
DESIGN A WIRELESS LAB FOR ECE4760

A Design Project Report

Presented to the School of Electrical and Computer Engineering of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering, Electrical and Computer Engineering

Submitted by

Yi Heng Lee

MEng Field Advisor: Bruce R. Land

Degree Date: May 2012

1

Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title: Design a wireless lab for ECE4760

Author: Yi Heng Lee

Abstract:

In this project, a wireless lab exercise is developed for the ECE4760 Digital

Systems Design using Microcontrollers course. The lab exercise involves the use

of Nordic systems nRF24L01+ transceivers for wireless communication between

Atmel ATmega644 microcontrollers. Device drivers compatible with the

ATmega644 were written for configuring and operating the nRF24L01+. Three lab

exercises of increasing complexity that demonstrate the usage of the transceivers

in different applications were developed.

2

Table of Contents

1. Executive Summary ... 3

2. Design Requirements .. 4

3. Possible Solutions and Related work ... 5

4. Design and Implementation .. 6

4.1. Hardware ... 6

4.2. Device Drivers for the nRF24L01+ ... 8

4.3. Lab Exercise 1: Receiving a Broadcast from the Base Station................................. 9

4.4. Lab Exercise 2: Sending an Audio Signal ...11

4.4. Lab Exercise 3: Wireless Multiplayer game ..13

5. Results ...16

5.1. Range of the Transceiver in the Philips Hall Digital Lab Environment17

5.2. Throughput of the Transceiver when used with the ATmega64418

5.3. Evaluation of the Lab Exercises ..19

6. Conclusions ..20

7. Future Work ...20

8. Special Thanks ..20

9. Appendix ...21

9.1. Schematics ...21

9.2. User Manual for nRF24L01+ Device Drivers ..22

 9.2.1. List of files ..22

 9.2.2. Description of Functions and Usage ...22

 9.2.3. Examples ...23

3

1. Executive Summary

In this project, a wireless lab exercise is developed for the ECE4760 Digital

Systems Design using Microcontrollers course. The lab exercise involves the use

of Nordic systems nRF24L01+ transceivers for wireless communication between

Atmel ATmega644 microcontrollers. The exercises are designed such that several

groups of students connect to a base station, which is set up by the instructor or

teaching assistants. Since each nRF24L01+ can receive from up to 6 transmitters

when set up in a star network, each base station can support 6 groups of students.

Device drivers compatible with the ATmega644 were written for configuring and

operating the nRF24L01+. Three lab exercises of increasing complexity that

demonstrate the usage of the transceivers in different applications were developed.

The first exercise has students receive a message that is broadcast from the base

station. The second exercise has students transmit an audio signal to the base

station which plays the audio using speakers that are connected to it. The third

exercise is a wireless multiplayer game involving elastic particle collisions where

player control their character by sending commands to the base station. The base

station then passes the commands by serial interface to a Java program that runs

the game and displays its graphics.

The range and performance of the nRF24L01+ in the Philips Hall Digital Lab

environment was analyzed by measuring packet drop rates without the use of the

Enhanced Shockburst link layer for acknowledgements and retransmissions. The

range of the nRF24L01+ in the lab environment was found to be limited due to the

large amount of electronics and metal objects in the lab, which obstruct the RF

signals. The throughput that can be achieved when the nRF24L01+ is used with

the ATmega644 was also measured. It was found a significant overhead is

incurred in transmissions and thus using a large payload size (up to 32 bytes) for

each packet resulted in maximum throughput.

4

2. Design Requirements

ECE 4760 is a senior level course offered by the Electrical and Computer

Engineering Department of Cornell University. In the course, students are taught to

use design real-time digital systems using microprocessor-based embedded

controllers. The course is taught by Bruce Land, who is also the advisor for this

project. The goal of this project is to develop a lab exercise for ECE 4760 involving

wireless communication between two microcontrollers. The course would benefit

from the addition of this lab exercise as it gives students experience with using

wireless transceivers and teaches them how to add wireless communication

capabilities to the electronic systems that they design. Even within the course,

students can build on what they have learnt in this lab to explore interesting

applications involving wireless communication in their final design project, where

students design and implement a microcontroller project of their choosing. Given

the rapid proliferation of wireless features in electronic devices, such knowledge

would be helpful in their future careers as electrical engineers.

The lab exercise will involve the use of 2.4 GHz transceivers for wireless

communication. Each transceiver will be connected to an Atmel Mega644

microcontroller on a STK500 development board or the prototype board designed

by Bruce Land and Nathan Chun. Based on the typical student enrollment in ECE

4760, each group of two students would have access to one STK500. Thus, the

exercise has to be designed such that several groups of students connect to a

base station, which is set up by the instructor or teaching assistants. Depending on

the number of students and the number of clients that each base station can

handle, multiple base stations might have to be used. The program running on the

base station would have to be designed to be fault tolerant and resilient to errors in

the data sent by the students, so that errors by a group would not hamper the use

of the base station by other groups.

5

The lab exercise has to be designed such that students can finish it in one or two

afternoons in a lab setting. Device drivers will have to be written and documented

to provide a hardware abstraction layer for the students to interface with the

transceivers. The drivers will be written in C and used as part of the programs that

students will implement and run on the Mega644 microcontrollers.

3. Possible solutions and related work

The usage of the ATmega644 and nRF24L01+ for the hardware was specified as

per the design requirements. Another student at Cornell, Jaehyun Kim [3], had

previously written an API for the nRF24L01+ that was capable of basic point to

point communication between two transceivers. However, that API does not

support features such as multiceiver (receiving from multiple transceivers) in a star

network and using auto acknowledgements for reliable communication. The API

also has problems with switching between transmit and receive modes, requiring

the transceiver to be powered down when switching modes. There is also a

comprehensive set of drivers written by Brennan Ball of diyembedded.com [4] but it

is incompatible with the ATmega644 since they were written for the LPC2148 and

PIC18F452 microcontrollers.

I decided to write a new set of drivers based on the documentation by Brennan Ball

and reusing some of the code by Jaehyun Kim such as the mappings from register

names to addresses, macros for commands and some of the functions for setting

the TX and RX addresses. One of the main challenges with using the nRF24L01+

is the complexity involved in configuring and controlling it through multiple

commands sent by SPI, unlike simpler transceivers such as the Radiotronix WI.232

series which require minimal configuration. Thus in order to make it easier for

students to use the transceiver, I designed my drivers to be easy to use by

automatically doing many of the steps involved in setting up and operating the

6

transceiver. This does come at the expense of configurability since some of the

options are not exposed to the user through the API.

 4. Design and Implementation

4.1. Hardware

The wireless transceiver to be used in the exercise is the Nordic Semiconductor

nRF24L01+. The transceiver operates in the worldwide ISM frequency band at

2.400 – 2.4835 GHz and support air data rates of 1 Mbps and 2 Mbps [2]. The

transceivers are controlled through a Serial Peripheral Interface (SPI) where

operations are performed by writing and reading registers in the nRF24L01+. The

project uses modules manufactured by Sparkfun Electronics which mount the

nRF24L01+, a 16 MHz crystal oscillator that produces the clock for the transceiver,

a chip antenna, and a 3.3V LDO regulator onto a 0.8x0.9” printed circuit board [5].

The module is connected to the ATmega644 as shown in Appendix 1. The module

is supplied with 5V through its VCC pin, which is then regulated to 3.3V for the

transceiver. The pins for the SPI interface are connected to ports B3 to B7 on the

Mega644, which are used by the integrated SPI interface of the ATmega644. The

nRF24L01+ supports a maximum SCK frequency of 4 MHz, thus the SPI frequency

of the ATmega644 is set to fosc/4 since a 16 MHz crystal is used for the

ATmega644.

I set the nRF24L01+ to use an RF data rate of 2 Mbps and the maximum RF

output power of 0 dBm, at which the transceiver is documented to draw 11.3 mA of

current when transmitting and 13.5 mA when receiving.

7

Figure 1: nRF24L01+ connected to the STK500, along with the trimpot used for the
wireless multiplayer game lab exercise.

8

Figure 2: nRF24L01+ connected to the ATmega644 on the prototype board.

4.2. Device Drivers for the nRF24L01+

Device drivers compatible with the ATmega644 were written for the nRF24L01+.

The drivers support point to point and multiceiver in a star network operation with

and without Enhanced Shockburst. Enhanced Shockburst is a link layer (like TCP)

built into the nRF24L01+ that supports auto acknowledgements and retransmission

of packets to achieve reliable communication at the expense of reduce throughput.

A receiver in multiceiver mode can receive transmissions from up to six

transmitters. This is done by enabling up to six data pipes and setting the RX

9

(receive) addresses for each pipe to correspond to the TX (transmit) address of

each transmitter.

The Enhanced Shockburst link layer also supports advanced features such as

dynamic payload length and piggybacking payloads on the auto

acknowledgements sent from the receiver to the transmitter. However, to keep the

drivers easy to use, I decided not to use these features and instead use static

packet sizes that are set by the user at initialization. The piggybacking payloads on

ACKs initially seemed to be an attractive way of sending replies containing data

from the base station to the student setups, however there is a hardware limitation

in the transceiver that limits the use of this feature. A payload can be included in an

ACK packet from the receiver to the transmitter. The TX FIFO (transmit first in first

out) which the payloads are stored in can only contain three pending payloads,

when ideally one would want capacity for six payloads, one for each pipe. Sharing

the three slots among six pipes presents problems such as slots in the TX FIFO

getting blocked if a transmitter stops communicating with the receiver while there is

a payload pending for the transmitter, resulting in the payload staying in the FIFO

indefinitely and preventing the use of the slot by other payloads. The user would

have to manually implement some mechanism to detect such occurrences and

flush the TX FIFO in order to share the three slots among six pipes.

4.3. Lab Exercise 1: Receiving a Broadcast from the Base Station

Figure 3: Structure of lab exercise 1

10

The first exercise involves receiving packets which are broadcast from a base

station. This exercise can be used by students to check that they have connected

the transceiver correctly and the SPI communication to the transceiver is

functioning.

Figure 4: Console output of the received broadcast

All the transceivers are set to use the same address. The base station is set to TX

mode and continuously transmits characters from a string while the student

transceivers are set to RX mode and listen for the transmissions from the base

station, printing the received characters to the console. There only needs to be one

base station for any number of receivers as long as the receivers are within range.

Auto acknowledgements are not used for this exercise since they are designed for

transactions between one transmitter and one receiver, whereas in this exercise

we have multiple receivers.

11

4.4. Lab Exercise 2: Sending an Audio Signal

Figure 5: Structure of lab exercise 2

The second exercise involves students transmitting audio signals to the base

station, which plays them using speakers that are connected to it. The audio

signals are sent in the form of sequences of values ranging from 0 to 255, which

are converted to analog signals using pulse width modulation on the OC0A port of

the ATmega644. The exercise was designed as an extension to the Audio

Sequencer and Synthesizer lab exercise [6], with audio signal being generated

using direct digital synthesis with the code from that lab exercise. After students

have constructed the synthesizer, they can send their audio signal wirelessly to the

base station, which would combine all the signals received from various groups

and play it, resulting in interesting tunes based on combinations of student inputs.

12

Figure 6: Base station connected to speakers

Each base station is configured as a multiciever capable of receiving from six

transmitters with different addresses. These addresses are defined as

PIPE_ADDRESS_0 to 6 in the Wirelesslab4760 file. Each student transceiver will

be configured to use a unique address. Auto acknowledgements are not used for

this exercise in order to maximize throughput on the base station.

13

4.5. Lab Exercise 3: Wireless Multiplayer Game

Figure 7: Structure of lab exercise 3

The third exercise involves students connecting to the base station wirelessly to

play a multiplayer game. The premise of the game is that players are space

cowboys (literally) that need to herd cows (in hermetically sealed bubbles that are

floating in space) into corrals. Both players and cows are modeled as spherical

particles and players herd the cows by elastically colliding with them. Players

control their movement by turning using a 10KΩ trimpot and accelerating by

pressing buttons on the STK500. There are also inertial effects on the player and

cow particles, as well as drag (unlike space, but it improves playability, since the

cows would bounce all over the place otherwise).

14

Figure 8: Screenshot of the game, the received player commands can be seen in the
console

Figure 9: Connections for the trimpot

15

The microcontroller on a student setup reads the value of the 10KΩ trimpot

(connected as shown above) using the analog to digital converter on the

ATmega644 and detects button presses on the STK500. SW0 and SW1 on the

STK500 are connected to Port C0 and C1 respectively on the ATmega644. The

program on the microcontroller encodes the information as a string, with the

student's NetID as the first 6 characters, 'F' or 'B' for the 7th character to indicate

forward or backwards acceleration, and a value from 0-255 corresponding to the

trimport reading for the last three characters. If the NetID or trimport reading are

shorter than 6 and 3 characters respectively, they are padded with spaces to keep

the string length consistent. Examples of strings are " yl478F 80" and

"abc123B150".

The strings are transmitted by the student setups to the base station. Similar to lab

exercise 2, there is one base station configured in multiciever mode for every six

student setups, and each student transceiver uses a unique address. The base

station sends the received strings to the computer using the serial connection,

adding the '<' and '>' brackets around the string so that the Java program can

detect the beginning and end of each string.

The game program is written in Java and runs on a computer connected to the

base station. This was done because of the ATmega644 does not have an

integrated VGA module, and manually generating an NTSC signal using software

in the microcontroller results in relatively low resolution black and white graphics.

The Java program reads the player commands from the serial connection, using

the jSSC (java simple serial sonnector) library by Sokolov Alexey [7]. The program

then performs the physics computations for the game and displays the state of the

game on the screen. The computations used to simulate the elastic collisions of

particles are based on the "Video Game -- Particle Beam" lab from the 2011

offering of ECE 4760, by Bruce Land [8].

16

The techniques learnt in this exercise can be applied to applications where

microcontrollers are deployed to collect information (such as sensors in the field)

and transmit back data wirelessly to a base station which uploads the data to a

computer for logging.

Originally, my plan for this exercise was to have two way communication between

the base station and the student setups, where the base station would reply with

the coordinates of the players and cows, and the students could write scripts or AI

programs to automatically play the game, or display the game on their own screens

by sending the coordinates to their computer by a serial connection. However, it

proved unfeasible to send the replies using the piggybacking payloads on ACKs

feature since the TX FIFO could only contain up to three packets as described

earlier. Having the base station switch to TX mode to transmit is slow and it would

miss packets that are sent to it by students while switching and transmitting. Two

way communication might be more feasible in a lab exercise that did not involve

real time game play, such as a turn based game.

5. Results

In order to analyze the range of the nRF24L01+ and its throughput when used with

the ATmega644, one setup was set to transmit packets continuously while another

ran a program that receives those packets and records how many packets it

receives per second. The files used are located in the "Measure rate" directory of

the code submission. An interrupt service routine (ISR) is used to measure time in

the receiver. Every 10 seconds, the program takes the count of the packets it has

received in the last 10 seconds and prints the packets received per second to the

console.

17

Figure 10: Console output showing measured packets per second

5.1. Range of the Transceiver in the Philips Hall Digital Lab environment

By disabling Enhanced Shockburst and measuring the number of packets received

(and hence the packet loss rate) when the receiver is placed at various locations in

the Philips Hall Digital Lab, observations can be made about the range of the

transceiver in the lab environment.

A distance of about a quarter of the lab (approximately 4 meters) was resulted in a

packet loss rate of 5 to 10%. At a distance of about half the lab (approximately 8

meters), a large packet loss rate of about 30% occurred. When placed at opposite

ends of the lab, the receiver failed to receive most of the transmitted packets.

18

The limited range of the transceiver was possibly due to the large amount of

electronics and metal objects in the lab which obstruct the RF signals. Placing the

transceivers at a high altitude helped to reduce the packet loss rate.

5.2. Throughput of the Transceiver when used with the ATmega644

The transmitter and receiver were placed half a meter from each other and the

throughput was measured with various payload sizes and settings for Enhanced

Shockburst. With a payload size of 1 byte and Enhanced Shockburst disabled, an

average of 4900 packets were received per second. When the payload was

increased to 4 bytes, 4580 packets were received per second. With the maximum

payload size of 32 bytes, an average of 2160 packets were received per second.

The less than proportional decrease in the rate at which packets are transmitted or

received as the payload size increases indicates that overhead comprises a

significant part of the delay involved in sending each packet. Based on the

nRF24L01+ documentation, one of the main contributors to the overhead could be

the TX settling delay of up to 130 µs that the transceiver goes through whenever it

switches from standby mode to TX mode (the transceiver is not supposed to be

kept in TX mode continuously, it automatically switches to standby mode once the

TX FIFO has been emptied).

Based on these results, using a large payload size is more efficient and results in a

higher throughput, since more data is transmitted per packet, while the rate at

which packets is not decreased by the same extent.

When Enhanced Shockburst is enabled, the number of packets per second

received with a 1 byte payload size fell from 4900 to 2933, yet surprisingly with a

32 byte payload size the cost of using Enhanced Shockburst was insignificant, with

the packets per second falling from 2160 to 2150.

19

5.3. Evaluation of the Lab Exercises

The three lab exercises functioned as designed. However, testing could only be

done with one base station and up to four transmitters (simulating four players) for

the wireless game due to limited transceivers and manpower for setting them up.

The wireless game was playable when used with four transmitters that were

located on two adjacent workbenches. The scalability of the exercises to a lab

section of 20 students could not be tested due to insufficient transceivers and

manpower, it is possible the large number of transmissions occurring

simultaneously could interfere with each other. Using different frequencies for each

star network of 1 base station and up to 6 student setups might alleviate this

problem.

Based on the results from evaluating the throughput of the transceiver using

different payload sizes, lab exercise 2 could actually be improved significantly.

Instead of sending 1 byte packets which contain the real time value of the audio

waveform as is done currently, the transmitters should accumulate 32 byte

sequences of values which represent the audio waveform over 32 time steps,

which are then sent as 32 byte packets to the base station. The base station then

plays through the 32 bytes in each packet as time passes. This would result in

higher throughput and thus better audio quality (as it allows for a higher sample

rate) and scalability (as less packets need to be sent) compared to the current

implementation. Enhanced Shockburst can also be used with the 32 byte packet to

fix problems with packet losses disrupting the audio playback. In the current

implementation, packet losses sometime cause the audio to sound distorted.

20

6. Conclusions

The project achieved its goal of developing ATmega644 compatible device drivers

for the nRF24L01+ and using them to build a lab exercise for ECE 4760. By

analyzing the performance of the nRF24L01+ in the Digital Lab environment when

used with the ATmega644, a better understanding of the capabilities and optimal

use of the nRF24L01+ was gained. However, due to equipment and manpower

shortages, testing for scalability could not be done with a greater number of

transceivers in order to simulate actual deployment of the lab exercises wherein

there may be up to 20 students groups simultaneously transmitting packets.

7. Future Work

Future work could involve an improved version of lab exercise 2 which would have

the transmitters accumulate 32 byte sequences of values which represent the

audio waveform over 32 time steps and sent them as 32 byte packets to the base

station instead of current the audio waveform byte by byte in real time. This

modification would result in better efficiency and thus higher throughput, it would

also allow the use of Enhanced Shockburst to prevent audio distortions from

dropped packets.

8. Special Thanks

I would like to thank Bruce Land for his advice and guidance on this MEng project,

and Jaehyun Kim for his prior work on the nRF24L01+, some of which this project

is based on.

21

7. Appendix

7.1. Schematics

The following schematic shows the connections between the nRF24L01+ and the

ATmega644.

22

7.2. User Manual for nRF24L01+ Device Drivers

7.2.1. List of Files

The device drivers consists of four files.

wireless.h - Header file for the driver functions that are called by the user, as well

as helper functions

wireless.c - Driver functions that are called by the user, as well as helper functions.

Some of the functions are based on code by Jaehyun Kim.

cmd_list.h - Macros for commands that sent to the nRF24L01+ by SPI, written by

Jaehyun Kim. These are only used internally be drivers, the user does not need to

know them.

register_map.h - Mappings from register names to their addresses, written by

Jaehyun Kim. These are only used internally be drivers, the user does not need to

know them.

7.2.2. Description of Functions and Usage

Initializing and configuring the nRF24L01+

All the initialization can be done in the main method of the program.

The user first has to set the value of the payload length. This must be done before

calling any of the functions in wireless.c.

PAYLOAD_LENGTH = 1; //any number from 1 to 32

init_RF(unsigned char enhanced_shockburst_enable) is then called to configure

and power up the receiver. enhanced_shockburst_enable is set to 0 to disable

Enhanced Shockburst and 1 to enable it. The function also automatically

23

configures parameters such as the transmission power and data rate for the user,

in order to make the drivers easy to use.

init_RF(1); //init transceiver, enable enhanced shockburst

init_RF(0); //init transceiver, disable enhanced shockburst

The transceiver is initially configured to be in RX mode, to change modes the user

has to call set_mode(unsigned char mode), where mode is either RX_MODE or

TX_MODE.

By default, data pipes 0 and 1 are enabled, to enable additional pipes, the user can

call enable_pipe(unsigned char pipenumber) where pipenumber can be from 0 to 5.

enable_pipe(4); //enable data pipe 4

The RX and TX addresses have to be set by calling set_TX_addr(unsigned long

address) and set_RX_addr(unsigned long address, unsigned char pipe). In these

drivers, the transceiver is set to use 4 byte address, which correspond to an

unsigned long in the ATmega644. The RX address of each pipe is set seperately

by calling set_RX_address with different values for pipe from 0 to 5. For the

transmitter in TX_mode, the RX address for pipe 0 should be set to the same

address as the TX address in order for ACKs to be received. Based on the

nRF24L01+ documentation, it is recommended that addresses have multiple

transitions between 1 and 0 bits to avoid noise being mistaken for packets.

#define PIPE_ADDRESS_0 0xb4b5b600

#define PIPE_ADDRESS_4 0xb4b5b604

set_RX_addr(PIPE_ADDRESS_0, 0);

set_TX_addr(PIPE_ADDRESS_0);

set_RX_addr(PIPE_ADDRESS_4, 4);

24

set_RF_channel(unsigned char channel) can be used to change the RF channel,

transceivers must be set to the same channel to communicate with each other.

channel is a 7 bit number. Using different channels for different star networks can

help reduce interference.

set_RF_channel(8);

Sending and receiving packets

transmit_packet(char* packet) is called to transmit the packet which is a byte array

or string. It blocks until the packet is successfully transmitted (whereupon it returns

1) or the maximum number of retries is reached (whereupon it returns 2).

char transmission_result; //shows whether the transmission

succeeded

char* packet = (char *) malloc(PAYLOAD_LENGTH);

packet[0] = 'A';

transmission_result = transmit_packet(packet);

The program that is receiving packets should call RX_FIFO_status(void) to check

whether packets have been received, it returns 0 if no packets are in the RX FIFO

and 1 if packets are present. The transceiver automatically places packets in the

RX FIFO when they are received.

Once packets have been received, they can be read from the RX FIFO by calling

read_RX_payload(char* buffer).

char pipe_received; //pipe on which the packet was received

while (1) {

 if (RX_FIFO_status() == 1) {

 pipe_received = read_RX_payload(packet);

 fprintf(stdout,"<%s>", packet);

25

 }

}

7.2.3. Examples

7.2.3.1a Transmitter that broadcasts a string four bytes at a time, with

enhanced shockburst disabled

#define PIPE_ADDRESS_0 0xb4b5b600

char data[] = "The purpose of this course is to enable students to carry

out sophisticated designs of the modern digital systems which now appear

in products such as automobiles, appliances and industrial tools.\n";

int main(void) {

 unsigned char i;

 unsigned char j;

 char transmission_result;

 PAYLOAD_LENGTH = 4; //set the payload length of each packet

 init_RF(0); //init transceiver, disable enhanced shockburst

 set_mode(TX_MODE);

 set_RX_addr(PIPE_ADDRESS_0, 0);

 set_TX_addr(PIPE_ADDRESS_0);

 char* packet = (char *) malloc(PAYLOAD_LENGTH);

 while (1) {

 for (i = 0; i < strlen(data); i += PAYLOAD_LENGTH) {

 strncpy(packet, data + i, PAYLOAD_LENGTH);

 for (j = 0; j < PAYLOAD_LENGTH; j++)

 fprintf(stdout,"%c", packet[j]);

 transmission_result = transmit_packet(packet);

 }

 }

}

7.2.3.1b Corresponding receiver that receives four bytes at a time, with

enhanced shockburst disabled

#define PIPE_ADDRESS_0 0xb4b5b600

FILE uart_str = FDEV_SETUP_STREAM(uart_putchar, uart_getchar,

_FDEV_SETUP_RW);

int main(void) {

 PAYLOAD_LENGTH = 4; //set the payload length of each packet

 unsigned char pipe_received;

 unsigned char j;

 uart_init();

26

 stdout = stdin = stderr = &uart_str;

 fprintf(stdout,"starting\n");

 init_RF(0); //disable enhanced shockburst

 set_RX_addr(PIPE_ADDRESS_0, 0);

 char* packet = (char *) malloc(PAYLOAD_LENGTH);

 while (1) {

 if (RX_FIFO_status() == 1) {

 pipe_received = read_RX_payload(packet);

 for (j = 0; j < PAYLOAD_LENGTH; j++)

 fprintf(stdout,"%c", packet[j]);

 }

 }

}

7.2.3.2a Base station that receives 10 byte packets from up to 6 transmitters,

with Enhanced Shockburst enabled

#define PIPE_ADDRESS_0 0xb4b5b600

#define PIPE_ADDRESS_1 0xb4b5b601

#define PIPE_ADDRESS_2 0xb4b5b602

#define PIPE_ADDRESS_3 0xb4b5b603

#define PIPE_ADDRESS_4 0xb4b5b604

#define PIPE_ADDRESS_5 0xb4b5b605

FILE uart_str = FDEV_SETUP_STREAM(uart_putchar, uart_getchar,

_FDEV_SETUP_RW);

int main(void) {

 PAYLOAD_LENGTH = 10; //set the payload length of each packet

 init_RF(1); //enable enhanced shockburst

 //set_RF_channel(8); can be used to change the RF channel to reduce

 interference

 set_RX_addr(PIPE_ADDRESS_0, 0);

 set_RX_addr(PIPE_ADDRESS_1, 1);

 set_RX_addr(PIPE_ADDRESS_2, 2);

 set_RX_addr(PIPE_ADDRESS_3, 3);

 set_RX_addr(PIPE_ADDRESS_4, 4);

 set_RX_addr(PIPE_ADDRESS_5, 5);

 enable_pipe(0);

 enable_pipe(1);

 enable_pipe(2);

 enable_pipe(3);

 enable_pipe(4);

 enable_pipe(5);

 unsigned char pipe_received;

 uart_init();

 stdout = stdin = stderr = &uart_str;

 char* packet = (char *) malloc(PAYLOAD_LENGTH);

 while (1) {

 if (RX_FIFO_status() == 1) {

 pipe_received = read_RX_payload(packet);

27

 fprintf(stdout,"<%s>", packet);

 }

 }

}

7.2.3.2b Transmitter that transmits 10 byte packets to base station, with

Enhanced Shockburst enabled

#define PIPE_ADDRESS_2 0xb4b5b602

int main(void) {

 char transmission_result;

 PAYLOAD_LENGTH = 10; //set the payload length of each packet

 init_RF(1); //init transceiver, enable enhanced shockburst

 set_mode(TX_MODE);

 set_RX_addr(PIPE_ADDRESS_0, 0);

 set_TX_addr(PIPE_ADDRESS_0);

 char* packet = (char *) malloc(PAYLOAD_LENGTH);

 while (1) {

 sprintf(packet, "abcdefghij");

 unsigned char transmission_result = transmit_packet(packet);

 }

}

8. References

[1] Cornell University Courses of Study, http://courses.cornell.edu/

[2] Nordic Semiconductor nRF24L01+ datasheet,

http://www.nordicsemi.com/kor/content/download/2726/34069/file/nRF24L01P_Product_Specificatio

n_1_0.pdf

[3] Jaehyun Kim, Application Programming Interface For Radiofrequency Transceiver nRF24L01+,

by Nordic Semiconductor and Atmel Mega644 microcontroller

http://people.ece.cornell.edu/land/courses/ece4760/StudentWork/Jaehyun_Kim_jk726/index.html

[4] Brennan Ball, nRF24L01 Tutorials. http://blog.diyembedded.com/

[5] SparkfunTransceiver nRF24L01+ Module with Chip Antenna product page,

http://www.sparkfun.com/products/691

[6] Bruce Land, ECE 4760: Sound sequencer and synthesis.

http://people.ece.cornell.edu/land/courses/ece4760/labs/s2012/lab3.html

http://courses.cornell.edu/
http://www.nordicsemi.com/kor/content/download/2726/34069/file/nRF24L01P_Product_Specification_1_0.pdf
http://www.nordicsemi.com/kor/content/download/2726/34069/file/nRF24L01P_Product_Specification_1_0.pdf
http://people.ece.cornell.edu/land/courses/ece4760/StudentWork/Jaehyun_Kim_jk726/index.html
http://blog.diyembedded.com/
http://www.sparkfun.com/products/691
http://people.ece.cornell.edu/land/courses/ece4760/labs/s2012/lab3.html

28

[7] Sokolov Alexey, jSSC (java simple serial connector) https://code.google.com/p/java-simple-

serial-connector/

[8] Bruce Land, ECE 4760: Laboratory 3 Video Game -- Particle Beam.
http://people.ece.cornell.edu/land/courses/ece4760/labs/s2011/lab3.html

https://code.google.com/p/java-simple-serial-connector/
https://code.google.com/p/java-simple-serial-connector/
http://people.ece.cornell.edu/land/courses/ece4760/labs/s2011/lab3.html

