
DEVELOPMENT OF A MICROCONTROLLER SYSTEM FOR A SENSOR NETWORK USED

TO STUDY BEHAVIOR OF TACHYCINETA BICOLOR

A Design Project Report

Presented to the School of Electrical and Computer Engineering of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering, Electrical and Computer Engineering

Submitted by

Yichi Zhang

MEng Field Advisor: Bruce Land

MEng Outside Advisor: David Winkler

Degree Date: May, 2013

1 | P a g e

Abstract

Master of Engineer Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title: Development of a microcontroller system for a sensor network used to study behavior of

Tachycineta bicolor

Author: Yichi Zhang

Abstract:

This report describes the development and implementation of a microcontroller system that is

used in a sensor network that is used to study the behavior of tree swallows (Tachycineta bicolor). The

microcontroller system, traditionally referred to as a “webplug”, is used to measure temperature at

nestboxes, control a Peltier device to simulate artificial climate change at the nestboxes, and provide

access by HTTP to control and access webplug data. Attrition of original webplugs from past field

seasons requires new webplugs to be made; many of the crucial components in the original webplug

being obsolete required the design of a new webplug. A new webplug was developed using a TS-7553

single board computer (SBC) from Technologic Systems. A separate printed circuit board (PCB) was

designed and constructed to complement the SBC to provide functions not found on the SBC, including

Peltier control and temperature measurement. The new webplug implements all current webplug

functions, include measure nestbox temperature, control Peltier to simulate climate change, and host

web server to provide HTTP access. In addition to original webplug functions, the new webplug could

also access RFID reader data used in the network to provide real time RFID data. A total of 15 new

webplugs were constructed and will be deployed in the 2013 field season.

2 | P a g e

EXECUTIVE SUMMARY
This report describes the development and implementation of a microcontroller used to

simulate climate change in artificial nestboxes of tree swallows (Tachycineta bicolor) and to collect data

that reflect changes in their behavior. The microcontroller is to be used as a part of a sensor network

that also includes the use of cameras and RFID readers to study how climate change affect tree swallow

behavior during their breeding season. This project stems from a larger project that aims to develop a

sensor node network that collects data on the behavior of tree swallows to study how simulated climate

change could affect their behavior. A microcontroller system, dubbed a “webplug” is used in the

network to implement climate change and collect data at each nest. A combination of webplug attrition

and its parts becoming obsolete requires the design of a new webplug.

The new webplug was implemented using a single board computer, the TS-7553, from

Technologic Systems. The software aspects of the webplug were implemented in a combination of C,

Python, and PHP, as appropriate to function. A separate PCB will be made to be attached to the TS-7553

to accommodate functions not offered in the TS-7553, such as an H-bridge to control Peltier, and

thermocouple amplifiers and digitizers.

The new webplug implements all current webplug functions, including controlling a Peltier

device, collecting data and interfacing with a central server for webplug status update and data transfer.

The new webplug can also interface with the RFID reader to collect RFID data. Other considerations for

the new webplug includes its backward compatibility with current webplug to avoid confusion of using

two different devices during field season during transition years when the current webplugs are being

phased out.

A total of 15 new webplugs were produced and will be used in conjunction with the original

webplugs in the 2013 field season.

3 | P a g e

Table of Contents
ABSTRACT .. 1

EXECUTIVE SUMMARY .. 2

INTRODUCTION ... 5

Background ... 5

DESIGN CONSIDERATIONS .. 7

Software considerations ... 7

Hardware considerations .. 8

HARDWARE DESIGN AND IMPLEMENTATION .. 8

Microcontroller ... 8

Peltier controller ... 9

Thermocouples ... 11

Voltage regulation... 11

Indicators .. 11

PCB design ... 12

External housing.. 14

SOFTWARE DESIGN AND IMPLEMENTATION ... 16

Using the TS-7553 ... 17

Thermocouple collection controller ... 18

Peltier controller ... 21

RFID controller .. 23

Task scheduling ... 26

Webplug settings .. 26

Providing HTTP access to webplug ... 26

User interface.. 29

Prototype and testing ... 32

MASS PRODUCTION .. 33

APPENDIX .. 34

Schematic of attachment PCB to TS-7553 .. 34

Board layout of attachment PCB .. 35

Python Code .. 35

manageData.py ... 35

4 | P a g e

managePeltier.py .. 37

manageRFID.py ... 38

PeltierControl.py ... 40

RFIDReader.py ... 41

SetPeltier.py .. 41

Web server Code ... 42

Index.php .. 42

dataSettings.php ... 44

Time.php ... 48

Read.php ... 49

loggerData.php ... 50

rfid.php .. 51

DataDownload.php ... 53

5 | P a g e

INTRODUCTION
 The purpose of this project is to design and develop a microcontroller system that is to manage

functions of nodes in a sensor node network used to study the behavior of tree swallows. The goal of

this document is do describe the process and consideration involved in the microcontroller system

design.

Background
 This project stems from a larger project that aims to develop a sensor node network that

collects data on the behavior of tree swallows (t. bicolor) to study how artificially induced climate

change could affect their behavior. Each node consists of temperature sensors, a camera, and a Peltier

device to simulate climate change by adjusting the nest temperature relative to ambient temperature.

 Currently, the nodes are connected to two central servers in an expanded star formation and are

managed by a microcontroller, historically referred to as a webplug (WP), that controls the Peltier

device, collect data from the temperature sensors, and transmit it back to the central servers (see Figure

1). The cameras used are security cameras with FTP capabilities that transfer images from the nests via

FTP directly to the central servers and operate independently of the webplug. The temperature sensors

used are a pair of thermocouples. Data and images collected from each individual node are sent to a

hub via Ethernet cable and are sent back to the central server through Wi-Fi via a wireless bridge.

6 | P a g e

Figure 1: Schematic of network setup

 The current webplug is based on an experimental web-based embedded system interface

developed by HP and is based on IEEE 1451.2. The project was developed in the late 90’s but was

cancelled before a final product was produced. The sponsors of the sensor node project managed to

salvage a number of the prototypes and developed them to the webplugs currently used in the network.

Each webplug currently consists of an H-bridge to control the Peltier, thermocouple amplifiers/cold

junction compensators/analogue to digital converter (ADC) to read data from the thermocouples.

Provisions were also made to accommodate RFID reading capabilities via an ATA2270-EK1 RFID kit.

 The current version of webplug has been used for 4 field seasons. Over the past field seasons

there have been significant attrition of webplugs due to damages that were not repairable. As of right

now there are only 8 webplugs that are functional. While it is sufficient to establish a network to

conduct experiment over the course of a season, the inevitable breakage means that there needs to be

backups ready, and to continue the experiments in the future more webplugs would be needed.

Multiple components from the current webplugs, such as the H-bridge, and most importantly, the web-

interface device, however, are now obsolete. A new webplug design is needed. The focus of this project

7 | P a g e

is to design and develop a new webplug that has basic webplug functionality and serve as a platform for

further expansion and development.

DESIGN CONSIDERATIONS
The new webplug must be capable of the functions of the current webplug. The functions include:

 Measuring temperature from type J, T and K thermocouples

 Controlling a Peltier by changing current polarity and turning it on/off as needed

 Access an external RFID reader

 Interface with central servers to upload thermocouple readings to servers and for the servers to

update Peltier setting.

 In providing these functions, the webplug must be able to operate within the same software and

hardware settings as the current webplugs. As the new webplugs are designed to function to

supplement a lack of current version of webplugs, they should conform to the settings of the current

versions of the webplugs. Otherwise effectively two separate networks are needed to have the same

number of nodes operational. That would be both time and cost inefficient. It is also hoped that the new

webplug would be able to facilitate the development and implementation of new functions in the

future.

Software considerations

 The current version of the webplugs is accessed and controlled through HTTP. The central

servers use a collection of bash and python scripts to manage the webplugs. The scripts are customized

to work exclusively with the current version of webplugs used in the sensor node project. Since it would

be years before all current version webplugs are phased out, the new webplugs must respond to the

scripts on the central servers in the same format as the current version of webplugs.

8 | P a g e

 In addition to simply responding to the scripts, the data output format of the new webplug must

also match that of the current version webplug. As over the course of a season large amounts of data

are generated from the network, majority of data processing for in-season as well as post season

analysis relies on automated methods and consistent data format is crucial to efficient data processing.

Hardware considerations

 The current version of webplugs is connected to hubs through Ethernet, which connect to the

central servers via Wi-Fi access points. The new webplugs must be able to either connect to the hubs via

Ethernet or Wi-Fi.

 Power in the network is drawn from 110V consumer power. The hubs, in addition to serving to

connecting the central servers to each node, also provide power to the nodes. At each hub, power is

drawn from the grid and converted to appropriate voltage levels by either injectors, which powers the

cameras and current versions of webplugs via power over Ethernet (PoE) or a DC power source, which

powers the Peltiers (see Figure 1). The current version of webplug is capable of drawing power either via

PoE or from the DC power source that powers the Peltiers. The new version of webplugs must be able to

convert the output from either the DC voltage source or the injector via PoE to a voltage level that it can

use.

 An external printed circuit board (PCB) is needed to provide the functions that are not natively

on the TS-7553. That includes an ADC and amplifer for the thermocouples, a controller to manage the

Peltiers, and voltage regulator to convert power from the hubs to provide power for the TS-7553.

HARDWARE DESIGN AND IMPLEMENTATION

Microcontroller

 Microcontroller selection is the most crucial decision in the webplug design. The

microcontroller’s capabilities will determine how the necessary functions will be implemented and what

9 | P a g e

hardware to choose for those functions. It will also determine what additional features can be

implemented. One of the hopes for the new webplug is to be able to eventually provide caching for

image and temperature data that cannot be transmitted when a node loses connection to the server.

The focus has thus been on microcontrollers with either large internal memory, fast clock speed for

acceptable external memory access, or both. Several PIC microcontrollers were considered, as they

included significant internal storage as well as capable of single cycle operations. The PIC

microcontrollers selected can also be programmed with the PIC programmer, which means shortened

prototyping and production time.

 The final microcontroller choice was to use the TS-7553, a single board computer (SBC)

developed by Technologic Systems. TS-7553 is based on an ARM 9 processor. It is clocked at 250MHz,

with 64MB RAM, and comes preinstalled with full version of Debian with a 2.6.24 kernel. The TS-7553

uses a 2GB MicroSD card for storage, which provides ample space for caching data. It supports multiple

communications protocols including Ethernet, WiFi, SPI, I2C and UART, which makes facilitating its

communication with attached devices and the rest of the network a straight forward task. The ARM

processor and memory provide ample processing power to support the need of current webplug

functions and any developments in the future. Being able to work in a Linux environment means easy

access to other hardware while being able to work in a well-structured and documented environment.

The combination of the factors above makes the TS-7553 an ideal platform for this project.

Peltier controller

 Using an H-bridge to control the Peltier seems like a natural choice. The H-bridge used in the

current version of the webplug was the first choice. It is, however, obsolete. Effort was then focused on

designing a webplug. Given the wide variety of robotics projects online and H-bridge is an integral part

of robotic motor control, the endeavor seemed well supported.

10 | P a g e

 The Peltier device draws about 5A at 14VDC. The most important concern in the H-bridge design

is to be able to control the Peltier with the microcontroller, which has digital input/output (DIO) pins

capable of only 3.3 V at 0.01A. Four MOSFETS were used, two P channel and two N channels (see Figure

2). The MOSFETS are positioned so that full H-bridge control can be achieved with two input pins. It is

important to make sure that both leg of the H-bridge are not closed at the same time, which would

potentially damage the H-bridge. It is also important that when the webplug boots up, whatever output

control (high) from the webplug does not turn on the H-bridge. By placing the MOSFETS as seen in

Figure 2, both functions are achieved.

Figure 2: H-bridge design.

In implementing the H-bridge design, the N channel MOSFET used was SI4944, a dual MOSFET in a SOIC-

8 packaging, the P channel MOSFET used was IRF9358, a dual MOSFET also in a SOIC-8 packaging. A

SI4944 and an IRF9358 was used for all four legs of the H-bridge; an additional SI4944 was used to toggle

the H-bridge from the TS-7553.

11 | P a g e

Thermocouples

 The use of thermocouples stems from the reason that all studies done related to tree swallows,

at least in the Ithaca field site, are done by thermocouples and it is important that consistent

temperature measurement tools are used. The current version of the webplug uses AD595, which is a

type K thermocouple amplifier and cold junction compensator. In the author’s experience type K

thermocouples were never actually used; the thermocouples used tend to be type J or T. The voltage

output for type T thermocouple, however, is very comparable to that of type K at the temperature range

of interest (0oC to 40oC). For consistency a type K thermocouple amplifier and analogue to digital

converter was selected (MAX6675). MAX6675 has 12 bit, 0.25oC resolution and supports serial-

peripheral interface (SPI).

Voltage regulation

 It is hoped that the new webplug would operate as a wireless unit, thus providing it with PoE

does not seem particularly important. The main source of power for the webplug would thus be either

the power source for the Peltier, which provides 13.8VDC, or potentially batteries, for which 12VDC

would be a reasonable expectation. It is thus necessary to be able to power the device using a power

source of approximately 12VDC. The Peltier uses 12VDC and does not need voltage conversion, all other

components, including the TS-7553 and MAX6675 would need 5VDC.

 A DC/DC converter is used to provide a 5VDC power source. The particular one used in the

project is the LMZ12001 by National Semiconductors. It is a buck converter that can output 5VDC and up

to 1A.

 To establish 5V output, the setup as suggested in the LMZ12001 datasheet was used.

Indicators

 To add indication of whether the device is actually working properly, two LEDs were added. One

LED is linked to the output of the DC/DC converter and lights up when power is on, to indicate that the

12 | P a g e

device is getting power. A bipolar LED is connected in parallel to the output of the H-bridge, so that it

would light up when the H-bridge is on and would change colors when the polarity of the H-bridge

changes. It was learned from previous experience that being able to debug webplug in the field without

the need for tools such as multimeters reduces the time required to debug, which could minimize

human interference at active nests and thus minimize impact on the experiment.

PCB design

 In designing the board, consideration was given to ease of mass production. In the first year, it

was expected that the author will be the only person to produce the boards. It is also hoped that in the

future more copies of the board can be made by people with minimal soldering experiences. Thus all

component selection was selected with keeping soldering simple in mind. Thus all passive components

such as resistors and capacitors used were through-hole components. It is part of the motivation in

designing an h-Bridge instead of buying one premade and in selecting the MOSFETs.

 The layout of all components for the external PCB is shown in the appendix. In order to connect

to the TS-7553, simple 1” pin connectors are used, since it is available on the TS-7553. Terminal blocks

were used to connect other sources, including the power supply to the board (from Peltier power

source), power source to the TS-7553 and Peltier, as well as thermocouples (see Figure 3 and Figure 4).

13 | P a g e

Figure 3: The populated PCB attachment.

Figure 4: The new webplug. The TS-7553 is on the right (red board), the PCB attachment is mounted onto the TS-7553 (green
board).

14 | P a g e

The following pins from the TS-7553 are used.

Pin Function

3 Ground

9 SPI MISO

10 3.3 VDC power supply

12 SPI MOSI

14 SPI Clock

18 SPI chip select

19 SPI chip select

23 H-bridge control

25 H-bridge control

Most of the pin selection in connecting between the PCB and the TS-7553 was dictated by the TS-7553

 The boards were designed using EAGLE, since there were plenty of tutorials and libraries

available. It also offered variety in choosing a board manufacturer, which would not be possible with

software like ExpressPCB.

 In the choice of board manufacturer there were four choices: Sunstone, Gold Phoenix, Seeed

Studios, and OSHPark It ultimately came down to a tradeoff between cost and lead time. Sunstone

offered the least lead time, but the highest price, Seeed Studios offered the lowest price (10 2 layer

boards for $10) but had a lead time of approximately 20 days, Gold Phoenix offered a reasonable

tradeoff between lead time and price, but has a $100 purchase minimum. During prototyping stages,

boards were ordered from OSHPark; for the final production of the webplug the boards were ordered

from Gold Phoenix. The final PCB ordered used FR4-TG130, 1oz. copper and was a 2 layer board.

External housing

The webplug needs to function outdoors. So a protective case is needed. The current version of

the webplug is housed in a plastic case (see Figure 5). The same case is used for the new webplug. To

mount the TS-7553 into the case, a peg board was used as an adaptor for the screw mounts in the box

15 | P a g e

and the TS-7553 was held onto the peg board using self-tapping screws. A small piece of wood was

glued onto the peg board to provide support for the PCB attached to the TS-7553 (see Figure 6).

Figure 5: Plastic case used to house the webplug

Figure 6: Mounting of the TS-7553 and the PCB attachment in the case using the peg board and wood support for the PCB
attachment

16 | P a g e

SOFTWARE DESIGN AND IMPLEMENTATION
The software in the webplug was implemented using a combination of C, Python, Bash, PHP, and

HTTP. In designing the software components of the webplug, the following components are considered:

 Using the TS-7553

 Thermocouple controller

 Peltier controller

 RFID controller

 Task Scheduling

 Webplug settings

 Providing HTTP access to webplug

 User interface

The interactions of the above components are shown in Figure 7.

Figure 7: Structure of software used in the webplug.

The components will be discussed in that order. All the code written are listed in the Appendix.

17 | P a g e

It was initially planned to implement final versions of all software in C and use Python to create

an initial prototype. After implementation of the Python prototype it was realized that it was sufficiently

fast to handle the needs of the webplug so the C implementation was not pursued.

Using the TS-7553
The TS-7553 can be booted from a microSD card. Technologic Systems has provided an image of

Debian Lenny for a 2GB microSD card. That image is used. Upon boot, the provided image boots to a

busybox shell. Exiting the shell provides access to the full Debian system. The shell boots up in seconds

compared to about 2 minutes for the full Debian system. It, however, does not have sufficient function

for the webplug and boot time is not a concern. It was circumvented by removing its boot script so that

the system boots to full Debian on startup.

The TS-7553 can be connected to using serial or SSH. To SSH, the busybox shell needs to be disabled.

Also, in the original Debian image, the RSA key was removed and need to be regenerated.

The serial connection to the TS-7553 is to the header pins upon boot up. According to Technologic

Systems, if the reset button is pressed for 3 seconds the system reboots and changes the serial

connection to the serial port on the back of the TS-7553. On the module used for development, it did

not happen. Instead, a development connector board made by Technologic Systems, a TS-9448, was

used to connect a serial cable to the header pins.

During the course of programming the TS-7553, the root account was used. Several programs had to be

installed, including sudo and PHP. The repository for Debian Lenny has been moved to archive and a

path to the archive and backports need to be provided. The path to the archive is:

deb http://archive.debian.org/debian lenny main

The path to the backport is:

18 | P a g e

deb http://archive.debian.org/debian-backports lenny-backports main contrib non-free

It needs to be included in the file: /etc/apt/sources.list

In the image used, the path was given and simply needed to be uncommented.

Thermocouple collection controller

In the current version of the webplug, the webplug status, including thermocouple

temperatures, set point for the webplug, and the Peltier status, was hosted via HTTP. The server

processing the data expected the data to be arranged in a HTML table in a certain order. To maintain

backward compatibility, a function was written to collect the data needed and store them in a format

that matched the format used in the current version of the webplug. manageData.py is used to

sample thermocouple data, the set point for the Peltier, and the Peltier state, and print all the data in a

comma separated file in the format used by the current version of the webplug.

manageData is a class. Upon initialization the clock frequency for SPI was defined. It was

thought early during development that the clock frequency might need to change, so the option was

built it. It includes the following functions

readTC:

This function reads the thermocouple data from MAX6675 via SPI. The TS-7553 has a function

called ts7500ctl that is used, among other things, to access the pins on the TS-7553. That function is

used to toggle the pin select for one of the two MAX6675s. The TS-7553 provided a function called

spictl to access SPI on the TS-7553. In readTC, Popen from subprocess was used to call spictl to

access the MAX6675.

The process in reading thermocouple data included:

19 | P a g e

Chip select:

ts7553ctl –poke16=0xbe14 or ts7553ctl –poke16=0xbf14

Read 2 bytes from SPI:

spictl –readstream=2

The result read using spictl was a hexadecimal number as a string. The class binascii was

used to convert that to a hexadecimal number. The TS-7553 supports Python 2.5, which does not

convert hexadecimal numbers to other formats. A dictionary was thus written to convert the

hexadecimal numbers to binary numbers. The binary number is made available to other functions in the

class as binnum. Of the 2 bytes of data read, only the first 12 bits are temperature; those bits were

selected and cast to a float. The converted number was then divided by 4 to convert the data to a

temperature in Celsius.

CheckTC:

In the two bytes of data read from the MAX6675, bit 14 indicated whether the thermocouple

junction was open. If it is 1, then the thermocouple junction is open [check]. It can be used to check

whether the thermocouple has become unattached. CheckTC checks bit 14 of binnum.

 binTC:

This function prints binnum. It is used to debug.

checkPeltier:

20 | P a g e

This function is used to check on the current state of the Peltier. It checks the pins that are used

to control the H-bridge, which dictates Peltier state. The function ts7553ctl is again used to read the

state of pins 23 and 25.

The command used was:

ts7500ctl --peek16 --address=0x68

Due to the bus structure of the ts-7553, data are always accessed two bytes at a time. Two bytes

of data are read from the register regions that contained pins 23 and 25 at offset 0x68. To simplify

processing the data was simply read as hexadecimals and the last 2 hex digits were checked. The

hexadecimal and the corresponding states for pins 23 and 25 are listed below.

Hex Pin 23 Pin 25

0x2b 0 0

0x3b 0 1

0x2f 1 0

0x3f 1 1

When both pins 23 and 25 are high or low, the Peltier is off. When pin 23 is high and pin 25 is low, the

Peltier state was cooling, and when 23 is low and 25 is high, the Peltier was heating.

getSetPoint:

This function read the set point that was assigned to the TS-7553 by the server. The set point is

written to a configuration file. The function getSetPoint reads the configuration file and parses the

set point.

write2file:

21 | P a g e

This function writes the measured thermocouple temperatures, the Peltier state, the set point

and the sample time to a CSV file. The time expected is in Unix Epoch format. The Peltier state is

indicated by an integer: 0 for off, 1 for cool, and 2 for heat. The format for the CSV file is as follows:

Time, Thermocouple 1, Thermocouple 2, Set Point, Peltier State

A separate Python script, dataLogger.py, was written to run manageData at scheduled

intervals. To track the running of the function, the PID of dataLogger.py is written to

/home/dataLogger.pid. dataLogger.py consists of two functions, checkInterval and

print2file.

The function checkInterval is used to check how often the thermocouple should be

sampled. The sampling interval is written to a configuration file, sample.ini, at /var/www. A

custom Python class found online, SimleConfigParser, was used to parse the file for the sampling

interval.

The function print2file creates an object of manageData and calls its write2file

function to log thermocouple data. It uses Timer in threading to call the write2file function at

intervals set by checkInterval. The function is set to run continuously.

Peltier controller

A class, managePeltier, was written in Python to implement control of the Peltier. Upon

initialization, it defines an object of class managePeltier with an offset value. The offset value

defines the hysteresis for temperature control. Below are the functions of managePeltier.

setTemp:

22 | P a g e

This function is used to set the Peltier to cool, heat or off. It takes in the set point and the nest

temperature. If the nest temperature is greater than the set point by more than the offset, the Peltier is

set to cool, if the nest temperature is less than the set point by more than the offset, the Peltier is set to

heat. Otherwise the Peltier is set to turn off. The offset typically used is 1oC.

Technologic Systems provided a C function, pinio.c, that allows access to individual pin

values. For convenience, a compiled version of pinio was saved in /home/python, where

managePeltier is saved. To set the Peltier to a certain state, Popen from subprocess is used to call

pinio.c to set pins controlling the H-bridge individually:

/home/python/pinio set [pin] [1/0]

As described above, if pin 23 is set to 0 and pin 25 is set to 1, the Peltier cooled, if pin 23 was set

to 1 and pin 25 was set to 0, the Peltier heated. If both pins were set to 1 or 0, the Peltier was off.

A separate Python script, peltierControl.py, was written to run managePeltier at

scheduled intervals. To track the running of the function, the PID of peltierControl.py is written

to /home/peltierControl.pid. peltierControl.py consists of two functions,

checkInterval and print2file.

The function checkInterval is used to check how often the Peltier should be set. The

sampling interval is written to a configuration file, sample.ini, at /var/www. A custom Python class

found online, SimleConfigParser, was used to parse the file for the sampling interval.

The function print2file creates an object of manageData and calls its write2file

function to log thermocouple data. It uses Timer in threading to call the write2file function at

intervals set by checkInterval. The function is set to run continuously.

23 | P a g e

RFID controller

Provisions were made for the TS-7553 to interface with a custom-designed RFID tag reader. The

RFID tag reader is attached on the entrance of nestboxes and is used to track RFID tags that were

attached to certain birds so as to track when and which birds visited the nestbox. The RFID reader

constantly provided an output through UART of the tag read. If no tags are present, it outputs

“FFFFFFFFFF”.

It was also thought of during the development of the RFID controller that it might be of interest

to be able to toggle the camera that is installed on some nestboxes to capture images of the nest based

on RFID. Since the camera does not take any external input, a method was devised to use the motion

capture function of the camera to monitor a corner of the nest, where an infrared LED would be placed.

When the RFID reader registers entrance of a bird, the TS-7553 would toggle the LED to have the camera

capture images.

A class, manageRFID, was written in Python to read the UART output of the RFID reader.

Functions include the following.

setLED:

This takes in an integer as argument. If “1”, it calls pinio to turn pin 20 high to turn the LED on.

If “0” it calls pinio to turn pin 20 low to turn the LED off.

toggleLED:

This function calls setLED to turn the LED off if it is on and turn the LED on if the LED is off.

write2file:

This function takes in data as argument and writes it to a CSV file.

24 | P a g e

readRFID:

This function parses the output of the RIFD reader to get the RFID tag value. It also attempts to

determine the activity of the bird. It was thought that it would be helpful to track what the birds

associated with a tag is doing relative to RFID occurrence data. Since the RFID reader triggers as long as

the tag is within vicinity of the reader, the exact activity of the bird (i.e. entering nest, leaving nest,

perched) relative to RFID data could not be determined. Instead, a finite state machine was

implemented to give an approximation of what the bird could be doing based on the RFID activity (see

Figure 8).

Figure 8: State machine used to estimate state of the bird based on RFID activity.

25 | P a g e

Since the definite states of the birds’ activities relative to RFID output cannot be determined,

some assumptions were made. Error correction is included in the event the assumption does not hold

true.

It is assumed that the state machine will always start with no birds in the nest. The installation

of the RFID reader will always scare the birds away from the nest, so this holds well. As long as the RFID

reader does not detect a tag, the state machine stays in the “No Bird” state. It is assumed that the first

time the RFID reader detects a tag a bird has perched on the entrance to the nest. The state machine

goes to “In Perch” state, the LED is toggled and the RFID tag and state machine state is recorded. As long

as the tag is present, the state machine stays in “In Perch” state. If the tag disappears, it is assumed that

the bird entered the nest. The state machine goes to “In Nest” state. While in “In Nest” state a counter,

InNestCount, is incremented for every RFID tag check that shows up as no tag. If InNestCount is

greater than a limit as defined by InNestLim, then it is assumed that the bird did not enter the nest at

all and the state machine goes back to “No Bird” state. The value for InNestLim is set to 5 minutes

worth of RFID check. This value needs to optimized by actual field testing. While in “In Nest” state, if a

tag appears, it is assumed that the bird is leaving the nest, and the state machine goes to “Out Perch”

state. During the entirety of “In Nest” State, the LED is toggled and data is logged. At the entirety of “Out

Perch” state, LED is also toggled and data logged. As long as a RFID tag registers, it is assumed that the

bird is perched. If the tag disappears, it is assumed that the bird left and the state machine goes to “No

Bird” state. It is possible that the bird went back into the nest, but in the author’s experience, it has yet

to occur.

The file is written to /var/www/api/rfidout.csv.

26 | P a g e

A python script, RFIDReader.py, was written to run manageRFID. It creates an object of

class manageRFID. It uses Timer from threading to call readRFID function every 10ms to write RFID

data to file.

Task scheduling

A Bash script, init7553.sh was written to call dataLogger.py, RFIDReader.py and

peltierControl.py. The function of init753.sh is to provide one function that can be called to

initiate all functions needed of the TS-7553. To allow the script to be run from the website, both were

called with nohup. To make sure neither takes up too much system resources, both were run with nice

value of 15.

The TS-7553 provided a function to establish a XUART session using the command xuartctl.

Before running RFID functions with manageRFID.py , that needs to called as follows:

xuartctl --server --port=0 --speed = 9600

This initiates an XUART session at speed 9600Hz and mounts it to /dev/pts/0.

Webplug settings

Settings need to be made per webplug includes the interval to sample thermocouples, interval

to adjust Peltier state, the IP address of the webplug, and the nestbox to which the webplug is

associated. All settings are written to an .ini file, sample.ini and saved at /var/www. As each

function needs different values, the sample.ini is accessed. Since the content of sample.ini can only be

modified manually by the user, there is no concern of read/write protection.

Providing HTTP access to webplug

To provide HTTP access to the webplugs, Apache server was installed on the TS-7553. The

Debian image provided for the TS-7553 by Technologic Systems has Apache2.2 preinstalled. To provide

all needed functionality all that was needed was to install PHP. PHP5.5 was installed.

27 | P a g e

To interface with the original webplug, several scripts were written in a combination of Bash and

Python to access several functions of the webplug’s API. The following functions are used and should

produce the exact output as the original API so as to avoid rewriting the entire server side operation of

the network.

The following functions were implemented using PHP on the TS-7553 and are separated as

individual files in appropriate directories. Since the server scripts called to API functions and not so

much different pages, .htaccess was used to allow the pages to be called without the .php extension.

Read:

This function is really only used by the user to get the latest status of the webplug, including the

temperatures, Peltier setting, and Peltier set point. The call to it is:

http://[IP address]/api/read

In the TS-7553 it was implemented by using the tail function to get the last line in the CSV file that

stored webplug data.

loggerData:

This function is used to display all data stored on the webplug. The original webplug stored 2048

lines of data. The server script uses this to collect data from the webplug. It collects five minutes worth

of data every time it is called and filters out redundant entries based on time. A function was written in

PHP to access the last 6 minutes of data, based on the assumption that thermocouple data is sampled at

15 second intervals (that is based on the limitation of other equipment that is used in combination with

the webplug and it is highly unlikely that it will change. If it does, it is only a matter of changing the

number of lines printed accordingly). This function is accessed through:

28 | P a g e

http://[IP address]/api/loggerData

Time:

This function is used to set the system time on the webplug to ensure that the time on the

servers and all the webplugs are consistent. With the original webplug the server needs to check the

webplug time every so often to make sure everything’s synchronized. On the TS-7553 NTP could be used

to synchronize time, but the server script managing webplugs will not run unless it successfully performs

a time check using this function. To maintain backward compatibility with the original webplugs, this

was implemented in the TS-7553 as well. The format the time setting function is accessed is:

http://[IP address]/bin/node/time?yyMmDd=[time]

Where the time is entered in the following format:

yyyyMMddhhmmss

Where:

yyyy: year in 4 digits

MM: month in 2 digits

dd: day in 2 digits

mm: minutes in2 digits

ss: seconds in 2 digits

Initially the time setting was simply accepted and nothing was done with it, since the TS-7553

kept system time sufficiently precise given initial manual synchronization with the server time. Later

29 | P a g e

time setting function to actually change system time to be that set by the server was implemented using

shell_exec to run date as follows:

sudo date --set [Hour]:[Minute]:[Second]

Settings related to changing system parameters such as system time and IP address required

sudo privilege. By default PHP runs commands using the “www-data” user, which does not have sudo

privilege. The user “www-data” was added to the sudoers file and the sudo configuration file was

changed to allow “www-data” to use sudo without a password. The Debian version that was used did

not have sudo installed. Sudo had to be installed.

Provision to set the day was considered, but since it never seems to be off it was not added for

simplicity.

setPoint:

This function is used to set the set point for the Peltier. It writes the set point to a configuration file,

wp.conf, saved at /var/www. It is called by:

http://[IP address]/api/setPoint?newValue=[new set point]

User interface

A user interface (UI) was implemented in HTTP and PHP so common webplug operations can be

done without needing to use command line interface.

All of the display was done using HTTP and organized using tables. All functionalities are

provided using PHP.

The user interface consisted of the following pages: main page, data settings, time settings, read,

loggerData, RFID, and Download.

30 | P a g e

Main Page:

The main page provided an overview of the webplug status, including nestbox number, IP

address, intervals for checking thermocouple and setting Peltier. It also allowed the user to start

webplug.

Data Settings:

The data settings page allowed the user to set the IP address, the nestbox number, the interval

to sample the thermocouple and the interval for setting the Peltier state. It also included an interface to

manually set the Peltier state for testing purposes that is made accessible when the webplug is not

collecting data.

To set the IP address, PHP was used to call ifconfig:

sudo ifconfig eth0 [new IP address]

To manually set the Peltier, a Python script, setPeltier.py, was written to set the H-bridge

pins and was called using PHP. setPeltier.py took in one argument: the Peltier state to set the

Peltier. Following convention from before, the state was defined as an integer: 1 was for cool, 2 was for

heat, and 0 was to turn off. The user input was done using radio buttons. To make sure that the radio

button state reflected the current state of the Peltier, ts7500ctl was accessed through PHP to get

the pin settings for the H-bridge control pins. To make sure that temperature regulation was not

occurring while the Peltier was set manually, existence of the PID file for dataLogger was checked. If the

file exists, it means that temperature regulation was occurring and the option of manually setting the

Peltier state was disabled by disabling the selection buttons.

The settings for IP address, thermocouple sampling interval, Peltier setting interval, and nestbox

number were written to sample.ini.

31 | P a g e

Time Settings:

This page allowed the user to set the system time on the webplug. It was done separately from

other settings to maintain backward compatibility with the original webplug, since in the original

webplug the time settings were done separate. The page is really used by the server to define system

time, but the UI included a verbose function where a user accessible interface can be used to manually

set the system time.

Read:

In the current version of the webplug, one of the functions offered was to get the latest status

of the webplug, including the temperatures, Peltier setting, and Peltier set point. The page was made

accessible through the UI for convenience.

loggerData:

Same as Read, a link to loggerData is simply provided for convenience.

RFID:

This displays the logged RFID data. Unlike temperature data, this has no precedence and did not

have to conform to a prior format. The page uses PHP to display the last n number of RFID tags read as

selected by the user. The number of lines read can be either selected through the form or passed in as

part of a GET statement as:

http://[IP address]/api/rfid?nlines=[number of lines]

Download Data:

To facilitate transfer of large amount of data from the TS-7553, a link to the CSV files for both

temperature data and RFID data was provided.

32 | P a g e

Prototype and testing
A prototype was built and tested to make sure everything worked as planned. The fabricated

PCB and the TS-7553 was able to measure temperature of the 2 attached thermocouples and the PCB

was able to reliably provide a 5VDC power source for the TS-7553.

Getting proper function of the H-bridge, however, was not as straight forward. An initial

problem was the improper poring of the ground layer that resulted in the MOSFETs pins being not

grounded. During testing, rework wires were used to provide ground. Three separate prototypes were

made to address the issue. On the third iteration, a properly functioning PCB was made.

During initial testing, the H-bridge was used to toggle the indicator LED. It worked as expected.

When the Peltier power supply was connected to try to toggle an actual Peltier, however, the MOSFETs

sizzled and burned. A current limited power supply was used to test the H-bridge design and the voltage

drops across all MOSFETs were measured. The failures were due to defect in the MOSFETs that were

most likely due to heat damage during soldering. The symptom was the H-bridge shorting. Depending on

how the MOSFETs were damaged, it has occurred when power was turned on or when the H-bridge was

toggled between states. When properly soldered, the H-bridge was able to toggle the Peltier properly.

Measuring with a multimeter showed that when the input voltage was 13.5VDC, the output on the H-

bridge to the Peltier was consistently around 13.4VDC, suggesting that the H-bridge dissipated

approximately 0.1V and it is 99% efficient.

The DC-DC converter output was measured before it was used to supply power to the TS-7553.

It consistently output 5VDC.

The thermocouple reading was verified by pinching the thermocouple between thumb and

forefinger and measuring the temperature for approximately 5 minutes and then simply measuring

room temperature for about 5 minutes. The idea is that if the thermocouple reading was accurate, the

33 | P a g e

temperature output when the thermocouple was held should go up to around 36oC, body temperature,

and then should return to about 23oC, room temperature. Both did.

Peltier regulation was checked by taping the thermocouples to the operating side of the Peltier

and setting the set temperature for the webplug to be above or below ambient temperature. Ideally the

Peltier would start cooling if the set temperature is lower than ambient and would start heating if the

set temperature is higher than ambient. Both should stop if temperature measured is within 1oC of the

set point. The webplug performed as expected.

MASS PRODUCTION
To reduce cost of the webplug, all 15 PCBs were made by the author. During the manufacturing

process, all boards were tested as they were constructed. Given the problem with the H-bridges during

prototyping, care was taken to ensure that the H-bridge worked properly. A 12VDC, 1.5A power adaptor

was used as a current limited power supply for initial testing. The board was tested when the MOSFETs,

the pull-up resistors and a terminal block for power input was placed. If there were no short, then the

input voltage should be very close to the voltage measured on the higher legs of the H-bridge. Once that

was assured, the rest of the board placement continued. When the entire board was assembled, the

current limited power source was again used. If the H-bridge performed as expected, the regular Peltier

power supply was then used to test Peltier control.

Since the entire system operated from a microSD card, an image of the card was made and

written to new 2GB microSD cards using the dd command.

34 | P a g e

APPENDIX

Schematic of attachment PCB to TS-7553

35 | P a g e

Board layout of attachment PCB

Python Code

manageData.py

#!/usr/bin/python2.5

import os

import time

import calendar

from subprocess import Popen, PIPE

import binascii

class manageData(Popen):

36 | P a g e

 def __init__(self,freq):

 self.clk = freq

 self._child_created = False #Using Popen as a class creates an

exception; this avoids that.

 def readTC(self,lun):

 b = "--readstream=2"

 s = "spictl"

 if lun == 2:

 r40 = "--poke16=0xbe14"

 else:

 r40 = "--poke16=0xbf14"

 adr = "--address=0x40"

 t = "ts7500ctl"

 Popen([t,adr,r40])

 time.sleep(0.001)

 self.spiread = Popen([s,b],stdout=PIPE).communicate()[0]

 bins = {"0":"0000","1":"0001","2":"0010","3":"0011",

 "4":"0100","5":"0101","6":"0110","7":"0111",

 "8":"1000","9":"1001","a":"1010","b":"1011",

 "c":"1100","d":"1101","e":"1110","f":"1111"}

 hexin = binascii.hexlify(self.spiread)

 h0 = hexin[0]

 h1 = hexin[1]

 h2 = hexin[2]

 h3 = hexin[3]

 self.binnum = bins[h2]+bins[h3]+bins[h0]+bins[h1]

 spiout = float(int(self.binnum[1:13],2))/4.00

 return spiout

 def checkTC(self):

 noTC = self.binnum[14]

 return noTC

 def binTC(self):

 return self.binnum

 def checkPeltier(self):

 adr = "--address=0x68"

 t = "ts7500ctl"

 c = "--peek16"

 out = Popen([t,adr,c],stdout=PIPE).communicate()[0]

 if out[2:4] == "2b" or out[2:4] == "3f":

 peltierState = "0"

 # heat

 # 23: 1, 25: 0

 elif out[2:4] == "2f":

 peltierState = "1"

 # cool

 # 23: 0, 25: 1

 elif out[2:4] == "3b":

 peltierState = "2"

 else:

 peltierState = "derp"

 return peltierState

 def getSetPoint(self):

37 | P a g e

 fconf = open("/var/www/api/wp.conf","r")

 line = fconf.readline()

 setTime = line.split(',')[0]

 setTemp = float(line.split(',')[1])

 fconf.close()

 return [setTime, setTemp]

 def write2file(self):

 unixtime = str(int(time.mktime(time.localtime())))

 setpt = self.getSetPoint()[1]

 sett = self.getSetPoint()[0]

tofile=unixtime+","+str(self.readTC(2))+","+str(self.readTC(3))+","+str(setpt

)+","+self.checkPeltier()+"\n"

 fout = open("/var/www/api/output.csv","a")

 fout.write(tofile)

 fout.close()

 return

Main Function, for running manageData instead of importing as a class

if __name__ == '__main__':

 print "Starting manageData..."

 print "This is largely written for debugging purposes."

 d = manageData(2500000)

 eggT = d.readTC(3)

 nestT = d.readTC(2)

 setT = d.getSetPoint()[1]

 setTTime = d.getSetPoint()[0]

 pelt = d.checkPeltier()

 print "Egg Temperature: "+str(eggT)

 print "Nest Temperature: "+str(nestT)

 print "Set Point: "+str(setT)

 print "Set Time: "+str(setTTime)

 print "Peltier State: "+pelt

 print "Writing to file ..."

 d.write2file()

managePeltier.py
from subprocess import Popen, PIPE

The current scheme uses pin 23 and 25 for Peltier control.

Assumes that [23=0 25=1] = heat [23=1 25=0] = cool

class managePeltier(Popen):

 def __init__(self,offset):

 self.offset = offset

 self._child_created = False

 def setTemp(self,setTemp,nestTemp):

 #Using Popen as a class creates an exception; this avoids that.

 self._child_created = False

 if setTemp - nestTemp>=self.offset:

 # if temperature difference greater than offset, heat

 Popen(["/home/python/pinio","set", "23","0"],stdout=PIPE)

 Popen(["/home/python/pinio","set", "25","1"],stdout=PIPE)

38 | P a g e

 setPeltier = 2

 return setPeltier

 elif setTemp - nestTemp<=-self.offset:

 # if temperature difference greater than offset, cool

 Popen(["/home/python/pinio","set", "23","1"],stdout=PIPE)

 Popen(["/home/python/pinio","set", "25","0"],stdout=PIPE)

 setPeltier = 1

 return setPeltier

 else:

 # if temperature doesn't vary by less than offset, turn off

 Popen(["/home/python/pinio","set", "23","0"],stdout=PIPE)

 Popen(["/home/python/pinio","set", "25","0"],stdout=PIPE)

 setPeltier = 0

 return setPeltier

 def getSetting(self):

 return setPeltier

manageRFID.py
#!/usr/bin/python

from subprocess import Popen, PIPE, STDOUT, call

import pty

import os

import time

class manageRFID():

 def __init__(self):

 # initialize xuart to port 0 at speed = 9600

 # call(["xuartctl --server --port=0 --speed=9600"],stdout=PIPE)

 # by default this is where port 0 is mounted, if that's not the case,

change this

 cmd = 'cat /dev/pts/0'

 master, slave = pty.openpty()

 p = Popen(cmd, shell=True, stdin=PIPE, stdout=slave, stderr=slave,

close_fds=True)

 self.stdout = os.fdopen(master)

 self.ledstate = 0

 self.birdstate = 0

 call(["/home/python/pinio","set", "20","0"],stdout = PIPE)

 # InNestLim defines how many RFID counts a bird can be in the nest

before calling it

 # a false positive.

 # 10 is not that good; it just makes debugging less boring

 self.InNestLim = 10

 self.InNestCount = 1;

 def setLED(self,io):

 if io == 0:

 call(["/home/python/pinio","set", "20","0"],stdout = PIPE)

 else:

 call(["/home/python/pinio","set", "20","1"],stdout = PIPE)

 self.ledstate = io

 def toggleLED(self):

 if self.ledstate == 0:

39 | P a g e

 self.setLED(1)

 else:

 self.setLED(0)

 # writes rfid state, plus time, to file

 # by default the file is saved to /var/www/api/rfid

 def write2file(self,data):

 fp = "/var/www/api/rfidout.csv"

 fh = open(fp,"a")

 data = str(time.ctime())+","+data+"\n"

 fh.write(data)

 fh.close()

 def readRFID(self):

 # this parses the whole line from the RFID board to get at the RFID

number

 # The RFID number is a 10 digit hex number, it is read in as a

string.

 # When there are no RFID tags in there, FFFFFFFFFF is the default

value

 # gets the line from stdout, remove excess characters, and split it

into a list

 # the RFID tag should always be the last item on the list

 strlist = self.stdout.readline().rstrip().split()

 # readline doesn't always get a full line, sometimes only the RFID

value is read

 # doing things this way allows RFID to be parsed no matter what

portion of line is read

 rfidout = strlist[len(strlist)-1]

 # state 0

 if self.birdstate == 0:

 if rfidout == 'FFFFFFFFFF':

 print "No Bird"

 self.setLED(0)

 else:

 self.toggleLED()

 self.birdstate = 1

 bird = "Arrived," + rfidout

 self.write2file(bird)

 print bird

 # state 1

 elif self.birdstate == 1:

 if rfidout == 'FFFFFFFFFF':

 self.toggleLED()

 bird = "In nest,"+ " "

 self.write2file(bird)

 print bird

 self.birdstate = 2

 else:

 self.toggleLED()

 bird = "Perch," + rfidout

 print bird

 # state 2

 elif self.birdstate == 2:

 if (rfidout == 'FFFFFFFFFF'):

 # if the count <= limit, keep going

40 | P a g e

 if self.InNestCount <= self.InNestLim:

 self.InNestCount = self.InNestCount+1

 self.toggleLED()

 bird = "In nest," + " "

 self.write2file(bird)

 print bird

 self.birdstate =2

 # otherwise assume a false positive and stop recording and

reset

 else:

 bird = "false positive,"+ " "

 self.write2file(bird)

 print bird

 self.birdstate = 0

 self.InNestCount = 0

 else:

 self.toggleLED()

 bird = "Perch," + rfidout

 self.write2file(bird)

 print bird

 self.InNestCount = 0

 self.birdstate = 3

 # state 3

 else:

 if rfidout == 'FFFFFFFFFF':

 bird = "Bird out,"+ " "

 self.write2file(bird)

 print bird

 self.birdstate =0

 else:

 self.toggleLED()

 bird = "Perch," + rfidout

 self.write2file(bird)

 print bird

 self.birdstate = 3

Main Function, for running manageRFID instead of importing as a class

if __name__ == '__main__':

 r = manageRFID()

 while(1):

 r.readRFID()

PeltierControl.py
import os

from manageData import manageData

from managePeltier import managePeltier

from SimpleConfigParser import SimpleConfigParser

import threading

cp = SimpleConfigParser()

tc = manageData(2500000)

peltier = managePeltier(1)

defines file path and get the pid

pidfile = "/home/peltierControl.pid"

pid = str(os.getpid())

41 | P a g e

if the pid file already exists, then remove it

if os.path.exists(pidfile):

 os.remove(pidfile)

store pid to file

pidfh = open(pidfile,"w+")

pidfh.write(pid)

pidfh.close()

def checkInterval():

 filename = '/var/www/sample.ini'

 cp.read(filename)

 timeint = int(cp.getoption("peltierInterval").replace('\"',''))

 return timeint

def peltierctl():

 threading.daemon=True

 waitTime = 5

 threading.Timer(waitTime,peltierctl).start()

 setPoint = tc.getSetPoint()[1]

 nestTemp = tc.readTC(2)

 peltier.setTemp(setPoint,nestTemp)

 waitTime = checkInterval()

peltierctl()

RFIDReader.py
this file should be initiated from the web script

import os

import threading

from manageRFID import manageRFID

r = manageRFID()

def print2file():

 threading.daemon=True

 waitTime = 0.01

 threading.Timer(waitTime,print2file).start()

 rfidout = r.readRFID()

print2file()

SetPeltier.py
manually control Peltier

import sys

from subprocess import Popen,PIPE

if (len(sys.argv) > 1):

 peltstate = sys.argv[1]

if (peltstate == "1"):

42 | P a g e

 Popen(["./home/python/pinio","set", "23","1"],stdout=PIPE)

 Popen(["./home/python/pinio","set", "25","0"],stdout=PIPE)

elif (peltstate == "2"):

 Popen(["./home/python/pinio","set", "23","0"],stdout=PIPE)

 Popen(["./home/python/pinio","set", "25","1"],stdout=PIPE)

else:

 Popen(["./home/python/pinio","set", "23","1"],stdout=PIPE)

 Popen(["./home/python/pinio","set", "25","1"],stdout=PIPE)

bilingual.py

"""

Please excuse my highschool german! :~)

"""

import sys

if (len(sys.argv) > 1):

 sys.argv[1] == 'english'):

 print "Hello World!"

 elif(sys.argv[1] == 'german'):

 print "Guten Tag Welt!"

 else:

 print "Which language?"

 print "Welche sprache?"

else:

 print "Which language do you want?"

 print "Welch sprache wisst du?"

Web server Code

Index.php
<html>

<body>

<?php

function ctl7553($onoff){

if ($onoff == 'on'){system("sudo bash /home/python/init7553.sh &");}

else{system("sudo killall python");}

sleep(5);

}

(isset($_POST["Start"]))?(ctl7553('on')):(sleep(0));

(isset($_POST["Stop"]))?(ctl7553('off')):(sleep(0));

$params = parse_ini_file("sample.ini", true);

$ip = $_SERVER['SERVER_ADDR'];

$nb = $params['nestbox'];

$sampleInt = $params['sampleInterval'];

$peltInt = $params['peltierInterval'];

$pidpath = "/home/dataLogger.pid";

$fh = fopen($pidpath, "r");

43 | P a g e

$pid = fgets($fh);

$procpath = "/proc/".$pid;

if (file_exists($procpath)){

$runState = "Running";

}else{

$runState = "Not Running";

}

// check Peltier state by reading pins that control the H-bridge

$peltcmd = 'sudo ts7500ctl --peek16 --address=0x68';

$hexPeltState = shell_exec($peltcmd);

if ($hexPeltState == 0x2f){

$peltState = 'Cooling';

}elseif($hexPeltState == 0x3b){

$peltState = 'Heating';

}else{

$peltState = 'Off';

}

?>

<table align=center border="0">

<tr>

 <td colspan="2" style="background-color:#99CCFF;"><h1>Nestbox <?php echo

$nb; ?>
<h2>Main Page</h2></h1></td>

</tr>

 <td style="background-color:#99CCFF;width:200px;text-align:center;">

 <table align=center border="0">

 <tr><td>Main Page</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/bin/node/time.php'; ?>">Time

Settings</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/dataSettings.php'; ?>">Data

Settings</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/api/rfid.php'; ?>">RFID</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/api/read'; ?>">Read</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/api/loggerData';

?>">loggerData</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/dataDownload.php'; ?>">Download

Data</td></tr>

 </table>

 </td>

 <td style="background-color:#FFFFFF;width:1200px;text-align:top;">

 <table align=center width="300" border="1" style="font-

family:verdana;font-size:90%;color:black">

 <tr><td>IP Address</td><td><?php echo $ip; ?></td></tr>

 <tr><td>Sample Interval</td><td><?php echo $sampleInt;

?></td></tr>

44 | P a g e

 <tr><td>Peltier Interval</td><td><?php echo $peltInt;

?></td></tr>

 <tr><td>Peltier State</td><td><?php echo $peltState;

?></td></tr>

 <tr><td>Device Status</td><td><?php echo $runState;

?></td></tr>

 <tr>

 <form method="post" action="<?php echo $PHP_SELF;?>">

 <?php

 if ($runState=="Not Running")

 {echo '<td></td><td><input type="submit" value="Start"

name="Start"></td>'; }

 else{echo '<td></td><td><input type="submit" value="Stop"

name="Stop"></td>';}

 ?>

 </form>

 </tr>

 </table>

 </td>

</tr>

</table>

</body>

</html>

dataSettings.php

<?php

// check Peltier state by reading pins that control the H-bridge

$peltcmd = 'sudo ts7500ctl --peek16 --address=0x68';

$hexPeltState = shell_exec($peltcmd);

if ($hexPeltState == 0x2f){

$peltS = '1';

}elseif($hexPeltState == 0x3b){

$peltS = '2';

}else{

$peltS = '0';

}

// loads current settings from ini file

$params = parse_ini_file("sample.ini", true);

$pidpath = "/home/dataLogger.pid";

$fh = fopen($pidpath, "r");

$pid = fgets($fh);

$procpath = "/proc/".$pid;

$PeltRadio = '';

if (file_exists($procpath)){

 $PeltRadio = 'disabled';

}else{

45 | P a g e

 $PeltRadio = '';

}

// this function is used to write an array to a .ini file

function write_ini_file($assoc_arr, $path, $has_sections=FALSE) {

 $content = "";

 if ($has_sections) {

 foreach ($assoc_arr as $key=>$elem) {

 $content .= "[".$key."]\n";

 foreach ($elem as $key2=>$elem2) {

 if(is_array($elem2))

 {

 for($i=0;$i<count($elem2);$i++)

 {

 $content .= $key2."[] = \"".$elem2[$i]."\"\n";

 }

 }

 else if($elem2=="") $content .= $key2." = \n";

 else $content .= $key2." = \"".$elem2."\"\n";

 }

 }

 }

 else {

 foreach ($assoc_arr as $key=>$elem) {

 if(is_array($elem))

 {

 for($i=0;$i<count($elem);$i++)

 {

 $content .= $key."[] = \"".$elem[$i]."\"\n";

 }

 }

 else if($elem=="") $content .= $key." = \n";

 else $content .= $key." = \"".$elem."\"\n";

 }

 }

 if (!$handle = fopen($path, 'w')) {

 return false;

 }

 if (!fwrite($handle, $content)) {

 return false;

 }

 fclose($handle);

 return true;

}

// check if there are any inputs, if there are, store them, otherwise, use

previous values from ini file

$ip =

((isset($_POST["ip"]))?htmlspecialchars($_POST["ip"]):$_SERVER['SERVER_ADDR']

);

$nb =

((isset($_POST["nb"]))?htmlspecialchars($_POST["nb"]):$params['nestbox']);

$sampleInt =

((isset($_POST["sampleint"]))?htmlspecialchars($_POST["sampleint"]):$params['

sampleInterval']);

46 | P a g e

$peltInt =

((isset($_POST["peltierint"]))?htmlspecialchars($_POST["peltierint"]):$params

['peltierInterval']);

$peltSet =

((isset($_POST["peltState"]))?htmlspecialchars($_POST["peltState"]):$peltS);

system('sudo ifconfig eth0 '.$ip);

if ($PeltRadio !== 'disabled'){

switch ($peltSet) {

 case "0":

 $offcheck = "checked";

 $coolcheck = "";

 $heatcheck = "";

 $setpelt = "bash /home/python/setPeltier.sh 0";

 break;

 case "1":

 $offcheck = "";

 $coolcheck = "checked";

 $heatcheck = "";

 $setpelt = "bash /home/python/setPeltier.sh 1";

 break;

 case "2":$params['peltierInterval'] = $peltInt;

 $offcheck = "";

 $coolcheck = "";

 $heatcheck = "checked";

 $setpelt = "bash /home/python/setPeltier.sh 2";

 break;

}

$out = shell_exec('sudo '.$setpelt);

}

// updates array value

$params['ipaddr'] = $ip;

$params['nestbox'] = $nb;

$params['sampleInterval'] = $sampleInt;

$params['peltierInterval'] = $peltInt;

// defines path to ini file

$path = "/var/www/sample.ini";

// write array to ini file

write_ini_file($params, $path, false);

// the html stuff largely prints the borders and tables and stuff, since

commenting in html is annoying, its here.

?>

<html>

<body>

<table align=center border="0">

<tr>

 <td colspan="2" style="background-color:#99CCFF;"><h1>Nestbox <?php echo

$nb; ?>
<h2>Device Settings</h2></h1></td>

</tr>

47 | P a g e

<tr valign="top">

 <td style="background-color:#99CCFF;width:150px;text-align:center;">

 <table align=center border="0">

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/index.php'; ?>">Index</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/bin/node/time.php'; ?>">Time

Settings</td></tr>

 <tr><td>Data Settings</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/api/rfid.php'; ?>">RFID</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/api/read'; ?>">Read</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/api/loggerData';

?>">loggerData</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/dataDownload.php'; ?>">Download

Data</td></tr>

 </table>

 </td>

 <td style="background-color:#EEEEEE;width:1200px;text-align:top;">

 <form method="post" action="<?php echo $PHP_SELF;?>">

 <table align=center width="500" border="0" style="font-

family:verdana;font-size:90%;color:black">

 <tr>

 <td>Nestbox</td>

 <td><input type="text" size="14" maxlength="3" name="nb" value =

"<?php echo $params['nestbox']; ?>" ></td>

 </tr>

 <tr>

 <td>IP Address</td>

 <td><input type="text" size="14" maxlength="15" name="ip" value =

"<?php echo $params['ipaddr']; ?>" ></td>

 </tr>

 <tr>

 <td>Thermocouple Sample Interval</td>

 <td><input type="text" size="14" maxlength="2" name="sampleint" value

= "<?php echo $params['sampleInterval']; ?>" ></td>

 </tr>

 <tr>

 <td>Peltier Control Interval</td>

 <td><input type="text" size="14" maxlength="2" name="peltierint"

value = "<?php echo $params['peltierInterval']; ?>" ></td>

 </tr>

 <tr>

 <td>Peltier State <?php echo $PeltRadio; ?></td>

 <td>

 <input type="radio" name="peltState" value="0" <?php echo $offcheck.'

'.$PeltRadio; ?> /> Off

 <input type="radio" name="peltState" value="1" <?php echo

$coolcheck.' '.$PeltRadio; ?> /> Cool

 <input type="radio" name="peltState" value="2" <?php echo

$heatcheck.' '.$PeltRadio; ?> /> Heat

 </td>

48 | P a g e

 </tr>

 <tr>

 <td></td><td><input type="submit" value="submit" name="submit"></td>

 </tr>

 </table>

 </form>

 </td>

</tr>

</table>

</body>

</html>

Time.php
<?php

 $yyMmDd = $_POST["yyMmDd"];

 $verbose = ((isset($_GET["verbose"]))?htmlspecialchars($_GET["verbose"]):1);

 $currTime = time();

 $currTimeDisp = date(DATE_RFC822,$currTime);

 $yr = substr($yyMmDd, 0,4);

 $mon = substr($yyMmDd, 4,2);

 $d = substr($yyMmDd, 6,2);

 $h = substr($yyMmDd, 8,2);

 $m = substr($yyMmDd, 10,2);

 $s = substr($yyMmDd, 12,2);

 //$date2set = "sudo date --set ".$yr."-".$mon."-".$d;

 $time2set = "sudo date --set ".$h.":".$m.":".$s;

 $params = parse_ini_file("/var/www/sample.ini", true);

 $nb = $params['nestbox'];

 if ($verbose == 1) {

?>

<html>

<table align=center border="0">

<tr>

 <td colspan="2" style="background-color:#99CCFF;"><h1>Nestbox <?php echo

$nb; ?>
<h2>Time Settings</h2></h1></td>

</tr>

<tr valign="center">

 <td style="background-color:#99CCFF;width:150px;text-align:center;">

 <table align=center border="0">

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/index.php'; ?>">Main Page</td></tr>

 <tr><td>Time Settings</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/dataSettings.php'; ?>">Data

Settings</td></tr>

49 | P a g e

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/api/rfid.php'; ?>">RFID</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/api/read'; ?>">Read</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/api/loggerData';

?>">loggerData</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/dataDownload.php'; ?>">Download

Data</td></tr>

 </table>

 </td>

<td style="background-color:#EEEEEE;width:1200px;text-align:left;">

 Current Time is (Unix): <?php echo $currTime;?>

 Current Time is (RFC822): <?php echo $currTimeDisp;?>

 <form method="post" action="<?php echo $PHP_SELF;?>">

 Time:<input type="text" size="14" maxlength="14" name="yyMmDd">

 <input type="submit" value="submit" name="submit">

 </form>

</td>

</tr>

</table>

</html>

<?

 }else{

 echo $currTime;

 }

 if (isset($_POST['submit'])) { // if page is not submitted to itself echo

the form

 echo "You have set time to ".$yyMmDd.".
";

 echo $date2set."
";

 echo $time2set."
";

 //shell_exec($date2set);

 shell_exec($time2set);

 }

 ?>

Read.php
<?php

$pidpath = "/home/dataLogger.pid";

$fh = fopen($pidpath, "r");

$pid = fgets($fh);

$procpath = "/proc/".$pid;

if (file_exists($procpath)){

 echo "<table><tr><td>time</td><td>box temp</td><td>egg temp</td><td>set

point</td><td>Peltier control</td></tr>";

 $file = "/var/www/api/output.csv";

 $file = escapeshellarg($file);

 $line = `tail -n 1 $file`;

 $pieces = explode(",",$line);

50 | P a g e

 echo

"<tr><td>".$pieces[0]."</td><td>".$pieces[1]."</td><td>".$pieces[2]."</td><td

>".$pieces[3]."</td><td>".$pieces[4]."</td></tr></table>\n";

}else{

echo "Device is not running; no new data to display";

}

?>

loggerData.php
<?php

//$lines = ((isset($_GET["Lines"]))?($_GET["Lines"]):1);

// this assumes 15s sample interval and that server reads it every 5 minutes.

// actuall 6 minutes are provided. the data collecting scripts can deal with

redundant data,

// so the extra minute is to make sure all data's covered.

$lines = 360;

// full path to text file

define("TEXT_FILE", "/var/www/api/output.csv");

// number of lines to read from the end of file

define("LINES_COUNT", $lines);

function read_file($file, $lines) {

 //global $fsize;

 $handle = fopen($file, "r");

 $linecounter = $lines;

 $pos = -2;

 $beginning = false;

 $text = array();

 while ($linecounter > 0) {

 $t = " ";

 while ($t != "\n") {

 if(fseek($handle, $pos, SEEK_END) == -1) {

 $beginning = true;

 break;

 }

 $t = fgetc($handle);

 $pos --;

 }

 $linecounter --;

 if ($beginning) {

 rewind($handle);

 }

 $text[$lines-$linecounter-1] = fgets($handle);

 if ($beginning) break;

 }

 fclose ($handle);

 return array_reverse($text);

}

echo "<table>\n";

echo "<tr><td>time</td><td>box temp</td><td>egg temp</td><td>set

point</td><td>Peltier control</td></tr>\n";

$lines = read_file(TEXT_FILE, LINES_COUNT);

foreach ($lines as $line) {

51 | P a g e

 $pieces = explode(",",$line);

 echo

"<tr><td>".$pieces[0]."</td><td>".$pieces[1]."</td><td>".$pieces[2]."</td><td

>".$pieces[3]."</td><td>".$pieces[4]."</td></tr>\n";

}

echo "</table>";

?>

rfid.php
<?php

$params = parse_ini_file("/var/www/sample.ini", true);

$nlines = ((isset($_POST["nlines"]))?htmlspecialchars($_POST["nlines"]):5);

// full path to text file

define("TEXT_FILE", "/var/www/api/rfidout.csv");

// number of lines to read from the end of file

define("LINES_COUNT", $nlines);

function read_file($file, $lines) {

 //global $fsize;

 $handle = fopen($file, "r");

 $linecounter = $lines;

 $pos = -2;

 $beginning = false;

 $text = array();

 while ($linecounter > 0) {

 $t = " ";

 while ($t != "\n") {

 if(fseek($handle, $pos, SEEK_END) == -1) {

 $beginning = true;

 break;

 }

 $t = fgetc($handle);

 $pos --;

 }

 $linecounter --;

 if ($beginning) {

 rewind($handle);

 }

 $text[$lines-$linecounter-1] = fgets($handle);

 if ($beginning) break;

 }

 fclose ($handle);

 return array_reverse($text);

}

$lines = read_file(TEXT_FILE, LINES_COUNT);

?>

<html>

<body>

<table align=center border="0">

<tr>

 <td colspan="2" style="background-color:#99CCFF;"><h1>Nestbox <?php echo

$params['nestbox']; ?>
<h2>RFID</h2></h1></td>

</tr>

52 | P a g e

<tr valign="top">

 <td style="background-color:#99CCFF;width:200px;text-align:center;">

 <table align=center border="0">

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/index.php'; ?>">Main Page</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/bin/node/time.php'; ?>">Time

Settings</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/dataSettings.php'; ?>">Data

Settings</td></tr>

 <tr><td>RFID</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/api/read'; ?>">Read</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/api/loggerData';

?>">loggerData</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/dataDownload.php'; ?>">Download

Data</td></tr>

 </table>

 </td>

 <td style="background-color:#EEEEEE;width:1200px;text-align:center;">

 <table align=center border="0" style="font-family:verdana;font-

size:90%;color:black">

 <tr>

 <td>Number of entries to read</td>

 <form method="post" action="<?php echo $PHP_SELF;?>">

 <td><input type="text" size="14" maxlength="2" name="nlines" value =

<?php echo $nlines; ?> ></td>

 <td></td><td><input type="submit" value="submit" name="submit"></td>

 </form>

 </tr>

 </table>

 <table align=center width="600" border="1" bgcolor="#FFFFFF"

style="font-family:verdana;font-size:90%;color:black">

 <tr><td align="center">Time</td><td align="center">Bird

State</td><td align="center">RFID Tag</td></tr>

 <?php

 foreach ($lines as $line) {

 $pieces = explode(",",$line);

 echo "<tr><td align='center'>".$pieces[0]."</td><td

align='center'>".$pieces[1]."</td><td

align='center'>".$pieces[2]."</td></tr>";

 }

 echo "</table>";

 ?>

 </td>

</tr>

</table>

53 | P a g e

</body>

</html>

DataDownload.php
<?php

$params = parse_ini_file("sample.ini", true);

?>

<html>

<body>

<table align=center border="0">

<tr>

 <td colspan="2" style="background-color:#99CCFF;"><h1>Nestbox <?php echo

$params['nestbox']; ?>
<h2>Download Data</h2></h1></td>

</tr>

<tr valign="top">

 <td style="background-color:#99CCFF;width:200px;text-align:center;">

 <table align=center border="0">

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/index.php'; ?>">Main Page</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/bin/node/time.php'; ?>">Time

Settings</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/dataSettings.php'; ?>">Data

Settings</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/api/rfid.php'; ?>">RFID</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/api/read'; ?>">Read</td></tr>

 <tr><td><a href="<?php echo

'http://'.$_SERVER['SERVER_ADDR'].'/api/loggerData';

?>">loggerData</td></tr>

 <tr><td>Download Data</td></tr>

 </table>

 </td>

 <td style="background-color:#EEEEEE;width:1200px;text-align:top;">

 <table align=center bgcolor = "EEEEEE" border="0">

 <tr>

 <td>Download Thermocouple Data</td>

 </tr>

 <tr></tr>

 <tr>

 <td>Download RFID Data</td>

 </tr>

 </td>

</tr>

</table>

</body>

</html>

54 | P a g e

