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Abstract: ‘Incremental Encoder Signal Analyzer’ is a PIC18F4685 based device which employs 

various algorithms to analyze the received signals from a rotary and linear incremental encoder, 

either online or offline, and can give output in terms of various parameters such as follows: 

• Digital read outs - with and without direction compensation, which can also be used to 

detect presence of any initial and/or sustained jerks in the motion. 

• Duty jitter & phase jitter and missed pulse detection – to validate the precision of the 

encoder output and detect any missing pulses from any of the channels.  

• Phase evaluation – to validate the identity of the channels. 

• Other derived computations and hardware checks which help in understanding the total 

healthiness of the device. 

It is integrated with a graphical touch screen LCD of 128x64 pixels as a HMI. The device uses the 

powerful architecture of PIC18 family, and hence several further extensions are anticipated in 

terms of computational features and communication. 
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1. Overview 

‘Incremental Encoder Signal Analyzer’ is a PIC based device which has various algorithms to 

analyze the received signals from a rotary and linear incremental encoder, either online or 

offline, and can give output in terms of various parameters, which can help in understanding 

the total healthiness of the device. 

A missing pulse in a marker-dereferenced measuring system can lead to a major mis-calculation 

and even damage to mechanical drive system.  

 

2. Introduction 

A motor encoder is a feedback device which can monitor and measure the motions on the 

motor and is directly connected to the numerical system which controls the motor. Since the 

device lies in the feedback path, it plays a very important role in keeping the system up and 

going.  

An encoder can face several breakdown causes which are difficult to identify and analyze 

without a proper methodology. The usual maintenance methodology of using oscilloscope 

based testing and verification is inherently ambiguous, and leads to incorrect diagnostic 

decisions and increased breakdown time of the machine. Commercially, there are very few 

devices available which can perform this function, but they are either too costly or under-

featured. This project demonstrates various possible algorithms for such a possible device 

which is simple to use, quick, full-featured and cost effective. 

The project employs a Microchip PIC18F4685 8-bit microcontroller which has a large code space 

and wide peripheral options. A 128x64 graphical LCD is used to display the data and a resistive 

touch screen overlay is used as an input device. A touchscreen introduces a versatility and ease 

of use in the device. 

 

3. Encoder 

The incremental encoders can either be rotary or linear with either, optical or magnetic 

sensing.  

The signals of encoder are delivered in 6 channels. Channel A and channel B are phase shifted 

by 90°, with channel A leading. Channel Z is the ‘marker’ channel which gives a pulse per 

revolution of the encoder shaft in case of rotary encoder and a pulse per unit linear distance in 

case of linear encoder. The encoder ppr (pulse per revolution) is the number of pulses a 

channel A (and channel B) gives on one encoder shaft revolution. The other three channels, A’, 
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B’ and Z’ are complimentary digital states of channel A, B and Z respectively. The states of these 

channels are depicted in figure 1. 

 
Figure 1: Encoder output 

For the purpose of this project, I used the Siemens rotary ‘PGcoder’ of type EN-B01-1000 of 

1000 ppr. The voltage rating of this device is 5VDC. 

3.1 Possible Failure Modes of the Encoder: 

An encoder can encounter several failure / malfunction modes during its lifetime. Some of 

them which are commonly seen are discussed below. These are some of the known faced issues 

and there can be more additions to this list. 

• Internal Power Supply Failure: A fault of this kind renders the device useless. It can 

either be an open-circuit or short-circuit and can affect the preceding system stage 

accordingly. A malfunctioning of the power supply section can also lead to presence of 

voltage spikes in channel output. 

• Channel failure: One of the most common problems seen is a failure of a specific 

channel. Since most of the NC systems use only a set of channels, the complementary 

set can be used in case the main channel fails. 

• Phase and duty jitters: The channel output gets ‘imbalanced’ due to mechanical mis-

alignment of the internal discs. It is necessary to identify such kind of an abnormality to 

embark upon the decision to continue or replace the device. The level of permissible 

jitter is dependent on the measuring system used. 

• Loss of channel identification: A device which has suffered a loss of its output channel 

identification and specifications renders useless. It is necessary to establish these 

parameters to regain the possible use of the device. 
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4. Hardware Development 

4.1 Hardware Development System: The project is built on a EasyPic v7 – a PIC 

development board from MikroElectronika (www.mikroe.com). It is an extremely versatile 

board which exploits most of the features of the microcontroller. It supports all of the DIP 

packages which enable parallel development of peripheral microcontroller (extension) system. 

It has an onboard programmer and debugger. However, I have used the PicKit3 programmer 

from Microchip for the development due to its complete compatibility with MPLAB. The on-

board programmer is compatible with the software development system provided by 

MikroElektronika. It also has USART and USB communication hardware which has proved 

extremely useful for easy debugging. Since I had to integrate the GLCD, the onboard GLCD 

driver had been a quick start for the development. All I/Os have selectable pull-ups and pull-

downs with LEDs. The board can be powered up by an external power supply or through the 

USB port. The snapshot of the development system is shown in appendix III. More information 

on this hardware can be found on product page:  

http://www.mikroe.com/eng/products/view/757/easypic-v7-development-system/ 

4.2 Microcontroller 

The main criteria for choosing PIC18F4685 was the available program code space of 96K bytes 

and 3328 bytes of internal RAM making it very comfortable to write code without worrying of 

running out of space. It also has on-board I2C hardware which is (extended) to use with 

resistive touchscreen driver AR1020 from Microchip. The 3 timers and the CCP help in recording 

the events precisely and without peripheral shortage. The pin diagram is shown in appendix 1. 

The following table 1 shows the assigned functions to the pins and the hardware connections. 

Pin # Description Assigned Function 

1 MCLR/Vpp/RE3 Device Reset pin 

2 RA0/AN0/CVref Touchscreen X-read 

3 RA1/AN1 Touchscreen Y-read 

4 RA2/AN2/Vref- <empty> 

5 RA3/AN3/Vref+ <empty> 

6 RA4/T0CK1 Encoder internal fault and level read out 

7 RA5/AN4/SS/HLVDIN Ch. Z’ 

8 RE0/RD/AN5 Ch. A 

9 RE1/WR/AN6/C1OUT Ch. B 

10 RE2/CS/AN7/C2OUT Ch. Z 

11 VDD +5V 

12 VSS Gnd 

13 OSC1/CLK1/RA7 20Mhz Oscillator 
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14 OSC2/CLK0/RA6 20Mhz Oscillator 

15 RC0/T1OSO/T13CKI Touchscreen Drive A 

16 RC1/T1OSI Touchscreen Drive B 

17 RC2/CCP1 GLCD backlight PWM 

18 RC3/SCK/SCL Reserved – I2C for AR1020 interface 

19 RD0/PSP0/C1IN+ GLCD data line D0 

20 RD1/PSP1/C1IN- GLCD data line D1 

21 RD2/PSP2/C2IN+ GLCD data line D2 

22 RD3/PSP3/C2IN- GLCD data line D3 

23 RC4/SDI/SDA Reserved – I2C for AR1020 interface 

24 RC5/SDO Reserved – I2C for AR1020 interface 

25 RC6/TX/CK Serial communication  

26 RC7/RX/DT Serial communication 

27 RD4/PSP4/ECCP1/P1A GLCD data line D4 

26 RD5/PSP5/P1B GLCD data line D5 

29 RD6/PSP6/P1C GLCD data line D6 

30 RD7/PSP7/P1D GLCD data line D7 

31 VSS Gnd 

32 VDD +5V 

33 RB0/INT0/FLT0/AN10 GLCD Chip select 1 

34 RB1/INT1/AN8 GLCD Chip select 2 

35 RB2/INT2/CANTX GLCD RS 

36 RB3/CANRX GLCD RW 

37 RB4/KBI0/AN9 GLCD E 

38 RB5/KBI1/PGM GLCD RST 

39 RB6/KBI2/PGC Ch. A’ 

40 RB7/KBI3/PGD Ch. B’ 

Table 1: Pin assignments 

4.3 Signal Drive and Acquisition: 

To isolate any adverse voltage peaks of encoder, optical isolators are used between the 

encoder and microcontroller pins. Although the configuration complements the encoder signals 

reaching the microcontroller pins, it doesn’t affect the analysis due to the inherent symmetry 

between the channels. The maximum bandwidth gets limited by the type of optical isolator 

used. For this, I’ve used 4N35 general purpose optical isolators for development purpose, which 

I intend to replace with faster ones (extension). 4N35 has a total turn-on and turn–off delay 

time of about 20µs, thus forcing the signal to be at least more than 30µs on and off times. 

Figure 2 shows the schematic. 

As previously stated, one of the common failure modes that encoders encounter is internal 

fault in power section which leads to an open circuit or short circuit internally. An analog NPN-
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PNP lockout circuit has been employed to hold on the output voltage to the encoder under 

normal conditions. A fault on encoder power lines will result into cascade trip of NPN-PNP 

transistor and cut-off of supply voltage to the encoder. The same line is also fed to RA4 pin to 

monitor the voltage level on the encoder supply line apart from the visual LED indicators. 

The biasing resistors R14 and R16 have been calculated to 6k as per following equation. 

�� =	
�� 	 • �	


1.25	 • 	 ��
 

The schematic is given in figure 3.  

 

 

Figure 2: Signal Acquisition from Encoder 
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Figure 3: Fault Isolation Circuit Schematic 

4.4 HMI 

I used a 128x64 pixel GLCD as the display device and a 4-wire resistive overlay to make it a 

touch screen. The only other hard button is the reset push button of the microcontroller.  

GLCD doesn’t have inbuilt ASCII converter/generator; rather, it is possible to control state of a 

single pixel and hence it is complex to send data to it. I have used NT7108C controller based 

GLCD (which is quite similar to KS0108B module). A 128X64 GLCD has 128 columns and 64 rows 

as shown in the figure 4.  

 

Figure 4: 128x64 GLCD pixel layout and addressing nomenclature 
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1. The 128 columns are divided into sets of two 64 columns; each controlled by independent 

NT7108C controllers. The columns are addressed by Y address. Thus, for both the sets (both the 

controllers), Y varies from 0 to 63 (0x00 to 0x3F). 

2. The 64 rows are divided into 8 pages of 8 rows (bits) each. Each page can be addressed by X 

address (or a page address) which varies from 0 to 7 (0x00 to 0x07). 

 

3. Each page comprises of 8 bits x 128 columns (Y address) = 1024 pixels. A byte is a row of a 

page with its LSB (i.e. D0) on top and MSB (i.e. D7) at bottom. Writing digital ‘1’ to a pixel, turns 

it on and darkens it. Thus, if a 8 bit data is sent, say 0xFF to (x,y) = (0,0), all the 8 pixels of 1
st

 

column of 1
st

 page turns on. 

 

To control the other half – the right side of the display, it is necessary to activate the NT7108C 

controller of that section and repeat the procedure. There are hardware pins to select a specific 

controller. The pin layout is comparable to the 16x2 LCD module.  

 

Pin 1 & 2: These are chip selection lines. A low on CS1 selects the NT7108C of right half of the 

screen and low on CS2 selects the other half. If you want to write simultaneously on  both the 

halves, you can select both.  

  

Pin 3 & 4: These are power supply lines for the module. Works on +5VDC. 

 

Pin 5: This is GLCD contrast control and is connected to the viper of a 10kohm pot. One end of 

the pot goes to gnd and the other goes to pin 18 (Vee) of the GLCD. 

 

Pin 6: RS (D/I) – This is data / instruction selection pin. A high on this pin indicates to the 

NT7108C that a data byte is being written and a low indicates that an instruction is being fed. 

 

Pin 7: RW – Read/Write pin – A high on this pin enables reading from NT7108C and low enables 

writing to it. 

 

Pin 8: E – Enable pin – A high on this pin enables the GLCD and a high to low transition latches 

the data (read or write).  

 

Pin 9 to 16: Data lines from LSB, D0 to MSB, D7. 

 

Pin 17: RST – Reset line – A low on this resets the module. While working with GLCD, this must 

be held high. 

 

Pin 18: Vee – Negative voltage output pin – refer description of pin 5, above. 

 

Pin 19 & 20: These are back light LED lines. +5V with proper polarity on these lines lights up the 

back light. Although GLCD internally consists of a limiting resistor and it is possible to directly 
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feed in +5V to these lines, I added a small resistor of 20 ohms in between. To control the back 

light, a PWM signal via a switching transistor BC846 is given. 

 

The schematic is shown in figure 5. 

 

Figure 5: GLCD hardware connections with microcontroller 
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4.5 Touch screen overlay: 

A 4 wire touch screen overlay has two resistive layers assembled perpendicular to each other 

and separated electrically by spacer dots. A light-pressurized touch will force the two layers to 

come in contact which can be read as an analog voltage by applying +5V and gnd to one layer 

and reading from another and vice-versa to obtain (x.y) touch points which are unique to the 

touch point on the screen. When Drive A (connected to RC0) is made high and Drive B 

(connected to RC1) is made low, a horizontal analog voltage representing x coordinate is 

available on AN0 pin to read. Similarly, when Drive A is made low and Drive B is made high, a 

vertical analog voltage representing y coordinate is available on AN1 pin to read. The necessary 

hardware has already been provided on the development board by MikroElektronika, the 

schematic of which is shown in figure 6. 

 

 

Figure 6: Resistive touch screen overlay driver 

As an independent system, it is necessary to include this hardware to interface the touchscreen 

with the microcontroller. 
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5.0 Software Development 

5.1 Software Development System: The software has been developed in C on the C18 

compiler. MPLAB, an IDE supporting all PIC controllers has been used as the development 

environment and to manage all the code files. Both the tools are from Microchip and are 

available on Microchip website: www.microchip.com 

5.2 Main Flowcharts & Algorithms: The algorithms for following features are presented: 

5.2.1 Digital Read-outs (DROs) – uni-directional (s4_1_2_1a)  

5.2.2 DROs – bi-directional (s4_1_2_1b) 

5.2.3 Missed pulses detection (s4_1_2_2a) 

5.2.4 Direction sense (s4_1_2_2b) 

5.2.5 Duty Jitter (s4_1_2_3b) 

5.2.6 Phase Jitter (s4_1_2_3a) 

5.2.7 Phase evaluation (s4_1_2_5a) 

5.2.8 Hardware checks (s4_1_2_4) 

All these tests can be clubbed into two categories – Category A: which require a uniform 

motion (constant rpm) and category B, which do not. All A-categories tests (extended) require 

an external drive. 

5.2.1 DROs – uni-directional (s4_1_2_1b) 

All the six channels digital level tests are paralleled. The counts are displayed on the screen in 

real time. This test is prone to errors introduced by a motion jerk due to its uni-directionality 

counting mechanism in which the counts are added in either directional motion. The difference 

between the number of counted pulses and rated number of pulses gives the intensity and 

frequency of the jerking / reverse directionality events. Refer figure 7 for the flowchart. 

5.2.2 DROs – bi-directional (s4_1_2_1b) 

The counter rotations are compensated in this case by sensing the directions. Since we have 4 

channels representing quadrature motions precisely, each period (of a specific channel) is 

divided into 4 quadrature counts recorded by a 2-byte unsigned counter cZ which either adds 

or subtracts depending upon the direction that is sensed. The final count of the ppr is given by 

��� =
��

4
 

The direction is sensed by following a specific pattern appearing on channel A and B. The 

simultaneity of these two channels form a 2-bit word which follows a sequence 11-01-00-10 in 
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case of a clockwise rotation and 11-10-00-01 in case of counter clockwise rotational direction, 

as shown in figure 8. Note that a complete sequence of 4 2-bit words is not needed to sense the 

direction in case of a uniform motion (non-jerking / non-vibrating conditions). At any given 

state of the 2-bit word, the processor expects two any of the other three words to represent 

either of the two directions. If the fourth word appears, the process is terminated abruptly to 

indicate an error and restarted. This might be caused due to missing pulses.  

For example, If the current state is 01, the next word can either be 01 (no change), 00 (cw 

direction) or 11 (ccw direction). In case of 00, cZ is incremented by one whereas in case of 11, it 

is decremented. Appearance of 10 in this case is erroneous. The process is initiated and 

terminated on channel Z H-L transition ISR. The complete process is shown in flowchart figure 

9. 

 

Figure 7: DROs – uni-directional 

 

Figure 8: Directional sense and compensation 
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Figure 9: Flowchart for DROs – with bi-directionality compensation 
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5.2.3 Missed pulses detection (s4_1_2_2a) 

One of the most common sources of error in DRO is the missed pulses on a particular channel. 

Such an error is profound and increases with time where there is no cross-referencing based on 

other channel is done. The reason for such damage is usually slit-blockage in case of optical 

encoders and un-resolvable. If an exact position at which the pulse is missed is known, the 

servo system controller can be compensated. 

The channel digital output is continuously matched with its complementary to detect a missing 

pulse. Whenever the digital vector addition of a state of a channel with its complementary is 0, 

i.e. the exclusive OR-ing is 0, the position is recorded. Whether a channel or its complementary 

is missing the pulse, is decided by comparing the current state of the channel with its previous 

one. For the channel, if both are different, it implies that the complementary of the channel has 

missed the pulse at recorded position ‘pos’. A timeout timer t1 is used to detect absence of 

marker pulse and t2 is used to detect the signal loss. The process is carried out similarly for the 

other complementary channel pair, referencing the complementary marker channel. At each 

successful exclusive OR-ing operation the ‘pos’ is incremented whereas at each failure the 

location is assigned to location[x] variable and x is incremented to create a new space for the 

next possible error. Again, the process is initiated and terminated on channel H-L transition ISR. 

The complete process for channel A and A’ is shown in flowchart figure 10. 

5.2.4 Direction Sense (s4_1_2_2b) 

This is the derived functionality from DROs – bi-directional (s4_1_2_1b) block. At each 

quadrature direction sensing, a byte status is changed to 0 if clockwise direction is detected 

(dir=cw) and to 1 if counter clockwise direction is detected (dir=ccw). The status of this bit can 

be monitored to give real time direction. All the values of dir and their derived meaning are 

populated in table 2. 

Dir Value Implies 

cw 0 Clock wise direction detected 

ccw 1 Counter Clockwise direction detected 

steady 2 No motion detected 

err 3 Erroneous motion detected 

Table 2: Dir values and its meaning 
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Figure 10: Flowchart for Missed Pulse Detection 
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5.2.5 Duty Jitter (s4_1_2_3b) 

Duty jitter can be caused by external vibrations or by internal miss-alignment of the disc. It can 

lead to a systematic error which increases with time. The idea of detecting duty jitter is to 

compare the on level and off level durations of a pulse by a derived timer t1 and t2. A fine 

uniform motion is required to nullify the effect of false triggers at the edges. Timers t1 and t2 

capture the on level and off level durations respectively as shown in figure 11. 

 

Figure 11: Duty jitter timing t1 and t2 capture 

A jitter in duty cycle will cause breakage in symmetry of t1 and t2 timings. The duty jitter is 

expressed as percentage of period by: 

%	����	������ = 	
�� −	� 
�� +	� 

	"	100 

5.2.6 Phase Jitter (s4_1_2_3a) 

Phase jitter is a derived abnormality of the problems mentioned for duty jitter. The idea of 

capturing phase jitter is to find the factor of dissymmetry existing between two channel pairs A 

& B, and A’ & B’ in terms of time durations. Again, two derived timers t1 and t2 are used; t1 

captures time between L-H transition on channel A and L-H transition on channel B; t2 captures 

time between L-H transition on channel B and H-L transition on channel A, as shown in figure 

12. 

 

Figure 12: Phase jitter timing t1 and t2 capture 

A jitter in phase angles between channels A and B, other than 90° will cause breakage in 

symmetry between t1 and t2 timings. The phase jitter is expressed in percentage of period by 

same expression  

%	$ℎ&'�	������ = 	
�� −	� 

�� +	� 
	"	100 
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The complete process of finding phase jitter and duty jitter is shown in flowcharts figures 13 

and 14. 

 

 
Figure 13: Phase jitter calculations 

 

 
Figure 14: Duty jitter calculations 

                

5.2.7 Phase evaluation (s4_1_2_5a) 

One of the common problems while using an old encoder is the identification of its lead, either 

due to time or due to wear and tear, the labeling and indication of the channels disappears. 

Such an ‘unknown’ device can be subjected to channel identification by this algorithm, provided 

that the availability of pulses on all the channels is confirmed by the general test. Once, 
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confirmed, the channels are connected to the device at random and a uniform motion is 

initiated on the encoder shaft. A complex algorithm checks for various timings and states to 

establish the identity of channels. 

The check is started with the six unknown channels connected at Ch1, Ch2, Ch3, Ch4, Ch5 and 

Ch6. The period of pulses on each of the channel is captured in t1, t2, t3, t4, t5 and t6 channels. 

Since marker channel pulse (and its complimentary) has the highest period, they can be 

differentiated at this point into ChZx and ChZy.  

Suppose the remaining channels are Chx1, Chx2, Chx3, Chx4. A digital vector addition (exclusive 

OR-ing) is performed on the Chx1 & Chx2, Chx1 & Chx3 or Chx1 & Chx4 to identify the 

complementary pairs of channels into Ch1x & Ch1y (complementary) and Ch2x & Ch2y 

(complementary). For further evaluation, timings are compared between the channels. 

A derived timer t1 and t2 are used to capture off period and on period on ChZx channel.  

�(, �� >	 � , +ℎ�"	�'	�ℎ&,,�-	�	&,.	+ℎ��	�'	�ℎ&,,�-	�
/ 

�(, �� <	 � , +ℎ�"	�'	�ℎ&,,�-	�′	&,.	+ℎ��	�'	�ℎ&,,�-	� 

Now, the identity of other channels is established on level tests by referencing with channel Z. 

At the L-H transition of channel Z, Ch1x level is checked. If it is high, it is confirmed that it is 

either channel A or channel B. An H-L transition on Ch1x is waited for and then, channel Z is 

checked. A high confirms Ch1x as channel A and Ch1y as channel A’; whereas a low on channel 

Z confirms Ch1x as channel B and Ch1y as channel B’. 

If as first place, Ch1x level is low, it is confirmed that Ch1y is either channel A or channel B. 

Again, an H-L transition on Ch1y is waited for and either channel A and A’ or channel B and B’ 

are confirmed. Refer figure 15. 

                  

Figure 15: Phase Evaluation 
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In the last step, to confirm the identity of other channel and its complimentary, the timings of L-

H event are observed for the two unknown channels, referencing on the known channel A or 

channel B. If in previous step, identity of channel A had been confirmed, the B and B’ are found 

out by the ‘first’ ISR call – the first being channel B and the other being channel B’. Similar check 

is done to establish identity between A and A’, in the other case. 

The complete process is mapped into flowchart figure 17 and 18. 

5.2.8 Hardware checks (s4_1_2_4) 

The output from the fault isolation circuit is also fed back to the microcontroller pin RA4 which 

monitors the level on it. The voltage at this pin is proportional to the current drawn by the 

device and detects the current drawn by the encoder. An internal fault will cause the voltage to 

be cut-off by the PNP-NPN transistor lock-out and will not affect the functioning of the 

microcontroller. This fall in voltage will be detected and a message is flashed on the screen to 

alert the user. 
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5.3 Peripheral Flowcharts and Algorithms. 

5.3.1 GLCD interface 

The basic GLCD timing diagram to display a byte of data is shown in flowchart figure 16. It takes 

around 18µS to display a byte of data. Although, this is not the time mentioned in datasheet, I 

found it best to on which the GLCD works well without producing junk on screen. The font 

library consist each font of 6 bytes, thus making the display time delay as 108µS per character. 

 

Figure 16: Byte printing timing flowchart for GLCD 
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Figure 17: Flowchart for Phase Evaluation – part1 
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Figure 18: Flowchart for Phase Evaluation – part2 

 

5.3.2 Resistive Touchscreen Interface 

The touchscreen() function has been coded which retrieves X and Y as shown in the flowchart 

figure 19.  

When the touchscreen is not pressed, the read-outs are under (2, 11) coordinates. This enables 

to detect the press and enable touch de-bounce. This is done by function Release() which does 

not exit unless the touch is released. 



Page: 24 of 33 

 

Void touchscreen(void) 

{ 
   

 unsigned int t2; 

 //SETTING UP ADC MEASUREMENT 
 

 PORTCbits.RC0=1;                               //Drive A=1, Drive B=0 
 PORTCbits.RC1=0; 

   

 ADCON0 = 0b000000; 

 ADCON2 = 0b10011101; 

 ADCON0bits.ADON = 1;   //turn on ADC 

 Delay10TCYx(1); 

 ADCON0bits.GO_DONE = 1;  //start conversion 
  

 while(ADCON0bits.GO_DONE==1); 

  
 t2=(ADRESH*256)+ADRESL; 

 t2=t2/5; 

 

 adc_x=t2-0;                                        //x-coordinate 
  

 PORTCbits.RC0=0;                               //DriveA=0, DriveB=1 

 PORTCbits.RC1=1; 
 ADCON0 = 0b000100; 

 ADCON2 = 0b10011101; 
 ADCON0bits.ADON = 1;   //turn on ADC 

 Delay10TCYx(1); 

 ADCON0bits.GO_DONE = 1;  //start conversion 
  

 while(ADCON0bits.GO_DONE==1); 

  

 t2=(ADRESH*256)+ADRESL; 

 //t2=(t2-215)/7; 

 t2=t2/5; 

 adc_y=t2-0;                                   //y-coordinate  
 

 ADCON0bits.ADON = 0;   //turn off ADC 

} 

 
 

Figure 19: Flowchart for 

X,Y coordinate capture 

 

void Release(void) 

{    

 while(adc_x>2+1 && adc_y>11+1) 

 {  

  touchscreen(); 

 }  

}  
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5.3.3 Touch Screen Calibration 

The resistance of the touchscreen layers changes by temperature which changes the 

coordinates. A compensation of this is done by calibrating the touchscreen at the start of use. 

In the code, the calibration subroutine has been kept optional and is initiated if the user 

touches the screen when the appropriate message is displayed at power-up. The calibration is 

skipped after pre-set 4 seconds. 

The calibration routine captures the four corner points of the touchscreen by asking user to 

press the displayed dot. To avoid the false capture, a message to ‘release’ is flashed on screen 

until the user releases the press. The captured coordinates are 

2345 , 6457, 2348 , 6487, 2398 , 6987, &,.	2395, 6957 

A resolution of sense area in X and Y direction are established by 

38:� = 8, 	68:� = 4 

This means that there are 8 sense areas along X axis and 4 along Y axis. 

The calibration compensation is achieved by 

3<�= = 	
2348 + 3987 − 2345 + 3957

2	2	3	38:�7
, 6<�= = 	

2645 + 6487 − 2695 + 6987

22	3	68:�7
 

This is a simple averaging linear compensation and works well for low values of 38:�	&,.	68:� 

and is sufficient for current needs. A higher sense resolution requiring stylus use to write or sign 

on the screen requires high 38:�	&,.	68:� values, typically full resolution of screen of 128 and 

64 pixels. In such a case a quadratic compensation needs to be employed. 

5.3.4 Backlight control 

The PWM is increase / decreased depending on the area touched on the screen in ‘backlight 

settings’ screen. The PWM goes from low 10 to high 103 counts for full intensity.  

PR2 = 103; 

CCPR1L = 0b00110011 ; 

CCP1CON = 0b00111100 ; 

T2CON = 0b00000111; 

 

testcoordinates(6,12,15,31);   // test for decrement button press 

if(pressconfirm==1) 

 {  

 if(CCPR1L>10) 

 { 
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  Delay10KTCYx(10); 

  CCPR1L = CCPR1L-1;  //decrement PWM count 

  printbar();   //print status bar 

 } 

}  

 

testcoordinates(16,25,14,25);   //test for increment button press 

if(pressconfirm==1) 

{   

 if(CCPR1L<103) 

 {  

  Delay10KTCYx(10); 

  CCPR1L = CCPR1L+1;  //increment PWM count 

  printbar();   //print status bar 

 } 

}  

 

 

5.4 GUI 

A simple hierarchal top-down navigation is used to browse through all the options available in 

the device. The pre-sections and post-sections can be accessed by CANCEL, NEXT, CONTINUE 

buttons wherever applicable. The selectable options are enclosed by a rectangular on-screen 

box to make their presence more pro-found. Since a linear averaging calibration is used to get 

the touch points, fewer options can be accommodated on the screen; but that has led to 

comfortable operate the touch screen without the use of any pointing device like stylus. The 

operation is very satisfactory with fingers. The complete navigation through the available 

menus is shown in figure 20. 

5.5 Code 

The code will be available upon request. 
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Figure 20: Navigational menus on the GUI 
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6.0 Results 

 

 

The signals from the Siemens Pgcoder were 

captured on ppr uni-directional mode. The 

screenshot figure 21 shows the ppr measured 

on channel A and B. The channel B suffered a 

loss of two pulses due to possible error in 

signal acquisition due to low rise-time of 

optical isolators at L-H transition, due to high 

speed. A jerk would cause an over-count due 

to hunting oscillation in this mode. 

Screenshot figure 21 

Screenshot figure 22 

 

 

 

 

A careful slow motion led to successful 

capture of correct ppr.  

Use of faster opto-isolators will solve this 

problem. 

A video clip showing the pulse capture is 

available at http://youtu.be/ZWgCtSjk52M 

 

 

 

 

The missed pulse test on channel A captured a 

count of 2 pulses when the shaft was driven 

with non-uniform forceful rotation given by 

hand. This again implies the possible miss-outs 

of the pulses by 4N35 slow optical isolators. 

Screenshot figure 23 
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Screenshot figure 24 

 

 

 

 

 

An external short-circuit simulated at the 

output terminals of the ‘fault isolation circuit’ 

triggered ‘internal fault detected’ message on 

the screen 

  

The test on phase jitter and duty jitter showed the least capture of 1.3% and 3.7% respectively. 

This error has been introduced because of the fact that the shaft was rotated manually by 

hand. A more intesive test on this feature can be explored by rotating the shaft with uniform 

motion by an external drive (extenstion). 

 

The navigation through all the menus was done on GUI. This successfully tests the calibration 

and touchscreen debounce algorithm. The video clip showing this is available at 

http://youtu.be/vz_l7hcWIj8 

 

Other screen shots are shown in Appendix II. 

Problem faced with Signal Acquisition 

 

One major problem that I faced 

with using optical isolators is 

the slow rising time.  

 

Figure 25 shows the input 

waveform to microcontroller of 

a complementary channel pair. 

The low to high (L-H) transition 

is not captured properly and 

results into an ambiguous read 

after the microcontroller 

loading effects on the signal. 

 

I suffered erroneous results due 

to this several times. 
 

Figure 25: Optical isolators’ output and L-H edge damage 
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7.0 Conclusion 

The signal acquisition can be enhanced by using faster optical isolators like 6N137 to avoid 

signal loss and increase the reliability of the device. The ambiguous L-H edge of the optical 

isolator also needs to be addressed to prevent a miss-capture of the pulse. 

All the category B tests can be effectively carried out by this device. To enable the effectiveness 

of category A tests – which require a uniform smooth motion, the project can be extended to 

include a stepper motor drive to do the function. A separate drive controller can be interfaced 

with this main controller for driving this external drive. A flexible mechanical coupling need to 

be designed which provides possibility of hooking up any encoder. Such an interface also 

enables to compute several additional parameters like mechanical lag (eccentricity error) and 

directional repetitive error (while going in opposite directions consequently) of the encoder and 

auto-test incorporating a complete test of the encoder.  

The tests discussed so far, for this device, provide a reliable health checkup of an encoder. The 

device demonstrated here captures information from these tests as intended and helps in 

diagnosing the device performance, thus enabling faster and effective maintenance activities, 

and reducing the machine breakdown time and increasing its productivity. 
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Appendix I – PIC18F4685 pin diagram 

 

 

Figure 26 
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Appendix II – GLCD screenshots / snapshots 

 

 

 

 

 

 

Figure 27: Main screen 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Calibration cycle screen 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Backlight control 
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Appendix III – Development System 

 

 

Figure 30 

 

 

 

 

 

 

 

 

Link to the Poster (presented on ECE day) and other documents:  

http://iesa.pratikpanchal.com 


