettt e et te e eae e e 17
CIrcuit SCRHEMIATICS .ottt e st e e s et ee e e e 18
RESUIL ettt e e e e e e e e e e e e e e e e s ettt bttt et e e teaaeaaaeeaeeeeeeans 19

MEng Design Report Xun Yang 3

TIMIE K EEPIME . .evnnieiiiieee e ettt e e e ettt e e e e e ee e e e e e e et e e e e e eaaeeeaeeaeas 19
Energy CalCulation..........ooooiiiiiiiiiiiiieeceee et e e e e e e e e e e e aeeeeeanes 19
Valld RANEE....coiiiiieiieece ettt ettt e et e e e e e e e e e e e e e eeeeeaaas 20
VaTIADLE TYPES ..ceeiiiiiiiiiieie ettt e e ettt et e e e e e e e e e e e eeeaaa bbbt eeeeeeaaereeeaes 20
SEOLAGE CAPACIEY vvvvvnnneeeeeeeiieiieeeeeeeeee et e e e ee e e e e et et eeeeeeeeeeeeeeeeee e eatast e eeeeeeaaeereennes 21

{0703 0Tl 103 1o s RSP URR PSP 22
SULIMMITLAT Y Lttt e et e e e e e e e e e e et e e e e e e e e e e e e ee e e e e et eeeeeeeaeeaeeeeee e eeeeeas 22
Further Improvementsc.oooiiiiiiiii et e 22
Past Achievements & MIlESEONEScceeiruiiiiieiiiiiiiieee et e e e s earreeeeeeas 22
Development EXpPEIiBIICES. uuuiiiiiieiiee ettt e e e e e e e e e e teeeeeearaeeaaes 23
REFETEIICE .eeveeeeeie ettt e e e e ettt e e e e e ettt e e e e e e bbb aeeeeeennaataeeeeeannne 24
DAt@shEet ...eeeieiiie et 24
PrOJECE ettt e e e e e e e e e e e e e e a it aeaeaeaaareaaaa 24
PN o) 1<) 0 Xe - PP 25
Cost aNd DUALEL .ottt e e e e e e e 25
0o 6 1= TP PSP OUO PP PPPORRRRUPPPPPPRN 25
MOCU MaIn PrOgram.......uuuuieieeeeeeiiieiieeiiiiiiiieeeeeeeeeeeeeeeveeaaaeseeeeeeeaaeseeesesaserrraneeeeens 25
Real Time Clock Conflguration.............ovuuiiiiiiiiiireeiiiieeeeeeeiiiieee e e e e e e ee e e e 33
Major Supporting LIDIAries ...ccccccieiiiiiiiiiiiiiiciieeee e eeeee et reeee e e e e e e e eeeeee bbb e e e e e 36

MATLAB Data ANALYZET ..ouuveeiiieiieieeeeeeeeeee et e e e e e e e 48

MEng Design Report Xun Yang 4

Table of Figures
Figure 1 Conceptual OVEOIVIOW.............u.eeeeeeeueeeeeeeeeeeeeetteeeeeeteeeeeetteeesettttae e s e ttttteeesttttaeasettaaaessesisaassssans 5
FIGUIO 2 PrOJOCE OVOIVIOW......ccceeeeeeeeeeeteeeeeeeeeeeeeeeteeeeeetteee et te e ettt e e etttee e e st tttte e et tttae e st aaaesstsiaaaasseans 6
Figure 3 Ways to Measure the INEt FOIQY................cuueueeuueeeeeeeeeeeeeeeeitteeeeeeeeeaeeeeesiisttiseeeeesssesseessssnns 7
FIoure 4 Structural OVOIVIOWuuueeeeeeeeeeeeeeeeeeeeeeteeeeeetteeeeeettee e eetttae e s e ttttte e et ttteaeasettaaeessssisaassssans 8
FIQUIE 5 SOMEWATE SEIUCLULC ...ttt eette ettt e ettt e e tttte e et tttaeastttaaesettisaaasseans 9
Figure 6 Data ACQUISITION PrOCOSSES.............uuueeeeeeieeeeeetiaeeeeeieeeeeetteeeeesettteeeeetttttaeesstteeessssaeasssssaaenss 10
Figure 7 Debounce State DIAGITAIN...................ceeeeeeeeieeeeeiieeeeeeeeeeeeeeiettttaeeeaaaaseeeesettttasaeassssssevssssans 11
FIGUIO B LOG FIIELY c..c.cooeeeeeeeeeeeeeeeeeeeeee ettt ettt ettt e e ttttt e ettt e e s tteeesstttaaasssssaaanss 12
Figure 9 Fat File SYStem SEIUCLULE.................cccveeueeeeeeeiiaeeeeiieeeeeeitteeeesittteeeeetttteeesttteeessssieeasssssiaeans, 12
Figure 10 5D Writing ACEION SSEEDS...........uvuveeeeeeeeeeeeieeeeetteeeeeeeeeeeeeetttttaeeeaaaeaaeeeeetttsaeaeeaassssevsssnans 12
Figure 11 Time Reading PrOCESSESueeeeeeeeeeeeeeeiiteeeaeseeeeeeeeteitttaeeeasasseaeestttttasaessssssseesssnnns 13
Figure 12 MATLAB Data ANALYZEIuuueeeeeeeeeaieeeeeeeeaeeeeeeeeeeeetttteeaaaaaaaeeeeattttaeaeasassssevssssans 14
Figure 13 Project HArdwWare SEIUCLULEcuueeeeeeieeeeeeiieeeeeeiteeeeeeittteeeeetttteaeesstiieeessesseaassssssaaans, 15
FIgure 14 HAPAWAEE OVEOIVIOW.............ccvuuueueeeieeeeeeeeeeeeeeitttteetaeaaeeeeeeetettttaaeeesaesaesesttstssasaeasasssssvesssans 15
FIgure 15 Target BOAEU..................cccoeveeeeeereeeeeeeeeeeeeettteeeeeee et tttataeaaaaaaeeettttttsaaaeasassssesssssans 16
Figure 16 Target Board POB DEAWIIGcccouuuueeeieeiieeeeeiiieeeeeeeteeeeeeetttaaaeeettteeeesaiieeessssiaeassssssaaanss 16
Figure 17 Temperature SEnSOr QULDULcuveeeeeeiieeeesiiieeeeeeetteeeesittteeeeetttteeessstiieeessssiaeasssssiaanns, 17
FIGUIO IB 2%IG LLCD .ottt ettt ettt e ettt e e et ttte e e ttteeesseteaesssssaaanss 17
FIGUEE 19 5D CArd & SIOC.....uuuueeeeeeeeeeeeeeeeeeeeeeeeeeeeettteeee e e ettt e e eeaeeeaae ettt ttsaeaeasassssevssssans 17
Figure 21 Real TImE CIOCK..............cccoueeeeeeeeeeeeeeeeeeeeeee ettt eeettee e ttet e e ettteeestttteeessetaaasssssaaanss 17
Figure 22 CIFrCUIt SCACIMALICS.eeeeeeieeeeeeeieeeeeetteeeeeetteeeeeettteeeee it taeeeaetttaeestteeessetaaasssssaaanss 18

Figure 23 FUPtREr IMPIOVEIIEIILSccccovveeeeeeeiaeeeeeiieeeeeetteeeeetteeeeeeettteeeeettttteeesatteeessesaaasssssaaanss 22

MEng Design Report Xun Yang 5

Abstract
This design report is written to provide the detailed information on all aspects of the MEng
project — Solar hot water heater net energy monitor. The design report starts with the
introduction of the project including some background information. The report also has the
software and hardware sections which cover how the project is constructed and the result
section tells about its outcome. The conclusion section summarized the achievement and
gives glimpse of the possible future implementations. The appendix section includes all the
embedded code and any other related information. By reading the design report, one should
be very clear about how the design works and be able to duplicate the project.

Introduction

Overview

The project is to create an embedded device to measure the net energy delivery of the hot
water in a home-use solar hot water system. The goal of the project is to enable the users to
have a clear sense of how well the solar water heater performs and both the amounts of the
daily household energy usage on the hot water and the water usage. The introduction of the
net energy concept offers an intuitive measure of how much energy is taken advantage of
from the solar heater.

The project provides a complete solution to monitor the net energy. The solution walks
through three major stages. First of all, it collects data from the water heater. Then data is
logged on a SD card on a periodic basis. The log file stored on the SD card can be further
imported in customized program or MATLAB for analysis. The following figure shows the
overview of the design.

Collecting Data | LoggingData | Analysing Data
Solar Water ///V\&
Heater | ; U 7/

| —

|
|
|
|
|
|
> Meter _]'>
|
|
|
|

;
Customized
Net Energy | Program
Water Temperature & SD card |
Flow speed |
I
I

MATLAB

Figure 1 Conceptual Overview

MEng Design Report Xun Yang 6

The following picture shows the actual well-finished end product.

Figure 2 Project Overview

Background

The solar water heater system is for home use and the tank can store up to 80 gallons of
water which equals to about 300 liters in metric unit. During the daytime, the heating
component heats the cold water in the tank and the heated water is stored in the tank
located in the basement before it is used. The temperature of the water cycling in the water
heater has a range of 10 °C to 90 °C (41 °F to 194 °F). A digital water flow meter
consistently monitors the output water flow speed from the tank and toggles the output
digital signal 75 times per gallon of water going through.

Design

Rationale

Energy becomes an increasingly popular topic in the current world as petroleum resource
on earth inevitably runs out eventually someday in the future. People care about the future
generations and keep discovering new alternative energies to replace the dominant role of
the precious natural resources. This is definitely the radical method of solving the energy
crisis; however, on the other hand, improving the energy usage efficiency can also be a
crucial way to solve the energy crisis. Among the new alternative energies, the solar energy
is the easiest one to access for common people. To take better advantage of the solar energy,

MEng Design Report Xun Yang 7

it helps significantly to improve the efficiency if people know how the energy is utilized and
how much they benefit from this alternative energy source.

However, the problems come when people want to figure out the actual amount of the
energy they acquire from the sun. It is inaccurate and overestimated to measure the net
energy of the solar hot water by checking the output power of the solar heater. There are
two major reasons attributing to the problem. First, the inconsistent sunshine intensity
provides inconsistent heat delivery. Second, the heat emission of the hot water when
storing in the water tank is unmeasurable.

Unmeasurable

‘{\\ Heat Loss

out (=1)
T1

Output Power?
Net energy of
Water output Water?

}§@’ ﬁs\ Tank /\y

T2
e ——

In [

Figure 3 Ways to Measure the Net Energy

Since it is difficult to measure the energy input, it becomes obvious to measure the net
energy by just measuring the energy difference between the water going in and out.

Theory

To obtain the information on the heat delivery of the hot water, several critical
measurements to the temperatures and water flow speed are made. One critical concept
when calculating the energy delivery is the specific heat of the water. The heat change in
the water can be calculated as following.

H=0C,*(T1—-T2)*Am

Shown in the formula above, the calculation of energy different H involves several
parameters. T1 and T2 represent the temperature of the water going out from and into the
tank respectively. Am is mass of the mass of the water. C, is the specific heat capacity of
water.

However, the formula is modified a little for customization in order to simplify the
calculation. To be more specific, the electrical pulses generated by the water flow meter
provide information on the output water flow speed. The measurements and the
calculations can be taken along with the unit volume of 1/75 gallon (50.472 ml) of water
since one level transition of the output signal of the flow meter indicate a volume of 1/75
gallon of water. Since the water has a trivial specific heat capacity change under the
desired temperature range, C, is the constant value equals to 4.1813 J .g—1 ‘K—1. Another
assumption to simplify the calculation is the consistent volume of the water under different
temperatures which means 1 ml water weight 1 gram. The temperature T1 and T2 must be
presented in unit of Kelvin in the calculation and the conversion is

MEng Design Report Xun Yang 8

K=(F + 459.67) x 5/9

The final customized formula to calculate the net energy of a unit volume of water is shown
as following. T1 and T2 is the converted temperature in unit of Kelvin.

AH =211+ (T1 = T2)

The total net energy is the accumulation of the net energy in a unit volume presenting
below. The unit is in Joule.

v
H=f 211« (T1—T2) xdv
0

Functional Structure

To implement the desired functions, four major components must be constructed and
cooperated. They include the data acquisition, time keeping, data logging and the user
interface. Specifically, taking energy conservation into consideration, the LCD is utilized to
provide a visual interface to display information. Time is also necessary when writing a
new entry so a real time clock is added to keep track of time. SD card is employed to provide
storage medium for the log file. The following figure shows a clear view of the design
structure.

X
Real Time
e Clock
OUTDOOR || INDOOR _— 'ZCL it
Out
T
r @\ gwater Data / spI
== Tank Log Entry
iv]
n [=—— MCU SD Card

4bit | Real-time
[Mode Data

LCD

Figure 4 Structural Overview

Hardware/ Software Tradeoffs

One significant tradeoff of this project is the accuracy of tracking the energy flow. The
absolute perfect way to measure the net energy of the solar water heater is to measure both
the total energy of the water entering and exiting the tank and subtract them for the
difference. However, the limitation of having only one flow meter measuring the output
water must be considered. Thus, the most optimal solution is to measure the temperature of
the water in and out simultaneously and calculates the net energy using the difference of
the in-out temperatures.

MEng Design Report Xun Yang 9

Software

Software structure
To provide the desired functionalities, the project is comprised of 5 primary functional
components.

Data Acquisition User Interface

Main Program

Time Keeping Data Logging

Figure 5 Software Structure

As shown in the figure above, the functional components include the main program, the
data acquisition component, the time keeping component, the data logging component and
the user interface. The integrity of these parts ensures the functionality of the project.

In the following paragraphs of the section, each component is introduced with detailed
implementation.

Main Program

The main program written in the MCU is the brain of the project. It coordinates all the
operations and manages the timing schedule. It is in charge of interpreting the ADC
conversion result and response to the flow meter triggering signal. It also listens to user
input and executes command accordingly. Another very important role of the brain is that
it compiles all the information into one log entry and writes it to the SD card. Since the
MCU is the brain of the entire system, it always takes the role of master in the
communications with real time clock and SD card.

Data Acquisition

Theory

The original signals generated from temperature sensors are analog and must be digitized
before any operation in the MCU. One function the energy monitor has is the real-time
temperature reading. Thus, the temperature sensors are sampled every 0.5 second. The
conversion result stored in the ADC register is in 8-bit mode and the conversion to
meaningful reading is shown as following.

Temperature = ADC

One nice tricky design of to acquire the temperature reading is to take advantage of the
MCU internal reference voltage of 2.56V. Since the analog output of the temperature sensor
is 10mv/ °F and one unit in the ADC result is 2.56/256 = 10mv, the ADC result reading is
exactly the actual temperature reading in Fahrenheit.

MEng Design Report Xun Yang 10

Actual Implementation

Although the theoretical design is with an easy-to-use reference voltage of 2.56V which can
directly present the ADC conversion result to a meaningful reading, the actual electrical
world is not as beautiful as what people expected. According to the datasheet, the internal
reference voltage in the microcontroller has a 10% error which significantly results in
accuracy of the temperature reading. However, in regard to one specific device, the internal
reference voltage is consistent over time. Thus, by measuring the analog reference voltage
pin on the microcontroller, the actual reference voltage can be found out along with the
actual error. The following table shows the measurement result and reference voltage error.

Table 1 ADC Reference Voltage Error

Theoretical Value Actual Error
Measurement
2.56V 2.52V 1.5625%

Fortunately, due to the consistency of the error, the ADC conversion can be calibrated in
order to get rid of the reference voltage error. The calibration operation is done by
multiplying the calibration coefficient of 1.0159.

Temperaturegctyqa = ADC * 1.0159

Since the energy calculation is based on the unit of Kelvin, all the temperature
measurements must be converted in unit of Kelvin. The conversion is done right after a
sampling cycle of both temperatures. The following figure shows the processes.

Temperature
of Output
Water
Conversion
to Kelvin and Temperature
Substraction of Input
for (Water

Difference

Figure 6 Data Acquisition Processes

User Interface

LCD

The LCD displays all the related information for the system and interacts with human
users. There are three display modes which display different content respectively. To switch
among screen displays, the users need to press the pushbutton. The three modes are the
Clock mode, the Thermometer mode and the Energy meter mode. The software controls the
LCD to refresh every 0.25 second with updated information.

MEng Design Report Xun Yang 11

In Clock mode, the whole screen is a pure clock which tells the current date and time with
accuracy to one second.

In Thermometer mode, the screen displays the real-time temperature of the input and
output water in Fahrenheit.

In Energy meter mode, the screen displays the total amount of accumulated net energy, the
total output water volume in Gallon and the temperature of the input and output water in
Kelvin. Since the user cares about the energy reading most, the energy meter mode is the
default mode for the LCD.

Pushbutton

A pushbutton is utilized to switch among different display modes. The pushbutton is
debounced using a state machine with a checking time interval of 30ms. The following state
diagram shows how the state machine works.

— ;,;,;,;}7\

/No Push

Pressed

(Reset
Flag)

No Press No press/ \
‘J Maybe |

\ " Push

Pressed

Display
Mode

Figure 7 Debounce State Diagram
Data Logging

Logging Entry

One dominant function of an energy monitor is to have a logging function which logs all
historical data for future analysis. Since the resolution of the historical data is not very
high and taking storage capacity into account, recording one entry every one minute is a
good choice. A entry is compiled along with information on time, temperature and energy
and written to the SD card. The format will be arranged in the way that a single row
represents one sample with the following format.

"Date, Tinme, Tenperatures, Water Consumed, Net energy"

MEng Design Report Xun Yang 12

Temperature of Water-

>
in and Water-Out E l‘&

I' ____________ |

> o ! E‘
°]
b=l

Log Entry SD card

Current Time
{

A Net Energy
E Accumulation
Figure 8 Log Entry

The data logged to the SD card is well-formatted so that the data can be easily imported to
MATLAB for data analysis purpose. The data stored on the SD card will never be erased
until the space runs out.

Fat File System

Fat file system must be implemented if the log files need to be recognized by a PC system.
It actually becomes the most critical aspect in the SD card interface. Fortunately, the Fat
file system library for embedded system is already existed for use and can be modified for
customization to be fit in. The following diagram shows the structure of the Fat file system.

Application
FatFs Module

Low Level Disk 1/O (SD Card) RTC

0 0
5 ©

Figure 9 Fat File System Structure

SD Card Operation

There are 5 steps to do when adding a new entry to the SD card. Each step is must be
completed prior to the next step. Otherwise, the writing operation terminated and the
logging action fails. The steps are shown in the following figure.

Every 1 Minute ——> T

Drive

Close and Initialize
Unmount SD Card
Append Pointer to

New Entry End
<

Figure 10 SD Logging Processes

MEng Design Report Xun Yang 13

Time Keeping

Time keeping is very critical to this project, because the project is supposed to be running
on a nonstop basis. The clock must obtain the correct information on the current time for
the data logging purpose. The need of an independent external clock which keeps the time
even when the power is off emerges. The solution is to use a real time clock (RTC) which is
supplied by a back-up battery. The RTC provides two significant features for the project.
First of all, it maintains the time very accurately and makes the current time easy to obtain
by sending certain command to the RTC. Second, the RTC relieve the MCU by taking the
responsibly of keeping time so that the microcontroller can have more resources to process
the data. The communication interface between the MCU and the RTC is the two wire
interface (also known as I2C which is already embedded on the MCU. The software sends
specific command to the RTC to acquire the time information. To be more specific, the
registers stores the time information and accessible for the MCU to read value from. The
RTC is accessed every 0.6 second to get the current time. The following processes show a
complete cycle of how the MCU obtains a complete set of time information from the RTC.

Reset RTC Read R_ead Read Hour Read Read Date Read Read Year Format
: Second Minute . Weekday . Month . .
Pointer Register Register Register Conversion

Register Register Register Register

Figure 11 Time Reading Processes

Water Meter

Since the output of the flow meter toggles every 1/75 gallon of water, it can be easy to
measure the accumulated volume of the water and functions as a digital water meter. Along
with the logging function, the water usage at any specific time over the day can be easily
found out. Every time the system enters the pin change interrupt, the water usage
increases and eventually present the accumulated water usage reading in unit of gallon.

RTC Initial Configuration

The RTC module has an on-board battery which enables the module to memorize the
calendar until year 2100. However, the current time must be accurately programmed in the
registers. To program the RTC module, multiple register writing operations must be done
to write the current time in. First, send the writing command to the RTC to be in
programming mode. Second, move the pointer to the desired register. Finally, write the
current time value to the register. One efficient way to program the current time accurately
is to run the configuration program at the exact time which written in the configuration
program.

Status Indicator
A red LED light is installed to provide two major functions. First of all, as part of the water
meter, the LED flashes every 1/15 gallon of water which enables the users to have a visual

MEng Design Report Xun Yang 14

feeling of water speed. Second, the LED also indicates the logging status. If anything goes
wrong during the logging process, the LED is one and manual reset must be conducted.

High Level Time Scheduling

People care about their energy usage on daily basis. Thus, the accumulated net energy
resets when a new day starts. The SD card log entry is also added on a periodic basis of 1
minute. Taking advantage of the time registers in the program, the following actions are
executed under different circumstances.

Table 2 High Level Timing Schedule

Register Condition Action
Second Equal 30 Write A New Entry
Hour, Minute, Second All Equal 0 Reset Net Energy to 0
Log Data Analysis

An MATLAB program is specifically written to analyze the log data. It provides a very
users friendly visual interface to present data in a meaningful and understandable way.
The program does operation in primarily two steps. The user selects the driver first and the
program loads the log file and parses it into memory. Then the data is analyzed and plotted
in the figures. Further customized statistical analysis can be easily done with the easy-to-
use MATLAB function with little effort.

- <
expert GUI B
NEHdS | B AAOVLEL- S| 0E | aDd »

Solar Hot Water Heater Net Energy Analyzer

Select Log File Drive o 10’ Accumulated Net Energy
J 7 Load 7 L ------------------ /—/ 4
Entry loaded: 202 | i s S S |
Last Entry Recorded: e (e § S - |

2011/5/19, 6:24:30

Select Report Type

Net Energy (Joule)

Data Type: Energy %

Number of Entries: number

150 200 250

Figure 12 MATLAB Data Analyzer

MEng Design Report

Hardware structure
The following figure shows an overview of the hardware structure.

Water Tank
Temperature
Sensor

Analog | |
V

oltage

Xun Yang

Hardware

Water
flowmeter

Level
Transition

| 8 Bit Data Bus
Analog-to- |
Digital +—> cPU
Converter |
< Data SRAM |
MCU < Registers |
! 12 Real Time Clock
¢ | SPI .l
Port /O SD Card
Pin Change |
Interrupt I 4-bit
Data Bus .
- ey LCD Display
Control

Figure 13 Project Hardware Structure

The following picture clearly indicates the hardware components giving a better
understanding of the hardware.

Temperature
Sensors

#,

- FEYTIVNYRRIERNRE

Figure 14 Hardware Overview

MEng Design Report Xun Yang 16

Microcontroller

The microcontroller used in the project is the Mega 644 with 64K Byte in-System
Programmable Flash from ATMEL. It takes the role of the main brain in the project. This
microcontroller has four ports which accommodate sufficient physical connection for
peripherals. In addition, it has an 8 channel 10-bit A/D converter. The developing platform
is based on the STK500 prototyping board, but the final end product utilizes the target
board designed for ECE 4760 class. The following pictures show the actual board and the
PCB board drawing.

luf vec
& O vo Iesessssssnsnnnnnes

- A] ! _J ‘
1% &—U

andtNathanChun CormllECEd 768

B2Nce’ ARG 2 Jqw. C@ GndD?

FTDIFT238R
o fif 2 L
LI

] "L

I_I‘n
Temperature sensor

The project uses two LM34 temperature sensors to detect the water temperatures. The
reason to choose this sensor is because it provides a nice accuracy and the output voltage is
formatted along with the temperature change in unit of Fahrenheit. The output voltage
from the sensor is fed into Channel 1 and Channel 2 of the ADC on the MCU. The reference
voltage is chosen to be the internal one of 2.56V.

LM34BLAZ-S

Figure 16 Target Board PCB Drawing

According to the datasheet, the output voltage of the temperature sensor is
Vout = 10.0mv/° F

As shown in the picture.

MEng Design Report Xun Yang 17

+Vs
(+5VT0 +20V)

|

LM34 P Vour = +10.0 mV/°F

i i

Figure 17 Temperature Sensor Output

LCD display

A 2%16 LCD is employed to display the data reading for the users. The data communication
between the MCU and the LLCD display is in 4-bit. Three additional control lines are added
for command sending.

Figure 18 2*16 LCD

SD card
A 1G SD card is used to store the log data. The card slot provide interface between the SD
card and the MCU. The communication between SD card and the MCU is the SPI.

Figure 19 SD Card & Slot

Real Time Clock (RTC)

The real time clock comes along with a back-up battery which can run the module for a
minimum of 9 years (17 years typical) without external 5V power. However, during most of
the time, it powered up along with the MCU. In other words, the lifetime can be even
further extended. This module has calendar stored in the memory to year 2100 which
allows the user do nothing for the time setting when year transition happens. The
communication interface it uses to talk to the MCU is the two wire interface (also known as
120).

Figure 20 Real Time Clock

MEng Design Report Xun Yang 18

Circuit schematics
3.3V Regulator 5V DC
Output Input
GND L
‘ GND
Ve Temperature
Output sensor A
u HGND
PBO [1 40 [PAO VCC Temperature
PB1] 2 39 [—PAt Output senser®
57K§2§ A& PB2(C] 3 38 [0 PA2
VCC < P83 - 4 37 - PA3 Output Wartgtzlrow
cs “fl/(»—PBﬂ-dr—E 5 36 [0 PA4
SD PB5 M 6 35 [0 PA5
card oo \]lAZv—PBG—E 7 34 [TPA6—— | pusth
SCK wW—PBZ11 8 <t 33 [PA7— Button
G RESET {9 & 320 AREF « -
vCC] 10 go 31 i D
GNB-{] 11 Q 30 |1 AVCC //4
XTAL2 O] 12 2 29 [Perr—vwi—
XTAL1] 13 28 [1 PC6 e
PB6-t+14 27 O PC5 5
PD1] 15 26 |1 PC4 A w0 -
PD2] 16 25 O PC3 RTC ¢
ol ape B
| _—F o1 N O 0
—PD5] 19 22 [Pco § L2253
PD6-| 20 21 [PB7F— g
Tt r 1
=} 0+UIJUUUUUUUUUUUJ g O
% ~
| R -
= 8 g o

Figure 21 Circuit Schematics

MEng Design Report Xun Yang 19

Result

Accuracy

The project turns out to be very effective in terms of the energy calculation and data
logging. The accuracy it achieves is far more enough for common users just to under the
performance of the solar water heater and the amount of energy consumed every day. Due
to the fact that the project is only for home use and budget is limited, extreme accuracy is
not essential to pursue. The following study shows how the accuracy is and gives a simple
idea of the decent design tradeoffs made.

Time Keeping

The real time clock module has a DS1307 chip on board with a crystal as the clock.
According to the datasheet, the accuracy of the clock is dependent upon the accuracy of the
crystal and the accuracy of the match between the capacitive load of the oscillator circuit
and the capacitive load for which the crystal was trimmed. However, the detailed
information on the crystal is unknown. From the observation and tests conducts on the
RTC module, the module has an approximate 3 minutes’ delay after continuously running
for a month. This can lead to a further conclusion that the delay is about half an hour after
a continuous run of a year. The following table shows a specific delay time after a period of
continuous operation.

Table 3 Real Time Clock Accuracy Analysis

Continuous Operation Time Error
1 Month* 3 Minutes’ Slow
3 Month 9 Minutes’ Slow
1 Year 36 Minutes’ Slow
4 Year 2.4 Hours’ Slow
Actual Test Result*

Energy Calculation

The tradeoff is made to simplify the energy calculation and relieve the pressure on the
MCU resource. In the previous section, the final customized energy calculation formula is
shown as below with T1 and T2 in unit of Kelvin.

AH =211+ (T1 = T2)

The world is not perfect, but the constant coefficient is equal to an approximated value of
211. The specific heat capacity of water Cpis defined as a constant and equals to 4.1813 J/
(g*K). The first accuracy analysis is under the assumption that the 1 ml water weight exact
1g. The following equations show how the constant coefficient 211 comes from.

1
%Gallon = 50.5ml

50.4721571ml *1 = 50.5¢g

4.1813])i
50.4721571 g =211.0=

(g*K) K

MEng Design Report Xun Yang 20

From the calculation shown above, trivial calculation error is introduced to find the net
energy. However, the previous calculation is done under the assumption that 1 ml water
weight exact 1g. Unfortunately, this is not perfectly true in reality, taking the temperature
and the volume-weight conversion into consideration, the following table shows the
accuracy analysis result.

Table 4 Energy Calculation Accuracy Analysis

Temperature(’C) | Water Density(g/ml) True Constant Value Error
5 0.9970479 210.4162216 -0.277%
20 0.9982071 210.6608582 -0.161%
30 0.9922187 209.3970709 -0.765%
50 0.9880393 208.5150536 -1.192%
80 0.9718007 205.0880719 -2.883%
90 0.965323 203.7210231 -3.573%

As shown in the table above, the error becomes larger than the one under the constant
water density assumption. However, even at 90 degree, the error is well under 5% which is
completely acceptable for a home-use device.

The accuracy tests show that the project satisfies the accuracy requirement.

Valid Range

Variable Types

The project is designed for non-stop operation. The accumulated net energy is the biggest
concern since it may overflow if improper numeric type is assigned to the variable. As
stated in the previous design section, the net energy accumulation reset itself every 24
hours. Thus, at least it must ensure the variable would never overflow during a day. The
variable which stores the accumulated net energy has a numeric type of unsigned long. The
following calculation shows the maximum volumes of water it may tolerate under worst
case scenario. Assuming the temperature difference is always as large as 80 K (90 °C to 10

°C).
Unsign Long Type Range: 4,294,967,295

Tolerated Numb Unit Vol -4294967295 = 2544411.19 ! Gall
olerated Number of Unit Volume: 8({*211 = . (75 aon)
Total Tolerated Volume: 2544411.19 = 7c = 3392.55 Gallon

The calculation shows above illustrate a fact that the variable would fail if and only if the
solar heat water output more than 3392.55 gallons of 90 °C (194 °K) hot water. The
interesting following calculation gives a simple idea whether it is possible.

Required Solar Heater Output Power (assuming work full 12 hours a day): 99420 W
Continuous Running Water Speed(assuming running for 12 hours a day): 4.7 gallons/min
Maximum Water Heater Tank Turnovers in a day (80 gallon size): 42.4 Times

It can be easily concluded that it is very impossible that the overflow would happen during
a single day even under the worst case scenario.

MEng Design Report Xun Yang 21

Storage Capacity

The project employs a 1G SD card for logging function. The storage size is chosen in
consideration of the storage price and availability. The following calculation proves that the
storage size is appropriate and sufficient for the project.

Bytesin 1G:1024 * 1024 « 1024 = 1073741824 bytes

Conservative approximation of an average entry size: 60 bytes

1073741824

Number of entries possiblely made: — 0 - 17895697

]] o 17895697
Sustainable Time Period in Hours: 0 = 298 262 Hours

298262

Sustainable Time Period in Days: = 12428 Days

8
Sustainable Time Period in Years: = 34 Years

365

The conclusion can be clearly made that 34 years continuous storage pace is completely
sufficient for an ordinary home-use device. A further solid conclusion can be made that the
project is safe and stable to run on nonstop basis.

MEng Design Report Xun Yang 22

Conclusion

Summary

The project provide an intuitive and convenient solution to create a visual interface for a
solar heater to display related energy information for the users and enables them to have a
better understanding of the machine’s performance and the daily household energy usage
on the hot water. Additionally, by implementing the solution, the usage of the water in
volume can also be known which can arouse people’s attention to save the water resource.
The outcome of the project agrees with the design and the requirements. The accuracy and
valid rang is sufficient to operate under nonstop use without any extra manual
maintenance.

Further Improvements

The project creates an energy monitor solution for a solar water heater. However, based on
this foundation, it can be easily enhanced with many other functions with little effort on
modification. The following figure shows a glimpse of possible improvements.

_
M

Wireless Automatic Power Automatic Report
S Internet Access .
Communication Control Generating
b 4

Figure 22 Further Improvements

First of all, the wireless communication can be utilized to replace the SD card to provide a
more convenient way to log and store the data. The real-time logging can be easier if
wireless communication is established. Second, if the Internet access is enabled, the energy
information can be better taken care of by the online services and shared in a more rapid
pace and larger scale. In addition, it can have auto-diagnosis function which enables itself
to operate under minimum power usage. Finally, it can be further improved to have
automatic report generating function which sends out a short text message or email to the
users at the end of the day to let them know the relation energy information over the past
day. All these ideas can be achieved without significant amount of efforts and fund.

Past Achievements & Milestones

The project progresses along with the ECE 4760 Design with Microcontroller class because
lots of the necessary knowledge is learned from the class and achievements are made along
the way. However, a significant amount of effort and time is spent on the end of the
semester for SD card interfacing and final integrations. Milestones are shown as following.

+ Milestone 1: Basic Structure Constructed (Mid-March)
+ Milestone 2: RTC Communicating and Data Collection (Mid-April)
« Milestone 3: SD card interfacing and MATLAB data analyzer (Mid-May)

MEng Design Report Xun Yang 23

Development Experiences

The project involves significant amount of effort and time over the semester. Although
actual project construction is majorly done during the second half of the semester, the first
half is extremely important because it provide the essential knowledge base which leads the
possibility of the completion of the project.

One major frustration of the entire project comes on the SD card interface. Due to the
requirement of being recognizable by a PC for the log file, the Fat file system must be
implemented. This requires a lot of internal operation on the MCU before an entry is added
to the SD card. By taking advantage of the FatF's library, the writing operation can be
successfully done. However, with the completion of the software issue, new hardware
problem emerges due to the fact that the SD card is very sensitive to the operating voltage.
With days of endless working, the problems are finally solved and the project reaches the
final success.

MEng Design Report Xun Yang 24

Reference

Datasheet
» ATMEL Mega644 Microcontroller Datasheet
http://www.atmel.com/dyn/resources/prod_documents/doc2593.pdf
e Real Time Clock Module with DS1307 Datasheet
http://www.sparkfun.com/datasheets/Components/DS1307.pdf

Project

e Embedded Foot Pronation Detection
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2011/ylw3/webpage/
index.html

* MCU developer: Fat File System Library
http://www.basementcode.com/

* GPS Data Logger with Wireless Trigger
http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2009/jsm66_mpk28/
1sm66_mpk28/index.html

25

MEng Design Report Xun Yang
Appendix
Cost and budget
The following table shows an incomplete list of the parts used in the project along with its
cost.
Table 5 Project Budget
Device Quantity Price Cost
Breakout Board for SD 1 9.95 9.95
Mega644 1 8 8
Solder Board 1 2.5 2.5
DIP Socket 2 0.5 1
Real Time Clock Module 1 19.95 19.95
Temperature Sensor - LM34 2 From Lab 0
Diodes 3 From Lab 0
SD card 1 Donated
Total 41.4
Codes

Major codes written for the project are listed here. Due to the large size of the supporting

library, the complete codes can be found in the zipped code package.

!

MCU Main Program
This program is the main program serves the energy monitor M.Eng project
There are three major components including RTC, SD card, Temperature
Author: Xun Yang ECE Cornell
This version only involves RTC and Temperature. Th e LCD displays the
temperature and current local time information wit h pushbutton
switch the displays
Connection: RTC: SCL(PC.0)
SDA(PC.1)
LCD: PORTD(except D.4)
SD: PORTB(7,6,5,4)
ADC: ADCO (PA.0)
ADC1 (PA.1)
SD: CLK (PB.7)
DO (PB.6)
DI (PB.5)
CSs (PB.4)
Pushbutton: PA.7
Flowmeter: PA.6
ADC:
Reference Voltage: Internal 2.56v
Output format: 8 bit (0~256)
NOTE -- MUST UNMOUNT the Aref jumper
RTC:
The output of the RTC include sec,min,day,date,mon th,year

The Time information is capture every 1 second

#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <stddef.h>

MEng Design Report Xun Yang

#include <util/delay.h>

/ILCD function enabled
#include "lcd_lib.h"

/ITWI interface enable
#include "i2cmaster.h"

/lInclude SD card interface library
#include "fatfs/ff.n"
#include "fatfs/diskio.h"

//set up ASSERT

#ifndef _ ASSERT_USE_STDERR
#define _ ASSERT_USE_STDERR
#include <assert.h>

#endif

/[Timing control constants

#define RTCinterval 60 //unit in 10 ms
#define ADCinterval 50 //unit in 10 ms
#define LCDinterval 25 /funit in 10 ms
#define PUSHinterval 3 //unitin 10 ms
#define LEDinterval 200 //unit in 10 ms

//State machine state names
#define NoPush 1

#define MaybePush 2
#define Pushed 3

#define MaybeNoPush 4

[P*****Eunction declaration***kix

void MCUInitialization(void);

//SD card functions

void SDInitialization(void);

void SDAddNewEntry(void);

void SDClose(void);

/IRTC functions

void RTCreset(void);

void RTCread(void);

unsigned char becd2dec(unsigned char data);

/[FAT System Structure set-up
FATFS FileSystemObject;

FIL logFile;
unsigned int bytesWritten; //INumber of bytes of the
unsigned char SDcounter; [/Write new entry once a m

//8-bit mode are used in ADC output
/lInterpreted value in Fahrenheit
unsigned char tempin;

unsigned char tempout;

/[Temperature information display
unsigned char tempindisp[16] ; //"68F, 129K"
unsigned char tempoutdisp[16] ;

/[Time information display
unsigned char datedisp[16] ;
unsigned char clockdisp[16];

//[Energy Information Display
unsigned char energydisp[16];
unsigned char gallondisp[16];
unsigned char tempdiffdisp[6];

//Screen Mode
/I 0--Temperature info; 1--Time info
unsigned char LCDmode;

written data
inute

MEng Design Report

/IPushbutton debouncer variable
unsigned char PushState; /Istate machine

/IRTC status
unsigned char error; //0 indicate no error in the T

/IRTC reading

unsigned char second;
unsigned char minute;

unsigned char hour;

unsigned char weekday;
unsigned char date;

unsigned char month;

unsigned char year;

unsigned char WeekDayDisp[4];

//Global Timing Control Variables

volatile unsigned char RTCTimer; //timer counter fo
volatile unsigned char ADCTimer; //timer counter fo
volatile unsigned char LCDTimer; //timer counter fo
volatile unsigned char PUSHTimer; //timer counter f

Xun Yang 27

Wi

r updating RTC
r updating ADC
r updating LCD
or updating Pushbutton

//[Energy variable

volatile unsigned long NetEnergy; /IStored in jour

volatile unsigned long GallonUsed; /[True Gallon/75

volatile unsigned char GallonlInterval; /ICount Flow Interrupt

volatile unsigned char LEDTimer; /ILED Timerand T urn Off when Stops

/[Temperature value in Kevin
volatile unsigned char tempdiffK;

1
[ltimer O compare ISR 10ms tick

/ICalled to decrement the Timerl and Timer2 in disk
ISR (TIMERO_COMPA_vect)

/IFATsystem Timing Control
disk_timerproc();
/lUpdate the timer for RTC

if (RTCTimer>0) --RTCTimer;
//Update the timer for ADC

if (ADCTimer>0) --ADCTimer;
//Update the timer for LCD

if (LCDTimer>0) --LCDTimer;
//Update the timer for Pushbutton

if (PUSHTimer>0) --PUSHTIimer;

//Update the LED timer
if (LEDTimer >0) --LEDTimer;

/[External interrupt 1

/[Called to intergral energy

ISR (PCINTO_vect)

{
NetEnergy = NetEnergy+211*tempdiffK;
GallonUsed++;
//ILED flashed every 1/15 gallon = 252.3 ml
if (GallonInterval < 5)

Galloninterval++;

}

else

{
/[Toggle every 1/15 gallon
PORTC "= 0b10000000;
GallonInterval = 0;
/lInitialize LED timer;
LEDTimer = LEDinterval;

}

Fkkkkkkk

io

MEng Design Report

int main(void)

/Nnitialize System

Xun Yang

MCUInitialization();

/I measure and display loop

while (1)
{

Update RTC information every 1s. Store informati

if (0==RTCTimer)

{

/Iclear RTC pointer to 0
RTCreset();

//Get time information
RTCread();

//Data manipulation

/INo conversion needed for weekday
second = bcd2dec(second);

minute = bcd2dec(minute);

hour = bcd2dec(hour);

date = bcd2dec(date);

month = bcd2dec(month);

year = bcd2dec(year);

//Ready for LCD printing

sprintf(datedisp," 20%02d/%02d/%02d",year,mont
sprintf(clockdisp,"%02d:%02d:%02d",hour,minute,s
/IFind weekday and ready for display
switch(weekday)

case 1:
strcpy(WeekDayDisp, "MON");
break;
case 2:
strcpy(WeekDayDisp, "TUE");
break;
case 3:
strcpy(WeekDayDisp, "WED");
break;
case 4:
strcpy(WeekDayDisp, "THU");
break;
case 5:
strcpy(WeekDayDisp, "FRI");
break;
case 6:
strcpy(WeekDayDisp, "SAT");
break;
case 7:
strcpy(WeekDayDisp, "SUN");
break;
default:
strcpy(WeekDayDisp, "UNK");
}

/lreset the task timer
RTCTimer = RTCinterval;

Update ADC information every 500ms. Information
ADC involves calibration of reference voltage fr

if (0==ADCTimer)

on in variables

/

h,date);
econd);

stored in variables
om 2.56V to 2.52V

/

MEng Design Report Xun Yang 29

[[F****%get the sample from channel Qr*rxxkikkx *x

tempin= ADCH;

/ISwitch source to channel 1

ADMUX +=1;

/Istart another conversion

ADCSRA |= (1<<ADSC) ;

/ICalibration

tempin= (int)((float)(tempin)*1.0159); //Reading is already in F
/IConvert result to string and display

sprintf(tempindisp,"IN:%3dF",tempin);

/IConvert result to string and display
sprintf(energydisp,"NE:%IdJ",NetEnergy);

/*****repeat the same process for channel 1**** rkk

tempout= ADCH;

/ISwitch source to channel 0

ADMUX -=1;

/Istart another conversion

ADCSRA |= (1<<ADSC) ;

/ICalibration

tempout= (int)((float)(tempout)*1.0159); //Readi ng is already in F

/ICalculate the temperature difference
if (tempout > tempin)

tempdiffk = (int)((float)(tempout-tempin)*0.555 556);
else

tempdiffk = 0;

/IConvert result to string and display

sprintf(tempoutdisp,"OUT:%3dF",tempout);

/Isprintf(gallondisp,"V:%dGal D:%dK",GallonUsed/ 75,tempdiffK);
sprintf(gallondisp,"V:%dGal",GallonUsed/75);

sprintf(tempdiffdisp,"D:%2dK" ,tempdiffK);

/IReset Timer control
ADCTimer = ADCinterval;

Update LCD screen every 250 ms. Mode selected by the pushbutton
/

if (0==LCDTimer)

/IDisplay Temperature information in mode 0O
if(0 == LCDmode)
{
//Update Temp 1
LCDGotoXY/(0, 0);
LCDstring(tempindisp, strlen(tempindisp));
//Update Temp 2
LCDGotoXY(0, 1);
LCDstring(tempoutdisp, strlen(tempoutdisp));

/IDisplay time information in mode 1

else if(1 == LCDmode)

{
//Update Calendar
LCDGotoXY(0, 0);
LCDstring(datedisp, strlen(datedisp));
//Update WeekDay
LCDGotoXY(1, 1);
LCDstring(WeekDayDisp, strlen(WeekDayDisp));
//Update Clock
LCDGotoXY(7, 1);
LCDstring(clockdisp, strlen(clockdisp));

MEng Design Report Xun Yang

else

//Update Net Energy Information
LCDGotoXY/(0,0);

LCDstring(energydisp, strlen(energydisp));
//Update Water Usage Information
LCDGotoXY(0,1);

LCDstring(gallondisp, strlen(gallondisp));
LCDGotoXY/(11,1);

LCDstring(tempdiffdisp, strlen(tempdiffdisp));

/IReset Timer control
LCDTimer = LCDinterval,

Debounce Pushbutton by checking state every 30ms

if (0==PUSHTimer)

//State machine debounce the pushbutton
switch (PushState)
{
case NoPush:
if (PINA & 0x80) PushState=MaybePush;
else PushState=NoPush;
break;
case MaybePush:
if (PINA & 0x80)

//Updating LCD screen mode
if(LCDmode<2)

LCDmode++;
else

LCDmode=0;
LCDclr(); //clear previous screen
PushState=Pushed;

else PushState=NoPush;
break;

case Pushed:
if (PINA & 0x80) PushState=Pushed;
else PushState=MaybeNoPush;
break;

case MaybeNoPush:
if (PINA & 0x80) PushState=Pushed;
else

PushState=NoPush;

}

break;

}

/IReset Timer control
PUSHTIimer = PUSHinterval;

Debounce Pushbutton by checking state every 30ms

if (0 == LEDTimer)

/[Turn LED off when Time expires
PORTC |= 0b10000000;

Add New Entry when second register equel to 30
equivalent to 1 minute per entry

30

MEng Design Report Xun Yang
if (30 == second) && SDcounter)
//SD Card Operations
SDiInitialization();
SDAddNewEnRtry();
SDClose();
SDcounter = 0;
else if (32 == second)
{
SDcounter = 1,
}
/
Clear Accumulated Energy Information when a new day starts

if ((0 == second) && (0 == minute) && (0 == hour)
{

NetEnergy = 0O;
GallonUsed = 0;
LCDclr(); //Clear Obselete Screen

void MCuUInitialization(void)

{

//Start-up LCD

LCDinit(); [finitialize the display
LCDcursorOFF();
LCDclr(); /Iclear the display

/finitilize LCD display mode
LCDmode = 2; //[Energy Meter Display

/Iset up timer O for 10 mSec ticks

TIMSKO |= 1 << OCIEOA; /* enable interrupt for ti
OCROA = 156; /* 10 ms interrupt at 16MHz */
TCCROB |= (1 << CS02) | (1 << CS00); //speed = F_

/lInitialize External Interrupt
PCICR = 1<<PCIEQ; // turn on pin change interrupt
PCMSKO = 1<<PCINT6 ; /I PA.6 configured as p

//LED Port Initilization

/IRed LED for Logging Status
DDRC |= 1<<DDC7;

PORTC |= 0b10000000;

/finit the controlling timers
RTCTimer = RTCinterval;
ADCTimer = ADCinterval;
LCDTimer = LCDinterval,
PUSHTImer = PUSHinterval;
LEDTimer = LEDinterval;

/linit the state machine
PushState = NoPush;

// init the TWI communication
/N2C frequency 80K Hz
i2c_init();

/linit the A to D converter
/Iright adj /Internal Aref 2.56V/Channel 0

ADMUX = ((1<<ADLAR) | (1<<REFS1) | (1<<REFS0)) ;

/lenable ADC and set prescaler to 1/128*16MHz=1

25,000

mer match a */

CPU/1024

0
in change interrupt.

31

MEng Design Report Xun Yang

/land clear interupt enable
ADCSRA =((1<<ADEN) | (1<<ADSC)) + 7 ;

/lInitialize Energy Meter
GallonUsed = 0;
NetEnergy = 0;
tempdiffk = 0;

//SD Card counter
SDcounter = 1;

sei();

A Functions Written to Support SD car o */
void SDInitialization(void)

{
if(f_mount(0, &FileSystemObject)!=FR_OK)

//Status LED ON Indicating Error
PORTC &=0b01111111;
}

DSTATUS driveStatus = disk_initialize(0);

if(driveStatus & STA_NOINIT ||
driveStatus & STA_NODISK ||
driveStatus & STA_PROTECT
)

//Status LED ON Indicating Error
PORTC &= 0b01111111;
}

//Open File
if(f_open(&logFile, "/ENERGY.log", FA_READ | FA_WR ITE | FA_OPEN_ALWAYS)!=FR_OK)
{

//Status LED ON Indicating Error
PORTC &= 0b01111111;
}
}

void SDAddNewEntry(void)

f_Iseek(&logFile, f_size(&logFile));

f_printf(&logFile,
"20%2d/%2d/%2d,%2d:%2d:%2d,%d,%d,%d,%Id,%Id\n",year ,month,date,hour,minute,second,weekday,tempin,
tempout,NetEnergy,GallonUsed);
}

void SDClose(void)
/[Close and unmount.

f_close(&logFile);
f_mount(0,0);

A Functions Written to Support RTC------------ */
/ITWI master transmitter

/[Clear the RTC pointer to 0

/ICall every time prior to reading

void RTCreset(void)

while(i2c_start(0xDO0));
while(i2c_write(0x00)); //IReset pointer to 0
i2c_stop();

MEng Design Report

/ITWI master receiver

/IRead the RTC registers
//Located with RTC internal pointer
void RTCread(void)

{
while(i2c_start(0xD1));

/IRead follow-up 7 registers
second = i2c_readAck() & 0x7f; //get rid of first
minute = i2c_readAck();
hour = i2c_readAck() & Ox3f; //get rid of format r
weekday = i2c_readAck();
date = i2c_readAck();
month = i2c_readAck();
year = i2c_readNak(); //Follow up with a stop
i2c_stop();

}

/IData display conversion function
/IConvert data in BCD to Decimal
unsigned char bed2dec(unsigned char data)

{
unsigned char tens;
unsigned char ones;
tens = data>>4;
ones = data & OxOf;
data = tens*10 + ones;
return(data);

}

/*

Real Time Clock Configuration
/

This code is designed to communicate with the RTC

and set up the internal registers to current time

The interface will be 12C

Setting: MCU --- RTC
PC.O ----
PC.1 ----

UART: PD.O(Rx) & PD.1(Tx)

The output of the RTC include sec,min,day,date,mo

The Time information is capture every 1 second

#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdio.h>

#include "uart.h"
#include "i2cmaster.h"

/I UART file descriptor
/I putchar and getchar are in uart.c
FILE vart_str = FDEV_SETUP_STREAM(uart_putchar, uar

/[Timing control constants
#define interval 1000 //unit in ms

/ITWI status definition
#define START 0x08
#define ADDRESSW 0x18
#define DATASENT 0x28
#define ADDRESSR 0x40

volatile unsigned int time; //timer counter

Xun Yang

control bit

egister bits

nth,year

t_getchar, FDEV_SETUP_RW);

33

MEng Design Report

/IRTC status
unsigned char error; //0 indicate no error in the T

/IRTC reading

unsigned char second;
unsigned char minute;
unsigned char hour;
unsigned char weekday;
unsigned char date;
unsigned char month;
unsigned char year;

/ITWI master transmitter
/[Clear the RTC pointer
void RTCreset(void)

{

/lunsigned char status;

while(i2c_start(0xDO0));

Xun Yang

Wi

while(i2c_write(0x00)); //IReset pointer to 0

i2c_stop();
}

void RTCprog(void)
{

//Set the local current time
while(i2c_start(0xDO0));

while(i2c_write(0x00)); //IReset pointer to 0

/IProgram follow-up 7 registers

while(i2c_write(0x00)); /ISecond 00
while(i2c_write(0x27)); /IMinute 27
while(i2c_write(0x18)); /Hours 18

while(i2c_write(0x03)); /lday 3
while(i2c_write(0x18)); //IDate 18

while(i2c_write(0x05)); //Month 05
while(i2c_write(0x11)); /lYear 2011

i2c_stop();
}

/ITWI master receiver

/IRead the RTC registers
//Located with RTC internal pointer
void RTCread(void)

{
/lunsigned char status;
while(i2c_start(0xD1));

//IRead follow-up 7 registers

second =i2c_readAck() & Ox7f; //get rid of first

minute = i2¢c_readAck();

hour = i2c_readAck() & 0x3f; //get rid of format r

weekday = i2c_readAck();
date = i2c_readAck();
month =i2c_readAck();

year = i2c_readNak(); //Follow up with a stop

i2c_stop();
}

//Data display conversion function
/IConvert data in BCD to Decimal
unsigned char bcd2dec(unsigned char data)
{
unsigned char tens;
unsigned char ones;

tens = data>>4;

control bit

egister bits

34

MEng Design Report Xun Yang

ones = data & OxOf;
data = tens*10 + ones;

return(data);

[/ltimer O compare ISR
ISR (TIMERO_COMPA_vect)

//Update the task time
if (time>0) --time;

}
int main(void)

/Iset up timer O for 1 mSec ticks

TIMSKO = 2; /fturn on timer 0 cmp match ISR

OCROA = 249; //set the compare reg to 250 time t icks
TCCROA = 0b00000010; // turn on clear-on-match

TCCROB = 0b00000011; // clock prescalar to 64

/finit the task timer
time = interval;

[l init the UART -- uart_init() is in uart.c
uart_init();

stdout = stdin = stderr = &uart_str;
fprintf(stdout,"Starting RTC testing\n\r");

// init the TWI communication
/N12C frequency 80K Hz
i2c_init();

/IProgram the RTC to the current time
/IApril 13 2011 15:30:00
RTCprog();

sei();

/I measure and display loop
while (1)
{

if (0==time)

/[Toggle LEDs
PORTA 7= 0x01;

/Iclear RTC pointer to 0
RTCreset();

//Get time information
RTCread();

//Data manipulation

/INo conversion needed for weekday
second = bcd2dec(second);

minute = bcd2dec(minute);

hour = bcd2dec(hour);

date = bcd2dec(date);

month = bcd2dec(month);

year = bcd2dec(year);

/Iresults to hyperterm
printf("Current Time: 20%d/%d/%d %d
%d:%d:%d\n\r",year,month,date,weekday,hour,minute,s econd);

MEng Design Report

/lreset the task timer
time = interval;

}

Major Supporting Libraries

I2C

/

* Title: 12C master library using hardware TWI i

* Author: Peter Fleury <pfleury@gmx.ch>

*File: $ld: twimaster.c,v 1.3 2005/07/02 11:14

* Software: AVR-GCC 3.4.3/ avr-libc 1.2.3

* Target: any AVR device with hardware TWI

* Usage: API compatible with 12C Software Librar

#include <inttypes.h>
#include <compat/twi.h>

#include "i2cmaster.h"

/
Initialization of the 12C bus interface. Need to b

void i2c_init(void)
/* initialize TWI clock: 100 kHz clock, TWPS =0

TWSR =1; /* no prescaler
TWBR = 152; /* SCK = 50K hz */

W i2c_init */

/
Issues a start condition and sends address and tr
return O = device accessible, 1= failed to access

unsigned char i2c_start(unsigned char address)
uint8_t twst;

/I send START condition

Xun Yang

FkkkFkkkkkkkkkkkkkkkkkk

nterface
http://jump.to/fleury

:21 Peter Exp $

y i2cmaster.h

HHIATAIIFAFKFIATAKKFKAK

Fkkkkkkkkkkkkkkkkkkkkkk

e called only once

FHIATAFIFAFKAIATAKKARK [

=> prescaler = 1 */

*/

Fkkkkkkkkkkkkkkkkkkkkkk

ansfer direction.
device

HAFKIAKIAKKATKATKAFKAK [

TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);

// wait until transmission completed
while(!(TWCR & (1<<TWINT)));

/I check value of TWI Status Register. Mask presca ler bits.

twst = TW_STATUS & OxFS8;

if ((twst != TW_START) && (twst != TW_REP_START))

/I send device address
TWDR = address;
TWCR = (1<<TWINT) | (L<<TWEN);

// wail until transmission completed and ACK/NACK

while((TWCR & (1<<TWINT)));

return 1;

has been received

/I check value of TWI Status Register. Mask presca ler bits.

twst = TW_STATUS & OxFS8;

if ((twst I= TW_MT_SLA_ACK) && (twst I= TW_MR_SLA

return O;

W*i2c_start */

_ACK)) return 1;

Fkkkkkkkkkkkkkkkkkkkkkk

MEng Design Report

Issues a start condition and sends address and tra
If device is busy, use ack polling to wait until d

Input: address and transfer direction of 12C dev

void i2c_start_wait(unsigned char address)

uint8_t twst;

while (1)

/I send START condition

Xun Yang

nsfer direction.
evice is ready

Ice
ek kkkokok ko

TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);

// wait until transmission completed
while('(TWCR & (1<<TWINT)));

/I check value of TWI Status Register. Mask pr
twst = TW_STATUS & OxF8;

if ((twst I= TW_START) && (twst 1= TW_REP_STA

/l send device address
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);

// wail until transmission completed
while(!(TWCR & (1<<TWINT)));

escaler bits.

RT)) continue;

/I check value of TWI Status Register. Mask pr escaler bits.
twst = TW_STATUS & OxFS8;
if ((twst == TW_MT_SLA_NACK)||(twst ==TW_MR_ DATA_NACK))

/* device busy, send stop condition to ter

minate write operation */

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO) :

/I wait until stop condition is executed a
while(TWCR & (1<<TWSTO));

continue;
}
/lif(twst I= TW_MT_SLA_ACK) return 1;
break;

}

Y* i2c_start_wait */

/
Issues a repeated start condition and sends addres

Input: address and transfer direction of I12C dev

Return: 0 device accessible
1 failed to access device

unsigned char i2c_rep_start(unsigned char address)

{

return i2c_start(address);

W*i2c_rep_start */

/
Terminates the data transfer and releases the 12C

void i2c_stop(void)

/* send stop condition */

nd bus released

FkkkFkkkkkkkkkkkkkkxkkk

s and transfer direction

ice

FHFATAFIFAFKAIATAKKARK [

Fkkkdkkdkkkkkkkkkkkkkkk

bus

HAAKIAKIAKIAKKATKIAKKK [

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);

37

MEng Design Report Xun Yang

// wait until stop condition is executed and bus r
while(TWCR & (1<<TWSTO));

W*i2c_stop */

/
Send one byte to 12C device

Input: byte to be transfered
Return: 0 write successful
1 write failed

unsigned char i2c_write(unsigned char data)
uint8_t twst;

/I send data to the previously addressed device
TWDR = data;
TWCR = (1<<TWINT) | (1<<TWEN);

// wait until transmission completed
while(!(TWCR & (1<<TWINT)));

/I check value of TWI Status Register. Mask presca
twst = TW_STATUS & OxFS8;

if(twst = TW_MT_DATA_ACK) return 1;

return O;

Y*i2c_write */

/
Read one byte from the 12C device, request more da

Return: byte read from 12C device

unsigned char i2c_readAck(void)

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA);
while((TWCR & (1<<TWINT)));

return TWDR;

W*i2c_readAck */

/
Read one byte from the 12C device, read is followe

Return: byte read from 12C device

unsigned char i2c_readNak(void)

{
TWCR = (1<<TWINT) | (1<<TWEN);
while('(TWCR & (1<<TWINT)));
return TWDR;

}*i2c_readNak */

Fat File System
/*

/* MMC/SDSC/SDHC (in SPI mode) control module (C)C
/*
* Only revr_spi(), xmit_spi(), disk_timerproc() an
[* are platform dependent.

/*

eleased

Fkkkkkkkkkkkkkkkkkkkkkk

HHIATAFIFIKFKAIATAKKARK [

ler bits

Fkkkkkkkkkkkkkkkkkkkkkk

ta from device

HAAKIAKIAKKATKATKIFKAK [

FkkkFkkkkkkkkkkkkkkkkkk

d by a stop condition

FHIATAFIFAFKAIATAKKARK [

______________________ */
haN, 2007 */
______________________ */
d some macros

*
______________________ */

38

MEng Design Report

#include <avr/io.h>
#include "diskio.h"

Xun Yang 39

[* Definitions for MMC/SDC command */

#define CMDO (0x40+0)

#define CMD1 (0Ox40+1)

#defineACMD41 (0xCO+41)
#define CMD8 (0x40+8)

#define CMD9 (0x40+9)

#define CMD10 (0x40+10)
#define CMD12 (0x40+12)
#define ACMD13 (0xC0+13)
#define CMD16 (0x40+16)
#define CMD17 (0x40+17)
#define CMD18 (0x40+18)
#define CMD23 (0x40+23)
#defineACMD23 (0xC0+23)
#define CMD24 (0x40+24)
#define CMD25 (0x40+25)
#define CMD55 (0x40+55)
#define CMD58 (0x40+58)

/* GO_IDLE_STATE */

/* SEND_OP_COND (MMC) */

/* SEND_OP_COND (SDC) */

/* SEND_IF_COND */

/* SEND_CSD */

/* SEND_CID */

/* STOP_TRANSMISSION */

/* SD_STATUS (SDC) */

/* SET_BLOCKLEN */

/* READ_SINGLE_BLOCK */

/* READ_MULTIPLE_BLOCK */

/* SET_BLOCK_COUNT (MMC) */
/* SET_WR_BLK_ERASE_COUNT
/* WRITE_BLOCK */

/* WRITE_MULTIPLE_BLOCK */
I* APP_CMD */

/* READ_OCR */

(SDC) */

/* Port Controls (Platform dependent) */

#define SELECT()
#defineDESELECT()

/l#define SOCKPORT PINB
#define SOCKPORT 0x10 //ECEA476 Modified: always a
#define SOCKWP 0x20

#define SOCKINS

#define FCLK_SLOW_BITS (1 << SPR1 | 1 << SPRO) //

PORTB &= ~(1 << PORTB4)
PORTB |= (1 << PORTB4)

/* MMC CS =L
/*MMC C S=H?*
/* Socket contact port */
ssume card inserted.
/* Write protect switch (PB5) *
0x10 /* Card detect switch (PB4) */

fosc/128 = 125kHz

#define FCLK_FAST BITS (1 << SPRO) /ffosc/16 = 1IMH z
#define FCLK_MASK (1 << SPR1 | 1 << SPRO)

#defineFCLK_SLOW()
*/
#defineFCLK_FAST()
the CSD) */

/*

SPCR = (SPCR & ~FCLK_MASK) | FC

SPCR = (SPCR & ~FCLK_MASK) | FC

LK_SLOW_BITS /* Set slow clock (100k-400k)

LK_FAST_BITS /* Set fast clock (depends on

Module Private Functions

static volatile

DSTATUS Stat = STA_NOINIT;

static volatile

/* Disk status */

BYTE Timerl, Timer2; /* 100Hz decrement timer */

static
BYTE CardType;

/*

/* Card type flags */

/* Transmit a byte to MMC via SPI (Platform depend ent) */

/*

#define xmit_spi(dat) SPDR=(dat); loop_until_bit_i

/*

/* Receive a byte from MMC via SPI (Platform depen dent) */

/*

MEng Design Report

static
BYTE rcvr_spi (void)

SPDR = OxFF;
loop_until_bit_is_set(SPSR, SPIF);
return SPDR;

}

/* Alternative macro to receive data fast */
#define rcvr_spi_m(dst) SPDR=0xFF; loop_until_bit_i

/*
/* Wait for card ready
/*

static
BYTE wait_ready (void)

BYTE res;

Timer2 =50; /* Wait for ready in timeout of 500ms
revr_spi();
do
res = revr_spi();
while ((res != OXFF) && Timer2);
/IPORTA = ~res;

return res;
}
/*
/* Deselect the card and release SPI bus
/*
static

void release_spi (void)

DESELECT();
revr_spi();
}
/*
/* Power Control (Platform dependent)
/*

/* When the target system does not support socket p
/* is nothing to do in these functions and chk_powe

static
void power_on (void)

for (Timerl = 3; Timerl;); /* Wait for 30ms */
//PORTB = 0b10110101;
//IDDRB =0b11000111;
/ISPCR = 0b01010000;

//1t didn't work with the above code, this is more

SPCR = (1<< SPE) | (1 << MSTR) | (FCLK_SLOW_BITS);

SPSR = 0b00000000;
/loutputs are MOSI, SCLK, and CS
DDRB = (1 << DDB7 | 1 << DDB5 | 1 << DDB4);
PORTB = (1 << PORTB5 | 1 << PORTB4);
DESELECT();

}

static

Xun Yang

s_set(SPSR,SPIF); *(dst)=SPDR

*

ower control, there */
r always returns 1. */

/* Enable drivers */

/* Initialize SPI port (Mod e 0) */

clear anyway
/ISPI Mode 0

40

MEng Design Report Xun Yang

void power_off (void)

SELECT();
wait_ready();
release_spi();

/* Wait for card ready */

/* Disable SPI function */
/* Disable drivers */

SPCR =0;
//IDDRB = 0b11000000;
/IPORTB = 0b10110000;

Stat |= STA_NOINIT; /* Set STA_NOINIT */

41

}
static
int chk_power(void) /* Socket power state: 0=0ff, 1=on*/
/Ireturn (PORTE & 0x80) ? 0: 1;
return 1;
}
/* ______________________ */
/* Receive a data packet from MMC */
P e */
static
BOOL rcvr_datablock (
BYTE *buff, /* Data buffer to store received dat a*/
UINT btr /* Byte count (must be multiple of 4) * /
)
{
BYTE token;
Timerl = 10;
do { /* Wait for data packet in timeout of
100ms */
token = rcvr_spi();
} while ((token == OxFF) && Timerl);
if(token != OxFE) return FALSE; /* If not valid da ta token, retutn with error */
do { /* Receive the data block into buffer
*
/
revr_spi_m(buff++);
revr_spi_m(buff++);
revr_spi_m(buff++);
revr_spi_m(buff++);
} while (btr -= 4);
revr_spi(); /* Discard CRC */
revr_spi();
return TRUE; /* Return with success */
}
P e */
/* Send a data packet to MMC */
/* ______________________ */
#if _READONLY ==
static
BOOL xmit_datablock (
const BYTE *buff, /* 512 byte data block to be tra nsmitted */

BYTE token [* Data/Stop token */
BYTE resp, wc;

if (wait_ready() != OXFF) return FALSE;

xmit_spi(token);

/* Xmit data token */

MEng Design Report

if (token != OxFD) {
wc =0;
do{

/* |s data token */

block to MMC */

xmit_spi(*buff++);
xmit_spi(*buff++);

} while (--wc);

xmit_spi(OxFF);

xmit_spi(OXFF);

resp = rcvr_spi();

if ((resp & Ox1F) != 0x05)
return FALSE;

}

return TRUE;

}
#endif /* _READONLY */

/*
/* Send a command packet to MMC
/*

static

BYTE send_cmd (
BYTE cmd,
DWORD arg

BYTE n, res;

if (cmd & 0x80) {
cmd &= 0xX7F;
res = send_cmd(CMD55, 0);
if (res > 1) return res;

}

/* Select the card and wait for ready */
DESELECT();

SELECT();

if (wait_ready() != OxFF) return OxFF;
/IPORTA = OxFF;

/* Send command packet */
xmit_spi(cmd);
xmit_spi((BYTE)(arg >> 24));
xmit_spi((BYTE)(arg >> 16));
xmit_spi((BYTE)(arg >> 8));
xmit_spi((BYTE)arg);

n = 0x01;

if (cmd == CMDO0) n = 0x95;
if (cmd == CMD8) n = 0x87;
xmit_spi(n);

/* Receive command response */
if (cmd == CMD12) rcvr_spi();
n = 10;
in timeout of 10 attempts */
do
res = rcvr_spi();
while ((res & 0x80) && --n);

return res;

/*

/* ACMD<n> is the command sequen

Xun Yang 42

/* Xmit the 512 byte data

/* CRC (Dummy) */

/* Reveive data response */

/* If not accepted, r eturn with error */

/* Command byte */
/* Argument */

se of CMD55-CMD<n> */

/* Start + Command index */
/* Argument[31..24] */
/* Argument[23..16] */
/* Argument[15..8] * /
/* Argument[7..0] */
/* Dummy CRC + Stop */
/* Valid CRC for CMDO) */
/* Valid CRC for CMD8 (0x1AA) */

/* Skip a stuff byt e when stop reading */

/* Wait for a valid response

/* Return with the response value */

MEng Design Report Xun Yang

Public Functions

________________________ */
/* ______________________ */
/* Initialize Disk Drive */
/* ______________________ */
DSTATUS disk_initialize (
BYTE drv /* Physical drive nmuber (0) */
)
{
BYTE n, cmd, ty, ocr[4];
/IPORTA = 0;
if (drv) return STA_NOINIT; /* Supports only sin gle drive */
if (Stat & STA_NODISK) {
return Stat; /* No card in the socket */
}
/IPORTA |=1;
power_on(); /* Force socket power on */
FCLK_SLOW();
for (n = 10; n; n--) rcvr_spi(); /* 80 dummy clock s*
ty=0;
BYTE res = send_cmd(CMDO, 0) ;
/IPORTA = ~res;
if (res == 1) { /* Enter Idle state */
/IPORTA |= 2;
Timerl = 100; /* Initialization timeout of 1000 msec */
if (send_cmd(CMD8, 0x1AA) == 1) { /* SDHC */
/IPORTA |= 4;
for (n = 0; n < 4; n++) ocr[n] = rcvr_spi(); I* Get trailing return
value of R7 resp */
if (ocr[2] == 0x01 && ocr[3] == 0xAA) { /*Th
card can work at vdd range of 2.7-3.6V */
while (Timerl && send_cmd(ACMDA41, 1UL << 30)); /* Wait for
leaving idle state (ACMDA41 with HCS bit) */
if (Timerl && send_cmd(CMD58, 0) == 0) { /* Ch eck CCS

bit in the OCR */
for (n = 0; n < 4; n++) ocr[n] = rcvr_spi();
ty = (ocr[0] & 0x40) ? CT_SD2 | CT_BLOCK : CT_ SD2;

}
}else { /* SDSC or MMC */
/IPORTA |= 8;
if (send_cmd(ACMD41, 0) <= 1)
ty = CT_SD1; cmd = ACMDA41; /* SDSC */

//IPORTA |= 16;
}else {
ty = CT_MMC; cmd = CMD1; /* MMC */
}
while (Timerl && send_cmd(cmd, 0)); /* Wait fo r leaving
idle state */
if (ITimerl || send_cmd(CMD16, 512) !=0) /* Set R/W block length to
512 %/
/IPORTA |= 32;
ty=0;
}
}
CardType = ty;
release_spi();
if (ty) { /* Initialization succeded */
Stat &= ~STA_NOINIT; /* Clear STA_NOINIT */
FCLK_FAST();
}else { /* Initialization failed */
power_off();

}

MEng Design Report Xun Yang

return Stat;

Lo

[* Get Disk Status

e

DSTATUS disk_status (

BYTE drv /* Physical drive nmuber (0) */
)
{
if (drv) return STA_NOINIT; /* Supports only sing
return Stat;
}
o mmmmmemee
/* Get Disk Time
P e
DWORD get_fattime () {
return O;
}
P e

/* Read Sector(s)

e

DRESULT disk_read (

BYTE drv, /* Physical drive nmuber (0) */
BYTE *buff, [* Pointer to the data buffer to sto
DWORD sector, [* Start sector number (LBA) */
BYTE count [* Sector count (1..255) */
)
{
if (drv || lcount) return RES_PARERR;
if (Stat & STA_NOINIT) return RES_NOTRDY;
if ({(CardType & CT_BLOCK)) sector *=512; /* Conv
if (count == 1) { /* Single block read */
if ((send_cmd(CMD17, sector) ==0) /* READ_SINGLE
&& revr_datablock(buff, 512))
count = 0;
else { /* Multiple block read */
if (send_cmd(CMD18, sector) == 0){ /* READ_MULTI
do {
if (Ircvr_datablock(buff, 512)) break;
buff += 512;
} while (--count);
send_cmd(CMD12, 0);
}
release_spi();
return count ? RES_ERROR : RES_OK;
}
P e]
[* Write Sector(s)
o emmmmmemee

#if _READONLY ==0
DRESULT disk_write (

BYTE drv, /* Physical drive nmuber (0) */

le drive */

________ *

________ */

________ */

________ *

re read data */

ert to byte address if needed */

_BLOCK */

PLE_BLOCK */

/* STOP_TRANSMISSION */

44

MEng Design Report Xun Yang
const BYTE *buff, /* Pointer to the data to be wri tten */
DWORD sector, [* Start sector number (LBA) */
BYTE count [* Sector count (1..255) */

)

{

if (drv || lcount) return RES_PARERR;
if (Stat & STA_NOINIT) return RES_NOTRDY;
if (Stat & STA_PROTECT) return RES_WRPRT,;

if ({(CardType & CT_BLOCK)) sector *=512; /* Conv ert to byte address if needed */
if (count == 1) { /* Single block write */
if ((send_cmd(CMD24, sector) ==0) /* WRITE_BLOCK */
&& xmit_datablock(buff, OXFE))
count = 0;
else { /* Multiple block write */
if (CardType & CT_SDC) send_cmd(ACMD23, count);
if (send_cmd(CMD25, sector) == 0) { /* WRITE_MULT IPLE_BLOCK */
do {
if (Ixmit_datablock(buff, OxFC)) break;
buff +=512;
} while (--count);
if (Ixmit_datablock(0, OXFD)) /* STOP_TRAN token */
count=1,;

}
release_spi();
return count ? RES_ERROR : RES_OK;

}
#endif /* _READONLY == 0%/

/* ______________________ */
/* Miscellaneous Functions */
P el */

#if _"USE_IOCTL =0
DRESULT disk_ioctl (

BYTE drv, /* Physical drive nmuber (0) */
BYTE ctrl, /* Control code */
void *buff [* Buffer to send/receive control data */

DRESULT res;

BYTE n, csd[16], *ptr = buff;
WORD csize;

if (drv) return RES_PARERR;
res = RES_ERROR;

if (ctrl == CTRL_POWER) {
switch (*ptr) {

case 0: /* Sub control code == 0 (POWER_OFF) */

if (chk_power())
power_off(); /* Power off */

res = RES_OK;
break;

case 1: /* Sub control code == 1 (POWER_ON) */
power_on(); /* Power on */
res = RES_OK;
break;

case 2: /* Sub control code == 2 (POWER_GET) */
*(ptr+1) = (BYTE)chk_power();
res = RES_OK;
break;

default :

45

MEng Design Report Xun Yang
res = RES_PARERR;
}
else {
if (Stat & STA_NOINIT) return RES_NOTRDY;
switch (ctrl) {
case CTRL_SYNC : /* Make sure that no pending wr ite process */
SELECT();
if (wait_ready() == OxFF)
res = RES_OK;
break;
case GET_SECTOR_COUNT : /* Get number of sectors on the disk (DWORD) */
if ((send_cmd(CMD9, 0) == 0) && rcvr_datablock(c sd, 16)) {
if ((csd[0] >>6) ==1){ /* SDC ver 2.00 */
csize = csd[9] + ((WORD)csd[8] << 8) + 1;
(DWORD)buff = (DWORD)csize << 10;
}else { /* SDC ver 1.XX or
MMC*/
n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3)
<<1)+2;
csize = (csd[8] >> 6) + (WORD)csd[7] << 2) +
((WORD)(csd[6] & 3) << 10) + 1;
(DWORD)buff = (DWORD)csize << (n - 9);
}
res = RES_OK;
}
break;
case GET_SECTOR_SIZE :/* Get R/W sector size (WO RD) */
(WORD)buff = 512;
res = RES_OK;
break;
case GET_BLOCK_SIZE : /* Get erase block size in unit of sector (DWORD) */
if (CardType & CT_SD2) { /* SDC ver 2.00 */
if (send_cmd(ACMD13, 0) == 0) { /* Read SD stat us */
revr_spi();
if (rcvr_datablock(csd, 16)) {
/* Read partial block */
for (n = 64 - 16; n; n--) rcvr_spi();/* Purg e
trailing data */
(DWORD)buff = 16UL << (csd[10] >> 4);
res = RES_OK;
}
}else { /* SDC ver 1.XX or MMC */
if ((send_cmd(CMD9, 0) == 0) && rcvr_datablock(csd, 16)) { /* Read
CSD ¥/
if (CardType & CT_SD1){ /* SDC ver 1.XX */
(DWORD)buff = (((csd[10] & 63) << 1) +
((WORD)(csd[11] & 128) >> 7) + 1) << ((csd[13] >> 6)-1);
}else { /* MMC */
(DWORD)buff = ((WORD)((csd[10] & 124) >> 2) +1)*
(((csd[11] & 3) << 3) + ((csd[11] & 224) >>5) + 1) ;
}
res = RES_OK;
}
}
break;
case MMC_GET_TYPE : /* Get card type flags (1 by te) */
*ptr = CardType;
res = RES_OK;
break;
case MMC_GET_CSD: /* Receive CSD as a data bloc k (16 bytes) */
if (send_cmd(CMD9, 0) == 0 /* READ_CSD */

&& rcvr_datablock(ptr, 16))
res = RES_OK;

46

MEng Design Report Xun Yang

break;
case MMC_GET_CID : /* Receive CID as a data bloc k (16 bytes) */
if (send_cmd(CMD10, 0) ==0 /* READ_CID */
&& revr_datablock(ptr, 16))
res = RES_OK;
break;
case MMC_GET_OCR: /* Receive OCR as an R3 resp (4 bytes) */
if (send_cmd(CMD58, 0) == 0) { /* READ_OCR */
for (n = 4; n; n--) *ptr++ = rcvr_spi();
res = RES_OK;
}
break;
case MMC_GET_SDSTAT : /* Receive SD statsu asad ata block (64 bytes) */
if (send_cmd(ACMD13, 0) == 0) { /* SD_STATUS */
revr_spi();
if (rcvr_datablock(ptr, 64))
res = RES_OK;
}
break;
default:
res = RES_PARERR;
}
release_spi();
}
return res;

}
#endif /* _USE_IOCTL =0 */

/* ______________________ */
/* Device Timer Interrupt Procedure (Platform depe ndent) */
P e */
/* This function must be called in period of 10ms */

void disk_timerproc (void)

{
static BYTE pv;
BYTEn, s;
n = Timerl; /I* 100Hz decrement timer
if (n) Timerl = --n;
n = Timer2;
if (n) Timer2 = --n;
n=pv;
pv = SOCKPORT & (SOCKWP | SOCKINS); //* Sample soc ket switch
/IRemoved by jsm66, we don't have lines for WP or INS
/[This code was just making it think there was never a card.
[*if (n == pv) { /[* Have contacts stabled?
s = Stat;
if (pv & SOCKWP) II* WP is H (write protected)
s |= STA_PROTECT;
else /I* WP is L (write enabled)
s &= ~STA_PROTECT;
if (pv & SOCKINS) /I* INS = H (Socket empty)
s |= (STA_NODISK | STA_NOINIT);
else /I* INS = L (Card inserted)

s &= ~STA_NODISK;

Stat = (s & ~STA_NODISK & ~STA_PROTECT);
/IPORTA = ~Stat;

MEng Design Report
}H
}
MATLAB Data Analyzer
%
% This MATLAB script is specifically written to ana
% on the Energy Monitor Device.
% It provide extreme easy-to-use user interface and
% plotted in sperated figures

%

function varargout = expert_GUI(varargin)

% EXPERT_GUI M-file for expert_GUI.fig

% EXPERT_GUI, by itself, creates a new EXPERT _
% singleton*.

%

% H=EXPERT_GUI returns the handle to a new E
% the existing singleton*.

%

% EXPERT_GUI('CALLBACK',hObject,eventData,hand
% function named CALLBACK in EXPERT_GUI.M with
%

% EXPERT_GUI('Property','Value',...) creates a

% existing singleton*. Starting from the left

% applied to the GUI before expert_GUI_Opening
% unrecognized property name or invalid value

% stop. Allinputs are passed to expert_GUI_O

%

% *See GUI Options on GUIDE's Tools menu. Cho
% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to hel
% Last Modified by GUIDE v2.5 19-May-2011 11:09:39

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton,
'gui_OpeningFcn', @expert_GUI_Op
'gui_OutputFcn', @expert_GUI_Ou
‘gui_LayoutFen',], ...
‘gui_Callback’, [));

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State,
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before expert_GUI is made visib
function expert_GUI_OpeningFcn(hObject, eventdata,
% This function has no output args, see OutputFcn.
% hObject handle to figure

% eventdata reserved - to be defined in a future v

% handles structure with handles and user data (

% varargin command line arguments to expert_GUI (

% Choose default command line output for expert_GUI
handles.output = hObject;
handles.filename='"C:\\ENERGY .log’;
handles.record=0;

handles.datatype=1;

Xun Yang 48

lyze the log data generated

data are catogorized and

GUI or raises the existing
XPERT_GUI or the handle to
les,...) calls the local

the given input arguments.

new EXPERT_GUI or raises the
, property value pairs are

Fcn gets called. An

makes property application

peningFcn via varargin.

ose "GUI allows only one

p expert_GUI

eningFcn, ...
tputFcn, ...

varargin{:});

le.
handles, varargin)

ersion of MATLAB
see GUIDATA)
see VARARGIN)

MEng Design Report

handles.datanum=0;
set(hObject,'toolbar','figure’);
%clear the hostorical figure
cla(handles.axesl,'reset’)

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes expert_GUI wait for user response (s
% uiwait(handles.figurel);

% --- Outputs from this function are returned to th
function varargout = expert_GUI_OutputFcn(hObject,
% varargout cell array for returning output args (

% hObject handle to figure

% eventdata reserved - to be defined in a future v

% handles structure with handles and user data (

% Get default command line output from handles stru
varargout{1} = handles.output;

% --- Executes on selection change in popupmenul.
function popupmenul_Callback(hObject, eventdata, ha
switch get(handles.popupmenul,'Value')
case 1
str="C";
case 2
str="D";
case 3
str="E';
case 4
str="F";
case 5
str="G";
case 6
str="H’;
case 7
str="";
case 8
str="J";
case 9
str="K";
case 10
str="L";
case 11
str='"M";
case 12
str="N";
case 13
str="Z",
otherwise
end

handles.filename=[str " \\ENERGY.log 7;
% Update handles structure
guidata(hObject, handles);

% hObject handle to popupmenul (see GCBO)
% eventdata reserved - to be defined in a future v
% handles structure with handles and user data (

% Hints: contents = cellstr(get(hObject,'String'))
% contents{get(hObject,'Value")} returns sel

% --- Executes during object creation, after settin
function popupmenul_CreateFcn(hObject, eventdata, h
% hObject handle to popupmenul (see GCBO)

% eventdata reserved - to be defined in a future v

Xun Yang 49

ee UIRESUME)

e command line.
eventdata, handles)
see VARARGOUT);

ersion of MATLAB
see GUIDATA)

cture

ndles)

ersion of MATLAB
see GUIDATA)

returns popupmenul contents as cell array
ected item from popupmenul
g all properties.

andles)

ersion of MATLAB

MEng Design Report

% handles empty - handles not created until afte

% Hint: popupmenu controls usually have a white bac

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),
set(hObject,'BackgroundColor','white');

end

function selectnum_Callback(hObject, eventdata, han
%store the contents of inputl_editText as a string.
%is not a number then input will be empty
handles.datanum = str2num(get(hObject,'String"));

%checks to see if input is empty. if so, default in
if (isempty(handles.datanum))
set(hObject,'String','0")
else
sz=size(handles.record);
if handles.datanum>sz(1)
handles.datanum=sz(1);
end
end
guidata(hObject, handles);

% hObject handle to selectnum (see GCBO)
% eventdata reserved - to be defined in a future v
% handles structure with handles and user data (

% Hints: get(hObject,'String') returns contents of
% str2double(get(hObject,'String")) returns

% --- Executes during object creation, after settin
function selectnum_CreateFcn(hObject, eventdata, ha
% hObject handle to selecthum (see GCBO)

% eventdata reserved - to be defined in a future v

% handles empty - handles not created until afte

% Hint: edit controls usually have a white backgrou

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),
set(hObject,'BackgroundColor','white");

end

% --- Executes on button press in loadbutton.
function loadbutton_Callback(hObject, eventdata, ha
% hObject handle to loadbutton (see GCBO)

% eventdata reserved - to be defined in a future v
% handles structure with handles and user data (
fid=fopen(handles.filename,'r’);

if (fid==-1) %fail to open
set(handles.datacount,'String','None!");
set(handles.ltime, 'String’, 'No Log File Exist
else
sline=fgetl(fid); %get the first line

cc=0;
while ischar(sline)
cc=cc+1;
[A, count]=sscanf(sline, '%d/%d/%d,%d:%d:%d
if cc==1
handles.record=A";
else
handles.record=[handles.record; A'];
end

sline=fgetl(fid);

Xun Yang 50

r all CreateFcns called
kground on Windows.

get(0,'defaultUicontrolBackgroundColor'))

dles)
if the string

putl_editText to zero

ersion of MATLAB
see GUIDATA)

selectnum as text
contents of selectnum as a double
g all properties.

ndles)

ersion of MATLAB
r all CreateFcns called

nd on Windows.

get(0,'defaultUicontrolBackgroundColor'))

ndles)

ersion of MATLAB
see GUIDATA)

st);

%d,%d,%d,%d,%d");

MEng Design Report

end
fclose(fid);

handles.datanum=cc;

set(handles.datacount,'String',cc);

stime=sprintf('%d/%d/%d, %d:%d:%d', ...
handles.record(cc, 1),handles.record(cc, 2)
handles.record(cc, 4), handles.record(cc, 5

set(handles.ltime, 'String', stime);

guidata(hObject, handles); %updates the handles
end

% --- Executes on selection change in typeselect.
function typeselect_Callback(hObject, eventdata, ha
handles.datatype=get(handles.typeselect,'Value');
guidata(hObject, handles); %updates the handles

% hObject handle to typeselect (see GCBO)
% eventdata reserved - to be defined in a future v
% handles structure with handles and user data (

% Hints: contents = cellstr(get(hObject,'String"))
% contents{get(hObject,'Value')} returns sel

% --- Executes during object creation, after settin
function typeselect_CreateFcn(hObject, eventdata, h
% hObject handle to typeselect (see GCBO)

% eventdata reserved - to be defined in a future v
% handles empty - handles not created until afte

% Hint: popupmenu controls usually have a white bac

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor"),
set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in myplot.
function myplot_Callback(hObject, eventdata, handle
sz=size(handles.record);
%clear the figure
cla(handles.axesl,'reset’)
guidata(hObject, handles); %updates the handles

axes(handles.axesl)

X = (sz(1)-handles.datanum+1):sz(1);
switch handles.datatype
case 1 %temperature, two y vectors
y1 = handles.record((sz(1)-handles.data
y2 = handles.record((sz(1)-handles.data
case 2 %energy
y1 = handles.record((sz(1)-handles.data
case 3 %water volume
y1 = handles.record((sz(1)-handles.data
otherwise
end

%plots the x and y data

plot(x,y1);

grid on

if handles.datatype==1 %if temperature is selec
hold on
plot(x,y2,'r");

end

%adds a title, x-axis description, and y-axis d

Xun Yang

, handles.record(cc, 3),...
), handles.record(cc, 6));

ndles)

ersion of MATLAB
see GUIDATA)

returns typeselect contents as cell array
ected item from typeselect
g all properties.

andles)

ersion of MATLAB
r all CreateFcns called

kground on Windows.

get(0,'defaultUicontrolBackgroundColor'))

s)

num+1):sz(1),8);
num+1):sz(1),9);

num-+1):sz(1),10);

num+1):sz(1),11)/75;

ted

escription addording to

51

MEng Design Report

%specific data types
xlabel('Entry #;
switch handles.datatype
case 1 %temperature
title('Temperature of Water IN & OUT');
ylabel('Temperature(Fahrenheit)');
legend('Water Temp in','Water Temp out'
case 2 %energy
title('Accumulated Net Energy");
ylabel('Net Energy (Joule)");
case 3 %volume
title('Accumulated Water Usage");
ylabel ("Volume (Gallon);
otherwise
end
guidata(hObject, handles); %updates the handles

Xun Yang

52

