
REAL-TIME FACE DETECTION AND TRACKING

A Design Project Report

Presented to the School of Electrical and Computer Engineering of Cornell University

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering, Electrical and Computer Engineering

Submitted by

Thu-Thao Nguyen

MEng Field Advisor: Bruce Robert Land

Degree Date: December 2012

2

Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title: Real-Time Face Detection and Tracking

Author: Thu-Thao Nguyen

Abstract:

Face detection and tracking has been an important and active research field because it

offers many applications, especially in video surveillance, biometrics, or video coding. The

goal of this project was to implement a real-time system on an FPGA board to detect and

track a human’s face. The face detection algorithm involved color-based skin segmentation

and image filtering. The face location was determined by calculating the centroid of the

detected region. A software version of the algorithm was independently implemented and

tested on still pictures in MATLAB. Although the transition from MATLAB to Verilog was not

as smooth as expected, experimental results proved the accuracy and effectiveness of the

real-time system, even under varying conditions of lights, facial poses and skin colors. All

calculation of the hardware implementation was done in real time with minimal

computational effort, thus suitable for power-limited applications.

3

Executive Summary

The area of face detection and tracking plays an important role in many applications such as

video surveillance, biometrics, or video coding. Many different methodologies have been

proposed in literature and can mostly be categorized as featured-based, appearance-based,

or color-based. Among these approaches, color-based face detection algorithm was found to

be most efficient as it required low computational cost while being robust to variations in

lighting, facial expressions, and skin colors.

The goal of this project was to create an FPGA system to detect and track a human’s face in

real time. The overall setup included the Verilog program, an Altera DE2 board, a camera,

and a VGA monitor. The face detection algorithm implemented here was based on skin

detection and image filtering. After the face region was detected, its location was

determined by calculating the centroid of neighboring skin pixels.

A software-based algorithm was independently developed and examined in MATLAB to

evaluate its performance and verify its effectiveness. However, it was infeasible to

implement the same algorithm in Verilog due to the limitations of the language (i.e. calling

a function recursively was not allowed). Hence, several stages of the algorithm were

modified. Experimental results proved the accuracy and effectiveness of the hardware real-

time implementation as the algorithm was able to handle varying types of input video

frame. All calculation was performed in real time.

Although the system can be furthered improved to obtain better results, overall the project

was a success as it enabled any inputted face to be accurately detected and tracked.

4

Table of Contents

Introduction .. 6

Design and Implementation ... 7

Algorithm ... 7

Modified YUV Color Space .. 8

Thresholding/Skin Detection .. 8

Morphological Filtering (imerode, imfill) .. 9

Connected Component Labeling and Area Calculation (bwlabel, regionprops) 10

Area-based Filtering (find, ismember) .. 11

Centroid Computation ... 11

MATLAB—Algorithm Testing .. 12

Verilog—Hardware Implementation .. 12

Thresholding .. 14

Spatial Filtering .. 14

Temporal Filtering ... 16

Centroid Computation ... 17

Results ... 21

Performance ... 21

Sample Results and Analysis ... 21

Speed .. 31

Accuracy .. 31

Limitations ... 31

Conclusion... 32

Acknowledgements ... 33

References .. 34

Appendices .. 35

5

MATLAB code .. 35

Verilog code .. 37

6

Introduction

Face detection and tracking is the process of determining whether or not a face is present in

an image. Unlike face recognition—which distinguishes different human faces, face detection

only indicates whether or not a face is present in an image. In addition, face tracking

determines the exact location of the face. Face detection and tracking has been an active

research area for a long time because it is the initial important step in many different

applications, such as video surveillance, face recognition, image enhancement, video

coding, and energy conservation. The applicability of face detection in energy conservation

is not as obvious as in other applications. However, it is interesting to learn how a face

detection and tracking system allows power and energy to be saved. Suppose one is

watching a television and working on other tasks simultaneously. The face detection system

is for checking whether or not the person is looking directly at the TV. If the person is not

directly looking at the TV within some time period (i.e. 15 minutes), the TV’s brightness is

reduced to save energy. When the person turns back to look at the TV, the TV’s brightness

can be increased back to original. In addition, if the person looks away for too long (i.e.

more than one hour), then the TV will be automatically turned off.

Different approaches to detect and track human faces—including feature-based,

appearance-based, and color-based have been actively researched and published in

literature. The feature-based approach detects a human’s face based on human facial

features—such as eyes and nose. Because of its complexity, this method requires lots of

computing and memory resources. Although compared to other methods this one gives

higher accuracy rate, it is not suitable for power-limited devices. Hence, a color-based

algorithm is more reasonable for applications that require low computational effort. In

general, each method has its own advantages and disadvantages. More complex algorithm

typically gives very high accuracy rate but also requires lots of computing resources.

7

Design and Implementation

Algorithm

General design stages are illustrated in Figure 1.

Figure 1 - Software Algorithm

The skin detection algorithm here was derived from the method describe in [1]. Color

segmentation has been proved to be an effective method to detect face regions due to its

low computational requirements and ease of implementation. Compared to the featured-

based method, the color-based algorithm required very little training.

First, the original image was converted to a different color space, namely modified YUV.

Then the skin pixels were segmented based on the appropriate U range. Morphological

filtering was applied to reduce false positives. Then each connected region of detected pixels

in the image was labeled. The area of each labeled region was computed and an area-based

Input Image

Thresholding/Skin Detection

Connected Component Labeling

Morphological Filtering

Centroid Computation

Output Image

Area-based Filtering

Area Calculation

8

filtering was applied. Only regions with large area were considered face regions. The

centroid of each face region was also computed to show its location.

Modified YUV Color Space

Converting the skin pixel information to the modified YUV color space would be more

advantageous since human skin tones tend to fall within a certain range of chrominance

values (i.e. U-V component), regardless of the skin type. The conversion equations are

shown as follows [1].

							Y =
R+2G+B

4

U = R – G

V = B – G

These equations allowed thresholding to work independently of skin color intensity.

Figure 2 - Different skin tone samples [1]

Thresholding/Skin Detection

After skin pixels were converted to the modified YUV space, the skin pixels can be

segmented based on the following experimented threshold.

10 < U < 74

-40 < V < 11

9

As seen in Figure 2, the blue channel had the least contribution to human skin color.

Additionally, according to [2], leaving out the blue channel would have little impact on

thresholding and skin filtering. This also implies the insignificance of the V component in the

YUV format. Therefore, the skin detection algorithm using here was based on the U

component only. Applying the suggested threshold for the U component would produce a

binary image with raw segmentation result, as depicted in Figure 3.

Figure 3 - Result after thresholding

Morphological Filtering (imerode, imfill)

Realistically, there are so many other objects that have color similar to the skin color. As

seen in Figure 3, there are lots of false positives present in the raw segmentation result.

Applying morphological filtering—including erosion and hole filling would, firstly, reduce the

background noise and, secondly, fill in missing pixels of the detected face regions, as

illustrated in Figure 4. MATLAB provided built-in functions—imerode and imfill for these

two operations.

outp = imerode(inp, strel('square', 3));

The command imerode erodes the input image inp using a square of size 3 as a structuring

element and returns the eroded image outp. This operation removed any group of pixels

that had size smaller than the structuring element’s.

outp = imfill(inp, 'holes');

The command imfill fills holes in the binary input image inp and produces the output

image outp. Applying this operation allowed the missing pixels of the detected face regions

to be filled in. Thus, it made each face region appear as one connected region.

10

Figure 4 - Result after morphological filtering

Connected Component Labeling and Area Calculation (bwlabel, regionprops)

After each group of detected pixels became one connected region, connected component

labeling algorithm was applied. This process labeled each connected region with a number,

allowing us to distinguish between different detected regions. The built-in function bwlabel

for this operation was available in MATLAB. In general, there are two main methods to label

connected regions in a binary image—known as recursive and sequential algorithms.

[L, n] = bwlabel(inp);

The command bwlabel labels connected components in the input image inp and returns a

matrix L of the same size as inp. L contains labels for all connected regions in inp. n

contains the number of connected objects found in inp.

The command regionprops can be used to extract different properties, including area and

centroid, of each labeled region in the label matrix obtained from bwlabel.

face_region = regionprops(L, 'Area');

face_area = [face_region.Area];

The two commands above performed two tasks (1) extract the area information of each

labeled region (2) store the areas of all the labeled regions in the array face_area in the

order of their labels. For instance face_area(1) = 102 would mean the area of the

connected component with label “1” is 102 pixels.

11

Area-based Filtering (find, ismember)

Note that morphological filtering only removed some background noise, but not all. Filtering

detected regions based on their areas would successfully remove all background noise and

any skin region that was not likely to be a face. This was done based on the assumption

that human faces are of similar size and have largest area compared to other skin regions,

especially the hands. Therefore, to be considered a face region, a connected group of skin

pixels need to have an area of at least 26% of the largest area. This number was obtained

from experiments on training images. Therefore, many regions of false positives could be

removed in this stage, as depicted in Figure 5.

face_idx = find(face_area > (.26)*max(face_area));

face_shown = ismember(L, face_idx);

These two commands performed the following tasks (1) look for the connected regions

whose areas were of 26% of the largest area and store their corresponding indices in

face_idx (2) output the image face_shown that contained the connected regions found in

(1).

Figure 5 - Result after area-based filtering

Centroid Computation

The final stage was to determine face location. The centroid of each connected labeled face

region can be calculated by averaging the sum of X coordinates and Y coordinates

separately. The centroid of each face region in Figure 6 is denoted by the blue asterisk.

Here the centroid of each connected region was extracted using regionprops.

12

Figure 6 - Result after calculating centroid

MATLAB—Algorithm Testing

Before the algorithm was developed in Verilog, it was implemented and tested on still

images in MATLAB to verify its functionality, as illustrated from Figure 3 to Figure 6. The

Image Processing Toolbox provided in MATLAB allowed the process of developing and

testing the algorithm to be more efficient. Furthermore, verifying the accuracy of the

detection algorithm on still pictures provided fair results.

However, the transition from MATLAB to Verilog coding was not as smooth as expected due

to the limitations of the Verilog language. Specifically, morphological filtering was modified

and extended to spatial and temporal filtering. In addition, connected component labeling

was not implemented in Verilog as this language does not allow calling a function

recursively. A modified detection algorithm will be discussed later.

Verilog—Hardware Implementation

Overall the FPGA system was setup as illustrated in Figure 7.

13

Figure 7 - Hardware Setup

Each current video frame was captured by the camera and sent to the FPGA’s decoder chip

via a composite video cable. After the video signal was processed in different modules in

Verilog, the final output passed through the VGA driver to be displayed on the VGA monitor.

The hardware algorithm was modified as shown in Figure 8.

Figure 8 - Hardware Algorithm

Camera

Altera DE2 board
VGA monitor

Thresholding/Skin Detection

Centroid Computation

Temporal Filtering

Spatial Filtering

Video Frame

Output Displayed on VGA

14

Thresholding

Since 10-bit color was used in Verilog, adjusting the aforementioned U range yields

40 < U < 296

In this step, each input video frame was converted to a “binary image” showing the

segmented raw result.

Spatial Filtering

This step was similar to the erosion operation used in the software algorithm. However, the

structuring element used here did not have any particular shape. Instead, for every pixel p,

its neighboring pixels in a 9x9 neighborhood were checked. If more than 75% of its

neighbors were skin pixels, p was also a skin pixel. Otherwise p was a non-skin pixel. This

allowed most background noise to be removed because usually noise scattered randomly

through space, as shown in Figure 9. In Figure 10, because p only had 4 neighboring pixels

categorized as skin, p was concluded to be a non-skin pixel and, thus, converted to a

background pixel.

Figure 9 - Example of spatial filtering for a pixel p—before filtering

Pixel p

15

Figure 10 - Example of spatial filtering for a pixel p—after filtering

To examine the neighbors around a pixel, their values needed to be stored. Therefore, ten

shift registers were created to buffer the values of ten consecutive rows in each frame. As

seen in Figure 11, each register was 640-bit long to hold the binary values of 640 pixels in a

row. Each bit in data_reg1 was updated according to the X coordinate. For instance, when

the X coordinate was 2, data_reg1[2] was updated according to the result of thresholding

from the previous stage. Thus, data_reg1 was updated every clock cycle. After all the bits of

data_reg1 were updated, its entire value was shifted to data_reg2. Thus, other registers

(from data_reg2 to data_reg10) were only updated when the X coordinate was 0. Values of

data_reg2 to data_reg10 were used to examine a pixel’s neighborhood.

Pixel p

16

Figure 11 - Ten shift registers for ten consecutive rows

There was a trade-off between the number of shift registers being used (i.e. the size of the

neighborhood) and the performance of the spatial filter. A larger neighborhood required

more registers to be used but, at the same time, allowed more noise to be removed.

Temporal Filtering

Even small changes in lighting could cause flickering and made the result displayed on the

VGA screen less stable. Applying temporal filtering allowed flickering to be reduced

significantly. The idea of designing such a filter was borrowed from the project “Real-Time

Cartoonifier” (see References for more information of this project). The temporal filter was

based on the following equation.

avg_out = (3/4) avg_in + (1/4) data

data: filtered result obtained from the previous stage of a pixel, namely p, in current frame

avg_in: average value of p from previous frame

avg_out: average value of p in current frame

This is approximately equal to averaging four consecutive frames over time. To ease the

computational effort, the equation above can be re-written as

avg_out = avg_in – (1/4) avg_in + (1/4) data

avg_out = avg_in – avg_in >> 2 + data >> 2

The filtered result of a pixel in this stage was determined based on its average value (i.e.

avg_out). If its average value was greater than 0.06 (number obtained from experiments),

the pixel was considered skin. Otherwise, the pixel was non-skin. Figure 12 and Figure 13

[639][0] [1] [2] … [638]

[639]

…

[0] [1] [2] … [638] [639]

[0] [1] [2] … [638]

[639]

[0] [1] [2] … [638] [639]

[0] [1] [2] … [638]

data_reg1

data_reg2

data_reg8

data_reg9

data_reg10

17

illustrate the process of temporal filtering for two pixels p1 and p2. In both examples, pixel

p1 and p2 are truly skin pixels. However, the results before filtering were unstable due to

light variations. The temporal filter smoothed the output and, thus, reduced flicker

significantly.

Figure 12 – Example of temporal filtering for a pixel p1

Figure 13 – Example of temporal filtering for a pixel p2

Centroid Computation

Finally, centroid was computed to locate the face region. Because connected component

labeling was not implemented as initially planned, it was infeasible to calculate the centroid

for each face region separately. This limited the number of faces to be detected to two as

maximum. First assume that only one face was present. Therefore, its centroid would just

be the centroid of all detected pixels, as shown in Figure 14. Note that this calculation would

only be correct if one face was present.

Figure 14 - Centroid of all detected pixels

Although the pixels of one face region might not be connected (and labeled) as originally

planned, simply calculating the centroid of all detected pixels still gave a good estimate for

the face location, as shown in Figure 15. Since area-based filtering was also not applied

(due to the lack of connected component labeling), other skin regions—mostly the hands

frame i i+1 i+2 i+3 i+4 i+5 i+6 i+7 i+8 i+9 i+10 i+11 i+12 i+13 i+14 i+15 i+16 i+17

before filtering 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 0

average value 0.00 0.25 0.44 0.58 0.43 0.58 0.68 0.76 0.82 0.62 0.46 0.60 0.70 0.77 0.58 0.68 0.51 0.39

after filtering 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

frame i i+1 i+2 i+3 i+4 i+5 i+6 i+7 i+8 i+9 i+10 i+11 i+12 i+13 i+14 i+15 i+16 i+17

before filtering 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0

average value 0.00 0.00 0.25 0.19 0.39 0.54 0.41 0.56 0.42 0.56 0.42 0.57 0.42 0.57 0.68 0.76 0.57 0.43

after filtering 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

18

were not entirely removed. However, even if the hands were present, calculating the

centroid of all detected pixels still allowed us to locate the face region. This was a

reasonable estimate because, compared to the face area, the area of the hand/hands was

much smaller.

Figure 15 - Centroid of all detected pixels—one person

However, when there were two faces present, calculating the centroid of all detected pixels

would only track the location between two faces, rather than track each face separately. To

separately track each face in a two-person frame, additional steps were required. First the

neighboring pixels around the centroid were checked to see if they were skin pixels. If they

were, it meant the centroid accurately located the face region. However, if the neighboring

pixels of the centroid were not skin pixels, it meant the centroid was somewhere in the

background located between two detected face regions, as described in Figure 16.

Figure 16 - Centroid of all detected pixels—two people

To solve this problem, the video frame was split into two according to where the centroid

was, as represented in Figure 17. Figure 18 shows the separate calculation for the centroid

1 1 1

1 1 1

1 1 1

1 1

1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1

19

of each detected region. This technique was done based on the assumption that people

typically sit side by side.

Figure 17 - Dividing video frame according to centroid location

Figure 18 - Centroid of each detected face

Obtaining the centroid of each face region allowed us to locate the face of each person

present in a two-person video frame.

To show how a face was tracked, a small box was drawn around the centroid. The box

moved according to the movement of the face. However, if the face moved too fast, the

movement of the box might become less stable. Applying temporal filtering here allowed the

box to move smoothly. The implementation of the temporal filter here was slightly different

from the one shown previously.

Yn = (1 − α)Xn + αYn-1

Xn: current input

Yn: current output

Yn-1: previous output

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1

20

The input here was the location of the centroid before filtering. What this equation meant

was, with α being close to 1, current output would be more dependent on previous output

than on current input. This prevented the centroid box from moving too fast when there was

an abrupt change in the movement of a person’s face.

21

Results

Performance

The final result was a complete system that was capable to detect and track faces of at

most two people in real time. Although it was not able to track each face separately when

there were three people or more, it could still detect the presence of their faces.

Experiments also showed that different light settings did not significantly alter the final

results. Furthermore, the system was able to ignore background noise very well—mostly

came from light reflection. When there were objects that had color similar to skin color,

both spatial and temporal filtering helped erode these detected regions, therefore reducing

the number of false positives.

Sample Results and Analysis

When there was no one (Figure 19, Figure 20, Figure 21, and Figure 22)

o From Figure 20 to Figure 21 it can be seen that many false positives (mostly

background noise) were removed.

o From Figure 21 to Figure 22, the scarf was eroded. Also because the number of

detected pixel count was below the threshold, the centroid of these pixels did not

appear at all. This implied no face was detected and tracked.

Still image taken from a book (Figure 23 and Figure 24)

o Even in a real-time system, a person’s face from a still image can still be detected

(and tracked—if we moved the book manually).

Presence of one person (Figure 25, Figure 26, Figure 27, and Figure 28)

o The red letters on the hoodie were not completely removed but it was eventually

eroded after every stage. Although there were still false positives in the final result,

the centroid still correctly indicated the face location.

Presence of one person (with scarf) (Figure 29, Figure 30, Figure 31, and Figure 32)

o Although the scarf was not completely eroded, it did not significantly impact the final

detection and tracking result.

Presence of two people (Figure 33, Figure 34, Figure 35, and Figure 36)

o When there were two people, the system was still able to detect and track their

faces. The location of each face was accurately determined.

22

Figure 19 - When there was no one—natural

Figure 20 - When there was no one—skin detection

23

Figure 21 - When there was no one—spatial filtering

Figure 22 - When there was no one—temporal filtering + centroid computation

24

Figure 23 – Still image taken from a book—natural

Figure 24 - Still image taken from a book—final result

25

Figure 25 - Presence of one person—natural

Figure 26 - Presence of one person—skin detection

26

Figure 27 - Presence of one person—spatial filtering

Figure 28 - Presence of one person—temporal filtering + centroid computation

27

Figure 29 - Presence of one person (with scarf)—natural

Figure 30 - Presence of one person (with scarf)—skin detection

28

Figure 31 - Presence of one person (with scarf)—spatial filtering

Figure 32 - Presence of one person (with scarf)—temporal filtering + centroid computation

29

Figure 33 - Presence of two people—natural

Figure 34 - Presence of two people—skin detection

30

Figure 35 - Presence of two people—spatial filtering

Figure 36 - Presence of two people—temporal filtering + centroid computation

31

Speed

A clock of 27 MHz was used for the face detection and tracking algorithm. Since the timing

was synchronized with the VGA clock, the VGA display was able to update within the time

gap between drawing two consecutive frames. Therefore, the camera was able to detect and

track people’ faces in real time.

Accuracy

Error seemed to occur only when there was a transition from one person to two people or

vice versa in the video frame. Within the lab setting, noise was very minimal and did not

alter the results. As long as a person was in the camera’s view, his face would be accurately

detected and tracked. His distance relative to the camera did not affect the result.

Limitations

In the presence of three or more people, the system could only detect the faces but failed at

tracking them.

32

Conclusion

In this project, the goal of implementing a hardware system to detect and track human

faces in real time was achieved. A software implementation of the algorithm was examined

in MATLAB to verify its accuracy. Although the transition from software to hardware

required some modification to the original algorithm, the initial goal was still accomplished.

The face detection algorithm was derived from a skin detection method. Face tracking was

achieved by computing the centroid of each detected region, although it only worked in the

presence of at most two people. Different types of filter were applied to avoid flickering and

stabilize the output displayed on the VGA screen. The system was proved to work in real

time with no lagging and under varying conditions of facial expressions, skin tones, and

lighting.

33

Acknowledgements

I would like to thank Professor Bruce Land who was the faculty advisor for my design

project. This project would have been impossible without his weekly help and guidance.

34

References

[1] M. Ooi, "Hardware Implementation for Face Detection on Xilinx Virtex-II FPGA Using the

Reversible Component Transformation Color Space," in Third IEEE International Workshop

on Electronic Design, Test and Applications, Washington, DC, 2006.

[2] S. Paschalakis and M. Bober, "A Low Cost FPGA System for High Speed Face Detection

and Tracking," in Proc. IEEE International Conference on Field-Programmable Technology,

Tokyo, Japan, 2003.

[3] [Online]. Available: http://www.jwp.se/files/skintone.jpg. [Accessed December 2012].

[4] [Online]. Available:

http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2010/kaf42_jay29_teg25

/teg25_jay29_kaf42/index.html. [Accessed October 2012].

35

Appendices

MATLAB code

close all
clear all
clc

%%Author: ThaoNguyen
%%Face detection and tracking

%%Read original image and get its size%%
face_original = imread('image08.png');
size_img = size(face_original);
r = 1; g = 2; b = 3;
y = 1; u = 2; v = 3;

%%YUV Conversion%%
face_yuv = face_original;
for i = 1:size_img(1)
 for j = 1:size_img(2)
 face_yuv(i, j, y) = (face_original(i, j, r) + 2*face_original(i, j,
g) + face_original(i, j, b)) / 4;
 face_yuv(i, j, u) = face_original(i, j, r) - face_original(i, j, g);
 face_yuv(i, j, v) = face_original(i, j, b) - face_original(i, j, g);
 end
end

%%Skin segmentation%%
face_detected = face_original;
for i = 1:size_img(1)
 for j = 1:size_img(2)
 %U range was found based on experiments
 if face_yuv(i, j, u) > 20 && face_yuv(i, j, u) < 74
 %Set suspected face regions to 1
 face_detected(i, j, r) = 255;
 face_detected(i, j, g) = 255;
 face_detected(i, j, b) = 255;
 else
 %Set non-face regions to 0
 face_detected(i, j, r) = 0;
 face_detected(i, j, g) = 0;
 face_detected(i, j, b) = 0;
 end
 end
end

%%Convert image into the BW format; the image itself stays the same, only the
format is changed%%
face_detected = im2bw(face_detected);

%%Erode noise%%
face_imerode = imerode(face_detected, strel('square', 3));

36

%%Fill in holes to get fully connected face regions%%
face_imfill = imfill(face_imerode, 'holes');

%%Label each connected region in the BW image%%
[L, n] = bwlabel(face_imfill); %n gives us #connected objects

face_region = regionprops(L, 'Area', 'BoundingBox');
face_area = [face_region.Area]; %contains areas of all the filled regions

%%Filter out regions whose areas are less than 26% largest area (supposedly a
face area)%%
face_idx = find(face_area > (.26)*max(face_area)); %only shows indices of
regions that are faces
face_shown = ismember(L, face_idx);

%%Face areas vs. box areas%%
fprintf('Ratio between face area and box area \n');
for n = 1:length(face_idx)
 idx = face_idx(n);
 area_face(n) = face_region(idx).Area;
 area_box(n) =
face_region(idx).BoundingBox(3)*face_region(idx).BoundingBox(4);
 ratio(n) = area_face/area_box;
end
ratio

%%Compute the coordinates of each face region%%
for n = 1:length(face_idx)
 idx = face_idx(n);
 face_region(idx).BoundingBox;
 xmin = round(face_region(idx).BoundingBox(1));
 ymin = round(face_region(idx).BoundingBox(2));
 xmax =
round(face_region(idx).BoundingBox(1)+face_region(idx).BoundingBox(3));
 ymax =
round(face_region(idx).BoundingBox(2)+face_region(idx).BoundingBox(4));
 %%Draw a box around each face found%%
 for i = xmin:xmax
 face_original(ymin, i, r) = 255;
 face_original(ymin, i, g) = 0;
 face_original(ymin, i, b) = 0;
 end

 for i = xmin:xmax
 face_original(ymax, i, r) = 255;
 face_original(ymax, i, g) = 0;
 face_original(ymax, i, b) = 0;
 end

 for j = ymin:ymax
 face_original(j, xmin, r) = 255;
 face_original(j, xmin, g) = 0;
 face_original(j, xmin, b) = 0;
 end

37

 for j = ymin:ymax
 face_original(j, xmax, r) = 255;
 face_original(j, xmax, g) = 0;
 face_original(j, xmax, b) = 0;
 end
end

%imshow(face_original), title ('Original Image')
imshow(face_detected), title ('Raw Segmentation Result')
figure, imshow(face_imerode), title ('Eroded Result')
figure, imshow(face_imfill), title ('Filled Regions')
figure, imshow(face_shown), title ('Final Result')

%%Compute centroids of the face regions%%
s = regionprops(face_shown, 'Centroid');
centroids = cat(1, s.Centroid); %cat puts all the s.Centroid values into a
matrix
figure, imshow(face_original), title('Detection Result'), xlabel (['#faces
found: ', num2str(length(face_idx))])
hold on
plot(centroids(:,1), centroids(:,2), 'b*', 'MarkerSize', 10)
hold off

Verilog code

//Real-Time Face Detection and Tracking
//by ThaoNguyen

reg [9:0] fltr, fltr2, fltr3;
reg [9:0] raw_R, raw_G, raw_B;
reg [9:0] fltr2_R, fltr2_G, fltr2_B;
reg [9:0] fltr3_R, fltr3_G, fltr3_B;
reg [15:0] fltr_reg;

wire [9:0] avg_in, avg_out, avg2;

reg [639:0] data_reg1, data_reg2, data_reg3, data_reg4, data_reg5, data_reg6,
data_reg7, data_reg8, data_reg9, data_reg10, data_reg11;

wire[9:0] VGA_Red, VGA_Green, VGA_Blue;

reg [9:0] VGA_X1, VGA_Y1;

reg [9:0] avgX, avgY, avgX_lpf, avgY_lpf;
reg [29:0] sumX, sumY;
reg [18:0] cntr;

reg [9:0] avgX_L, avgY_L, avgX_L2, avgY_L2;
reg [29:0] sumX_L, sumY_L;
reg [18:0] cntr_L;

reg [9:0] avgX_R, avgY_R, avgX_R2, avgY_R2;
reg [29:0] sumX_R, sumY_R;
reg [18:0] cntr_R;

assign we = VGA_X1[0]; //write enable for SRAM, active low

// SRAM control

38

assign SRAM_ADDR = {VGA_X1[9:1], VGA_Y1[9:1]};
assign SRAM_DQ = VGA_X1[0] ? avg_out : 16'hzzzz;

assign SRAM_UB_N = 0;
assign SRAM_LB_N = 0;
assign SRAM_CE_N = 0;
assign SRAM_WE_N = VGA_X1[0] ? 1'b0 : 1'b1;
assign SRAM_OE_N = 0;

assign avg_in = VGA_X1[0] ? avg_in : SRAM_DQ; // 10 bits
assign avg_out = avg_in - (avg_in >> 2) + (fltr2 >> 2);
assign avg2 = avg_out << 4;

assign sw_17 = DPDT_SW[17];
assign sw_16 = DPDT_SW[16];
assign sw_15 = DPDT_SW[15];
assign reset = KEY[0];

// ********** Display Options
*** //
assign VGA_Red = (sw_17 && sw_16) ? mRed : //
original data
 (~sw_17 && sw_16) ? raw_R :
 // raw result
 (sw_17 && ~sw_16) ? fltr3_R: fltr2_R;
// fltr3 displays final result, fltr2 displays result after spatial filtering

assign VGA_Green = (sw_17 && sw_16) ? mGreen :
 (~sw_17 && sw_16) ? raw_G :
 (sw_17 && ~sw_16) ? fltr3_G: fltr2_G;

assign VGA_Blue = (sw_17 && sw_16) ? mBlue :
 (~sw_17 && sw_16) ? raw_B :
 (sw_17 && ~sw_16) ? fltr3_B: fltr2_B;
//
**
************** //

always@(posedge OSC_27)
begin

// ********** Registering X, Y coordinates
** //
 VGA_X1 <= VGA_X;
 VGA_Y1 <= VGA_Y;
//
**
************** //

 if (~KEY[1])
 begin
 data_reg1 <= 'd0;

 sumX <= 30'b0;
 sumY <= 30'b0;
 cntr <= 19'b0;
 sumX_L <= 30'b0;
 sumY_L <= 30'b0;
 cntr_L <= 19'b0;
 sumX_R <= 30'b0;
 sumY_R <= 30'b0;
 cntr_R <= 19'b0;

39

 avgX_lpf <= avgX;
 avgY_lpf <= avgY;
 avgX_L2 <= avgX_L;
 avgY_L2 <= avgY_L;
 avgX_R2 <= avgX_R;
 avgY_R2 <= avgY_R;
 fltr_reg <= 16'd0;
 end

 else
 begin

 // ********** Temporal Filtering
** //
 if ((VGA_X1 < avgX_lpf + 10'd5) && (VGA_X1 > avgX_lpf - 10'd5) &&
 (VGA_Y1 < avgY_lpf - 10'd5) && (VGA_Y1 > 10'd5)) begin
 fltr_reg <= fltr_reg + fltr3[0];
 end
 else if ((VGA_X1 == 10'd600) && (VGA_Y1 == 10'd400)) begin
 fltr_reg <= 16'd0;
 end

 if (fltr_reg > 16'd50) begin
 if (avg2 > 10'b1110111111) begin // can also try b1110110111
 fltr3 <= 10'h3FF;
 fltr3_R <= 10'h3FF;
 fltr3_G <= 10'h3FF;
 fltr3_B <= 10'h3FF;
 // Draw centroid
 if (cntr > 19'd500) begin // Set the threshold so when
#pixels is too small, nothing will be detected
 if ((VGA_X1 < avgX_lpf + 10'd20) && (VGA_X1 >
avgX_lpf - 10'd20) &&
 (VGA_Y1 < avgY_lpf + 10'd20) && (VGA_Y1 >
avgY_lpf - 10'd20)) begin
 fltr3_R <= 10'h3FF;
 fltr3_G <= 10'h0;
 fltr3_B <= 10'h0;
 end
 end
 end
 else begin
 fltr3 <= 10'h0;
 fltr3_R <= 10'h0;
 fltr3_G <= 10'h0;
 fltr3_B <= 10'h0;
 if (cntr > 19'd500) begin
 if ((VGA_X1 < avgX_lpf + 10'd20) && (VGA_X1 >
avgX_lpf - 10'd20) &&
 (VGA_Y1 < avgY_lpf + 10'd20) && (VGA_Y1 >
avgY_lpf - 10'd20)) begin
 fltr3_R <= 10'h3FF;
 fltr3_G <= 10'h0;
 fltr3_B <= 10'h0;
 end
 end
 end
 end
 else begin
 if (avg2 > 10'b1110111111) begin //before: b1110111111, (2)
b1110110111
 fltr3 <= 10'h3FF;
 fltr3_R <= 10'h3FF;

40

 fltr3_G <= 10'h3FF;
 fltr3_B <= 10'h3FF;
 // Draw centroid
 if (cntr > 19'd500) begin // Set the threshold so when
#pixels is too small, nothing will be detected
 if (((VGA_X1 < avgX_R2 + 10'd10) && (VGA_X1 >
avgX_R2 - 10'd10) &&
 (VGA_Y1 < avgY_R2 + 10'd10) && (VGA_Y1 >
avgY_R2 - 10'd10)) ||
 ((VGA_X1 < avgX_L2 + 10'd10) && (VGA_X1 >
avgX_L2 - 10'd10) &&
 (VGA_Y1 < avgY_L2 + 10'd10) && (VGA_Y1 >
avgY_L2 - 10'd10))) begin
 fltr3_R <= 10'h0;
 fltr3_G <= 10'h0;
 fltr3_B <= 10'h3FF;
 end
 end
 end
 else begin
 fltr3 <= 10'h0;
 fltr3_R <= 10'h0;
 fltr3_G <= 10'h0;
 fltr3_B <= 10'h0;
 if (cntr > 19'd500) begin
 if (((VGA_X1 < avgX_R2 + 10'd10) && (VGA_X1 >
avgX_R2 - 10'd10) &&
 (VGA_Y1 < avgY_R2 + 10'd10) && (VGA_Y1 >
avgY_R2 - 10'd10)) ||
 ((VGA_X1 < avgX_L2 + 10'd10) && (VGA_X1 >
avgX_L2 - 10'd10) &&
 (VGA_Y1 < avgY_L2 + 10'd10) && (VGA_Y1 >
avgY_L2 - 10'd10))) begin
 fltr3_R <= 10'h0;
 fltr3_G <= 10'h0;
 fltr3_B <= 10'h3FF;
 end
 end
 end
 end
 //
**
************** //

 // ********** Computing centroid for all detected pixels
** //
 if ((VGA_X1 > 10'd20) && (VGA_X1 < 10'd620) &&
 (VGA_Y1 > 10'd20) && (VGA_Y1 < 10'd460)) begin
 if (fltr3 == 10'h3FF) begin
 sumX <= sumX + VGA_X1;
 sumY <= sumY + VGA_Y1;
 cntr <= cntr + 19'b1;
 end
 end

 if ((VGA_X1 == 10'd2) && (VGA_Y1 == 10'd478)) begin
 avgX <= sumX / cntr;
 avgY <= sumY / cntr;
 avgX_lpf <= avgX_lpf - (avgX_lpf >> 'd2) + (avgX >> 'd2);
 avgY_lpf <= avgY_lpf - (avgY_lpf >> 'd2) + (avgY >> 'd2);
 sumX <= 30'b0;
 sumY <= 30'b0;
 cntr <= 19'b0;

41

 end
 //
**
************** //

 // ********** Computing centroid for left halved frame
** //
 if ((VGA_X1 > 10'd20) && (VGA_X1 < avgX_lpf - 10'd10) &&
 (VGA_Y1 > 10'd20) && (VGA_Y1 < 10'd460)) begin
 if (fltr3 == 10'h3FF) begin
 sumX_L <= sumX_L + VGA_X1;
 sumY_L <= sumY_L + VGA_Y1;
 cntr_L <= cntr_L + 19'b1;
 end
 end

 if ((VGA_X1 == 10'd20) && (VGA_Y1 == 10'd478)) begin
 avgX_L <= sumX_L / cntr_L;
 avgY_L <= sumY_L / cntr_L;
 avgX_L2 <= avgX_L2 - (avgX_L2 >> 'd2) + (avgX_L >> 'd2);
 avgY_L2 <= avgY_L2 - (avgY_L2 >> 'd2) + (avgY_L >> 'd2);
 sumX_L <= 30'b0;
 sumY_L <= 30'b0;
 cntr_L <= 19'b0;
 end
 //
**
************** //

 // ********** Computing centroid for right halved frame
*** //
 if ((VGA_X1 > avgX_lpf + 10'd10) && (VGA_X1 < 10'd620) &&
 (VGA_Y1 > 10'd20) && (VGA_Y1 < 10'd460)) begin
 if (fltr3 == 10'h3FF) begin
 sumX_R <= sumX_R + VGA_X1;
 sumY_R <= sumY_R + VGA_Y1;
 cntr_R <= cntr_R + 19'b1;
 end
 end

 if ((VGA_X1 == 10'd621) && (VGA_Y1 == 10'd478)) begin
 avgX_R <= sumX_R / cntr_R;
 avgY_R <= sumY_R / cntr_R;
 avgX_R2 <= avgX_R2 - (avgX_R2 >> 'd2) + (avgX_R >> 'd2);
 avgY_R2 <= avgY_R2 - (avgY_R2 >> 'd2) + (avgY_R >> 'd2);
 sumX_R <= 30'b0;
 sumY_R <= 30'b0;
 cntr_R <= 19'b0;
 end
 //
**
************** //

 // ********** Spatial Filtering
*** //
 if (VGA_X1 == 10'b0) begin
 data_reg2 [639:0] <= data_reg1 [639:0];
 data_reg3 [639:0] <= data_reg2 [639:0];
 data_reg4 [639:0] <= data_reg3 [639:0];
 data_reg5 [639:0] <= data_reg4 [639:0];
 data_reg6 [639:0] <= data_reg5 [639:0];
 data_reg7 [639:0] <= data_reg6 [639:0];
 data_reg8 [639:0] <= data_reg7 [639:0];

42

 data_reg9 [639:0] <= data_reg8 [639:0];
 data_reg10 [639:0] <= data_reg9 [639:0];

 end

 if ((data_reg2[VGA_X1-'d4]+data_reg2[VGA_X1-'d3]+data_reg2[VGA_X1-
'd2]+data_reg2[VGA_X1-'d1]+data_reg2[VGA_X1]
 +
data_reg2[VGA_X1+'d1]+data_reg2[VGA_X1+'d2]+data_reg2[VGA_X1+'d3]+data_reg2[VGA_X1+'d4
]
 + data_reg3[VGA_X1-'d4]+data_reg3[VGA_X1-'d3]+data_reg3[VGA_X1-
'd2]+data_reg3[VGA_X1-'d1]+data_reg3[VGA_X1]
 +
data_reg3[VGA_X1+'d1]+data_reg3[VGA_X1+'d2]+data_reg3[VGA_X1+'d3]+data_reg3[VGA_X1+'d4
]
 + data_reg4[VGA_X1-'d4]+data_reg4[VGA_X1-'d3]+data_reg4[VGA_X1-
'd2]+data_reg4[VGA_X1-'d1]+data_reg4[VGA_X1]
 +
data_reg4[VGA_X1+'d1]+data_reg4[VGA_X1+'d2]+data_reg4[VGA_X1+'d3]+data_reg4[VGA_X1+'d4
]
 + data_reg5[VGA_X1-'d4]+data_reg5[VGA_X1-'d3]+data_reg5[VGA_X1-
'd2]+data_reg5[VGA_X1-'d1]+data_reg5[VGA_X1]
 +
data_reg5[VGA_X1+'d1]+data_reg5[VGA_X1+'d2]+data_reg5[VGA_X1+'d3]+data_reg5[VGA_X1+'d4
]
 + data_reg6[VGA_X1-'d4]+data_reg6[VGA_X1-'d3]+data_reg6[VGA_X1-
'd2]+data_reg6[VGA_X1-'d1]+data_reg6[VGA_X1]
 +
data_reg6[VGA_X1+'d1]+data_reg6[VGA_X1+'d2]+data_reg6[VGA_X1+'d3]+data_reg6[VGA_X1+'d4
]
 + data_reg7[VGA_X1-'d4]+data_reg7[VGA_X1-'d3]+data_reg7[VGA_X1-
'd2]+data_reg7[VGA_X1-'d1]+data_reg7[VGA_X1]
 +
data_reg7[VGA_X1+'d1]+data_reg7[VGA_X1+'d2]+data_reg7[VGA_X1+'d3]+data_reg7[VGA_X1+'d4
]
 + data_reg8[VGA_X1-'d4]+data_reg8[VGA_X1-'d3]+data_reg8[VGA_X1-
'd2]+data_reg8[VGA_X1-'d1]+data_reg8[VGA_X1]
 +
data_reg8[VGA_X1+'d1]+data_reg8[VGA_X1+'d2]+data_reg8[VGA_X1+'d3]+data_reg8[VGA_X1+'d4
]
 + data_reg9[VGA_X1-'d4]+data_reg9[VGA_X1-'d3]+data_reg9[VGA_X1-
'd2]+data_reg9[VGA_X1-'d1]+data_reg9[VGA_X1]
 +
data_reg9[VGA_X1+'d1]+data_reg9[VGA_X1+'d2]+data_reg9[VGA_X1+'d3]+data_reg9[VGA_X1+'d4
]
 + data_reg10[VGA_X1-'d4]+data_reg10[VGA_X1-'d3]+data_reg10[VGA_X1-
'd2]+data_reg10[VGA_X1-'d1]+data_reg10[VGA_X1]
 +
data_reg10[VGA_X1+'d1]+data_reg10[VGA_X1+'d2]+data_reg10[VGA_X1+'d3]+data_reg10[VGA_X1
+'d4]) > 7'd75) begin
 fltr2 <= 10'h3FF;
 fltr2_R <= 10'h3FF;
 fltr2_G <= 10'h3FF;
 fltr2_B <= 10'h3FF;
 end

 else begin
 fltr2 <= 10'h0;
 fltr2_R <= 10'h0;
 fltr2_G <= 10'h0;
 fltr2_B <= 10'h0;
 end

43

 //
**
************** //

 // ********** Thresholding
** //
 if (((mRed-mGreen) > 10'd40) && ((mRed-mGreen) < 10'd296)) begin
 //raw result
 raw_R <= 10'h3FF;
 raw_G <= 10'h3FF;
 raw_B <= 10'h3FF;

 data_reg1[VGA_X1] <= 1'b1; // * Update the bit according to the X
coordinate * //
 end

 else begin
 //raw result
 raw_R <= 10'h0;
 raw_G <= 10'h0;
 raw_B <= 10'h0;

 data_reg1[VGA_X1] <= 1'b0; // * Update the bit according to the X
coordinate * //
 end
 //
**
************** //

 end //else
end //always

