
P a g e | i

COCKTAIL AUTOMATION

MANAGEMENT SYSTEM

A Design Project Report

Presented to the School of Electrical and Computer Engineering

of Cornell University

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering, Electrical and Computer Engineering

Submitted by

Cameron Glass (cig23)

MEng Advisor: Bruce Robert Land

Degree Date: August 2014

P a g e | ii

Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title: Cocktail Automation Management System

Author: Cameron Glass

Abstract:
The purpose of the Cocktail Automation Management System (CAMS) is to offer a complete
hardware-software system that automatically prepares cocktails for patrons at a bar or restaurant.
This systems consists of a central processing board that handles user requests and coordinates
communication among modules which each hold one ingredient. The CAMS would complement
or replace bartenders for easy-to-mix beverages, which would free up the bartenders for work that
could not be automated, such as payment collection and more complex cocktails. The CAMS
delivers beverages by acting in two stages – order determination and component delivery. First, a
patron orders a cocktail from a list of available drinks using a serial terminal running on a PC.
Then, for each ingredient in the cocktail, the CAMS determines what module the ingredient is
located in and what volume of that ingredient is needed. A command is issued to each of the
relevant modules to dispense the specified ingredient. The modules all dispense ingredients into
plastic tubing that runs from the modules to a cocktail glass.

There are several other existing solutions currently on the market. These systems also offer
complete hardware-software solutions, but none of these systems are cheap, modular, or scalable.
They all require the purchase of a specific sized system, and if at a later point more modules are
desired for the system, an entirely new system must be purchased with no way of using the
existing system. The CAMS is designed to use as few as 1 ingredient module and as many as 64
ingredient modules. The main controller is separate from the ingredient modules, and the
ingredient modules only need connections to power and to the communications bus to add
functionality to the system. Additionally, the expected cost of the CAMS is significantly lower
than the existing systems per module. The CAMS cost efficiency varies slightly with number of
modules as the cost of the main module must be paid regardless of system size. However, the
CAMS is more cost effective than all other existing systems for all system sizes.

P a g e | iii

Executive Summary

The purpose of the Cocktail Automation Management System (CAMS) is to offer a
complete hardware-software system that automatically prepares cocktails for patrons at a bar or
restaurant. This systems consists of a central processing board that handles user requests and
coordinates communication among modules which each hold one ingredient. A module consists
of a plastic bottle, an ultrasonic sensor, a valve, a group of tubes and connectors, a structure to
mount these components, and a microcontroller board with associated circuitry to run the module
components. Some tasks needed to run a bar are difficult to automate, so the system is intended to
complement or replace bartenders for easy-to-mix beverages. Preparing more advanced cocktails,
collecting payments, swapping out bottles, and many other tasks will still have to be carried out
by trained bartenders.

When the CAMS is turned on, it prints a list of all the cocktails available to be made given
the current modules, and then prompts the user to select a cocktail to be made. The CAMS
delivers beverages by acting in two stages – order determination and component delivery. First, a
patron orders a cocktail from a list of available drinks using a serial terminal running on a PC.
Then, for each ingredient in the cocktail, the CAMS determines what module the ingredient is
located in and what volume of that ingredient is needed. A command is issued over a UART bus
to each of the relevant modules to dispense the specified ingredient. The bus does not have any
collision management, as the communication method is designed to only have one node
communicating on the bus at a time. Delivery of messages is ensured by a system of
acknowledges on each command. When a module receive a dispense command, it dispenses its
ingredient into plastic tubing that connects directly to the bottle containing the ingredient and
ends in an area located above a cocktail glass. Ingredients are dispensed from the bottles using a
solenoid valve and the process is controlled by a microcontroller on the module board.

There are several other beverage automation solutions which are either developed by
hobbyists or are attempting to attain commercial production through the online crowdfunding
platform, Kickstarter. Such systems include the Party Robotics’ Bartendro, the Inebriator, the
BoozeBot, and Monsieur. These systems also offer complete hardware-software solutions, but
none of these systems are cheap, modular, or scalable. They all require the purchase of a specific
sized system, and if at a later point more modules are desired for the system, an entirely new
system must be purchased with no way of using the existing system. For example, the Monsieur
and the Inebriator both only allow for a set number of ingredients. The BoozeBot and Bartendro
both have different models, but provide no way of scaling between models – to increase system
size and functionality, a new system must be purchased.

The CAMS is designed to use as few as one ingredient module and as many as 64
ingredient modules. The main controller is separate from the ingredient modules, and the
ingredient modules only need connections to power and to the communications bus to add
functionality to the system. Additionally, the expected cost of the CAMS is significantly lower
than the existing systems per module. Across all systems (including CAMS), the greater number
of modules purchased, the cheaper the effective module price, as cost of the main controller is
distributed over many modules. The most expensive and least cost effective product is the
Monsieur, which has a rate of $500 per module, and the most cost effective per module is the
BoozeBot, which costs 62.5 British Pounds, or about $108. The CAMS prototype has a per

P a g e | iv

module cost of $103.35. The cost of the largest BoozeBot system is more than the cost of an
equally sized CAMS. Lastly, the prototype cost of the CAMS was driven up significantly by the
debug hardware used and buying each part individually. There are several components used for
debugging on the module boards that can be removed for production to reduce cost, and
purchasing components and producing boards in bulk would significantly drive down the cost per
module.

P a g e | 1

Table of Contents

Cocktail Automation Management System ... i

Abstract .. ii

Executive Summary ...iii

Table of Contents .. 1

Table of Figures... 3

Introduction ... 4

Alternative Designs Considered... 6

Communications Structure .. 6

Custom Static Network .. 6

CAN Bus Communications Structure.. 7

Mechanical Designs Considered ... 8

Compressed Air ... 9

Design ... 11

Electrical Design ... 11

Prototyping Circuit Board ... 11

UART Bus ... 11

Solenoid Valve Driving Circuit ... 12

Mechanical Design .. 13

Software Design .. 15

Data Structures .. 15

Main Board Software... 16

Initialization ... 16

User Interface .. 17

Communication Stack .. 17

Module Board Software... 19

Initialization and UART ISR .. 19

Communication .. 19

Ultrasonic Sensor and Valve Control .. 20

Results .. 22

Sensor Experiments ... 22

P a g e | 2

UART Bus Reliability ... 22

Valve Calibration Tests ... 23

Future Work .. 26

Reducing Electronics Cost .. 26

Mechanical Design Updates .. 27

User Interface Updates .. 28

Conclusions .. 30

References .. 31

Appendix A: Software and User Interface ... 32

Appendix B: Mechanical Design.. 35

Appendix C: Circuit Board Schematics and Design .. 37

Appendix D: Component Costs ... 41

Appendix E: Experimental Results ... 47

Appendix G: Ultrasonic Sensor Datasheet ... 53

P a g e | 3

Table of Figures and Tables

Table A1 – List of Ingredient Numbers and Names ... 32

Table A2 – List of Cocktails ... 32

Figure A1 – Example Successful Serial Console Output ... 33

Figure A2 – Example Successful Ordering Sequence Using a Grounded Bus............................... 34

Figure B1 – Front Mechanical View of a CAMS module .. 35

Figure B2 – SolidWorks Model of Mechanical Structure .. 36

Figure C1 – Main Board Schematic.. 38

Figure C2 – Constructed Main Board ... 38

Figure C3 – Module Board Schematic.. 39

Figure C4 – Constructed Module Board (Solenoid Valve and Valve Power Rail Connections

Disconnected) ... 39

Figure C5 – AT90CAN128 Breakout Board .. 40

Table D1 - Electrical Components .. 41

Table D2 – Main Board Components ... 43

Table D3 – Module Board Components ... 44

Table D4– Mechanical Components ... 45

Table D5 – Single Valve Module Mechanical Components .. 45

Table D6 – Compressed Air Module Mechanical Components ... 45

Table D7 – Compressed Air System Module Costs ... 46

Table D8 – Single Valve Module Costs ... 46

Table D9 – Price Comparisons ... 46

Table E1 – Results of Ultrasonic Sensor Test .. 47

Figure E1 – Graph of Ultrasonic Sensor Test ... 48

Table E2 – Error of Ultrasonic Sensor Models ... 49

Table E3 – Results of Constant Duration Valve Test ... 50

Figure E2 – Volume Dispensed in 100ms vs Distance from Ultrasonic Sensor to Top of Liquid . 51

Table E4 – Calibration Data for Valve Durations .. 52

P a g e | 4

Introduction

The purpose of the Cocktail Automation Management System (CAMS) is to offer a
complete hardware-software system that automatically prepares cocktails for patrons at a bar or
restaurant. This systems consists of a central processing board that handles user requests and
coordinates communication among modules which each hold one ingredient. A module consists
of a plastic bottle, an ultrasonic sensor, a valve, a group of tubes and connectors, a structure to
mount these components, and a microcontroller board with associated circuitry to run the module
components. Some tasks needed to run a bar cannot automated, so this system is intended to
complement or replace bartenders for easy-to-mix beverages. Preparing more advanced cocktails,
collecting payments, swapping out bottles, and many other tasks must still be carried out by
trained bartenders.

Turning on the CAMS begins the setup process. Using a serial terminal, the CAMS
prompts for which ingredients are located in each ingredient module. These ingredients are
encoded by number, so this process requires the user to know the mapping from ingredient names
to ingredient numbers. Once the modules and contents have been enumerated, it prints a list of all
the cocktails available to be made and then prompts the user to select a cocktail to be made. The
CAMS delivers beverages by acting in two stages – order determination and component delivery.
First a user orders a cocktail from the presented list by menu item number, which was just
displayed. Then, for each ingredient in the cocktail, the CAMS determines what module the
ingredient is located in and what volume of that ingredient is needed. A command is issued over a
UART bus to each of the relevant modules to dispense the specified ingredient. Each dispensing
command executes a small handshake between the main board and the module which allows the
main board to specify which module it is attempting to send a command to, followed by the
number of parts of liquid to dispense. Specifying a number of parts to dispense allows more
complex cocktails of varying volumes to be made. The bus does not have any collision
management, as the communication method is designed to only have one node communicating on
the bus at a time. Delivery of messages is ensured by a system of acknowledges on each
command.

Modules dispense ingredients to the cocktail being made by opening and closing a
solenoid valve connected to beverage-grade plastic tubing, which transports the liquid into a
cocktail glass. Each time a module gets a dispensing command, it must determine how long to
hold the valve open as a function of the current volume of liquid in the bottle and the number of
parts of liquid specified by the main board. Ingredient bottles have a hole cut out at the top of
them which houses an ultrasonic sensor. When a reading is initiated by the module board, the
ultrasonic sensor determines the height of the liquid remaining in the bottle. The microcontroller
then reads that value and uses it to index a lookup table to determine how long to hold the valve
open. The ultrasonic sensor reading is necessary because the volume of liquid in a bottle
determines the flow rate out of the bottle, as described through Bernoulli’s Principle of fluid flow.

There are several other beverage automation solutions either developed by hobbyists or
are attempting to attain commercial production through the online crowdfunding platform,
Kickstarter. Such systems include the Party Robotics’ Bartendro, the Inebriator, the BoozeBot,
and Monsieur. These systems also offer complete hardware-software solutions, but none of these
systems are cheap, modular, or scalable. They all require the purchase of a specific-sized system,
and if at a later point more modules are desired for the system, an entirely new system must be
purchased with no way of using the existing system. For example, the Monsieur and the

P a g e | 5

Inebriator both only allow for a certain number of ingredients. The BoozeBot and Bartendro both
have different models, but provide no way of scaling between models – to increase system size
and functionality, a new system has to be purchased.

The CAMS is designed to use as few as one ingredient module and as many as 64
ingredient modules. The main controller is separate from the ingredient modules, and the
ingredient modules only need connections to power and to the communications bus to add
functionality to the system. Additionally, the expected cost of the CAMS is significantly lower
than the existing systems per module. Across all systems (including CAMS), the greater number
of modules purchased, the cheaper the effective module price, as cost of the main controller is
distributed over many modules. The most expensive and least cost effective product is the
Monsieur, which has a rate of $500 per module, and the most cost effective per module is the
BoozeBot, which costs 62.5 British Pounds, or about $108. The CAMS prototype has a per
module cost of $103.35. The cost of the largest BoozeBot system is more than the cost of an
equally sized CAMS, even when taking into account the costs of the main module. A four-module
CAMS prototype is expected to cost 57.5% cheaper than the same size BoozeBot, which is the
smallest model.

Furthermore, the prototype cost of the CAMS was driven up significantly by the debug
hardware used and buying each part individually. Some components, such as the FTDI serial chip,
the associated capacitors, and USB connector (totaling about $5.50) are not needed for production
model module boards, because the USB connection is used only for debugging. For a production
board, the microcontroller would be mounted directly on to the board. Future development work
with the CAMS past the first prototype can also likely lead to additional cost efficiencies in the
design. It is likely that the code size and timer hardware requirements of the CAMS could be
satisfied by a smaller, cheaper microcontroller, which would also remove cost of the system.
Designing custom circuit boards for this system would eliminate the need for any breadboards
currently used (which each cost $6). Lastly, purchasing all system components and circuit boards
in bulk would drastically reduce cost per module, as the prototype cost was determined by
individual part costs of every single electrical and mechanical component in the system.

P a g e | 6

Alternative Designs Considered

 Over the course of this design project, several design alternatives were explored to best
suit the needs of the CAMS. These design choices demonstrated tradeoffs in cost, system
complexity, and required development time. The possible design alternatives were grouped into
two categories: communications structure and beverage dispensing methods. For each of these
categories, the design possibilities that were not chosen will be discussed while leading up to a
description of the final design.

Communications Structure

Custom Static Network

 The first network structure that was considered required a custom protocol and network
topology. There were three types of network nodes in this topology – the central board, interface
boards, and the beverage modules, and these nodes formed a quad-tree structure. The central
board forms the root of the tree and thus has four ports, the interface boards each have one port to
connect to its parents and have four ports for four branches, and the modules just have a single
port. At initialization time of the system, the central board attempts to enumerate all of the
modules that are present by querying each of the ports one by one to list the connected modules.
 The result of this process is that the main board and the interface boards all know which
beverage modules are located at each of their ports, but do not know the exact locations of the
modules. For example, the main board might know that there are seven modules that branch off of
port zero, but does not know their exact locations. If the main board wants to send a command to
one of those seven modules, it sends a request to that port and allows the connected interface
boards to handle the request. When an interface board gets a request for module dispensing, it
repeats the process. If the desired module is located at one of the ports with just a leaf on it, then
the interface board knows the exact location of the module. If the module is located at the port
with the next interface board, it just sends a command to dispense an ingredient and allows the
next level board to handle the request.
 The key aspect of this design is that all of the ports are physically the same pin out and the
protocol for requesting commands and responding to commands is the same regardless of whether
or not the receiving node is an interface board or a module. This provides two main benefits.
First, using the same message standards for sending and receiving from both boards and modules
makes the communication software very easy. When a board gets or generates a request, it just
needs to look up on which of the four ports the desired module is located on, and sends a request
to one of four ports. No board needs to maintain exact location, nor does the protocol require a
complicated routing method – the route is deterministic. The second benefit is that the design time
of this protocol would be relatively short. All the ports are have same physical and electrical
specifications regardless of which board or module they are on, or if they are an input or an output
port. Additionally, the simple message types and message structure are relatively easy to program
on a microcontroller.
 However, there are many negative aspects of this design. Designing a circuit board takes
considerable design time, and if there are three different designs needed (main, interface, and
module), then the time to just have all the necessary boards produced would triple. The same
board design could be used for all three boards, but that would require each board to have five

P a g e | 7

ports and make the module and central boards larger than necessary, which would make the final
design physically bulkier. Additionally, three different types of board designs would result in
three completely different sets of software, regardless of the physical board design. Lastly and
most importantly, developing a tree structure of nodes would require significant harnessing and a
large number of boards. Even producing these boards in bulk would likely not reduce the cost
enough to validate use of the design. Regardless, requiring an extra board for every multiple of 4
modules used past 5 will unnecessarily drive up the total system cost, which defies one of the
principal design points of the CAMS.

CAN Bus Communications Structure

 The main alternative design choice for the board-to-board communications infrastructure
considered was the CAN (Controller Area Network) protocol for bus communication. The CAN
standard is a bus-based protocol that was developed at Bosch in the 1980’s and has been used
primarily for automotive systems. CAN is a bus-based multi-master protocol similar to I2C in that
any node can send a message to any other node on the bus. Each node on the bus is assigned a
unique identifier (determined at design time) which also denotes priority on the bus. A lower
numbered identifier denotes higher priority. A CAN packet consists of many fields including up
to 8 bytes of payload and a 15 bit CRC field for error detection. Additionally, CAN has a wide
variety of error detection and information to convey to software. The CAN protocol is interesting
because it requires two separate controllers to operate the protocol. One controller handles the
logic of the protocol and communicates with the second controller, which handles the analog
specifics of the CAN bus including performing processing and error detection tasks at the bit
level.
 There are two versions of the CAN protocol currently in use: CAN version 2A and 2B.
The main difference between these two versions of the protocol is that version A only allows for
11 bit identifiers, whereas version B allows for 29 bit identifiers. There are some other changes in
packet structure between these two protocols, but they exist only to enable the additional
identifier length. Aside from these differences, the protocols operate in the same way. The CAN
protocol is broken down into the physical layer, the transfer layer, and the application layer. The
physical layer implements differential pair bit signaling, where a 0 is indicated by a high voltage
on the bus (called a dominant bit) and a 1 is indicated by a low voltage (recessive bit). The wire
harnessing in a CAN bus requires a characteristic impedance of 120 Ohms and requires an
additional terminating resistor of 120 Ohms at either end of the bus. Data frames are specified at
the transfer layer and consist of a start of frame bit, an identifier, a set of control bits (including
payload size), a variable size payload, the CRC and delimiter, an ACK bit and delimiter, and an
end-of-frame field. Bus arbitration, error detection, and acknowledgement are all handled at this
layer. Lastly, the programmer is able to interface with the CAN-based system at the application
layer. Transmission and reception of messages at the application level are handled through a set
of message objects that contain all the necessary information about the content and status of a
message. For example, a program can format a message object to be a data message designated
for another node on the bus, the message can be queued to send as soon as it is ready, and an
interrupt flag can be raised when the transmission of the message is successful or if there is an
acknowledgement error on the message. The message object system of CAN controllers is
complex, but it allows for rich interactions between the software and the lower level protocol.
 Originally, it seemed as though the CAN bus was a good design choice for this project.
The high noise immunity offered by the bus specifications was attractive for this application

P a g e | 8

because the high power solenoid valves employed are likely to create noise on the bus. The CAN
bus is able to detect errors through analog bit errors on the bus, packets formatting errors, CRC
errors, and acknowledgement errors. This wide set of error signaling could be useful in debugging
to help get the technology running initially as well as in production runtime software to increase
system robustness. Additionally, Atmel sells microcontrollers with integrated CAN controllers to
reduce the circuit board complexity and allow direct manipulation of message objects and the
status of the CAN controller. Atmel also released several resources on how to program for the
CAN line of microcontrollers and how to translate register names from other Atmel product lines
to the CAN line. Additionally, because CAN packets contain a destination identifier, up to 8 bytes
of payload, and built in acknowledgements, the communications software could be simpler
because many basic communications tasks could be handled by the built in CAN controller.
 A considerable amount of development time was put into enabling use of the CAN bus,
but in the end it proved to not be the best technology for this project. Many of the features that
initially made CAN attractive made progress slow and halting. First, enabling the use of a CAN
microcontroller required designing a printed circuit board, testing it, producing a second revision,
and then further testing before any meaningful communications software development could start.
The board work provided some exciting work and experience developing a new circuit board but
it took development time away from other aspects of the project. Next, the integrated CAN
controller on the board actually made it more difficult to debug issues. Because of the way the
CAN controller is built in the Atmel architecture, attempting to send any message required a
complicated set of register commands which made it difficult to identify the faulty step in the
process. The demonstration code offered by Atmel was very difficult to parse, and was also not
helpful in trying to develop just a simple board to board communications demonstration.
Additionally, I did not have any access to CAN bus analyzers or logic analyzers, which would
have made development significantly easier.
 The largest error I made with trying to use the CAN bus on this project was
underestimating the difficulty in enabling basic use of the technology. Specifically, I was trying to
simultaneously develop new software while also trying to develop the hardware that the software
was running on. Developing both at once made it incredibly difficult to track down errors. I did
not have any CAN bus communications working, which was due primarily to my inability to
either guarantee that board design was correct and that I had a software issue, or to verify the
software was working and that I maybe have had the wrong pin mappings on one of the chips on
the board. Although the design did not work, the schematics of the board can be found in Figure
C5. Despite these shortcomings, using a CAN bus would have still had its benefits. The final
software version for the CAMS has a complicated software communication architecture, which
must include acknowledgement, timeouts, and retries in software, which could have been handled
by proper configuration of the CAN controller. However, I did not have the proper development
tools, expertise, and (most importantly) time to enable the use of CAN technology for the CAMS,
so a simple UART bus scheme was implemented. The selection rationale and implementation
details for the UART bus can be found in the Design section of this report.

Mechanical Designs Considered

The first mechanical design option was a conveyor belt based system. The modules would
be mounted above a conveyor belt and the tubes would go from the modules down to near the

P a g e | 9

belt. When a cocktail was ordered, the bartender would place a glass on the belt, and the system
would move the glass under the appropriate tube and then dispense the liquid. Once the beverage
was ready, the bartender would grab the cocktail from off the belt. Mounting the modules directly
above the belt would eliminate the possible need for compressed air and tubing. From a patron’s
perspective, it might also be fun to watch the cocktail be made as it travels down the belt.
 However, this method is not very suitable for a modular system, and it is not expected to
have a high throughput of cocktails. The conveyor belt system is not very modular because the
belt assembly would have to be resized whenever additional modules were added. It would be
possible to use a larger belt than is necessary to accommodate for a variable number of modules,
but it would be wasteful to have a conveyor belt that could fit ten modules on it when only four
modules are installed. Next, the conveyor belt would also have to be run very slowly to not spill
any liquids. One of the goals of the CAMS is to aid bartenders during peak demand, and so the
system would not be useful if it had to be run slowly to make sure the cocktails would not spill.
The conveyor belt would require a calibration method to make sure the glass was aligned properly
under the tubes.

Compressed Air

 It was apparent that the conveyor belt system was not the optimal design choice, so
additional design choices were explored. Another such choice was to use a system of compressed
air and tubes to be able to dispense ingredients from modules that were physically distant. This
design requires many mechanical components. First, the system would require a compressed air
tank and a method of delivering the compressed air to the beverage modules. This method also
has to allow air flow control from the beverage modules, as well as a way to control the
dispensing of liquids out of the modules. None of these pose particularly difficult mechanical
challenges. The regulator output of a compressed air tank is a National Pipe Thread (NPT)
standard, so the tank can be easily interfaced with a variety of beverage safe plastic standard
connectors. A tree of tube splitter components, such as Y and T splitters, could be used to deliver
compressed air to tubes for each of the modules, and the fluid flow could be controller by a
microcontroller by using a solenoid valve and appropriate driving circuit. Another solenoid valve
could be used to dispense the liquid from the module itself. A minor amount of coordination
software would be required by the module boards, but having one dedicated valve for liquid
dispensing and one for compressed air would make the coordination relatively simple.
 The valve and tubes solution had many advantages for the CAMS. First, this design was
extremely modular. The connections coming from the compressed air tank could be resized at will
using additional tube splitters, and an appropriate structure design would allow each module to be
built and installed separately. Based on previous designs available through the Cornell ECE 4760
course page the solenoid valve control would use an opto-isolator circuit that was controlled by a
microcontroller pin and powered from a power supply large enough to quickly switch on and off
the valves (Land, 2013). This seemed like an obvious choice for the mechanical design of the
CAMS.
 There were two main issues that arose through development that resulted in only partial
adoption of this plan. The first is that there was not sufficient development time to fully design
and construct the system of valves, tubes, and splitters that would make up the core of the liquid
and compressed air delivery system. Additionally, the cost of the compressed air tank, regulator,
additional tubing, connectors, valves, and required circuitry would cause the cost of the CAMS to
skyrocket. Including the cost of the valve for beverage dispensing, the mechanical components of

P a g e | 10

each additional module would cost $66.98 (see Appendix D: Component Costs). Between this and
the total BOM cost for the module boards, each module could cost up to $139.50, which is was
well above the desired price point of each module.
 Once I resolved not to use compressed air I wanted to determine how much liquid
remained in the tube undispensed after the valve had closed. I found out that the brand of plastic
tubing I used does not maintain an appreciable amount of undispensed liquid. There is liquid in
the elbow connector but this is negligible compared to the cost of a compressed air based CAMS.
The volume in the elbow connector was found to vary by amount of liquid dispensed. When
10mL was dispensed then about 4mL of liquid remained in the elbow connector. When 20mL was
dispensed then only 1mL of liquid remained in the connector. This effect is likely due to the
higher volume of liquid providing more weight and force to push all liquid out of the connector. It
is important to note that this is not a constant loss per dispensing. The first time a module is used,
some of the liquid will remain in the connector. After that, the trapped liquid will be forced out by
the new dispensing of liquid and a few mL will be left behind after that, but no net liquid will be
lost. Also, it was found that the geometry of the valve and tubing assembly affected the amount of
retained volume. Given that volume losses would be negligible, the CAMS design does not
address this remaining liquid.

P a g e | 11

Design

Electrical Design

 The most important design principals of the CAMS are high modularity, low cost, and
ease of use. The design revolves around a central processing board that handles all user requests
and communicates with a up to 64 number of self-contained modules, which each control the
dispensing of one liquid cocktail ingredient. Ice, garnishes, and any other non-liquid cocktail
components must be handled by the bartender before delivery to a customer. The central board is
a single circuit board with a microcontroller, but the modules consist of a circuit board, a solenoid
valve and associated driving circuitry, a 700mL water bottle with a hole cut in the top, an
ultrasonic sensor mounted on top, a set of tubes and connectors to connect the bottle to the valve
and then the valve to outgoing tubing, an a wooden housing to hold all of these components.
Please refer to Appendix B: Schematics and Board Layout for detailed schematics and layout of
the boards and circuitry used in the CAMS.

Prototyping Circuit Board

 The main and module boards both use the same prototyping circuit board, known as a
breakout board. This board is an existing design for prototyping systems using an
ATMEGA1284P microcontroller and peripheral hardware for a wide range of prototypes. The
power input on the board takes unregulated 7V to 35V and converts it to a regulated 5V to power
the remainder of the board. The ATMEGA1284P is seated in a DIP socket on the board that
allows the chip to be swapped out if it breaks or is damaged. The microcontroller is programmed
using an on-board ISP header. An external 16MHz crystal provides the system clock through the
XTAL pins on the microcontroller. The microcontroller communicates with other devices either
through the single row pin header on the side of the board (for plugging into a breadboard) or
through a USB connection enabled by the serial communication chip and female USB-B
connector. A green LED on the board, useful for debugging, can be connected to pin D.2 on the
microcontroller through a two pin male pin header and a small jumper. Similarly, the pins that
ordinarily drive the communication chip can be disconnected by removing jumpers on similar
headers. Serial communication jumpers were used on the CAMS for development purposes and
for PC communication, but the jumper for the green LED was removed. On both the main and
module boards, the row of pin headers is plugged directly into a breadboard for easily interfacing
with other components. Please refer to Appendix B: Schematics and Board Layout for references
to the prototyping board.

UART Bus

 ATMEGA1284P microcontrollers have two separate UART channels. On the main
microcontroller, UART0 is used to communicate with the PC to interact with the user, while
UART1 is used for the UART bus to communicate with all the module boards. On the module
boards, UART1 is used for the UART bus, and UART0 was left for PC communications for
debugging purposes but is unused during normal operation. The PC connection to the
microcontroller is made possible by the serial communication chip, an FTDI FT232RL chip,
which converts TTL level UART communication from the microcontroller to the differential pair
used in USB connections and vice versa. A female USB type B connector is connected to the chip
and easily connects the UART0 on the microcontroller to a PC.

P a g e | 12

 Given the hardware on the boards, PC to microcontroller communication is relatively
simple. From the microcontroller message transmission, the standard fprintf function can be
configured to output formatted strings on UART0. When the microcontroller receives a message,
a flag indicates there is a byte waiting in the receive buffer, at which point either an ISR can be
entered or the receive buffer can just be read by the main software. On the PC side, the USB
connection is interpreted as a serial communications port (COM port), and any program that can
handle serial I/O can bind to this COM port and interact with the microcontroller. PuTTY, a free
Microsoft Windows serial terminal program, was used to communicate with the main board. A
baud rate of 9600 was selected for the PC communications. The speed could have been increased,
but slower baud is more reliable and the channel was not nearly saturated, so it was not necessary.
 The UART1 channel on the microcontrollers was used to allow bus-based UART
communication. The most efficient way for the main module to issue commands to anywhere
from 1 to 64 modules was to use a bus. Because the current CAMS system is a prototype, the bus
does not have a proper harness structure. The bus is implemented by using solid core wires and
resistors plugged into breadboards and connected directly to the UART1 microcontroller pins. In
the unlikely event that two microcontrollers are both trying to drive the bus at the same time, each
transmitter pin has a 1kΩ resistor between the pin and the bus, so there is ample protection for
both the transmitters and the receiver. It is also possible that, at some points in time, no module
boards are driving the bus, so the receive line going to the main board is weakly pulled to 5V
through a 10kΩ resistor. During development before the resistor was used, when there were no
modules driving this line, any transmissions to the modules on the bus caused reflections on the
receive line. This was likely due to the undriven receive line coupling to the transmit line, which
caused anything that was transmitted to be reflected on the receiver. Adding this resistor
eliminated this problem. For further noise prevention, the ground lines of each board are
connected to avoid an issue with inconsistent grounds.
 Long solid core wires are also not ideal for harnessing the CAMS. They are brittle and
have poor electrical qualities for long lengths of wire. However, they were sufficient for the
CAMS prototype. A low baud rate was used on the UART bus in case that the long wires had
significant delay. The main board’s transmit pin is connected to each of the modules individually,
and each of the module board’s transmitters are all connected to the main board’s receiver. This is
not scalable because attempting to plug in 64 wires (the maximum number of modules) into a
single microcontroller pin would be physically difficult to implement and it is likely that the pin
does not have the driving strength for the fan out of 64 microcontroller pins. However, not
enough hardware was present in the development laboratory to allow for the testing of large scale
buses.

Solenoid Valve Driving Circuit

 Each module dispensed a single liquid ingredient from a bottle for storage to a cocktail
glass or other container for consumption. The flow of the ingredient from the bottle to the glass
was regulated by a solenoid valve located between the bottle and the tubing that carried the
ingredient to the glass. This solenoid valve is driven by a small set of circuitry uses a different
power source than the regular microcontroller power. This separate power source is necessary
because the solenoid valve used is a heavy brass solenoid valve that takes a minimum of 6V and
1.6A, which is more voltage and current than can be provided by the regulator that powers the
microcontroller.
 The microcontroller is able to control the opening and closing of the valve even through
turning off and on and opto-isolator which in turn allows for either no voltage or 6V to be

P a g e | 13

dropped across the valve. A schematic of the opto-isolator circuit can be found in the bottom of
the module board schematic, found in Figure C3 of Appendix C. An opto-isolator works by
having an LED very near to a phototransistor, and isolating both from any other light source. This
allows a microcontroller to control the voltage of the phototransistor in an analog manner, usually
through pulse width modulation. The module board microcontroller is connected through a
current limiting resistor to the anode of the LED inside the opto-isolator. The CAMS only needs
the valve to be either turned “on” or “off”, so instead of putting an analog voltage on the LED, the
LED is either provided 5V or 0V. When the LED is not turned on the 10kΩ is weakly pulling the
gate of the NFET to ground which causes it to not conduct. No voltage is being dropped across
the solenoid, so the solenoid is turned off. When the LED is turned on, the phototransistor is
conducting, which strongly pulls the gate of the NFET to valve power (minus threshold voltage of
the phototransistor). This turns on the NFET, which causes the negative terminal of the solenoid
to effectively be at ground, which results in a 6V drop across the solenoid, turning it on. There is
a diode connected to the terminals of the solenoid used to prevent inductive spikes when the
solenoid first turns on or off. There is also a capacitor located on the terminals of the solenoid to
prevent high frequency noise spikes.

Mechanical Design

 Due to limited development time, a complete mechanical design and structure had not
been completed. Some preliminary mechanical designs had been drafted but were not
implemented. Instead, a prototype was built using components and materials already available in
the laboratory. The system design is not complex, but it still properly houses the three main
components of the mechanical system: the container to hold the module ingredient, the solenoid
valve for dispensing the ingredient, and the structure to hold all of the components. A picture of a
module structure can be found in Figure B1, and a model from the mechanical CAD program,
Solidworks, can be found in Figure B2.
 The ingredient is contained within a 700mL Poland Spring water bottle. These plastic
bottles were used because they are easy to obtain, they are cheap, and the bottle itself is not heavy
which helps reduce the load requirements of the mechanical structure. Fortunately, the threaded
cap size of the plastic bottle closely resembles the dimensions of a ¾” garden hose, so a standard
connector can be used. The fit between the connector and the bottle is not perfect, but it is suitable
for a prototype. The remainder of the valve, plastic bottle, and beverage-grade plastic tubing are
connected together through a set of standard connectors. The plastic bottle is connected to a Brass
¾” female garden hose to ½” plastic tubing connector (called hose barb). The tube then extends
2.75” to an HDPE ½” hose barb to ½” male national pipe thread (NPT) converter which is
screwed into the solenoid valve. The other side of the solenoid valve is connected to another hose
barb to NPT connector, which is connected to 2” of tubing. The tubing is also connected to a
polypropylene 90o elbow with a hose barb connector on both ports. Tubing then connects this
elbow to the dispensing area near the cocktail glass. Many of the connectors are sealed with
Teflon pipe thread tape, to prevent leaking between threads. Additionally, the inside of the female
garden hose to ½” hose barb connector is coated in a thin layer of silicon grease to prevent
leaking and has an extra gasket to improve the seal between the connector and the ingredient
bottle.

P a g e | 14

 Accurately dispensing a certain volume of liquid out of the bottle requires holding the
valve open for a specific duration, which is based on the flow rate. The flow rate out of the bottle
is not constant - it is governed by Bernoulli’s Principle. An ultrasonic sensor seated in a hole cut
out at the top of the bottle can measure the height of the liquid in the bottle, which can in turn be
used to determine flow rate. However, the flow rate can be difficult to calculate because the shape
of the bottle makes modeling volume as a function of height difficult. Even if an accurate volume
model could be determined and evaluate, determining flow rate would also be difficult. The exact
material properties and physical dimensions of the connectors and valve are not known so the
pressure drops (and thus the flow rate) in the system are difficult to model.
 Instead, a scheme is used to directly map liquid height in the module to a duration of time
to hold the valve open. This duration is calibrated to dispensing one “part” (22mL) of volume of
the ingredient. The valve durations were determined through a set of experiments. Due to limited
accuracy of laboratory equipment, the mapping from liquid height to valve duration only has a
granularity of one half centimeter. Details on how the measurement and mapping are calculated
can be found in the Ultrasonic Sensor and Valve Duration section of this report. The precision of
the valve duration is discussed in the Results section of this design report.
 The structure of the module is a large rectangular wooden box which stands upright on its
smallest side, and the front face is open. This box also contains a set of sixteen small wooden
guides along the long sides of the box to allow any configuration of shelves to be used. The
shelves used in the prototype are made .5” Styrofoam, which was used due to availability in the
laboratory. The valve assembly rests on the first shelf which sits on the 1st shelf slot, which is
located 2.125” above the counter. The top shelf is 12” above the bottom shelf and is used to hold
the ingredient bottle in place. This shelf has a rectangular hole cut out of the middle that is 2.5”
across by 4” deep. The curve of the ingredient bottle rests in place on top of this shelf while the
valve rests slightly above the bottom shelf, supported by a tube connector and held upright by the
ingredient bottle assembly above. A model of this module design can be found in Figure B2.
 This prototype is not the optimal structure for the CAMS, but it does have some key
design points that a proper design should have. The current structure has an adequate way to hold
the weight of the ingredient bottle and the valve, which constitute the majority of mass of the
module and provide the greatest load on the structure. Additionally, it would be incredibly
difficult to knock over or disturb this prototype, which makes it safer for a hectic bar
environment. However, there are three major design flaws which need to be addressed. The first is
that the box structure is not specifically designed for the CAMS so it is large and unwieldy.
Constructing a fifteen module CAMS with this structure would require nearly seventeen feet of
counter space. The boxes are easily stackable but it would be difficult to restock the ingredients
inside. A good design would be much thinner and lighter so that many modules does not take up
significant counter space while also being stackable to further consolidate linear space usage.
 A better-designed structure would also have an easier way to attach the necessary wires.
Either the structure would have a hole in the back or sides to string wires through, or would have
connectors mounted on the side to easily plug in the module board to valve/sensor electronics.
Depending on the connectors used, the wire scheme used to connect the microcontroller to the
module electronics may also require updates to fit the chosen connector. A properly designed
CAMS would have a better container system. The hole at the top of the plastic bottle is suitable
for equalizing the pressure as liquid flows out of the container, but it does not ensure that the
sensor is pointed directly downwards in the container. Tilting the sensor can impact the accuracy
of results. Lastly, the method of refilling an empty module requires that the bottle be pulled out of

P a g e | 15

the module and then filled up at the top. Pulling out the bottle also requires carefully removing the
valve assembly. A better CAMS design would not require removing the internal assembly to
restock the ingredient. These design improvements were not implemented due to development
time constraints. Given additional time, these changes would have been pursued to improve the
robustness, usability, and space usage of the CAMS.

Software Design

 All of the CAMS software is written in C, developed on Atmel’s AVR Studio, and run on
the ATMEGA1284P microcontrollers either on the main board or on a module board. The
software that runs on the main and module boards is slightly different. The main board software
runs the code to initialize the system, runs the user interface, and coordinates communication on
the UART bus to the modules using a protocol that leverages UART capabilities on the
microcontrollers. The module board software sends and receives messages on the UART bus as
well as reads the ultrasonic sensor to control the solenoid valve actuation. For a full software
listing, please contact cig23@cornell.edu.

Data Structures

 In order to efficiently store and reference cocktails that the CAMS can make, a complex
data structure was created to store the cocktail information in a memory-efficient manner while
also enabling fast lookup functions for the library of cocktails. At the lowest level of the structure,
drinkEntryBits is a collection of two-bit fields in a C struct. Each two-bit field corresponds to a
particular ingredient that the CAMS knows how to use and the number in the field represents how
many parts of that ingredient go in a cocktail. For example, if a cocktail had zeros’s in all of its
drinkEntryBits entries except a one in the “Rum” field and a two in the “Coke” field then that
cocktail would call for one parts Rum to two parts Coke. The drinkEntryBits structure currently
only has seven entries defined, although this can be easily expanded to incorporate new drinks by
adding additional entries in the struct definition and in all places where the struct is called.
 The drinkEntryBits struct is embedded in a C union called drinkEntryUnion with an
unsigned 16-bit integer. The purpose of this union is to allow setting and clearing of all the fields
in the entry at once without having to enumerate each individual entry. A 16-bit integer is used
because at this time there are only seven 2-bit entries, but this can be easily expanded to any
integer size to accommodate the size of drinkEntryBits. A drinkEntryUnion is embedded in a
drinkEntry struct, which is the struct used to store cocktail entries in a library. There is a string
field in a drinkEntry struct that holds the name of the cocktail and a drinkBitUnion. The syntax
for referencing an individual bit field from the highest level structure is cumbersome, as a field
within drinkEntryBits within drinkEntryUnion within drinkEntry must be referenced. However,
the algorithmic performance on this data structure is fast. The algorithmic performance is
discussed in the Main Board Software – Initialization section of this report. Memory space
requirements increase logarithmically instead of linearly because every power of 2 number of bit
fields requires one larger size unsigned integer in drinkBitUnion to be able to access all fields at
once. Using an array of unsigned 8-bit integers instead of bit fields would make each library entry
take up a significant amount of space. 16 allowable ingredients would only require 4 bytes of
drinkEntryBits space, but using an array would take up 16 bytes. This may not seem significant
for small numbers of drinks on the menu, but when scaling up to hundreds of drinks, the library

P a g e | 16

can take up a large portion of available memory. Also, if a smaller microcontroller is used to save
cost (see the Reducing Electronics Cost section of this design report), then having a smaller
memory requirement would make it easier to find a cheaper microcontroller.

Main Board Software

Initialization

 Initializing the CAMS is done in three steps. First, low level setup code runs to clear and
turn off the watchdog timer, configure the on-chip UART hardware for eight-bit UART at 9600
baud. Hardware timer 0 is set up to provide a 1 millisecond time base used in the communication
protocol. Next, the global library of drinks is populated from the file drinkLibrary.h by calling
populateLibrary(). Each entry in the library is one cocktail that the CAMS can prepare, which is
encoded by a drinkEntry struct. This library does not represent the cocktails that can be made at
that time – that cannot be known until the contents of each module is determined in the next step.
 Next, the function populateStock() is called to allow the user to set up the modules
currently in use in the CAMS. The user is prompted to indicate what ingredients are located in
each module. The CAMS sends the prompt “What is in slot 0?” to the serial terminal, and the user
enters a number corresponding to an ingredient number, and then presses enter. This method
requires that the user setting up the system knows the mapping from ingredient names to
ingredient numbers. The table of ingredient numbers and corresponding names can be found in
Table A1. Each successful ingredient entry increases a variable indicating the number of valid
modules present and updates the beverageModules array indexed by ingredient number that
indicates which module each ingredient is located in. After each ingredient is entered, the CAMS
increases the module number on the prompt, populating the internal module list one by one. If
ingredient number 99 is entered, that indicates that all modules have been listed and to move on to
the next step in the process. If 100 is entered, that indicates the user is requesting a software reset.
Software reset occurs by turning on the watchdog timer to the fastest setting and waiting in a
while(1) loop until the timer expires. This forces a software reset, and the microcontroller with
clear the watchdog timer when it reinitializes. After the stock is populated, printStock() is called
to print the results of populateStock() in a readable format. This serves no functional purpose – it
is just included for diagnostics.
 After the modules have been configured, the CAMS determines, given what cocktails it
knows how to make, which cocktails can be made with the given stock of ingredients. This is
done through the checkTotalAvailability() function, which leverages the allBits field in a
drinkEntryUnion (which is a concatenation of all of the bit fields combined) to quickly
determines whether or not a cocktail can be made. First, for each drink in the global library, the
allBits field is logically ANDed with the allBits field of the module stock that was populated in
the previous step. If the result is non-zero, that means there are some bit fields in the current stock
that are non-zero that are also non-zero in the same place in the library entry. This means that
there is at least one ingredient in the library entry that the current modules have in stock. Next,
this resulted is XORed with the library entry, and checked if the result is zero. If only some of the
bit fields from the library entry matched the stock that means that there were some ingredients
from the library entry that were present in the populated stock. If that is true, then the XOR will
be nonzero because the ingredient fields that were not present in the current stock will be ones
while the previous AND with the current stock would have resulted in zeroes in those bit
positions. However, if the XOR result is zero, that means that there are no ingredients that were

P a g e | 17

present in the library entry that were not present in the populated stock, so the CAMS can make
the cocktail indicated by that library entry.
 If this algorithm determines that the cocktail can be made, it populates the cocktail in the
list of available cocktails. Instead of performing a deep copy of all the fields of the drinkEntry
structure and copying them to a new array, the list of available cocktails (called the menu) is just
an integer. This integer indexes into the global library and pulls ingredient information from this
library. This algorithm is complex but it provides many benefits. First, using the allBits field in
the drinkEntryUnion within the drinkEntry structure requires that only three operations are
needed to determine if a cocktail can be made, regardless of the number of possible ingredients
there may be. If each ingredient is checked individually, via a method such as iterating through
each ingredient and checking if the library entry needs the ingredient and the ingredient is in
stock, then the lookup time for each module would scale linearly with the number of possible
ingredients. Similarly, performing a deep copy from one array of drinkEntry structures to another
would also scale linearly with the number of ingredients. The time saved may not matter for small
scale systems, but when a CAMS is trying to serve hundreds of patrons in a bar, then saving time
only having to perform 3 operations total instead of 3 per ingredient plus the time to perform a
memcpy may be relevant. Unfortunately, it is not possible to determine the time savings without
programming the alternate method and creating a library of hundreds of drinks that supports many
ingredients.

User Interface

 Once the availability of cocktails is efficiently checked, the menu of available cocktails is
printed to the serial terminal. The available drinks are displayed with the name and ingredients in
each drink, and by menu item number. That number is bounds checked to ensure that it is less
than the number of cocktails on the menu. Bounds checking is performed on the item number, and
if it passes, then that number is used to index into the menu array that stores indexes into the
global library. For example, if the cocktail “Gin and Tonic” is labeled menu item number 46 but
is overall drink number 238, then a user attempting to order a Gin and Tonic would enter 46 on
the terminal. Element 46 in the menu would be accessed, and that value would be 238. 238 would
then be used to index into the global list of all cocktails, and that would indicate the ingredients in
a Gin and Tonic, and the cocktail name and ingredients would be printed to the serial terminal for
verification. The CAMS would then issue commands to the appropriate modules, and respond
with a success message when the dispense commands have been acknowledged by all relevant
modules. Similar to the module population, entering cocktail 100 forces a software reset of the
CAMS through a watchdog timer overflow.

Communication Stack

 The CAMS implements a basic communication stack, with UART at the physical level, to
handle transmission of messages and receipt of acknowledges on the bus. This is a three-level
stack, which means there are three levels of function calls before data is actually loaded into
transmit buffers. This protocol is not knowingly modeled after any existing protocol – it was
created to avoid having one monolithic communication function with a complicated error
signaling scheme. Failures at different levels of the protocol indicate different messages to help
diagnose issues.
 When a cocktail is ordered, the orderDrink() function is called with the global drink
number as the argument. This function iterates through the allBits field of the drinkEntryUnion to
determine if the cocktail needs that ingredient. This is done by saving the allBits field into a

P a g e | 18

variable called selectedDrinkBits, forming another variable called numParts that is an AND of the
selectedDrinkBits and the number 3. If the AND is zero, that means that ingredient number 0 is
not used in this cocktail. The ingredient number is incremented by 1 and selectedDrinkBits is
right shifted by 2, to move to the next ingredient. If the AND is non-zero, that means that the
cocktail needs the current ingredient, so a message should be formed to the relevant module.
Again, the ingredient number is incremented and selectedDrinkBits is shifted right by 2.
 This process is repeated for all of the ingredients in the ingredient list. This bit math could
be avoided by spelling out the process directly for each ingredient, but this would cause the code
size to inflate because there would be several lines of code for each module, instead of a slightly
larger number of lines for all modules. Also, if each module was listed directly, adding any
ingredients to the list would cause further code size increase.
 For each ingredient that is needed by the cocktail, a command is attempted to be sent to
the module to dispense the ingredient. This is achieved by calling the sendCommand function
with arguments as the module number (as determined through the beverageModules array) and
the number of parts, indicated by the numParts variable. The sendCommand function returns
either true or false – if it returns false then sendCommand prints that the request to a specific
module failed, which module failed, and which ingredient was not present. This information is not
relevant to the user ordering the drink as they only care that their drink was not prepared.
However, the bartender can see which module wasn’t functioning properly and inspect it, and by
knowing which ingredients weren’t dispensed, he or she can manually add in the remaining
ingredients.
 The sendCommand function calls the function to send the specified data over the bus, but
also implements retries to allow for noise and disturbance on the bus. The bus driving function,
uartSendByte, is first called to send the specified number of parts to the specified module number.
If the sending fails, it tries twice more before returning false. Each time sending the data fails, the
message “No response” is printed to the terminal, and sending is retried. If the data is
unsuccessfully sent over the bus three times, the sendCommand function returns false. If any of
the three attempts succeeds, then the message “transaction complete” is printed to the terminal.
These messages help indicate if there were any failures on the bus before success, or if the
sending process never completes.
 At the lowest level of the communication stack is the process of attempting to send an
individual message to a module. A message is successfully sent if a short messaging handshake is
completed. First, the uartSendByte function records how many seconds since system initialization
have elapsed, as indicated by the variable from the millisecond time base ISR. Next, it waits until
the UART1 transmit buffer is empty, and then it sends a byte, with a value of 0x30 (or 48) plus
the module number, over the bus. The increment is added to the module number of avoid
ambiguity between module addresses and commands. After the address is transmitted, the
function then transitions to a state of waiting for an address acknowledge. If a message is received
that is not an address acknowledge from the correct module, the function returns false. If the
address acknowledge is correct, then the function waits until the transmit buffer is empty again,
and then the number of parts to dispense is sent over the bus. One part of liquid refers to half-
shots, or approximately 22mL.The function that transitions to a state of waiting for the command
acknowledge. If the command acknowledge byte, which has value 128, is received, then the
handshake is complete, the sending of the message was a success, and the function returns true.
However, if the whole handshake takes more than 50 milliseconds before finishing (as indicated

P a g e | 19

by the start time and the global time) then the function returns false regardless of the components
of the handshake that have been completed.
 Regardless of if the cocktail order was a success, once the orderDrink function is exited,
the main board prompts the user to enter another menu item number to order and repeats the
process. An example of a full drink ordering process starting from system initialization to
successful dispensing of multiple ingredients can be found in Figure A1 in Appendix A.

Module Board Software

Initialization and UART ISR

 Initialization of the module board proceeds in a similar manner to the main board
initialization. First, the pins on port D are configured to allow proper transmission and reception
on UART1. Next, the address of this module is copied in to a variable. Unfortunately there is
currently no easy way to assign module numbers without slightly changing the code, recompiling,
and reprogramming for each module. On a production design, the initialization code would
include some way to indicate the module number, such as using pull up and pull down resistors
on a port or using a keypad. After the module number is recorded, then the UART is initialized by
calling uart_init. The UART is configured for 9600 baud rate and the receive ISR is enabled. The
receive ISR will execute every time a byte is successfully received on UART1. The ISR copies
the contents of the receive buffer into a variable used by the main software and sets the flag
prtintByte1 high, which is also used by the software. The process of reading data out of the
receive buffer clears the interrupt flag so multiple ISRs do not trigger from a single byte of data.

Communication

 The main loop of the module board simply calls a communication function which executes
the module side of the handshake. Inside this function, the printByte1 flag is polled. If the flag is
high that means there is new data to evaluation in the readData1 variable. In that case the flag is
cleared, and the data is checked against the stored address. If the data does not match the stored
address then the module board turns off the UART transmitter to prevent it from driving the bus
when it was not the module being addressed. If the data matches the stored address, the software
first enables the UART1 transmitter, waits for the transmit buffer to be empty, and acknowledges
the address by sending the address back on the bus. If the next byte received matches the address
again, another acknowledge is sent. This allows the handshake to be reset without timeouts,
retries, or signaling to the main board when a reset occurs. If the address doesn’t match on a byte
directly following a correct address, it is assumed that this is a command byte, so the number of
parts of the ingredient to dispense is stripped out from the message by taking the lower order 6
bits and subtracting 0x20.
 Once the number of parts has been successfully stripped out, an acknowledge message of
the command is sent. The command acknowledge contains just the number 128, and once this is
sent then the UART transmitter is turned off to prevent the module board from driving the bus
unnecessarily. This concludes the handshake on the module board side. However, once the
command has been acknowledged, the module board must open the solenoid valve for the
appropriate amount of time to dispense the specified liquid. This is done by calling
valveDuration, which will be discussed in the following paragraphs. Once valveDuration
terminates, the module board communication function returns to a state where it waits for an
address message from the main board.

P a g e | 20

Ultrasonic Sensor and Valve Control

 Once a module receives a command to dispense a certain volume of liquid, then the
module must then open a solenoid valve to dispense the liquid out of the plastic bottle. The flow
rate of the ingredient out of the bottle is a function of the amount of liquid in the bottle, so an
expression relating liquid volume and flow rate must be reached. However, the exact expression
for determining flow rate as a function of volume is difficult for several reasons. First, it is
difficult to determine the volume in the bottle because the shape of the bottle is not easily
modeled. Next, the valve combined with the tubes and connectors makes the pressure drop
calculations difficult due to my inexperience in fluid mechanics. A poor physical model of the
bottle combined with a poor model of the pressure drops in the valve, tubes, and connectors
would lead to a very inaccurate dispensing of ingredient from the bottle.
 No analytical solution could be reached, so the problem of determining how long to hold
the valve open for was empirically determined. Ultimately, the goal was to find a way to
determine the volume in the bottle, which could then be used to find the flow rate, which in turn
gives a duration of time to hold the solenoid valve open for the dispense the correct amount of
liquid. However, since no accurate expressions could be found for any of the intermediate steps,
an experimental mapping from the height of the liquid in the bottle to duration of time to hold
open the valve to dispense a particular volume of liquid was developed. This was a very slow
process, but a discussion of the experiment is found in the Results section of this design report.
The mapping of liquid height to amount of time to hold the valve open was used instead of
mapping height to flow rate because determining how long to hold the valve open as a function of
flow rate is difficult. As the valve is held open, the height of the liquid changes, and so either the
height is going to have to be dynamically calculated or reread from the sensor.
 Both of these schemes would make the dispensing process slow, so a mapping of liquid
height to duration to hold the valve open is used. Determining liquid height is done by an
ultrasonic sensor mounted on top of the ingredient bottle. The ultrasonic sensor has a four-pin
interface – it has 5V and ground connections, a trigger pin, and an echo pin. To save power, the
ultrasonic sensor is not constantly sending out ultrasonic pulses and measuring the distance. It
only performs a measurement when a 10 microsecond pulse is sent to the trigger pin. At that
point, the sensor sends out a series of ultrasonic pulses and performs calculations to get a distance
measurement.
 The calculated distance is output from the sensor to the object on the echo pin in the form
of a signal pulse ranging from a few hundreds of microseconds to tens of milliseconds. The sensor
datasheet provides a formula for determining measured distance from the output pulse width, but
an experiment was run to determine the validity of this model. The datasheet for the ultrasonic
sensor can be found in Appendix G. The experiment, the results of which are discussed in the
Results section of this design report, indicated that the model was not quite correct. The data had
similar functional form to the model, so an experimentally determined model was created to be
able to more accurately estimate distance based on the ultrasonic pulse width. A lookup table
would have been the most accurate way to estimate distance based on pulse width, but the
experimental setup in the laboratory did not allow for accurately determining a distance for each
possible pulse width. Across the length of the plastic bottle, the experimental model was within
±3% accuracy. This model was computationally simple so it did not hinder performance.
 Interfacing with the ultrasonic sensor presented an interesting challenge. The hardware
timers on the microcontroller have the feature of being able to detect a logic level change on a pin
and immediately stop the timer, called the Interrupt Capture Unit. This feature is useful for

P a g e | 21

determining pulse width, but only when the start time of the pulse is known. To initiate the sensor
reading, the microcontroller needs to send a pulse of at least 10 microseconds (called the trigger
pulse) to the sensor’s trigger pin. The sensor sends a series of ultrasonic pulses to determine
distance, then at some point later, the output (also known as the echo) pulse starts. The datasheet
does not provide any references for knowing when the echo pulse starts with respect to the trigger
pulse. Either the Interrupt Capture Unit would have to be configured to trigger on pulse edges of
the echoed pulse, or the interrupt would only be triggered on the falling edge and the sensor
would have to be recalibrated.
 Instead, Timer 1 was used in conjunction with an edge transition pin interrupt on pin C2,
separate from the timer interrupts. Whenever a command is received to dispense an ingredient,
and sensor reading was initiated by putting an 11 microsecond pulse on pin C3 by using the
_delay_us function from util/delay.h. This is not as accurate as using a hardware timer because
the delay function does not account for time to execute ISRs, but it was simpler than setting up a
microsecond time base ISR. The sensor is triggered by anything larger than a 10 microsecond
pulse, so attempting to send an 11 microsecond pulse that is elongated by an ISR is acceptable.
 After the microsecond delay is finished, an edge-triggered interrupt on pin C2 is enabled
and the software waits until pin C2 goes high and then low again, indicating a full pulse has
occurred. On the rising edge of the echo pulse, the edge triggered ISR is entered and Timer 1 is
cleared and started with a prescalar of eight, giving a 0.5 microsecond time base. At the falling
edge of the pin interrupt, Timer 1 is stopped to get the time between when the start pulse was sent
and when the echo was received. The resulting time is then converted to twice the distance in
centimeters and rounded to get an effective rounding to the nearest 0.5 centimeters. This result is
then used to index into a table of valve durations.
 As discussed, a mapping from liquid height to number of milliseconds to hold the valve
open was experimentally determined. Ultrasonic readings are rounded to the nearest 0.5
centimeters, so the table of valve durations must has an entry for each 0.5 centimeter. The
ultrasonic sensor data sheet claims the sensor is accurate to 0.3 centimeters but it is safer to not
approach the maximum accuracy bounds. The discussion of the valve experiments can be found
in the Results section of this report. The end result of these experiments is that for each 0.5
centimeters increment, the CAMS module microcontroller knows how long to open the solenoid
valve for in order to dispense one unit (22mL) of liquid.
 Despite the experimentation and data analysis that was part of the design process, the final
process for dispensing an ingredient is very simple. First, a reading of the ultrasonic sensor is
initiated and read. Next, the value from the sensor reading is converted to a distance in
centimeters, which is then rounded to the nearest .5 centimeter. This is stored as a number twice
as big because indices of an array must be integers. This number is combined with the number of
parts (units of volume) to dispense and indexed into a table to determine how long to hold the
valve open for. Lastly, the microcontroller drives pin C0, the pin connected to the opto-isolator
(discussed previously in Electrical Design) high for the specified number of milliseconds to open
the valve and start dispensing liquid. Hardware timer 0 is used as a millisecond time base and
after the specified amount of time, the pin is driven low to shut off the valve. If a cocktail requires
multiple parts of the same component, the module board waits for 500 milliseconds for the valve
to settle and repeats this process for each part of liquid to dispense.

P a g e | 22

Results

Sensor Experiments

 As discussed in the Design section of this report, calibration of the ultrasonic sensor and
ingredient dispensing required calibration to yield accurate data. For the ultrasonic sensor, I ran
an experiment to determine the accuracy of the sensor and to check the accuracy of the model on
the datasheet. I set up a microcontroller to initiate a sensor reading every 500ms and an
oscilloscope was connected to the echo pin on the ultrasonic sensor so that the pulse width could
be accurately determined. A tape measure was taped to the laboratory bench and the breadboard
with the microcontroller and ultrasonic sensor was clamped to the table. A rectangular piece of
aluminum was placed on the tape measure to attain a flat surface facing the ultrasonic sensor
while being able to read the tape measure.
 Basic initial experimentation indicated that the sensor was not accurate at distances closer
than 4cm, despite the data sheet indicating that the sensor was accurate to 2cm. Between 4cm and
2cm, the sensor would jump between readings – holding the aluminum in one place would
sometimes make the oscilloscope read one pulse width but would randomly jump between that
reading and a few microseconds more. Instead of trying to handle this sporadic behavior in
software, it is more reliable to impose a maximum fill line restriction on the bottle to ensure that
the liquid is never closer than 4cm from the ultrasonic sensor.
 After the lower bound on distance-to-sensor was determined, the ultrasonic sensor was
tested over a range of 20cm, which was chosen because the length of the bottle from end to end
(including the hose connector) was 24cm. Distance increments of one-half centimeter were used,
so 40 data points were collected in total. The results of this experiment can be found in Table E1.
The datasheet for the ultrasonic sensor provided a formula for determining measurement distance
as a function, which is given in equation 1:

 ��������	(��) 	 = 	
����	(��)

��
 (1)

However, my results found that the datasheet model was not quite accurate. The slope of the line
of data points was correct, but at certain points the experimental data had slightly different
constant offsets from the model. Instead of relying on the datasheet model, I developed a
piecewise experimental model. At all points in the experimental model, the slope of the
experimental model was the same as the datasheet model – an additional 58 microseconds per
centimeter. However, between 4cm and 7cm the plot was shifted down by 40 microseconds,
between 8cm and 21cm the plot was shifted down by 20 microseconds, and between 21.5cm and
24cm the plot was shifted down by 55 microseconds. The data for the experimental model can be
found in Table E1, and a visual representation is found in Figure E1. As indicated in Table E2, the
between percent error between the experimental data and the experimental model was very low.
The experimentally determined model was within ±3% accuracy. The mean squared error was
.021%, and the standard deviation was 1.33%. The piecewise linear model was easy to program
on the microcontroller using a few conditional statements and floating point operations.

UART Bus Reliability

 The design of the CAMS requires that modules disconnect themselves from transmitting
on the bus when not in use. According to the ATEMGA1284P datasheet, the UART transmitter
can be turned on and off at will. The datasheet does not specify after how many cycles the

P a g e | 23

transmitter is enabled that it is available to send data, so the software polls the transmit buffer
empty flag (UDRE1 in the UCSR1A register) to wait until the transmitter is ready. When the bus
is weakly pulled to ground through a large resistor, the first byte that is sent after a UART
transmitter is enabled is always corrupted. The root cause of the corrupt byte issue had not been
determined, but it is expected that when the bus goes from passively being pulled low to being
driven high when the UART transmitter turns on, then the receiver confuses this transition with a
transition associated with a UART byte in a message.
 This issue is resolved by weakly pulling the bus to 5V so that when the transmitter is
turned on there are no voltage level transitions. Pulling the bus to 5V eliminated all reliability
issues – all transactions were successful without any retries. However, the communication stack
was able to handle the errors with pulling the bus to ground with low level software. If a
handshake with a module fails, then the main board retries twice more. Testing the bus reliability
while pulling to ground revealed that the UART bus timing is able to correct itself without any
software intervention. The byte transmission is successful on either the second or the third try. A
successful full drink ordering process on a system where the bus is pulled to ground can be found
in Figure A2.

Valve Calibration Tests

 As discussed in the Mechanical Design section of this report, a direct mapping from liquid
height in the container to duration to hold the valve open was created instead of a mathematical
model of the flow rate. Determining this mapping was done in two steps. First, a characterization
experiment was run to obtain a rough estimate on the flow rate at each height. The results of this
experiment were analyzed to estimate a duration to hold the valve open for at each liquid height.
Another experiment was run in which the valves were held open for the estimated amount of time
and the number of mL of water dispensed was recorded. Based on the data from the first two
experiments, another estimate was determined and the second experiment was repeated. This
process continued for 1 additional run until the correct valve duration was determined. The results
of the characterization experiment can be found in Table E3, and the results of the estimation
experiments can be found in Tables E4. The final mapping of liquid height to valve duration can
be found in Table E4.
 The first experiment run was the characterization experiment. In this set up, the ingredient
bottle was filled to 4cm below the top of the bottle with water, and the valve was periodically held
open for a constant amount of time and the volume of liquid, measured in mL was measured. On
each measurement, the starting height of the liquid was measured and the liquid was dispensed
into a graduated cylinder. This experiment was run three times, and the results can be found in
Table E4. Originally, I intended to average over three runs and use that average as a basis for my
estimation. However, the first two data sets were inconsistent while the third data set was self-
consistent and consistent with the expected results from Bernoulli’s Principle that a taller height
of volume gives a higher flow rate at constant pressure. In each of the data sets, a few points had
to be thrown out due to fidelity of data. Either some of the water had spilled and so an accurate
volume could not be determined, or the distance was not measured properly prior to dispensing.
Regardless of these omitted data points, plotting the first two data sets with a linear trend gives
very poor correlation with the data whereas plotting a linear trend line from the third data gives
strong correlation.

P a g e | 24

 Instead of taking an average over all three of these data sets, a trend line is formed using
the last data set. The measurement of 4.5cm on the third trial is clearly an outlier, so it is removed
to improve accuracy of the trend line but included in the graph in the same color as the rest of the
data series. The graph of all three runs with the trend line from the third data set is found in Figure
E2. The trend line was useful for characterization of the valve and very useful for determining a
first pass estimation for valve duration for 22mL of liquid. The equation for the trend line is:

������	���������	��	100	��	(��) = −0.3767 ∗ ��������	��	%����&(��) + 26.72(��)

Dividing this by the total time (100 ms) gives an average flow rate which can be used to estimate
time to dispense 22mL. The flow rate is not constant over the duration because of the switching
time of the valve, but the average is a good first-order approximation without analyzing the
mechanical properties of the solenoid. Linearity of the data provided an easy first-pass estimation
for determining how long to hold the valve open. The first estimation is given in Table E4, which
lists a distance, valve duration (in ms), and measured volume.
 On the estimation experiments, the estimated values are rounded to the nearest
millisecond, so only a millisecond timer was used to coordinate the valve. The maximum possible
error on this scheme is one-half of a millisecond. The internal counter that sets the millisecond
time base is cleared right before the valve timing starts to ensure that that the number of
milliseconds the valve is held open is as accurate as possible. Even with this rounding scheme, the
estimated values are within ±.5% accuracy. Based on the results of the first run, a second run was
conducted to get a better estimate for a 22mL valve duration. To arrive at the second estimates,
the difference between the dispensed and desired volumes was divided by the slope of the flow
rate graph from the characterization experiment and was added to the valve durations from the
first run. The goal of this was to try to add the exact amount of time needed to compensate for the
undershoot of the first run. This was a valid method because no volumes dispensed in the first run
were greater than 22 mL. Estimates for the first data run generally were less than 22mL but were
sporadic. Only 10 out of 27 dispensed volumes were within 1 mL of 22 mL for the first run,
whereas 21 out of 26 volumes were between 21 mL and 23 mL. An even more accurate mapping
could be determined by further by iterating the process of determining an average flow rate,
determining the difference between desired and measured volume dispensed, and adjusting the
duration for each distance. These estimates were carefully formulated and demonstrated that a
linear equation could not be used to determine valve duration.
 However, further iterations were not pursued because the limited accuracy of the
measurement system would eclipse the inaccuracy of the valve durations. During the estimation
experiments, the bottle was filled to very near each half centimeter marking. Normal operation of
the CAMS does not result in the liquid levels falling exactly at these intervals. In some sections of
the ingredient bottle dispensing 22mL drops the liquid height .5cm, but in other sections it drops
the height by a different amount. The ultrasonic sensing software rounds the liquid height to the
nearest .5cm, so error will be introduced if the actual height is not a multiple of .5cm.
 There was one last issue with the test set up and the success of this prototype of the
CAMS. The ingredient bottle is too thin for the ultrasonic sensor to measure properly. When the
top of the liquid is very close to the top of the bottle, the ultrasonic measurement is very accurate
and allows the valve to be held open for the appropriate number of milliseconds. However the
sensor effectively saturates at 10cm, as it reads all further distances as 10cm. To get an accurate
distance throughout the entire length of the ingredient bottle, a bottle of adequate thickness

P a g e | 25

throughout needs to be selected. Such a bottle could not be found within the time constraints of
this design project, but it is a major design concern for the future to ensure accurate operation at
all times.

P a g e | 26

Future Work

Reducing Electronics Cost

 The CAMS prototype is not optimized for cost – most components were selected because
they were either readily available or because I already have development experience with those or
similar components. As a result, there are many cost and complexity optimizations to be made to
help further reduce the price.
 Without the PCB and breadboard costs, the electrical components for the module cost
$24.40. The easiest way to cut costs of circuitry is to shrink the MCU. Even within the ATMEGA
series, there are several other microcontrollers that are cheaper with enough functionality to fulfil
the needs of the CAMS. The currently used ATMEGA1284P has a base price of $7.75, whereas
the ATMEGA324P and ATMEGA48P have base prices of $6.10 and $2.75, respectively. Using
the ATMEGA48 would save $5 on board costs and would require minimal development cost
because the microcontrollers are in the same product family. For reference, purchasing 100
ATMEGA48 microcontrollers in bulk would cost $2.0034 per unit, whereas the same number of
ATMEGA1284P would cost $5.73 per unit. Switching to the ATMEGA 48 and purchasing in
bulk would reduce the cost of each module board by $5.7466.
 Another way to save on board cost is to update the circuit that drives the solenoid valve.
Currently, the valve is driven by an opto-isolator circuit, which costs $1.93 in resistors,
transistors, and an IC. Switching to a circuit that is based on a single power NFET could reduce
the cost of circuitry because it requires fewer components. One such example transistor is the
Fairchild Semiconductor RFD3055LESM9A NMOSFET. This transistor can handle a drain
current of 11A (the CAMS runs between 1.6A and 2A), it can handle a Vds of 60V (CAMS runs
between 6V and 7V), and it can handle up to 38W of power (CAMS uses at most 14W). This
NFET costs $0.78 for individual units (a savings of $1.15), and purchasing 100 units costs $0.524
per unit, which is a savings of $1.406 per module. Combining the savings of the updated solenoid
driver with the updated microcontroller can save $7.1526 per board, which gives a total module
savings of 6.9%.
 Designing the CAMS was done with a prototyping board for the ATMEGA1284P and
used several breadboards and DIP components. The prototyping board has some extra hardware
on it that is not needed for a production board, and combining the DIP components on the
breadboard on to the same board as the microcontroller would eliminate the need for the $5.95
breadboard entirely. To promote reusability of the prototyping boards, the ATMEGA1284P chips
used are DIP components that fit into sockets mounted on the boards. This way, if a $7.75 chip
breaks, the chip can be replaced without having to replace the entire $57.92 board. However, for a
production board, the $0.51 DIP socket is not needed because the chips are not expected to break.
Also located on the development board was an FTDI chip and associated components used to
communicate with a PC over a serial connection. The CAMS prototype uses the Port D UART
pins, and does not need any PC connection, so all of that hardware can be removed. All of the
serial connection hardware costs $5.40. Removing other unused components such as the debug
LED, unused port pins, and other assorted breakout pins and jumpers saves only about $0.25.
Removing all debug hardware and the whiteboard in total would save $12.11 on total module
costs. Both removing debug hardware and updating the circuitry/buying in bulk saves $19.26 per
module, which is an overall savings of 18.60% per module.

P a g e | 27

 Aside from reducing circuitry on the boards, purchasing circuit boards in bulk can
significantly save on the cost. It is impossible to know exactly how much purchasing a circuit
board in bulk would cost until the entire board is designed. A board redesign cannot begin until a
new set of parts is selected. After that, the debug hardware would be removed from the prototype
board, the new parts would be added, and additional utility would be added to make the product
more robust. Instead of mounting the board on a whiteboard, screw holes could be added to
physically mount the board to the structure of the module. Additionally, the existing UART bus is
a set of wires plugged into breadboards, so a proper method of constructing an arbitrarily sized
bus must be designed, then incorporated into the new circuit board design.
 After the board design is updated to be used on a proper product, the circuit boards can be
ordered in bulk to reduce costs. Advanced Circuits, a PCB manufacturer, offers a calculator for
estimating board price for a simple two-layer board based on board dimensions (Advanced
Circuits, 2014). Using the dimensions of the existing prototyping boards, purchasing 100 boards
would cost $4.02 per board, which is a savings of $28.98, or 29.6% over the existing module
costs. Combined with previously discussed methods of reducing electronics cost on the boards, I
estimate that each module could be made for $55.35, which is 46.6% cheaper than the prototypes.
This calculation does not include purchasing all components in bulk, or conducting full trade
studies to determine the cheapest components that can be used while still maintaining proper
operation of the CAMS.

Mechanical Design Updates

 Analyzing cost changes to the mechanical design is more complicated. From the parts list,
Table D5, it is clear that the best way to reduce mechanical cost is to use a different solenoid
valve and to use a different connector to go from the plastic bottle to the tubing. The cost of the
tubing and connectors can be reduced by purchasing components in bulk, but the cost of the valve
and the hose connector dominates the mechanical cost. It may be possible to find a cheaper
solenoid valve of the same size, but careful attention must be paid so that the new valve is also
beverage safe. Similarly, another connector may be found to connect the ingredient bottle to the
tubing, but it also must be of a safe material. However, to properly optimize costs of the
mechanical subsystem, a proper trade study needs to be conducted across all solenoid valves, and
possibly other types of electrically controlled valves to determine what the cheapest solution is. A
basic search seems to indicate that valves of a smaller diameter are cheaper, which is expected,
but a full study must be conducted to validate these claims. Not only should a trade study be
conducted for the plastic bottle connectors, but other connection schemes should be investigated
to see if there is a more efficient way to connect the bottle to the tubing.
 However, as previously discussed, the mechanical design of the CAMS was not completed
before the submission of this design report. A 20oz soda bottle was used to hold ingredients
because it was readily available, but it did not lead to the most robust design. The cost of this
bottle was not taken into account because it is difficult to estimate the cost, although it is expected
that the cost of the plastic is low. However, for a more robust design, another container type
should be selected. This container must be safe to hold alcohols for long periods of time and must
allow a rectangular hole in the top to house the ultrasonic sensor. It is likely that this container
will cost more than the cheap plastic soda bottle, but it is also possible that a new container would
have an NPT or other standard connection, which would allow for the use of a cheap
polypropylene or polyethylene connector instead of the expensive brass hose connector.

P a g e | 28

Unfortunately, it is impossible to know exactly how the cost will change until other container
designs are investigated and evaluated for cost and applicability to the system.
 The largest mechanical component that needs a proper redesign in the structure used to
hold the valve, ingredient container, and module board. The existing design uses wooden and
Styrofoam components that were available in the laboratory during design. Not only are those
designs not reproducible because the wooden structure is a custom structure left over from old lab
equipment, but it is not desirable to reproduce those designs because they are not well suited for
the CAMS. A proper design would have a more stable way to hold the ingredient bottle in place
and a sturdier method of holding the valve based on the exact weight and dimensions of the valve.
Because the ultimate goal of the CAMS is to be a consumer product, it is important for the
structural design to be able to handle getting knocked in to or otherwise battered by an ordinary
user. Several structural designs must be prototyped and tested to determine cost and “user
friendliness” of each design to read the optimal design.

User Interface Updates

 Another aspect of the CAMS design that was not fully completed was the user interface
for ordering cocktails. As discussed, the existing design has the framework for ordering any
cocktail off of the menu, but it has to be done from a plain serial terminal. The purpose of the
basic serial communications was to demonstrate the method that the menu information and
selection could be efficiently transmitted to and from the user. Now that the basic infrastructure is
in place, there are several ways to update the user interface without having to redesign way
information is encoded. The most cost effective way to do this is to use a Bluetooth module and a
smartphone app to take drink orders from customers. A user would download an application for
their smartphone that would perform the same tasks as the current menu and ordering scheme but
would not require the orders to be placed one by one at a terminal.
 When the application is first started, it attempts to establish communication with the main
module. Once communication is established, the main module would then send the menu over the
Bluetooth connection. However, instead of a user simply choosing a number from a list, the
application would display just the name and ingredients in a more user friendly way than just
plain text. It would also be easy to have options to sort and search through drinks in a number of
ways, such as alphabetically, popularity, by ingredient list, or by alcohol content. The Android
development environment could be used to quickly write and test such an application.
 The system cost would be increased by the cost of the Bluetooth module used for
communication, although the serial chip would not be necessary, which would counteract some of
the cost. However, there are two main challenges associated with using a smartphone application.
The first is coming up with a secure way to run set up and diagnostics on the system. The current
implementation requires that the bartender populate the modules in stock from the same terminal
that a user uses. The bartender would either have to still use a serial connection to set up the
modules and receive status messages about the system, or he would have to be running a different
application that had only utilities for populating modules and receiving messages. This would
require additional software development to write a second application and to allow one
application to run set up the system and let other applications to order cocktails regularly. To
service all beverage requests in parallel, the main module would also likely need to implement a
queue of cocktails to be ordered and keep track of which devices ordered which beverages. When

P a g e | 29

a beverage reaches the front of the queue and is prepared, a notification would be sent to the
appropriate device to let the right user know to come to the bar and pay for their beverage.
 The second challenge associated with using a Bluetooth framework is that a Bluetooth
master can only actively communicate with up to 7 slaves. There has been some research into
constructing ad-hoc networks of Bluetooth devices, but Bluetooth is not a common means of
communication, so there are very few resources on how to build an ad hoc network on
smartphones. The ad hoc network would replace the Smartphone applications can be turned on
and off at any time, so the Bluetooth network needs to be able to handle many users coming
online and going offline frequently. Other communication technologies can potentially be used
but Bluetooth is very attractive for the CAMS because only a single Bluetooth module needs to be
used for the entire system and most smartphones come packaged with a Bluetooth module. Also,
because there aren’t many other Bluetooth devices that would be used in a bar, it is likely that
there wouldn’t be any competition for resources with the Bluetooth module. A user might be
trying to send data over the cellular network or use WiFi on their phones at any time, but
Bluetooth is only used for a few types of uses, and those uses are generally orthogonal to the
CAMS, so the CAMS would have sole use of the Bluetooth module.

P a g e | 30

Conclusions

 At the time of submission of this design report, a small scale CAMS prototype can been
successfully constructed and tested in the laboratory. This prototype contains one fully
constructed module with the ingredient bottle, valve assembly, and ultrasonic sensor mounted and
functioning together. A second development module is also in use that does not have a structure
built but also has a valve and ultrasonic sensor connected properly that function in the same
manner as the first module. Extensive experiments were conducted to characterize the ultrasonic
sensor and the solenoid valve so that they could be used as accurately as possible during CAMS
operation to consistently deliver cocktails to a user in a timely manner.
 There are several shortcomings with the prototype which have been identified throughout
this report. The most notable is that a proper mechanical structure has not been designed and
implemented, and the ingredient bottle gets too narrow at points for the ultrasonic sensor to
function properly. These are not particularly challenging design constraints, but due to the limited
development time allowed by this project they could not be addressed at this time. Aside from the
noted shortcomings, there are also several ways to improve the existing CAMS design. Many of
these ways were discussed in this report, and these improvements range from an improved user
interface to optimizing the bill of materials used to reduce costs without sacrificing functionality.
 All of this being said, the CAMS prototype was successful. The major design subsystems
either function correctly, or specific issues have been identified to fix the design. The existing
system allows for a large range of functionality across many modules. A user must program the
system to indicate which ingredients are in which modules, but different ingredients can be
programmed each time at start up and the CAMS will determine which cocktails it can prepare.
When a user orders a beverage, the main board sends a command over the UART bus to all
module boards, and the appropriate module board responds to the command over the UART bus
and utilizes and ultrasonic sensor to determine how long to hold a solenoid valve open for to
dispense the correct amount of liquid.
 Most importantly, the prototype meets all of its core design premises. First, the CAMS is
less expensive than all existing systems, even though the prototype has additional hardware
needed for development and debugging. A full mechanical design is going to add cost per
module, but there are many cost optimizations that can be done for the electrical design to drive
down the cost per module so that the CAMS is still more cost effective than all other systems.
Second, the CAMS is scalable. The current initialization process and the UART bus scheme allow
a wide range of modules to be used to prepare many different cocktails. Minor software updates
will be required to provide an even greater range of ingredients and cocktails, but the software
infrastructure for these additions already exists. The software architecture will not have to be
altered to accommodate for additional modules. All of the system components function properly
together and the prototype design easily allows the expansion from a few modules up to a
maximum of 64. The constructed modules, cost analysis, and system structure clearly demonstrate
a strong proof-of-concept for the Cocktail Automation Management System to be an accurate,
cheap, and scalable bartending automation system.

P a g e | 31

References

Adafruit Industries. (2014). Full Sized Breadboard. Retrieved from adafruit.com:

http://www.adafruit.com/products/239

Advanced Circuits. (2014). 2-Layer PCB Designs. Retrieved from 4pcb.com:

http://www.4pcb.com/33-each-pcbs/index.html

Advanced Circuits. (2014). BareBones Printed Circuit Boards. Retrieved from 4pcb.com:

http://www.4pcb.com/bare-bones-pcbs/index.html

All Electronics Corporation. (2014). 2 x 40 Pins Snappable Headers. Retrieved from

allelectronics.com: http://www.allelectronics.com/make-a-store/item/dhs-40/2-x-40-pins-

snappable-headers/1.html

Digi-Key Electronics. (2014). Electronic Components Listing. Retrieved from digikey.com:

http://www.digikey.com/product-search/en

HC-SR04 Ultrasonic Sensor. (2011, May 10). Retrieved from Elec Freaks:

http://www.elecfreaks.com/store/hcsr04-ultrasonic-sensor-distance-measuring-module-

ultra01-p-91.html

Hobby King. (2014). Ultrasonic Module HC-SR04 Arduino. Retrieved from hobbyking.com:

http://www.hobbyking.com/hobbyking/store/__31136__ultrasonic_module_hc_sr04_ardui

no.html

Ultrasonic Ranging Module HC-SR04. (n.d.). Retrieved from micropik.com - The Art of

Components: http://www.micropik.com/PDF/HCSR04.pdf

United States Plastics Corporation. (2014). Tubing, Hose, and Fittings. Retrieved from

usplastic.com: http://www.usplastic.com/catalog/default.aspx?catid=856&parentcatid=-1

Lowes Home Improvement. (2014). Genova 1/2-in Dia Insert Elbow. Retrieved from lowes.com:

http://www.lowes.com/pd_22520-322-350705_0__?productId=3455100&Ntt=

Lowes Home Improvement. (2014). Watts 3/4-in x 1/2-in Threaded Adapter Fitting. Retrieved

from lowes.com: http://www.lowes.com/pd_416836-104-LFA-684_0__?Ntt=lfa-

684&UserSearch=lfa-684&productId=3824549&rpp=32

Adafruit Industries. (2014). Brass Liquid Solenoid Valve. Retrieved from adafruit.com:

http://www.adafruit.com/products/996

Atmel Corporation. (2009, November). ATmega1284P Datasheet. Retrieved from atmel.com:

http://www.atmel.com/images/doc8059.pdf

Land, B. (2013). ECE 4760 Lab 4. Retrieved from Cornell University ECE 4760 - Designing with

Microcontrollers: http://people.ece.cornell.edu/land/courses/ece4760/labs/f2013/lab4.html

Chun, N. I. (2010, May). Electrical and Computer Engineering Projects: Masters of Engineering

and Undergraduate Independent Study. Retrieved from Next Generation Atmel

ATMEGA644 Prototype Board:

http://people.ece.cornell.edu/land/courses/eceprojectsland/STUDENTPROJ/2009to2010/

nic4/Writeupv5.pdf

BoozeBots. (2014). BoozeBot - The Automated Cocktail Dispenser. Retrieved from

kickstarter.com: https://www.kickstarter.com/projects/boozebots/boozebot-the-automated-

cocktail-dispenser

Bosch. (1991, September). CAN Specification. Retrieved from bosch-semiconductors.de:

http://www.bosch-semiconductors.de/media/pdf_1/canliteratur/can2spec.pdf

Monsieur. (2014). Retrieved from monsieur.com: http://monsieur.co/

P a g e | 32

Party Robotics. (2014). Retrieved from partyrobotics.com: http://partyrobotics.com/

The Inebriator. (2014). The Inebriator: Arduino Powered Cocktail Machine. Retrieved from

theinebriator.com: http://www.theinebriator.com/

Appendix A: Software and User Interface
This Appendix contains a reference for the user interface of the CAMS. Table A1 shows the mapping from
ingredient number to ingredient name which is used during initialization to specify what ingredients are in
each module. Only a limited number of cocktails were used for prototyping the CAMS, but a listing of the
cocktails used and their respective recipes is contained in Table A2. Figure A1 shows an example
sequence for a successful initialization of the CAMS and the ordering of a single cocktail. Figure A2
shows a successful ordering process where the system uses a bus that is pulled to ground instead of to 5V.
For a complete listing of the software of the CAMS, please contact cig23@cornell.edu.

Table A1 – List of Ingredient Numbers and Names

Ingredient Number Ingredient Name

0 Vodka

1 Rum

2 Gin

3 Peach Schnapps

4 Orange Juice

5 Grenadine

6 Coke

Table A2 – List of Cocktails

Cocktail
Name

Number
of Parts
Vodka

Number
of Parts

Rum

Number
of Parts

Gin

Number
of Parts
Peach

Schnapps

Number
of Parts
Orange
Juice

Number
of Parts

Grenadine

Number
of Parts
Coke

Screwdriver 1 0 0 0 2 0 0

Rum and
Coke

0 2 0 0 0 0 1

Potpourri 1 1 1 1 1 1 1

Gin and
Juice

0 0 1 0 1 0 0

Cherry
Schnapps

0 0 0 1 0 2 0

P a g e | 33

Figure A1 – Example Successful Serial Console Output

Starting...

What is in slot 0?

4

What is in slot 1?

6

What is in slot 2?

2

What is in slot 3?

5

What is in slot 4?

0

What is in slot 5?

99

Have vodka in slot 4

gin in slot 2

orange juice in slot 0

grenadine in slot 3

coke in slot 1

Current Menu:

Item 0, Screwdriver:

 1 parts vodka

 2 parts oj

Item 1, Gin and Juice:

 1 parts gin

 1 parts oj

What drink would you like to order?

0

You have selected 0

Screwdriver:

 1 parts vodka

 2 parts oj

This drink needs 1 parts of vodka, which is located in module 4

Attempting to request 1 parts from module 4

success!

transaction complete

This drink needs 2 parts of oj, which is located in module 0

Attempting to request 2 parts from module 0

success!

transaction complete

What drink would you like to order?

P a g e | 34

Figure A2 – Example Successful Ordering Sequence Using a Grounded Bus

What drink would you like to order?

0

You have selected 0

Screwdriver:

 1 parts vodka

 2 parts oj

This drink needs 1 parts of vodka, which is located in module 4

Attempting to request 1 parts from module 4

no response

Attempting to request 1 parts from module 4

success!

transaction complete

This drink needs 2 parts of oj, which is located in module 0

Attempting to request 2 parts from module 0

no response

Attempting to request 2 parts from module 0

success!

transaction complete

What drink would you like to order?

P a g e | 35

Appendix B: Mechanical Design

Figure B1 – Front Mechanical View of a CAMS module

P a g e | 36

Figure B2 – SolidWorks Model of Mechanical Structure

P a g e | 37

Appendix C: Circuit Board Schematics and Design

The design and layout for the ATMEGA1284P breakout board is taken with permission from

Nathan Chun (nic4) and Bruce Land (brl4). The board schematic and design can be found in the

design report for the board (Chun, 2010).

The schematics found below are the full schematics for both the main and module boards. The

schematics do not indicate which components are on the breakout board and which are external.

Please refer to the breakout board design schematics for a reference for on board components.

Tables D2 and D3 in Appendix D contain a listing of all parts used on each board. Figures C1 and

C3 contain schematics of the main and module boards and Figures C2 and C4 contain pictures of

the constructed circuits, respectively. Figure C5 contains the schematics of the CAN Bus breakout

board that was designed but not used in the prototype.

P a g e | 38

Figure C2 – Constructed Main Board

Figure C1 – Main Board Schematic

P a g e | 39

Figure C3 – Module Board Schematic

Figure C4 – Constructed Module Board (Solenoid Valve and Valve Power Rail Connections Disconnected)

P a g e | 40

Figure C5 – AT90CAN128 Breakout Board

P a g e | 41

Appendix D: Component Costs

This Appendix contains a reference for the part numbers and costs used to estimate a price for each CAMS
module. Please note that the values listed in these tables are for reference only, the actual price and
availability of electrical and mechanical components may vary significantly. The electrical component
costs here are all taken from digikey.com (Digi-Key Electronics, 2014), unless otherwise listed. The
mechanical component details are all taken from usplastics.com (United States Plastics Corporation,
2014). Price comparisons for the existing systems are taken from their respective product websites (Party
Robotics, 2014), (BoozeBots, 2014), (Monsieur, 2014).

Table D1 - Electrical Components

Component Name Manufacturer Part Number Unit Cost

Diode Comchip Technology 1N4001-G $0.11

NFET Infineon Technologies BUZ73 H3046 $1.34

1MΩ Resistor Stackpole Electronics CF14JT1M00 $0.08

100kΩ Resistor Stackpole Electronics CF14JT100K $0.08

10kΩ Resistor Stackpole Electronics CF14JT10K0 $0.08

330Ω Resistor Stackpole Electronics CF14JT330R $0.08

100Ω Resistor Stackpole Electronics CF14JT100R $0.08

1uF Capacitor Kemet C1206C104K3RACTU $0.20

100nF Capacitor Kemet C1206C104K3RACTU $0.10

10nF Capacitor Kemet C1206C103JARACTU $0.12

4.7nF Capacitor Kemet C1206C472K5RACTU $0.14

22pF Capacitor Kemet C1206C220K5GACTU $0.16

16MHz Crystal CTS-Frequency Controls MP160 $0.66

Green LED Lumex, Inc SSL-LX5093PGD $.055

Opto-isolator Lite-On Inc 4N35 $0.43

DIP Socket Assmann WSW
Components

A40-LC-TT $0.51

UART-USB
Converter

Future Technology
Devices Limited

FT232RL-REEL $4.50

5V Regulator Texas Instruments LM340LAZ-5.0/NOPB $0.95

USB-B Socket On-Shore Technology,
Inc

USB-B1HSB6 $0.54

Single Row Male Pin
Header

Molex Inc 0022284360 $0.00356/pin

Dual Row Male Pin
Header

All Electronics DHS-40 $0.0375/row1

Microcontroller Atmel ATMEGA1284P $7.75

2.1mm Power Jack CUI Inc PJ-002A $0.93

Ultrasonic Sensor Hobby King HC-SR04 $2.892

SPDT Switch C&K Components AYZ010AGRLC $0.91

White Breadboard Adafruit 239 $5.953

Custom PCB Advanced Circuits N/A $334

1 (All Electronics Corporation, 2014)
2 (Hobby King, 2014)
3 (Adafruit Industries, 2014)
4 (Advanced Circuits, 2014)

P a g e | 42

P a g e | 43

Table D2 – Main Board Components

Component Name Unit Cost Quantity Total Price

Diode $0.11 1 $0.11

10kΩ Resistor $0.08 1 $0.08

330Ω Resistor $0.08 2 $0.16

100Ω Resistor $0.08 1 $0.08

1uF Capacitor $0.20 2 $0.40

100nF Capacitor $0.10 5 $0.50

10nF Capacitor $0.12 1 $0.12

4.7nF Capacitor $0.14 1 $0.14

22pF Capacitor $0.16 2 $0.32

16MHz Crystal $0.66 1 $0.66

Green LED $.055 1 $.055

DIP Socket $0.51 1 $0.51

UART-USB
Converter

$4.50 1 $4.50

5V Regulator $0.95 1 $0.95

USB-B Socket $0.54 1 $0.54

Single Row Male Pin
Header

$0.00356/pin 42 pins $0.14952

Dual Row Male Pin
Header

$0.0375/row 3 rows $0.1125

Microcontroller $7.75 1 $7.75

2.1mm Power Jack $0.93 1 $0.93

SPDT Switch $0.91 1 $0.91

White Breadboard $5.95 1 $5.95

Custom PCB $33 1 $33

Total Cost $57.92

P a g e | 44

Table D3 – Module Board Components

Component Name Unit Cost Quantity Total Price

Diode $0.11 2 $0.22

10kΩ Resistor $0.08 1 $0.08

1kΩ Resistor $0.08 2 $0.16

330Ω Resistor $0.08 2 $0.16

100Ω Resistor $0.08 1 $0.08

1uF Capacitor $0.20 2 $0.40

100nF Capacitor $0.10 9 $0.90

22pF Capacitor $0.16 2 $0.32

16MHz Crystal $0.66 1 $0.66

Green LED $0.06 1 $0.06

DIP Socket $0.51 1 $0.51

UART-USB

Converter
$4.50 1 $4.50

5V Regulator $0.95 1 $0.95

Opto-isolator $0.43 1 $0.43

USB-B Socket $0.54 1 $0.54

Single Row Male

Pin Header
$0.00356/pin 42 pins $0.01

Dual Row Male Pin

Header
$0.0375/row 3 rows $0.11

Microcontroller $7.75 1 $7.75

2.1mm Power Jack $0.93 1 $0.93

SPDT Switch $0.91 1 $0.91

White Breadboard $5.95 1 $5.95

Custom PCB $33 1 $33.00

1MΩ Resistor $0.08 1 $0.08

10kΩ Resistor $0.08 1 $0.08

330Ω Resistor $0.08 2 $0.16

NFET $1.34 1 $1.34

Ultrasonic Sensor $3.13 1 $2.89

Total Electrical Cost $63.42

P a g e | 45

Table D4– Mechanical Components

Component Name Manufacturer Part Number Unit Cost

Brass ¾” Garden Hose to ½” Hose
Barb

Watts LFA-684 $9.995

HDPE ½” Male NPT to ½” Hose Barb

Converter
United States Plastic Corporation 62017 $0.36

Brass Solenoid Valve Geerte 2W-160-15 $24.956

Bev-A-Line Plastic Tubing United States Plastic Corporation 56282 $2.62/foot

HDPE ½” Male NPT to ½” Hose Barb

90o elbow
United States Plastic Corporation 62043 $0.55

HDPE ½” Hose Barb T Connector United States Plastic Corporation 62067 $0.55

Polypropylene ½” Hose Barb 90o

elbow
Genova 22520 $0.587

Polypropylene ½” Hose Barb Y

Splitter
United States Plastic Corporation 62256 $0.91

Table D5 – Single Valve Module Mechanical Components

Component Name Unit Cost Quantity Total Price

Brass ¾” Garden Hose to ½” Hose Barb $9.99 1 $9.99

HDPE ½” Male NPT to ½” Hose Barb Converter $0.36 2 $0.72

Brass Solenoid Valve $24.95 1 $24.95

Bev-A-Line Plastic Tubing $2.62/foot 1.5 feet $3.93

Plastic ½” Male NPT to ½” Hose Barb 90o elbow $0.58 1 $0.58

Total Mechanical Cost $40.17

Table D6 – Compressed Air Module Mechanical Components

Component Name Unit Cost Quantity Total Price

Brass ¾” Garden Hose to ½” Hose Barb $9.99 1 $9.99

Plastic ½” Male NPT to ½” Hose Barb Converter $0.36 2 $0.72

Brass Solenoid Valve $24.95 2 $49.90

Bev-A-Line Plastic Tubing $2.62/foot 3 feet $7.86

Plastic ½” Male NPT to ½” Hose Barb 90o elbow $0.55 2 $1.10

Polypropylene ½” Hose Barb Y Splitter $0.91 1 $0.91

Total Mechanical Cost $70.48

5 (Lowes Home Improvement, 2014)
6 (Adafruit Industries, 2014)
7 (Lowes Home Improvement, 2014)

P a g e | 46

Table D7 – Compressed Air System Module Costs

Component Name Price

Total Mechanical Cost $70.48

Total Electrical Cost $63.18

Total Module Cost $133.66

Table D8 – Single Valve Module Costs

Component Name Price

Total Mechanical Cost $40.17

Total Electrical Cost $63.18

Total Module Cost $103.35

Table D9 – Price Comparisons

Product Number of
Modules

Total Cost Effective Cost
Per Module

Price Relative to
CAMS Cost

CAMS 2 $265.10 $132.55 -

BoozeBot 2 $683.81 $341.91 257.95%

CAMS 4 $471.80 $117.95 -

BoozeBot 4 $1112.26 $278.07 235.75%

CAMS 7 $781.86 $111.69 -

Bartendro 7 $2499.99 $357.14 319.75%

CAMS 8 $885.21 $110.65 -

BoozeBot 8 $1283.64 $160.46 145.01%

Monsieur 8 $3,999 .99 $499.88 451.76%

CAMS 15 $1608.68 $107.25 -

Bartendro 15 $3699.99 $246.67 230.00%

CAMS 16 $1712.03 $107.00 -

BoozeBot 16 $1883.48 $117.72 110.01%

P a g e | 47

Appendix E: Experimental Results

This Appendix contains the tables and graphs of raw data gathered from the experiments used to

determine the accuracy of components used the CAMS. Table E1 contains the data from the test

to determine the mapping from ultrasonic sensor output pulse width to distance in centimeters,

along with the model from the datasheet and experimentally determined model. Figure E1 graphs

these results for a visual representation of the models. Table E2 gives the calculated percent error

between the two models and the data gathered from the experiment. Table E3 contains the data

from the first valve experiment, where the valve was held open for a constant duration and the

dispensed volume was measured as function of liquid height in the ingredient bottle. Figure E2

graphs these results and plots the trend line of the most accurate data set. Table E4 contains the

data from the two runs of the experiment to determine the duration of time to hold the valve open

to dispense 22mL.

Table E1 – Results of Ultrasonic Sensor Test

Measured Sensor
Distance (cm) Measured Pulse Width Datasheet Model

Experimental Model

4 194 232 192

4.5 222 261 221

5 248 290 250

5.5 278 319 279

6 306 348 308

6.5 330 377 337

7 360 406 366

7.5 408 435 415

8 432 464 444

8.5 464 493 473

9 492 522 502

9.5 532 551 531

10 572 580 560

10.5 604 609 589

11 636 638 618

11.5 644 667 647

12 692 696 676

12.5 696 725 705

13 728 754 734

13.5 756 783 763

14 784 812 792

14.5 812 841 821

15 840 870 850

15.5 868 899 879

16 890 928 908

P a g e | 48

16.5 920 957 937

17 950 986 966

17.5 980 1015 995

18 1000 1044 1024

18.5 1040 1073 1053

19 1070 1102 1082

19.5 1100 1131 1111

20 1140 1160 1140

20.5 1170 1189 1169

21 1200 1218 1198

21.5 1200 1247 1197

22 1220 1276 1226

22.5 1250 1305 1255

23 1280 1334 1284

23.5 1310 1363 1313

24 1330 1392 1342

Figure E1 – Graph of Ultrasonic Sensor Test

0

200

400

600

800

1000

1200

1400

1600

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Echo Pulse Width vs. Distance

Measured Pulse Width Datasheet Model Experimental Model

P a g e | 49

Table E2 – Error of Ultrasonic Sensor Models

Measured Sensor Distance (cm) Datasheet Model Error Experimental Model Error

4 19.59% -1.03%

4.5 17.57% -0.45%

5 16.94% 0.81%

5.5 14.75% 0.36%

6 13.73% 0.65%

6.5 14.24% 2.12%

7 12.78% 1.67%

7.5 6.62% 1.72%

8 7.41% 2.78%

8.5 6.25% 1.94%

9 6.10% 2.03%

9.5 3.57% -0.19%

10 1.40% -2.10%

10.5 0.83% -2.48%

11 0.31% -2.83%

11.5 3.57% 0.47%

12 0.58% -2.31%

12.5 4.17% 1.29%

13 3.57% 0.82%

13.5 3.57% 0.93%

14 3.57% 1.02%

14.5 3.57% 1.11%

15 3.57% 1.19%

15.5 3.57% 1.27%

16 4.27% 2.02%

16.5 4.02% 1.85%

17 3.79% 1.68%

17.5 3.57% 1.53%

18 4.40% 2.40%

18.5 3.17% 1.25%

19 2.99% 1.12%

19.5 2.82% 1.00%

20 1.75% 0.00%

20.5 1.62% -0.09%

21 1.50% -0.17%

21.5 3.92% -0.67%

22 4.59% 0.08%

22.5 4.40% 0.00%

23 4.22% -0.08%

23.5 4.05% -0.15%

24 4.66% 0.53%

P a g e | 50

Table E3 – Results of Constant Duration Valve Test

 Volume Dispensed in 100 ms (mL)

Distance from Sensor to

Liquid (cm) First Run (mL) Second Run (mL) Third Run (mL)

4 23 24 25

4.5 23 18 32

5 23 24

5.5 18 30 -

6 23 - 25

6.5 - 24 -

7 29 - 24

7.5 14 23 24

8 23 - -

8.5 30 22 24

9 21 - 23

9.5 - 17 23

10 - 20 23

10.5 21 23 22

11 18 29 23

11.5 25 21 22

12 21 - 23

12.5 21 15 23

13 14 20 22

13.5 21 28 22

14 20 12 22

14.5 26 23 21

15 19 20 21

15.5 15 28 21

16 19 16 20

16.5 25 22 20

17 19 15 20

P a g e | 51

Figure E2 – Volume Dispensed in 100ms vs Distance from Ultrasonic Sensor to Top of Liquid

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

35

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 1010.51111.51212.51313.51414.51515.51616.51717.518

V
o

lu
m

e
 D

is
p

e
n

se
d

 (
m

L)

Distance from Sensor to Liquid (cm)

Volume Dispensed vs Liquid Height

P a g e | 52

Table E4 – Calibration Data for Valve Durations

 Run 1 Run 2

Distance from
Sensor to Liquid

(cm)

Valve Duration
(ms)

Volume
Dispensed (mL)

Valve Duration
(ms)

Volume
Dispensed (mL)

4 87 20 93 24.5

4.5 88 20.5 92 23

5 89 20 94 24

5.5 89 20.5 93 23

6 90 21 93 23

6.5 91 20.5 95 23

7 91 20 97 23.5

7.5 92 21 95 23

8 93 20.5 97 21

8.5 94 21 96 22

9 94 20 100 23.5

9.5 95 21 98 22

10 96 20 101 23

10.5 97 20 102 23.5

11 97 20 103 22.5

11.5 98 20 104 24

12 99 20 104 23

12.5 100 22 100 21.5

13 101 20.5 105 22

13.5 102 22.5 100 21.5

14 103 19.5 109 22

14.5 103 21 106 21.5

15 104 21 107 21

15.5 105 21 108 22

16 106 20 112 21

16.5 107 21 110 21

17 108 20 114 22

P a g e | 53

Appendix G: Ultrasonic Sensor Datasheet

The datasheet for the ultrasonic sensor is not hosted on the manufacturer’s site, but is hosted instead at

micropik.com (Ultrasonic Ranging Module HC-SR04). However, the manufacturer’s product page has

several other resources listed, including a User’s Manual and Software Library for integration with an

Arduino (HC-SR04 Ultrasonic Sensor, 2011).

P a g e | 54

