
USB Host Controller for an MCU
Terry Young Hwa Kim, MEng ‘12

Electrical and Computer Engineering, Cornell University

Abstract

VDIP1 and Firmware

Using a microcontroller as a USB host device instead of as 
a USB peripheral device can be very helpful for students in 
ECE 4760 (Digital Systems Design Using Microcontrollers) 
to attach a USB mouse, a USB keyboard or a USB memory 
stick. Although a full software version of a USB host has 
been previously implemented on AVR Mega32 
microcontrollers as a final project for ECE 4760 by 
students, the fact that it heavily loads the microcontroller 
forces us to look for an alternative solution, in other words, 
a hardware implementation. For example, dedicated host 
chips such as VNC1L and MAX3421 provide high-speed 
interface to unload the microcontroller. I employed the USB 
protocols and implemented a useable USB host interface to 
Mega1284 using a chip (VNC1L on VDIP1 module) that 
unloads the microcontroller. The final product includes the 
libraries that consist of APIs that a host uses to 
communicate with HID (human interface device) and mass 
storage class peripheral devices. The hardware 
implementation can be used by students in ECE 4760 to 
run a mouse, a keyboard and a memory stick. This will 
allow students to easily attach peripherals such as a mouse 
to their final project without having to use a host computer.

USB Protocol Basics
USB Transfers: A USB device uses a USB transfer to send and receive data 
for communication. Each transfer has a defined format for sending data, 
status and control information and more. There are four types of USB 
transfers: control, bulk, interrupt and isochronous transfers. All USB devices 
must support control transfer which is used for identification and configuration 
of a device. USB devices such as USB flash drives and printers use bulk 
transfer that does not guarantee latency while HID devices such as USB 
keyboards and USB mice use interrupt transfer that does guarantee low 
latency. Except for control transfer, interrupt transfer is the only way low-
speed devices such as a USB mouse can transfer data.
Important elements of a USB transfer are called endpoints, and there is a pair 
of endpoints: IN and OUT. Once a transfer is scheduled, all data on a USB 
bus travels to or from a device endpoint. Simply put, endpoints are buffers 
that store bytes which are received or waiting to be transmitted. While a host 
device has buffers to hold received data and data waiting to be transmitted, 

only a slave device has device endpoints. Before any data can be exchanged 
between a host and a slave, they must establish a pipe. A pipe connects 
endpoints of a device to a host. Any transfer type is allowed to use IN and 
OUT transactions.
Enumeration: Once a USB slave device is connected to a USB host, the 
host needs to learn about the device before any application can communicate 
with the device. This process of initialization and exchanging information 
between a host and a slave device is called enumeration. During the 
enumeration, a host can assign an address to a device and read all kinds of 
descriptors from a device. Once the enumeration is completed, a slave 
device can be ready to transfer data to a host. USB descriptors are data 
structures that contain information about a device such as interface and 
endpoints of it. They enable a host to learn about a slave device, and all USB 
devices are required to respond to requests for the standard USB descriptors 
from a host. VNC1L from FTDI does execute the process of enumeration in 

the background for us as soon as it detects a device on its USB port.
Human Interface Device (HID) Report: It was mentioned above that HID 
devices such as a USB keyboard or a USB mouse use interrupt transfer to 
send data to a host through an IN interrupt endpoint (the direction of any data 
transfer is always from a host point of view). This data that a device sends to 
a host is contained in a report, which HID devices use to exchange data. A 
report descriptor contains information about the data that is sent and received 
between a host and a device; however, the descriptor does not include a 
report itself in it. HID class specific requests can be used instead to get a 
report from a device and send a report to a device. For example, a report 
from a USB keyboard can tell a host which key has been pressed, and a 
report from a USB host can turn on an LED for a NUM Lock on a keyboard. 
The Windows HID API provides a set of functions that applications can use to 
get and send a report. Conveniently, the firmware for VNC1L comes with a 
command that can do the same.

SPI vs. USART
VNC1L from FTDI is a single chip embedded dual 
USB host controller that features two independent 
USB 2.0 Low/Full-speed USB host ports. This 
chip handles entire USB protocols such as 
enumeration and various transfers of descriptors 
at IN and OUT endpoints. It comes with 64k bytes 
of embedded Flash (E-FLASH) memory to store 
firmware, which could be programed or updated 
via UART interface. VNC1L also provides options 
to interface to external Command Monitor via 
UART, SPI or FIFO slave interface. It does not 
require external software control because the free 
firmware takes care of it all, which is the best 
advantage of using a VNC1L chip for the project.

Compatibility of the tested USB devices with VNC1L

A development module for VNC1L is called VDIP1 
and it ships pre-programed with firmware VDAP.

Vinculum VNC1L Embedded USB Host Controller IC

Extended Command Set Function
Monitor Configuration Commands
ECS (Extended Command 
Set)

Switches to the extended command set

IPA (Monitor Mode ASCII) Monitor commands use ASCII values
FWV (Firmware Version) Display firmware version
Disk Commands
DIR file (Directory) List specified file and size
OPW file (Open File for 
Write)

Open a file for writing or create a new file

SEK dword (Seek) Seek to the byte position specified by the 
1st parameter in the currently open file

WRF dword (Write to File) 
data

Write the number of bytes specified in the 
1st parameter to the currently open file

CLF file (Close File) Close the currently open file
OPR file (Open File for 
Read)

Open a file for reading

RDF dword (Read From 
File)

Read the number of bytes specified in the 
1st parameter from the currently open file

USB Device Commands
QP2 (Query Port) Query port 2
QD byte (Query Device) Query device specified in the 1st parameter
SC byte (Set Current) Set device specified in the 1st parameter as 

the current device
SSU qword (Device Send 
Setup Data)

Send setup data to device control endpoint 
with optional follow-on data

VNC1L provides configuration options to interface to the Command 
Monitor via UART, SPI or FIFO. When the data and control buses of 
VNC1L are configured in the UART mode, the interface implements an 
asynchronous serial UART port with flow control. When the buses are 
configured in the SPI mode, the interface operates as an SPI slave and 
thus it will need a master to provide the clock. In this project, both SPI and 
USART are employed for the serial communication between the 
microcontroller host (mega1284) and the VNC1L on the VDIP1, which is 
connected to a USB slave device. Both SPI and USART are tested with a 
USB flash drive, a USB keyboard and a USB mouse, and they proved to 
work fine equally. 

Command Monitor
The way to control and communicate 
with the VNC1L is through a command
monitor. The firmware activates a 

command monitor port on 
one of the USB ports, and 
this allows an embedded 

device such as an MCU to communicate with a USB peripheral device via the 
VNC1L’s UART, SPI or FIFO interface. An MCU can send instructions 
(commands) to the command monitor and receive data from it. When the 
VNC1L is ready to take a command and after a successful execution of any 
command, the command monitor returns a prompt (D:\>). 

USB flash drive

SanDisk 16 GB, FAT 32 file system Works

Cruzer mini 1 GB, FAT 32 file system Works

Cornell ECE (unknown vendor) 2 GB, FAT file system Works

Unknown manufacturer 256 MB, FAT 32 file 
system

Works

USB keyboard

Logitech Model #: Y-UR83 Works

HP Model #: SK-2885 Does not work

DELL Model #: SK-8115 Does not work

USB mouse

DELL Model #: M056U0A Work

Logitech Model #: M-U0007 Work except for scrolling the 
wheel 

GE Model #: unknown Does not work

Unknown manufacturer Model #: unknown Does not work


