
CORNELL UNIVESITY

Autonomous Quadcopter
Docking System

ECE M.ENG. Design Project Final Report

Sima Mitra

Advisor: Bruce Land
Spring 2013

1 | P a g e

Abstract

The goal of this project was to design the systems and algorithms necessary to allow a

quadcopter to autonomous locate and land on a station target. The purpose of this system was

to outline the framework for a quadcopter based data collection or surveillance system that

copes with the relatively short battery life of these highly mobile devices by consistently landing

the AAV safely in a designated location to be recharged. The 3D Robotics ArduCopter was

chosen as the quadcopter platform since it is capable of autonomously hovering in place and is

capable of carrying a payload, such as the camera used to determine the location of the dock. A

system was devised such that the quadcopter can correctly determine the location of a target

ground station while hovering and then land when above the target. Only commercially

available components and free software were used to so that the entire docking system is

easily accessible to future researchers and UAV enthusiasts.

2 | P a g e

Executive Summary

In this project a system was designed to autonomous land a quadcopter using software

and materials easily accessible to students and UAV hobbyists. The 3DRobotics Arducopter

quadcopter was chosen after a rigorous selection process for it rugged design, carrying

capacity, degree of autonomy supported, open source software, and preexisting community. A

control system was designed using a UBS radio and open source program MAVProxy/MAVLink

after the original software was proven inadequate.

When purchasing an RC controller to test and calibrate the Electronic Speed Controllers

(ESCs) of the quadcopter proved to be prohibitively expensive, I instead chose to use USB Xbox

360 gaming controller to control the quadcopter manually thought the telemetry radio already

being used for inflight commands by altering an existing MAVProxy modules for joystick

control. There was no precedent for calibrating the ESC without a controller but I was able to

create a method to do so.

While Arducopters are often used to take pictures, there is little precedent for using a

camera to control the quadcopter automatically. To save on cost, an old Android Smartphone

was attached to the quadcopter to provide a live video feed. To control the quadcopter a new

module was created that integrates with MAVProxy that uses the computer vision library

SimpleCV to search for a marker to identify the target area in which to land. A custom module

was written for the control program that will instantiate a separate thread that views the video

feed of an android smart phone and uses computer vision to search for a large red rectangle. If

the marker is detected and centered in the video, an RC override command is set to cause

MAVProxy to land the quadcopter.

With system it is possible for a quadcopter to autonomous land in a target area and thus

be retrieved for charging. All software used is free and all control programs and computer

vision libraries used are open source and python based for better accessibility to students and

UAV enthusiasts.

3 | P a g e

Table of Contents
Abstract ... 1

Executive Summary ... 2

Introduction .. 4

Design Problem ... 5

Design Solution Evaluation ... 6

Quadcopter Choice .. 6

Controls ... 7

Target Sensing ... 9

Target choice ... 10

Final Design ... 11

Overview ... 11

Instructions .. 20

Notes on Assembly instructions .. 20

Software downloads .. 21

ESC calibration without an RC Controller .. 22

Using the MAVProxy and custom modules ... 23

Results ... 24

Appendices .. 28

Appendix I ς Python Scripts Used ... 28

Android Camera module for detecting target: mavproxy_android.py 28

Modified controller code: mavproxy_joystick.py .. 31

Appendix II ς Other Python Scripts ... 34

findRed.py ς find any red items in view of the IP webcam and prints to the command

prompt ... 34

cameraExample.py - QR code finding.. 34

Appendix III ς Example Time log from android camera module .. 35

Works Cited ... 36

4 | P a g e

Introduction

Radio controlled helicopters and planes are highly valued for their ability to remotely

search wide areas without the risks of traditional manned aircraft and have high potential for

use in remote sensing applications, surveillance, and scientific research. As computing power

has increased, so have the autonomous abilities of these devices. Autonomous aeronautical

vehicles, or AAVs, have a wide appeal due to their maneuverability, speed, and wide range

compared to land based devices. These AAVs are particularly useful for situations that are too

dangerous for humans, such as in disaster relief, surveillance, or radiation level detection. This

proposal will be focusing on developing systems for autonomous multicopters, specifically

quadcopters.

One of the main disadvantages of remote autonomous and unmanned systems is their

extremely short battery life. For multicopters, the tradeoff between battery capacity and

battery weight can result in a flight time that may be as little as minutes. The short battery life

of these devices is one of the main reasons that currently make their widespread deployment

unfeasible. It also means that current autonomous systems must periodically break from their

missions and be retrieved by their human supervisors to be recharged. By developing a system

where by a multicopter could sense its battery level and return to a charging bay to which it

could automatically connect, the degree of human supervision required decreases. An

autonomous multicopter could be sent to take images or collect data, pause when its battery

needed to be recharged, and then return to its mission when it was fully recharged.

Docking stations also allow for more multicopters to be potentially deployed. For

example, many quadcopters could deploy to an area to collect data, and as their batteries were

depleted they could return to charge at a free station. This could be coordinated such that a

certain number of copter are always flying, which would be advantageous for certain

5 | P a g e

applications like surveillance or other situations when it is imperative that data collected is

continuous but it is difficult to build an equally widespread stationary sensor array.

Design Problem

While improving the mechanics, aerodynamics, and reliably of Multicopters is an active

research area, the basics of quadcopter design is a solved problem. Instead of building in a

quadcopter, the focus of this project was to explore what could be done with an autonomous

quadcopter. Currently, the main constrain on multicopters is their battery life, which can limit

the flight time to as little as 10 minutes. This problem extends to all multicopters and often is

invariant of the scale of the machine: for example the Seeed Studios Crazyflie [1], a prototype

nano-quadcopter that fits in the palm of your hand, can achieve 7 minutes of flight time with its

170mAh Li-Po battery [1], which is comparable to the 5-7 minute flight time of the quadcopter

used for this project 3DRobotics Arducopter with the recommended 2200mAh Li-Po battery [2].

Just as gas stations extend the range of an automobile, one solution is to provide designated

recharging areas for these multicopters.

This leads to another real-world design constrain: cost. Multicopters are not simply RC

toys and their price reflects their high performance hardware. Similarly, extreme multicopter

acrobatics and controls research is often performed using a motion capture systems like VICON

[3], which provides exact 3D localization [4]. These systems can cost tens of thousands of

dollars, thus limiting their use to large research institutions. However, there is still an avid

community of multicopters and Unmanned Aerial Vehicles (UAVs) enthusiasts exploring this

field without specialized equipment. Therefore, another design constrain of this project was to

implement this system cost effectively and only using commercially available components and

free or open source software in the hopes that this project could contribute back to the

amateur community.

Since the battery chosen was a 3 cell Li-Po and it cannot be recharged safely without all

6 balanced charge contacts connected to a Li-Po battery charger, it was determined that the

http://www.seeedstudio.com/depot/preorder-crazyflie-nano-quadcopter-kit-10dof-with-crazyradio-bccfk02a-p-1365.html
http://www.vicon.com/

6 | P a g e

quadcopter would simply land in an area where it could be retrieved and manually charged, not

unlike a gas-station provides a pit-stop for cars.

Design Solution Evaluation

Quadcopter Choice

One of the first major design choices made was choosing the type of multicopter to be

used in this project. A quadcopter platform was chosen because in general they are capable of

hovering in place, robust, well balanced for the amount of lift they generate, and are widely

used in the UAV community.

Since the goal of this project was to explore the use of quadcopters rather than design a

quadcopter, it was determined that it would be best to choose a pre-existing quadcopter that

was affordable and relatively-easy to construct since most amateur UAV uses, myself included,

can be expected to have access to soldering tools, but not welding or laser-cutting equipment.

This meant that the quadcopter chosen would either be fully assembled or be part of a kit.

Another major constrain considered was the size of the quadcopter. While small quadcopters

have the advantage of being easy to transport and lower priced, it was essential that the

platform chosen be able to accommodate any additional hardware, sensors, and their power

sources without over-burdening the quadcopter. ¢Ƙƛǎ ŜȄŎƭǳŘŜŘ ǘƛƴȅ ΨǘƻȅΩ ǉǳŀŘŎƻǇǘŜǊǎΣ ōǳǘ

small to medium sized devices would provide enough lift to support such peripherals. This

selection process narrowed down the quadcopter platforms available at the time to two

possible candidates: the Parallax ELEV-8 [5] and the 3DRobotics Quad-C Frame ArduCopter [6].

Another aspect considered was the degree of prebuilt

autonomy of the quadcopter. Since one of the design constrains

was that the project platform needed to be accessible to

students and amateurs, it would be preferred if the quadcopter

already supported some autonomy, such as the ability to hold

Figure 1: 3D Robotics ArduCopter [6],
the quadcopter chosen for this project.

http://www.parallax.com/Store/Robots/FlyingPlatforms/tabid/964/ProductID/799/List/0/Default.aspx?SortField=ProductName,ProductName
http://store.3drobotics.com/products/3dr-arducopter-quad-c-frame-kit-1

7 | P a g e

position and hover unaided. In this regard, multicopters in the ArduCopter family have a

distinct advantage. The ArduCopter [7], is a new open source Arduino-based multicopter

platform developed by the UAV enthusiasts of the DIY Drones [8], a community devoted to

amateur UAVs. The goal of the ArduCopter project is to support a diverse set of features, from

stabilized manual flight to automatic waypoint visiting using GPS. The 3D Robotics ArduCopter

is controlled via the ArduPilot Mega 2.5 (APM 2.5) board [6], which supports all of these

features. The ArduCopter it is open source and anyone can download, develop, and contribute

back to the community. Due to its preexisting community and open-source software, the 3D

Robotics ArduCopter [9] was chosen as the quadcopter base for this project and a 3D Robotics

ArduCopter kit [6], as opposed to the more expensive pre-built quadcopter, was purchased.

Controls

The next major design choice was the control system for the quadcopter. On the

ArduCopter page they suggest purchasing an RC controller for manual control and ESC

calibration, and using the Mission Planner Utility [10] for autonomous functions such as

ǿŀȅǇƻƛƴǘ ǾƛǎƛƴƎ ŀƴŘ ŦƻǊ ǘǳƴƛƴƎ ŀŘǾŀƴŎŜŘ ǇŀǊŀƳŜǘŜǊǎ ƻŦ ǘƘŜ !ǊŘǳ/ƻǇǘŜǊΩǎ ŀǳǘƻǇilot. This proved

to be a challenge, as it appeared most of the instruction for calibrating the quadcopter and

enabling manual failsafes seems to require having an RC controller even when the quadcopter

was intended for autonomous flight only. Additionally, RC controllers are expensive: the

suggested controller [2], the Spektrum DX7s [11], cost more than half of the price of the

quadcopter kit. Further evaluation showed that advanced RC controllers could cost up to 1.5

times the price of the quadcopter. While an RC hobbyist might already have such a device, it is

an expensive accessory that would be barely used when focusing on autonomous projects. I

chose to not purchase the RC controller and instead create a way to emulate the failsafes and

ESC calibration without it. Directions for ESC calibration without an RC controller are included

later in this report in the ESC calibration without an RC Controller section.

 Another challenge arose when I began implementing the autonomous functions of the

quadcopter. While the Mission Planner Utility provides a visually appealing user interface, it

https://code.google.com/p/arducopter/
http://diydrones.com/
http://www.udrones.com/product_p/acrtf2.htm
http://www.udrones.com/product_p/acrtf2.htm
http://store.3drobotics.com/products/3dr-arducopter-quad-c-frame-kit-1
http://store.3drobotics.com/products/3dr-arducopter-quad-c-frame-kit-1
https://code.google.com/p/arducopter/wiki/AC2_Mission
http://store.3drobotics.com/products/spektrum-dx7s-7-ch-transmitter-with-ar8000

8 | P a g e

ultimately proved inadequate. While the Mission Planner claimed to be capable of using python

scripts for autonomous actions, in the latest version of the program it seemed like this feature

was not well supported and no simple scripting examples existed. Certain essential features,

such as the accelerometer calibration, simply did not work. While the accelerometer calibration

was fixed by reverting back to an older version of the program, it became clear a better control

method was need.

 Instead, I chose to use MAVProxy [12], a command line interface for UAVs that is the

backbone of QGroundControl [13], an open source ground control station for small

autonomous unmanned systems. MAVProxy uses Micro Air Vehicle Marshaling/Communication

Library, or MAVLink [14], to communicate with the ArduPilot Mega 2.5 control board on the

quadcopter. MAVProxy [15] and MAVLink [16] are both open source python based utilities,

which fit well with my desire to use free and open software. Directions for using MAVProxy are

included later in this report in the Using the MAVProxy and custom modules section. This

meant the on-board Autopilot did not need to be altered and the quadcopter could be control

using a ground station computer over a telemetry link [17] using a 915 MHz 3D Robotics USB

radio [18] that is both well supported by the APM 2.5 and uses a frequency in the ISM band.

 Another advantage of MAVProxy is it support of additional modules which can be used

to control camera gimbals and other peripherals. While I had intended to use the position hold

and altitude hold modes of the quadcopter to fly it fully autonomously, I found that these

features were difficult to debug. Not having access to an RC controller, I used module called

joystick included in the MAVProxy code based in Modules folder. This module allows a USB

gaming controller to emulate an RC controller over the telemetry radio and is also supported in

the Mission Planner [19]. I purchased a Logitech F310 USB Xbox controller [20] and edited this

module by added an entry for an Xbox controller in the look-up table (see the Modified

controller code: mavproxy_joystick.py section of the Appendix). This mapped the analog axis of

the Xbox to the pitch, roll, yaw and throttle controls. I also mapped some of the additional

buttons on the controller to switch the mode of the quadcopter (such as Stabilize, Position

http://qgroundcontrol.org/mavlink/mavproxy_startpage
http://qgroundcontrol.org/
http://qgroundcontrol.org/mavlink/start
https://github.com/tridge/MAVProxy
https://github.com/mavlink/mavlink
https://code.google.com/p/arducopter/wiki/Telem
http://store.3drobotics.com/products/3dr-radio-telemetry-kit-915-mhz
http://store.3drobotics.com/products/3dr-radio-telemetry-kit-915-mhz
https://code.google.com/p/arducopter/wiki/Joystick
http://gaming.logitech.com/en-us/product/f310-gamepad

9 | P a g e

Hold, Altitude hold, and Land). This allows the quadcopter to be flown manually in Stabilize

mode, which uses the accelerometer and a PID loop to stabilize the quadcopter in flight.

Target Sensing

The next major hurdle was choosing how the quadcopter would find and identify a

charging station. While the quadcopter I purchased did include a GPS, this would only be

accurate up to a few meters and alone would not be capable of landing on a small target.

 It was decided that for this system the ground station computer would handle flying as

well as landing the quaŘŎƻǇǘŜǊΣ ŀǎ ƻǇǇƻǎŜŘ ǘƻ ŀƭǘŜǊƛƴƎ ǘƘŜ ǉǳŀŘŎƻǇǘŜǊΩǎ ŀǳǘƻǇƛƭƻǘ ƻǊ ƘŀǾƛƴƎ ŀ

separate controller present on at the target directing the quadcopter because this would

consolidate the controls to a single computer.

 While several other methods of identify the target were initially considered, such as

having the quadcopter search for modulated light with a specialized receiver, it was decided

that the quadcopter would use computer vision to identify a marker at the target. This would

provide the added bonus that the quadcopter would also have a camera for general use. While

simple cameras like the CMU cam [21] were initially entertained, the simple solution I arrived at

was to use an old Android smartphone running the free app called IP webcam [22], as many

people have an old smart phone they are no longer using. The application allows you to view

the video stream from phone over Wi-Fi by accessing the phoneΩǎ IP address. For the project I

used an old HTC Incredible 2 [23] which was donated for free.

 Since the computer used had Wi-Fi, this allowed for a dedicated link for the camera that

did not interfere with the control program for the quadcopter by keeping the high bandwidth

video information on a separate channel and by having all of the computer vision done by the

computationally more powerful ground station computer (a laptop).

 The target identification was handled by using SimpleCV [24] an open source python

based computer vision library. SimpleCV supports advanced macros to do face detection, QR

http://www.cmucam.org/
https://play.google.com/store/apps/details?id=com.pas.webcam&hl=en
http://simplecv.org/

10 | P a g e

code detection, and connected component detection. With SimpleCV it is very easy to view the

video stream from the Android smart phone if the base computer is on the same network. As a

python library, SimpleCV is relatively simple to interface with the MAVProxy controls for the

quadcopter.

Target choice

 The marker for the station chosen would need to be unique in the area the quadcopter

was surveying. Initially, the quadcopter was going to use QR codes to identify a station as they

are unique do not look like naturally occurring terrain. However, in the process of testing it was

discovered that the QR code detector used in SimpleCV is too slow for the frame rate of the IP

webcam and if the camera was moving or vibrating this would be render the image too blurry

for it to be recognized. Instead, a script was implemented that detects large red rectangles,

which were unique enough in the indoor and lawn-covered outdoor environments tested.

Figure 2: Right: The marker used in this project. Left: The thresholded view of the target used by the algorithm.

11 | P a g e

Final Design

Overview

In the final design a 3DRobototics quadcopter is controller using the ArudCopter

ArduPilot Mega 2.5, an autopilot board that handles that stabilized flight, integrates the local

sensors such as GPS, sonar and battery monitoring as well as radio communication [6]. This

quadcopter was chosen for it size, payload capacity, preexisting community and open-source

software (see Quadcopter Choice section). ¢ƘŜ ǉǳŀŘŎƻǇǘŜǊΩǎ flight is controlled using a ground

station computer over a 915 MHz communication link [17] using a 3D Robotics radio [18], which

was chosen based on its compatibly with the APM 2.5 (see Controls).

The quadcopter is controlled using a command prompt interface by the program

MAVProxy [12], which initiates a MAVLink [14] communication link to the quadcopter over the

radio. The MAVProxy program was chosen for its support of control scripts and extra modules

(see Controls). This ground station computer can change the mode of the quadcopter to be

flown under manual control using a USB gaming controller [20] to emulate an RC controller [19]

and by setting the flight mode of the quadcopter to Stabilize (see Using the MAVProxy and

custom modules for how to use this module and the Modified controller code:

mavproxy_joystick.py section of the Appendix). It can also switch to any one of the enabled

flight mode from the terminal, such as Return-to-Launch, Position Hold, Altitude Hold, Land,

etc.

An Android smartphone is placed on the bottom of the quadcopter and the video feed

ƻŦ ǘƘŜ ǇƘƻƴŜ ƛǎ ŀŎŎŜǎǎƛōƭŜ ŀǘ ǘƘŜ ǇƘƻƴŜΩǎ local Wi-Fi IP address using a free app called IP

webcam [22]. This camera system was chosen because it is very easy to interface with, is

supported by SimpleCV and would likely work with any smartphone running a similar

application (see Target Sensing). The quadcopter is able to sense the location it must land at

using a custom MAVProxy module mavpoxy_android.py that I wrote (see Android Camera

module for detecting target: mavproxy_android.py in the Appendix). This module uses the

computer vision library SimpleCV [24] to search for a large red rectangles in a separate thread

12 | P a g e

from MAVProxy. A simple red square was chose as the target because this feature is simple to

detect but was unique enough in all of the environments tested to avoid misidentification (see

Target choice). This program also writes a log file that timestamps when commands are

executed for debugging purposes. If a large red rectangle is detected in the center of the video,

an RC override command is set to cause the quadcopter to enter the flight mode LAND, which

will cause the quadcopter to quickly descend to the ground and will slow down the motors as

the quadcopter detects it is no longer moving and level on the ground (see Android Camera

module for detecting target: mavproxy_android.py in the Appendix). With this system a flying

quadcopter could be triggered to land in a relatively small area, allowing for it to manually

recharged.

A small change was made to the frame of the 3D Robotics ArduCopter to place wooden

ΨōŀŦŦƭŜǎΩ ƻƴ ǘƘŜ ŜƴŘǎ ƻŦ ǘƘŜ ŀǊƳǎ ƻŦ ǘƘŜ ǉǳŀŘŎƻǇǘŜǊΦ ¢Ƙƛǎ ǇǊƻǘŜŎǘǎ the propellers, nearby

objects, and people during testing and flight. The baffles were made from ¾ in square dowels

Figure 3: The constructed quadcopter with added pieces to protect the
propellers during test flights.

13 | P a g e

that were placed in the hollow ends of the quadcopters arms. The outer size pieces are 4 inches

high which protects the propellers when the quadcopter is flipped upside down. Since the

location of the motors was not changed, the baffles have a limited effect on the flight of the

quadcopter and no changes were made to the PID loop parameters.

During testing the quadcopter was always anchored to a weight on the ground using a

tether, clipped in either in the center of the quadcopter or on opposite feet of the quadcopter.

Originally a small lead puck as used due to its low profile, but the quadcopter proved it was

capable of pulling this weight. Two large cinder blocks were later used during testing, which

proved to be more than enough to secure the quadcopter.

14 | P a g e

Figure 4: Overview of the final design implemented.

15 | P a g e

Figure 5: The iMax B6 was chosen because it is affordable battery charger than can balance charge a multicellular Li-Po
battery, such as the 3 cell battery that powered the quadcopter.

Figure 6: The center of the quadcopter, showing the battery connector and ArduPilot control board.

16 | P a g e

Figure 7: These propeller protectors were designed to prevent the propellers from ground on uneven take offs, nearby
objects when in flight and the ground when the quadcopter flips over.

Figure 8: The ArudPilot Mega board strapped in with rubber bands for quick access with GPS mounted above.

