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Abstract: 
The purpose of the Cocktail Automation Management System (CAMS) is to offer a complete 
hardware-software system that automatically prepares cocktails for patrons at a bar or restaurant. 
This systems consists of a central processing board that handles user requests and coordinates 
communication among modules which each hold one ingredient. The CAMS would complement 
or replace bartenders for easy-to-mix beverages, which would free up the bartenders for work that 
could not be automated, such as payment collection and more complex cocktails. The CAMS 
delivers beverages by acting in two stages – order determination and component delivery. First, a 
patron orders a cocktail from a list of available drinks using a serial terminal running on a PC. 
Then, for each ingredient in the cocktail, the CAMS determines what module the ingredient is 
located in and what volume of that ingredient is needed. A command is issued to each of the 
relevant modules to dispense the specified ingredient. The modules all dispense ingredients into 
plastic tubing that runs from the modules to a cocktail glass.  
 
There are several other existing solutions currently on the market. These systems also offer 
complete hardware-software solutions, but none of these systems are cheap, modular, or scalable. 
They all require the purchase of a specific sized system, and if at a later point more modules are 
desired for the system, an entirely new system must be purchased with no way of using the 
existing system. The CAMS is designed to use as few as 1 ingredient module and as many as 64 
ingredient modules. The main controller is separate from the ingredient modules, and the 
ingredient modules only need connections to power and to the communications bus to add 
functionality to the system. Additionally, the expected cost of the CAMS is significantly lower 
than the existing systems per module. The CAMS cost efficiency varies slightly with number of 
modules as the cost of the main module must be paid regardless of system size. However, the 
CAMS is more cost effective than all other existing systems for all system sizes. 
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Executive Summary 
 

The purpose of the Cocktail Automation Management System (CAMS) is to offer a 
complete hardware-software system that automatically prepares cocktails for patrons at a bar or 
restaurant. This systems consists of a central processing board that handles user requests and 
coordinates communication among modules which each hold one ingredient. A module consists 
of a plastic bottle, an ultrasonic sensor, a valve, a group of tubes and connectors, a structure to 
mount these components, and a microcontroller board with associated circuitry to run the module 
components. Some tasks needed to run a bar are difficult to automate, so the system is intended to 
complement or replace bartenders for easy-to-mix beverages. Preparing more advanced cocktails, 
collecting payments, swapping out bottles, and many other tasks will still have to be carried out 
by trained bartenders. 

When the CAMS is turned on, it prints a list of all the cocktails available to be made given 
the current modules, and then prompts the user to select a cocktail to be made. The CAMS 
delivers beverages by acting in two stages – order determination and component delivery. First, a 
patron orders a cocktail from a list of available drinks using a serial terminal running on a PC. 
Then, for each ingredient in the cocktail, the CAMS determines what module the ingredient is 
located in and what volume of that ingredient is needed. A command is issued over a UART bus 
to each of the relevant modules to dispense the specified ingredient. The bus does not have any 
collision management, as the communication method is designed to only have one node 
communicating on the bus at a time. Delivery of messages is ensured by a system of 
acknowledges on each command. When a module receive a dispense command, it dispenses its 
ingredient into plastic tubing that connects directly to the bottle containing the ingredient and 
ends in an area located above a cocktail glass. Ingredients are dispensed from the bottles using a 
solenoid valve and the process is controlled by a microcontroller on the module board. 

There are several other beverage automation solutions which are either developed by 
hobbyists or are attempting to attain commercial production through the online crowdfunding 
platform, Kickstarter. Such systems include the Party Robotics’ Bartendro, the Inebriator, the 
BoozeBot, and Monsieur. These systems also offer complete hardware-software solutions, but 
none of these systems are cheap, modular, or scalable. They all require the purchase of a specific 
sized system, and if at a later point more modules are desired for the system, an entirely new 
system must be purchased with no way of using the existing system. For example, the Monsieur 
and the Inebriator both only allow for a set number of ingredients. The BoozeBot and Bartendro 
both have different models, but provide no way of scaling between models – to increase system 
size and functionality, a new system must be purchased. 

The CAMS is designed to use as few as one ingredient module and as many as 64 
ingredient modules. The main controller is separate from the ingredient modules, and the 
ingredient modules only need connections to power and to the communications bus to add 
functionality to the system. Additionally, the expected cost of the CAMS is significantly lower 
than the existing systems per module. Across all systems (including CAMS), the greater number 
of modules purchased, the cheaper the effective module price, as cost of the main controller is 
distributed over many modules. The most expensive and least cost effective product is the 
Monsieur, which has a rate of $500 per module, and the most cost effective per module is the 
BoozeBot, which costs 62.5 British Pounds, or about $108. The CAMS prototype has a per 
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module cost of $103.35. The cost of the largest BoozeBot system is more than the cost of an 
equally sized CAMS. Lastly, the prototype cost of the CAMS was driven up significantly by the 
debug hardware used and buying each part individually. There are several components used for 
debugging on the module boards that can be removed for production to reduce cost, and 
purchasing components and producing boards in bulk would significantly drive down the cost per 
module.  
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Introduction 
 

The purpose of the Cocktail Automation Management System (CAMS) is to offer a 
complete hardware-software system that automatically prepares cocktails for patrons at a bar or 
restaurant. This systems consists of a central processing board that handles user requests and 
coordinates communication among modules which each hold one ingredient. A module consists 
of a plastic bottle, an ultrasonic sensor, a valve, a group of tubes and connectors, a structure to 
mount these components, and a microcontroller board with associated circuitry to run the module 
components. Some tasks needed to run a bar cannot automated, so this system is intended to 
complement or replace bartenders for easy-to-mix beverages. Preparing more advanced cocktails, 
collecting payments, swapping out bottles, and many other tasks must still be carried out by 
trained bartenders. 

Turning on the CAMS begins the setup process. Using a serial terminal, the CAMS 
prompts for which ingredients are located in each ingredient module. These ingredients are 
encoded by number, so this process requires the user to know the mapping from ingredient names 
to ingredient numbers. Once the modules and contents have been enumerated, it prints a list of all 
the cocktails available to be made and then prompts the user to select a cocktail to be made. The 
CAMS delivers beverages by acting in two stages – order determination and component delivery. 
First a user orders a cocktail from the presented list by menu item number, which was just 
displayed. Then, for each ingredient in the cocktail, the CAMS determines what module the 
ingredient is located in and what volume of that ingredient is needed. A command is issued over a 
UART bus to each of the relevant modules to dispense the specified ingredient. Each dispensing 
command executes a small handshake between the main board and the module which allows the 
main board to specify which module it is attempting to send a command to, followed by the 
number of parts of liquid to dispense. Specifying a number of parts to dispense allows more 
complex cocktails of varying volumes to be made. The bus does not have any collision 
management, as the communication method is designed to only have one node communicating on 
the bus at a time. Delivery of messages is ensured by a system of acknowledges on each 
command. 

Modules dispense ingredients to the cocktail being made by opening and closing a 
solenoid valve connected to beverage-grade plastic tubing, which transports the liquid into a 
cocktail glass. Each time a module gets a dispensing command, it must determine how long to 
hold the valve open as a function of the current volume of liquid in the bottle and the number of 
parts of liquid specified by the main board. Ingredient bottles have a hole cut out at the top of 
them which houses an ultrasonic sensor. When a reading is initiated by the module board, the 
ultrasonic sensor determines the height of the liquid remaining in the bottle. The microcontroller 
then reads that value and uses it to index a lookup table to determine how long to hold the valve 
open. The ultrasonic sensor reading is necessary because the volume of liquid in a bottle 
determines the flow rate out of the bottle, as described through Bernoulli’s Principle of fluid flow. 

There are several other beverage automation solutions either developed by hobbyists or 
are attempting to attain commercial production through the online crowdfunding platform, 
Kickstarter. Such systems include the Party Robotics’ Bartendro, the Inebriator, the BoozeBot, 
and Monsieur. These systems also offer complete hardware-software solutions, but none of these 
systems are cheap, modular, or scalable. They all require the purchase of a specific-sized system, 
and if at a later point more modules are desired for the system, an entirely new system must be 
purchased with no way of using the existing system. For example, the Monsieur and the 
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Inebriator both only allow for a certain number of ingredients. The BoozeBot and Bartendro both 
have different models, but provide no way of scaling between models – to increase system size 
and functionality, a new system has to be purchased. 

The CAMS is designed to use as few as one ingredient module and as many as 64 
ingredient modules. The main controller is separate from the ingredient modules, and the 
ingredient modules only need connections to power and to the communications bus to add 
functionality to the system. Additionally, the expected cost of the CAMS is significantly lower 
than the existing systems per module. Across all systems (including CAMS), the greater number 
of modules purchased, the cheaper the effective module price, as cost of the main controller is 
distributed over many modules. The most expensive and least cost effective product is the 
Monsieur, which has a rate of $500 per module, and the most cost effective per module is the 
BoozeBot, which costs 62.5 British Pounds, or about $108. The CAMS prototype has a per 
module cost of $103.35. The cost of the largest BoozeBot system is more than the cost of an 
equally sized CAMS, even when taking into account the costs of the main module. A four-module 
CAMS prototype is expected to cost 57.5% cheaper than the same size BoozeBot, which is the 
smallest model.  

Furthermore, the prototype cost of the CAMS was driven up significantly by the debug 
hardware used and buying each part individually. Some components, such as the FTDI serial chip, 
the associated capacitors, and USB connector (totaling about $5.50) are not needed for production 
model module boards, because the USB connection is used only for debugging. For a production 
board, the microcontroller would be mounted directly on to the board. Future development work 
with the CAMS past the first prototype can also likely lead to additional cost efficiencies in the 
design. It is likely that the code size and timer hardware requirements of the CAMS could be 
satisfied by a smaller, cheaper microcontroller, which would also remove cost of the system. 
Designing custom circuit boards for this system would eliminate the need for any breadboards 
currently used (which each cost $6).  Lastly, purchasing all system components and circuit boards 
in bulk would drastically reduce cost per module, as the prototype cost was determined by 
individual part costs of every single electrical and mechanical component in the system. 
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Alternative Designs Considered 
 

 Over the course of this design project, several design alternatives were explored to best 
suit the needs of the CAMS. These design choices demonstrated tradeoffs in cost, system 
complexity, and required development time. The possible design alternatives were grouped into 
two categories: communications structure and beverage dispensing methods. For each of these 
categories, the design possibilities that were not chosen will be discussed while leading up to a 
description of the final design. 
 

Communications Structure 

Custom Static Network 

 The first network structure that was considered required a custom protocol and network 
topology. There were three types of network nodes in this topology – the central board, interface 
boards, and the beverage modules, and these nodes formed a quad-tree structure. The central 
board forms the root of the tree and thus has four ports, the interface boards each have one port to 
connect to its parents and have four ports for four branches, and the modules just have a single 
port. At initialization time of the system, the central board attempts to enumerate all of the 
modules that are present by querying each of the ports one by one to list the connected modules.
 The result of this process is that the main board and the interface boards all know which 
beverage modules are located at each of their ports, but do not know the exact locations of the 
modules. For example, the main board might know that there are seven modules that branch off of 
port zero, but does not know their exact locations. If the main board wants to send a command to 
one of those seven modules, it sends a request to that port and allows the connected interface 
boards to handle the request. When an interface board gets a request for module dispensing, it 
repeats the process. If the desired module is located at one of the ports with just a leaf on it, then 
the interface board knows the exact location of the module. If the module is located at the port 
with the next interface board, it just sends a command to dispense an ingredient and allows the 
next level board to handle the request. 
 The key aspect of this design is that all of the ports are physically the same pin out and the 
protocol for requesting commands and responding to commands is the same regardless of whether 
or not the receiving node is an interface board or a module. This provides two main benefits. 
First, using the same message standards for sending and receiving from both boards and modules 
makes the communication software very easy. When a board gets or generates a request, it just 
needs to look up on which of the four ports the desired module is located on, and sends a request 
to one of four ports. No board needs to maintain exact location, nor does the protocol require a 
complicated routing method – the route is deterministic. The second benefit is that the design time 
of this protocol would be relatively short. All the ports are have same physical and electrical 
specifications regardless of which board or module they are on, or if they are an input or an output 
port. Additionally, the simple message types and message structure are relatively easy to program 
on a microcontroller. 
 However, there are many negative aspects of this design. Designing a circuit board takes 
considerable design time, and if there are three different designs needed (main, interface, and 
module), then the time to just have all the necessary boards produced would triple. The same 
board design could be used for all three boards, but that would require each board to have five 
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ports and make the module and central boards larger than necessary, which would make the final 
design physically bulkier. Additionally, three different types of board designs would result in 
three completely different sets of software, regardless of the physical board design. Lastly and 
most importantly, developing a tree structure of nodes would require significant harnessing and a 
large number of boards. Even producing these boards in bulk would likely not reduce the cost 
enough to validate use of the design. Regardless, requiring an extra board for every multiple of 4 
modules used past 5 will unnecessarily drive up the total system cost, which defies one of the 
principal design points of the CAMS. 
 

CAN Bus Communications Structure 

 The main alternative design choice for the board-to-board communications infrastructure 
considered was the CAN (Controller Area Network) protocol for bus communication. The CAN 
standard is a bus-based protocol that was developed at Bosch in the 1980’s and has been used 
primarily for automotive systems. CAN is a bus-based multi-master protocol similar to I2C in that 
any node can send a message to any other node on the bus. Each node on the bus is assigned a 
unique identifier (determined at design time) which also denotes priority on the bus. A lower 
numbered identifier denotes higher priority. A CAN packet consists of many fields including up 
to 8 bytes of payload and a 15 bit CRC field for error detection. Additionally, CAN has a wide 
variety of error detection and information to convey to software. The CAN protocol is interesting 
because it requires two separate controllers to operate the protocol. One controller handles the 
logic of the protocol and communicates with the second controller, which handles the analog 
specifics of the CAN bus including performing processing and error detection tasks at the bit 
level. 
 There are two versions of the CAN protocol currently in use: CAN version 2A and 2B. 
The main difference between these two versions of the protocol is that version A only allows for 
11 bit identifiers, whereas version B allows for 29 bit identifiers. There are some other changes in 
packet structure between these two protocols, but they exist only to enable the additional 
identifier length. Aside from these differences, the protocols operate in the same way. The CAN 
protocol is broken down into the physical layer, the transfer layer, and the application layer. The 
physical layer implements differential pair bit signaling, where a 0 is indicated by a high voltage 
on the bus (called a dominant bit) and a 1 is indicated by a low voltage (recessive bit). The wire 
harnessing in a CAN bus requires a characteristic impedance of 120 Ohms and requires an 
additional terminating resistor of 120 Ohms at either end of the bus. Data frames are specified at 
the transfer layer and consist of a start of frame bit, an identifier, a set of control bits (including 
payload size), a variable size payload, the CRC and delimiter, an ACK bit and delimiter, and an 
end-of-frame field. Bus arbitration, error detection, and acknowledgement are all handled at this 
layer. Lastly, the programmer is able to interface with the CAN-based system at the application 
layer. Transmission and reception of messages at the application level are handled through a set 
of message objects that contain all the necessary information about the content and status of a 
message. For example, a program can format a message object to be a data message designated 
for another node on the bus, the message can be queued to send as soon as it is ready, and an 
interrupt flag can be raised when the transmission of the message is successful or if there is an 
acknowledgement error on the message. The message object system of CAN controllers is 
complex, but it allows for rich interactions between the software and the lower level protocol. 
 Originally, it seemed as though the CAN bus was a good design choice for this project. 
The high noise immunity offered by the bus specifications was attractive for this application 
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because the high power solenoid valves employed are likely to create noise on the bus. The CAN 
bus is able to detect errors through analog bit errors on the bus, packets formatting errors, CRC 
errors, and acknowledgement errors. This wide set of error signaling could be useful in debugging 
to help get the technology running initially as well as in production runtime software to increase 
system robustness. Additionally, Atmel sells microcontrollers with integrated CAN controllers to 
reduce the circuit board complexity and allow direct manipulation of message objects and the 
status of the CAN controller. Atmel also released several resources on how to program for the 
CAN line of microcontrollers and how to translate register names from other Atmel product lines 
to the CAN line. Additionally, because CAN packets contain a destination identifier, up to 8 bytes 
of payload, and built in acknowledgements, the communications software could be simpler 
because many basic communications tasks could be handled by the built in CAN controller. 
 A considerable amount of development time was put into enabling use of the CAN bus, 
but in the end it proved to not be the best technology for this project. Many of the features that 
initially made CAN attractive made progress slow and halting. First, enabling the use of a CAN 
microcontroller required designing a printed circuit board, testing it, producing a second revision, 
and then further testing before any meaningful communications software development could start. 
The board work provided some exciting work and experience developing a new circuit board but 
it took development time away from other aspects of the project. Next, the integrated CAN 
controller on the board actually made it more difficult to debug issues. Because of the way the 
CAN controller is built in the Atmel architecture, attempting to send any message required a 
complicated set of register commands which made it difficult to identify the faulty step in the 
process. The demonstration code offered by Atmel was very difficult to parse, and was also not 
helpful in trying to develop just a simple board to board communications demonstration. 
Additionally, I did not have any access to CAN bus analyzers or logic analyzers, which would 
have made development significantly easier. 
 The largest error I made with trying to use the CAN bus on this project was 
underestimating the difficulty in enabling basic use of the technology. Specifically, I was trying to 
simultaneously develop new software while also trying to develop the hardware that the software 
was running on. Developing both at once made it incredibly difficult to track down errors. I did 
not have any CAN bus communications working, which was due primarily to my inability to 
either guarantee that board design was correct and that I had a software issue, or to verify the 
software was working and that I maybe have had the wrong pin mappings on one of the chips on 
the board. Although the design did not work, the schematics of the board can be found in Figure 
C5. Despite these shortcomings, using a CAN bus would have still had its benefits. The final 
software version for the CAMS has a complicated software communication architecture, which 
must include acknowledgement, timeouts, and retries in software, which could have been handled 
by proper configuration of the CAN controller. However, I did not have the proper development 
tools, expertise, and (most importantly) time to enable the use of CAN technology for the CAMS, 
so a simple UART bus scheme was implemented. The selection rationale and implementation 
details for the UART bus can be found in the Design section of this report. 
 

Mechanical Designs Considered 
 

The first mechanical design option was a conveyor belt based system. The modules would 
be mounted above a conveyor belt and the tubes would go from the modules down to near the 
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belt. When a cocktail was ordered, the bartender would place a glass on the belt, and the system 
would move the glass under the appropriate tube and then dispense the liquid. Once the beverage 
was ready, the bartender would grab the cocktail from off the belt. Mounting the modules directly 
above the belt would eliminate the possible need for compressed air and tubing. From a patron’s 
perspective, it might also be fun to watch the cocktail be made as it travels down the belt. 
 However, this method is not very suitable for a modular system, and it is not expected to 
have a high throughput of cocktails. The conveyor belt system is not very modular because the 
belt assembly would have to be resized whenever additional modules were added. It would be 
possible to use a larger belt than is necessary to accommodate for a variable number of modules, 
but it would be wasteful to have a conveyor belt that could fit ten modules on it when only four 
modules are installed. Next, the conveyor belt would also have to be run very slowly to not spill 
any liquids. One of the goals of the CAMS is to aid bartenders during peak demand, and so the 
system would not be useful if it had to be run slowly to make sure the cocktails would not spill. 
The conveyor belt would require a calibration method to make sure the glass was aligned properly 
under the tubes. 
 

Compressed Air 

 It was apparent that the conveyor belt system was not the optimal design choice, so 
additional design choices were explored. Another such choice was to use a system of compressed 
air and tubes to be able to dispense ingredients from modules that were physically distant. This 
design requires many mechanical components. First, the system would require a compressed air 
tank and a method of delivering the compressed air to the beverage modules. This method also 
has to allow air flow control from the beverage modules, as well as a way to control the 
dispensing of liquids out of the modules. None of these pose particularly difficult mechanical 
challenges. The regulator output of a compressed air tank is a National Pipe Thread (NPT) 
standard, so the tank can be easily interfaced with a variety of beverage safe plastic standard 
connectors. A tree of tube splitter components, such as Y and T splitters, could be used to deliver 
compressed air to tubes for each of the modules, and the fluid flow could be controller by a 
microcontroller by using a solenoid valve and appropriate driving circuit. Another solenoid valve 
could be used to dispense the liquid from the module itself. A minor amount of coordination 
software would be required by the module boards, but having one dedicated valve for liquid 
dispensing and one for compressed air would make the coordination relatively simple. 
 The valve and tubes solution had many advantages for the CAMS. First, this design was 
extremely modular. The connections coming from the compressed air tank could be resized at will 
using additional tube splitters, and an appropriate structure design would allow each module to be 
built and installed separately. Based on previous designs available through the Cornell ECE 4760 
course page the solenoid valve control would use an opto-isolator circuit that was controlled by a 
microcontroller pin and powered from a power supply large enough to quickly switch on and off 
the valves (Land, 2013). This seemed like an obvious choice for the mechanical design of the 
CAMS. 
 There were two main issues that arose through development that resulted in only partial 
adoption of this plan. The first is that there was not sufficient development time to fully design 
and construct the system of valves, tubes, and splitters that would make up the core of the liquid 
and compressed air delivery system. Additionally, the cost of the compressed air tank, regulator, 
additional tubing, connectors, valves, and required circuitry would cause the cost of the CAMS to 
skyrocket. Including the cost of the valve for beverage dispensing, the mechanical components of 
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each additional module would cost $66.98 (see Appendix D: Component Costs). Between this and 
the total BOM cost for the module boards, each module could cost up to $139.50, which is was 
well above the desired price point of each module. 
 Once I resolved not to use compressed air I wanted to determine how much liquid 
remained in the tube undispensed after the valve had closed. I found out that the brand of plastic 
tubing I used does not maintain an appreciable amount of undispensed liquid. There is liquid in 
the elbow connector but this is negligible compared to the cost of a compressed air based CAMS. 
The volume in the elbow connector was found to vary by amount of liquid dispensed. When 
10mL was dispensed then about 4mL of liquid remained in the elbow connector. When 20mL was 
dispensed then only 1mL of liquid remained in the connector. This effect is likely due to the 
higher volume of liquid providing more weight and force to push all liquid out of the connector. It 
is important to note that this is not a constant loss per dispensing. The first time a module is used, 
some of the liquid will remain in the connector. After that, the trapped liquid will be forced out by 
the new dispensing of liquid and a few mL will be left behind after that, but no net liquid will be 
lost. Also, it was found that the geometry of the valve and tubing assembly affected the amount of 
retained volume. Given that volume losses would be negligible, the CAMS design does not 
address this remaining liquid.  
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Design 

Electrical Design 

 
 The most important design principals of the CAMS are high modularity, low cost, and 
ease of use. The design revolves around a central processing board that handles all user requests 
and communicates with a up to 64 number of self-contained modules, which each control the 
dispensing of one liquid cocktail ingredient. Ice, garnishes, and any other non-liquid cocktail 
components must be handled by the bartender before delivery to a customer. The central board is 
a single circuit board with a microcontroller, but the modules consist of a circuit board, a solenoid 
valve and associated driving circuitry, a 700mL water bottle with a hole cut in the top, an 
ultrasonic sensor mounted on top, a set of tubes and connectors to connect the bottle to the valve 
and then the valve to outgoing tubing, an a wooden housing to hold all of these components. 
Please refer to Appendix B: Schematics and Board Layout for detailed schematics and layout of 
the boards and circuitry used in the CAMS. 

Prototyping Circuit Board 

 The main and module boards both use the same prototyping circuit board, known as a 
breakout board. This board is an existing design for prototyping systems using an 
ATMEGA1284P microcontroller and peripheral hardware for a wide range of prototypes. The 
power input on the board takes unregulated 7V to 35V and converts it to a regulated 5V to power 
the remainder of the board. The ATMEGA1284P is seated in a DIP socket on the board that 
allows the chip to be swapped out if it breaks or is damaged. The microcontroller is programmed 
using an on-board ISP header. An external 16MHz crystal provides the system clock through the 
XTAL pins on the microcontroller. The microcontroller communicates with other devices either 
through the single row pin header on the side of the board (for plugging into a breadboard) or 
through a USB connection enabled by the serial communication chip and female USB-B 
connector. A green LED on the board, useful for debugging, can be connected to pin D.2 on the 
microcontroller through a two pin male pin header and a small jumper. Similarly, the pins that 
ordinarily drive the communication chip can be disconnected by removing jumpers on similar 
headers. Serial communication jumpers were used on the CAMS for development purposes and 
for PC communication, but the jumper for the green LED was removed. On both the main and 
module boards, the row of pin headers is plugged directly into a breadboard for easily interfacing 
with other components. Please refer to Appendix B: Schematics and Board Layout for references 
to the prototyping board.  

UART Bus 

 ATMEGA1284P microcontrollers have two separate UART channels. On the main 
microcontroller, UART0 is used to communicate with the PC to interact with the user, while 
UART1 is used for the UART bus to communicate with all the module boards. On the module 
boards, UART1 is used for the UART bus, and UART0 was left for PC communications for 
debugging purposes but is unused during normal operation. The PC connection to the 
microcontroller is made possible by the serial communication chip, an FTDI FT232RL chip, 
which converts TTL level UART communication from the microcontroller to the differential pair 
used in USB connections and vice versa. A female USB type B connector is connected to the chip 
and easily connects the UART0 on the microcontroller to a PC. 
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 Given the hardware on the boards, PC to microcontroller communication is relatively 
simple. From the microcontroller message transmission, the standard fprintf function can be 
configured to output formatted strings on UART0. When the microcontroller receives a message, 
a flag indicates there is a byte waiting in the receive buffer, at which point either an ISR can be 
entered or the receive buffer can just be read by the main software. On the PC side, the USB 
connection is interpreted as a serial communications port (COM port), and any program that can 
handle serial I/O can bind to this COM port and interact with the microcontroller. PuTTY, a free 
Microsoft Windows serial terminal program, was used to communicate with the main board. A 
baud rate of 9600 was selected for the PC communications. The speed could have been increased, 
but slower baud is more reliable and the channel was not nearly saturated, so it was not necessary. 
 The UART1 channel on the microcontrollers was used to allow bus-based UART 
communication. The most efficient way for the main module to issue commands to anywhere 
from 1 to 64 modules was to use a bus. Because the current CAMS system is a prototype, the bus 
does not have a proper harness structure. The bus is implemented by using solid core wires and 
resistors plugged into breadboards and connected directly to the UART1 microcontroller pins. In 
the unlikely event that two microcontrollers are both trying to drive the bus at the same time, each 
transmitter pin has a 1kΩ resistor between the pin and the bus, so there is ample protection for 
both the transmitters and the receiver. It is also possible that, at some points in time, no module 
boards are driving the bus, so the receive line going to the main board is weakly pulled to 5V 
through a 10kΩ resistor. During development before the resistor was used, when there were no 
modules driving this line, any transmissions to the modules on the bus caused reflections on the 
receive line. This was likely due to the undriven receive line coupling to the transmit line, which 
caused anything that was transmitted to be reflected on the receiver. Adding this resistor 
eliminated this problem. For further noise prevention, the ground lines of each board are 
connected to avoid an issue with inconsistent grounds. 
 Long solid core wires are also not ideal for harnessing the CAMS. They are brittle and 
have poor electrical qualities for long lengths of wire. However, they were sufficient for the 
CAMS prototype. A low baud rate was used on the UART bus in case that the long wires had 
significant delay. The main board’s transmit pin is connected to each of the modules individually, 
and each of the module board’s transmitters are all connected to the main board’s receiver. This is 
not scalable because attempting to plug in 64 wires (the maximum number of modules) into a 
single microcontroller pin would be physically difficult to implement and it is likely that the pin 
does not have the driving strength for the fan out of 64 microcontroller pins. However, not 
enough hardware was present in the development laboratory to allow for the testing of large scale 
buses. 

Solenoid Valve Driving Circuit 

 Each module dispensed a single liquid ingredient from a bottle for storage to a cocktail 
glass or other container for consumption. The flow of the ingredient from the bottle to the glass 
was regulated by a solenoid valve located between the bottle and the tubing that carried the 
ingredient to the glass. This solenoid valve is driven by a small set of circuitry uses a different 
power source than the regular microcontroller power. This separate power source is necessary 
because the solenoid valve used is a heavy brass solenoid valve that takes a minimum of 6V and 
1.6A, which is more voltage and current than can be provided by the regulator that powers the 
microcontroller. 
 The microcontroller is able to control the opening and closing of the valve even through 
turning off and on and opto-isolator which in turn allows for either no voltage or 6V to be 
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dropped across the valve. A schematic of the opto-isolator circuit can be found in the bottom of 
the module board schematic, found in Figure C3 of Appendix C. An opto-isolator works by 
having an LED very near to a phototransistor, and isolating both from any other light source. This 
allows a microcontroller to control the voltage of the phototransistor in an analog manner, usually 
through pulse width modulation. The module board microcontroller is connected through a 
current limiting resistor to the anode of the LED inside the opto-isolator. The CAMS only needs 
the valve to be either turned “on” or “off”, so instead of putting an analog voltage on the LED, the 
LED is either provided 5V or 0V. When the LED is not turned on the 10kΩ is weakly pulling the 
gate of the NFET to ground which causes it to not conduct. No voltage is being dropped across 
the solenoid, so the solenoid is turned off. When the LED is turned on, the phototransistor is 
conducting, which strongly pulls the gate of the NFET to valve power (minus threshold voltage of 
the phototransistor). This turns on the NFET, which causes the negative terminal of the solenoid 
to effectively be at ground, which results in a 6V drop across the solenoid, turning it on. There is 
a diode connected to the terminals of the solenoid used to prevent inductive spikes when the 
solenoid first turns on or off. There is also a capacitor located on the terminals of the solenoid to 
prevent high frequency noise spikes. 
 

Mechanical Design 

 
 Due to limited development time, a complete mechanical design and structure had not 
been completed. Some preliminary mechanical designs had been drafted but were not 
implemented. Instead, a prototype was built using components and materials already available in 
the laboratory. The system design is not complex, but it still properly houses the three main 
components of the mechanical system: the container to hold the module ingredient, the solenoid 
valve for dispensing the ingredient, and the structure to hold all of the components. A picture of a 
module structure can be found in Figure B1, and a model from the mechanical CAD program, 
Solidworks, can be found in Figure B2. 
 The ingredient is contained within a 700mL Poland Spring water bottle. These plastic 
bottles were used because they are easy to obtain, they are cheap, and the bottle itself is not heavy 
which helps reduce the load requirements of the mechanical structure. Fortunately, the threaded 
cap size of the plastic bottle closely resembles the dimensions of a ¾” garden hose, so a standard 
connector can be used. The fit between the connector and the bottle is not perfect, but it is suitable 
for a prototype. The remainder of the valve, plastic bottle, and beverage-grade plastic tubing are 
connected together through a set of standard connectors. The plastic bottle is connected to a Brass 
¾” female garden hose to ½” plastic tubing connector (called hose barb). The tube then extends 
2.75” to an HDPE ½” hose barb to ½” male national pipe thread (NPT) converter which is 
screwed into the solenoid valve. The other side of the solenoid valve is connected to another hose 
barb to NPT connector, which is connected to 2” of tubing. The tubing is also connected to a 
polypropylene 90o elbow with a hose barb connector on both ports. Tubing then connects this 
elbow to the dispensing area near the cocktail glass. Many of the connectors are sealed with 
Teflon pipe thread tape, to prevent leaking between threads. Additionally, the inside of the female 
garden hose to ½” hose barb connector is coated in a thin layer of silicon grease to prevent 
leaking and has an extra gasket to improve the seal between the connector and the ingredient 
bottle. 
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 Accurately dispensing a certain volume of liquid out of the bottle requires holding the 
valve open for a specific duration, which is based on the flow rate. The flow rate out of the bottle 
is not constant - it is governed by Bernoulli’s Principle. An ultrasonic sensor seated in a hole cut 
out at the top of the bottle can measure the height of the liquid in the bottle, which can in turn be 
used to determine flow rate. However, the flow rate can be difficult to calculate because the shape 
of the bottle makes modeling volume as a function of height difficult. Even if an accurate volume 
model could be determined and evaluate, determining flow rate would also be difficult. The exact 
material properties and physical dimensions of the connectors and valve are not known so the 
pressure drops (and thus the flow rate) in the system are difficult to model. 
 Instead, a scheme is used to directly map liquid height in the module to a duration of time 
to hold the valve open. This duration is calibrated to dispensing one “part” (22mL) of volume of 
the ingredient. The valve durations were determined through a set of experiments. Due to limited 
accuracy of laboratory equipment, the mapping from liquid height to valve duration only has a 
granularity of one half centimeter. Details on how the measurement and mapping are calculated 
can be found in the Ultrasonic Sensor and Valve Duration section of this report. The precision of 
the valve duration is discussed in the Results section of this design report.  
 The structure of the module is a large rectangular wooden box which stands upright on its 
smallest side, and the front face is open. This box also contains a set of sixteen small wooden 
guides along the long sides of the box to allow any configuration of shelves to be used. The 
shelves used in the prototype are made .5” Styrofoam, which was used due to availability in the 
laboratory. The valve assembly rests on the first shelf which sits on the 1st shelf slot, which is 
located 2.125” above the counter. The top shelf is 12” above the bottom shelf and is used to hold 
the ingredient bottle in place. This shelf has a rectangular hole cut out of the middle that is 2.5” 
across by 4” deep. The curve of the ingredient bottle rests in place on top of this shelf while the 
valve rests slightly above the bottom shelf, supported by a tube connector and held upright by the 
ingredient bottle assembly above. A model of this module design can be found in Figure B2. 
 This prototype is not the optimal structure for the CAMS, but it does have some key 
design points that a proper design should have. The current structure has an adequate way to hold 
the weight of the ingredient bottle and the valve, which constitute the majority of mass of the 
module and provide the greatest load on the structure. Additionally, it would be incredibly 
difficult to knock over or disturb this prototype, which makes it safer for a hectic bar 
environment. However, there are three major design flaws which need to be addressed. The first is 
that the box structure is not specifically designed for the CAMS so it is large and unwieldy. 
Constructing a fifteen module CAMS with this structure would require nearly seventeen feet of 
counter space. The boxes are easily stackable but it would be difficult to restock the ingredients 
inside. A good design would be much thinner and lighter so that many modules does not take up 
significant counter space while also being stackable to further consolidate linear space usage. 
 A better-designed structure would also have an easier way to attach the necessary wires. 
Either the structure would have a hole in the back or sides to string wires through, or would have 
connectors mounted on the side to easily plug in the module board to valve/sensor electronics. 
Depending on the connectors used, the wire scheme used to connect the microcontroller to the 
module electronics may also require updates to fit the chosen connector. A properly designed 
CAMS would have a better container system. The hole at the top of the plastic bottle is suitable 
for equalizing the pressure as liquid flows out of the container, but it does not ensure that the 
sensor is pointed directly downwards in the container. Tilting the sensor can impact the accuracy 
of results. Lastly, the method of refilling an empty module requires that the bottle be pulled out of 
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the module and then filled up at the top. Pulling out the bottle also requires carefully removing the 
valve assembly. A better CAMS design would not require removing the internal assembly to 
restock the ingredient. These design improvements were not implemented due to development 
time constraints. Given additional time, these changes would have been pursued to improve the 
robustness, usability, and space usage of the CAMS. 
 

Software Design 

 

 All of the CAMS software is written in C, developed on Atmel’s AVR Studio, and run on 
the ATMEGA1284P microcontrollers either on the main board or on a module board. The 
software that runs on the main and module boards is slightly different. The main board software 
runs the code to initialize the system, runs the user interface, and coordinates communication on 
the UART bus to the modules using a protocol that leverages UART capabilities on the 
microcontrollers. The module board software sends and receives messages on the UART bus as 
well as reads the ultrasonic sensor to control the solenoid valve actuation. For a full software 
listing, please contact cig23@cornell.edu. 

Data Structures 

 
 In order to efficiently store and reference cocktails that the CAMS can make, a complex 
data structure was created to store the cocktail information in a memory-efficient manner while 
also enabling fast lookup functions for the library of cocktails. At the lowest level of the structure, 
drinkEntryBits is a collection of two-bit fields in a C struct. Each two-bit field corresponds to a 
particular ingredient that the CAMS knows how to use and the number in the field represents how 
many parts of that ingredient go in a cocktail. For example, if a cocktail had zeros’s in all of its 
drinkEntryBits entries except a one in the “Rum” field and a two in the “Coke” field then that 
cocktail would call for one parts Rum to two parts Coke. The drinkEntryBits structure currently 
only has seven entries defined, although this can be easily expanded to incorporate new drinks by 
adding additional entries in the struct definition and in all places where the struct is called. 
 The drinkEntryBits struct is embedded in a C union called drinkEntryUnion with an 
unsigned 16-bit integer. The purpose of this union is to allow setting and clearing of all the fields 
in the entry at once without having to enumerate each individual entry. A 16-bit integer is used 
because at this time there are only seven 2-bit entries, but this can be easily expanded to any 
integer size to accommodate the size of drinkEntryBits. A drinkEntryUnion is embedded in a 
drinkEntry struct, which is the struct used to store cocktail entries in a library. There is a string 
field in a drinkEntry struct that holds the name of the cocktail and a drinkBitUnion. The syntax 
for referencing an individual bit field from the highest level structure is cumbersome, as a field 
within drinkEntryBits within drinkEntryUnion within drinkEntry must be referenced. However, 
the algorithmic performance on this data structure is fast. The algorithmic performance is 
discussed in the Main Board Software – Initialization section of this report. Memory space 
requirements increase logarithmically instead of linearly because every power of 2 number of bit 
fields requires one larger size unsigned integer in drinkBitUnion to be able to access all fields at 
once. Using an array of unsigned 8-bit integers instead of bit fields would make each library entry 
take up a significant amount of space. 16 allowable ingredients would only require 4 bytes of 
drinkEntryBits space, but using an array would take up 16 bytes. This may not seem significant 
for small numbers of drinks on the menu, but when scaling up to hundreds of drinks, the library 
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can take up a large portion of available memory. Also, if a smaller microcontroller is used to save 
cost (see the Reducing Electronics Cost section of this design report), then having a smaller 
memory requirement would make it easier to find a cheaper microcontroller. 

Main Board Software 

Initialization 

 Initializing the CAMS is done in three steps. First, low level setup code runs to clear and 
turn off the watchdog timer, configure the on-chip UART hardware for eight-bit UART at 9600 
baud. Hardware timer 0 is set up to provide a 1 millisecond time base used in the communication 
protocol. Next, the global library of drinks is populated from the file drinkLibrary.h by calling 
populateLibrary(). Each entry in the library is one cocktail that the CAMS can prepare, which is 
encoded by a drinkEntry struct. This library does not represent the cocktails that can be made at 
that time – that cannot be known until the contents of each module is determined in the next step. 
 Next, the function populateStock() is called to allow the user to set up the modules 
currently in use in the CAMS. The user is prompted to indicate what ingredients are located in 
each module. The CAMS sends the prompt “What is in slot 0?” to the serial terminal, and the user 
enters a number corresponding to an ingredient number, and then presses enter. This method 
requires that the user setting up the system knows the mapping from ingredient names to 
ingredient numbers. The table of ingredient numbers and corresponding names can be found in 
Table A1. Each successful ingredient entry increases a variable indicating the number of valid 
modules present and updates the beverageModules array indexed by ingredient number that 
indicates which module each ingredient is located in. After each ingredient is entered, the CAMS 
increases the module number on the prompt, populating the internal module list one by one. If 
ingredient number 99 is entered, that indicates that all modules have been listed and to move on to 
the next step in the process. If 100 is entered, that indicates the user is requesting a software reset. 
Software reset occurs by turning on the watchdog timer to the fastest setting and waiting in a 
while(1) loop until the timer expires. This forces a software reset, and the microcontroller with 
clear the watchdog timer when it reinitializes. After the stock is populated, printStock() is called 
to print the results of populateStock() in a readable format. This serves no functional purpose – it 
is just included for diagnostics. 
 After the modules have been configured, the CAMS determines, given what cocktails it 
knows how to make, which cocktails can be made with the given stock of ingredients. This is 
done through the checkTotalAvailability() function, which leverages the allBits field in a 
drinkEntryUnion (which is a concatenation of all of the bit fields combined) to quickly 
determines whether or not a cocktail can be made. First, for each drink in the global library, the 
allBits field is logically ANDed with the allBits field of the module stock that was populated in 
the previous step. If the result is non-zero, that means there are some bit fields in the current stock 
that are non-zero that are also non-zero in the same place in the library entry. This means that 
there is at least one ingredient in the library entry that the current modules have in stock. Next, 
this resulted is XORed with the library entry, and checked if the result is zero. If only some of the 
bit fields from the library entry matched the stock that means that there were some ingredients 
from the library entry that were present in the populated stock. If that is true, then the XOR will 
be nonzero because the ingredient fields that were not present in the current stock will be ones 
while the previous AND with the current stock would have resulted in zeroes in those bit 
positions. However, if the XOR result is zero, that means that there are no ingredients that were 
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present in the library entry that were not present in the populated stock, so the CAMS can make 
the cocktail indicated by that library entry. 
  If this algorithm determines that the cocktail can be made, it populates the cocktail in the 
list of available cocktails. Instead of performing a deep copy of all the fields of the drinkEntry 
structure and copying them to a new array, the list of available cocktails (called the menu) is just 
an integer. This integer indexes into the global library and pulls ingredient information from this 
library. This algorithm is complex but it provides many benefits. First, using the allBits field in 
the drinkEntryUnion within the drinkEntry structure requires that only three operations are 
needed to determine if a cocktail can be made, regardless of the number of possible ingredients 
there may be. If each ingredient is checked individually, via a method such as iterating through 
each ingredient and checking if the library entry needs the ingredient and the ingredient is in 
stock, then the lookup time for each module would scale linearly with the number of possible 
ingredients. Similarly, performing a deep copy from one array of drinkEntry structures to another 
would also scale linearly with the number of ingredients. The time saved may not matter for small 
scale systems, but when a CAMS is trying to serve hundreds of patrons in a bar, then saving time 
only having to perform 3 operations total instead of 3 per ingredient plus the time to perform a 
memcpy may be relevant. Unfortunately, it is not possible to determine the time savings without 
programming the alternate method and creating a library of hundreds of drinks that supports many 
ingredients. 

User Interface 

 Once the availability of cocktails is efficiently checked, the menu of available cocktails is 
printed to the serial terminal. The available drinks are displayed with the name and ingredients in 
each drink, and by menu item number. That number is bounds checked to ensure that it is less 
than the number of cocktails on the menu. Bounds checking is performed on the item number, and 
if it passes, then that number is used to index into the menu array that stores indexes into the 
global library. For example, if the cocktail “Gin and Tonic” is labeled menu item number 46 but 
is overall drink number 238, then a user attempting to order a Gin and Tonic would enter 46 on 
the terminal. Element 46 in the menu would be accessed, and that value would be 238. 238 would 
then be used to index into the global list of all cocktails, and that would indicate the ingredients in 
a Gin and Tonic, and the cocktail name and ingredients would be printed to the serial terminal for 
verification. The CAMS would then issue commands to the appropriate modules, and respond 
with a success message when the dispense commands have been acknowledged by all relevant 
modules. Similar to the module population, entering cocktail 100 forces a software reset of the 
CAMS through a watchdog timer overflow. 

Communication Stack 

 The CAMS implements a basic communication stack, with UART at the physical level, to 
handle transmission of messages and receipt of acknowledges on the bus. This is a three-level 
stack, which means there are three levels of function calls before data is actually loaded into 
transmit buffers. This protocol is not knowingly modeled after any existing protocol – it was 
created to avoid having one monolithic communication function with a complicated error 
signaling scheme. Failures at different levels of the protocol indicate different messages to help 
diagnose issues. 
 When a cocktail is ordered, the orderDrink() function is called with the global drink 
number as the argument. This function iterates through the allBits field of the drinkEntryUnion to 
determine if the cocktail needs that ingredient. This is done by saving the allBits field into a 
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variable called selectedDrinkBits, forming another variable called numParts that is an AND of the 
selectedDrinkBits and the number 3. If the AND is zero, that means that ingredient number 0 is 
not used in this cocktail. The ingredient number is incremented by 1 and selectedDrinkBits is 
right shifted by 2, to move to the next ingredient. If the AND is non-zero, that means that the 
cocktail needs the current ingredient, so a message should be formed to the relevant module. 
Again, the ingredient number is incremented and selectedDrinkBits is shifted right by 2. 
 This process is repeated for all of the ingredients in the ingredient list. This bit math could 
be avoided by spelling out the process directly for each ingredient, but this would cause the code 
size to inflate because there would be several lines of code for each module, instead of a slightly 
larger number of lines for all modules. Also, if each module was listed directly, adding any 
ingredients to the list would cause further code size increase. 
 For each ingredient that is needed by the cocktail, a command is attempted to be sent to 
the module to dispense the ingredient. This is achieved by calling the sendCommand function 
with arguments as the module number (as determined through the beverageModules array) and 
the number of parts, indicated by the numParts variable. The sendCommand function returns 
either true or false – if it returns false then sendCommand prints that the request to a specific 
module failed, which module failed, and which ingredient was not present. This information is not 
relevant to the user ordering the drink as they only care that their drink was not prepared. 
However, the bartender can see which module wasn’t functioning properly and inspect it, and by 
knowing which ingredients weren’t dispensed, he or she can manually add in the remaining 
ingredients. 
 The sendCommand function calls the function to send the specified data over the bus, but 
also implements retries to allow for noise and disturbance on the bus. The bus driving function, 
uartSendByte, is first called to send the specified number of parts to the specified module number. 
If the sending fails, it tries twice more before returning false. Each time sending the data fails, the 
message “No response” is printed to the terminal, and sending is retried. If the data is 
unsuccessfully sent over the bus three times, the sendCommand function returns false. If any of 
the three attempts succeeds, then the message “transaction complete” is printed to the terminal. 
These messages help indicate if there were any failures on the bus before success, or if the 
sending process never completes. 
 At the lowest level of the communication stack is the process of attempting to send an 
individual message to a module. A message is successfully sent if a short messaging handshake is 
completed. First, the uartSendByte function records how many seconds since system initialization 
have elapsed, as indicated by the variable from the millisecond time base ISR. Next, it waits until 
the UART1 transmit buffer is empty, and then it sends a byte, with a value of 0x30 (or 48) plus 
the module number, over the bus. The increment is added to the module number of avoid 
ambiguity between module addresses and commands. After the address is transmitted, the 
function then transitions to a state of waiting for an address acknowledge. If a message is received 
that is not an address acknowledge from the correct module, the function returns false. If the 
address acknowledge is correct, then the function waits until the transmit buffer is empty again, 
and then the number of parts to dispense is sent over the bus. One part of liquid refers to half-
shots, or approximately 22mL.The function that transitions to a state of waiting for the command 
acknowledge. If the command acknowledge byte, which has value 128, is received, then the 
handshake is complete, the sending of the message was a success, and the function returns true. 
However, if the whole handshake takes more than 50 milliseconds before finishing (as indicated 
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by the start time and the global time) then the function returns false regardless of the components 
of the handshake that have been completed. 
 Regardless of if the cocktail order was a success, once the orderDrink function is exited, 
the main board prompts the user to enter another menu item number to order and repeats the 
process. An example of a full drink ordering process starting from system initialization to 
successful dispensing of multiple ingredients can be found in Figure A1 in Appendix A. 

Module Board Software 

Initialization and UART ISR 

 Initialization of the module board proceeds in a similar manner to the main board 
initialization. First, the pins on port D are configured to allow proper transmission and reception 
on UART1. Next, the address of this module is copied in to a variable. Unfortunately there is 
currently no easy way to assign module numbers without slightly changing the code, recompiling, 
and reprogramming for each module. On a production design, the initialization code would 
include some way to indicate the module number, such as using pull up and pull down resistors 
on a port or using a keypad. After the module number is recorded, then the UART is initialized by 
calling uart_init. The UART is configured for 9600 baud rate and the receive ISR is enabled. The 
receive ISR will execute every time a byte is successfully received on UART1. The ISR copies 
the contents of the receive buffer into a variable used by the main software and sets the flag 
prtintByte1 high, which is also used by the software. The process of reading data out of the 
receive buffer clears the interrupt flag so multiple ISRs do not trigger from a single byte of data. 

Communication 

 The main loop of the module board simply calls a communication function which executes 
the module side of the handshake. Inside this function, the printByte1 flag is polled. If the flag is 
high that means there is new data to evaluation in the readData1 variable. In that case the flag is 
cleared, and the data is checked against the stored address. If the data does not match the stored 
address then the module board turns off the UART transmitter to prevent it from driving the bus 
when it was not the module being addressed. If the data matches the stored address, the software 
first enables the UART1 transmitter, waits for the transmit buffer to be empty, and acknowledges 
the address by sending the address back on the bus. If the next byte received matches the address 
again, another acknowledge is sent. This allows the handshake to be reset without timeouts, 
retries, or signaling to the main board when a reset occurs. If the address doesn’t match on a byte 
directly following a correct address, it is assumed that this is a command byte, so the number of 
parts of the ingredient to dispense is stripped out from the message by taking the lower order 6 
bits and subtracting 0x20. 
 Once the number of parts has been successfully stripped out, an acknowledge message of 
the command is sent. The command acknowledge contains just the number 128, and once this is 
sent then the UART transmitter is turned off to prevent the module board from driving the bus 
unnecessarily. This concludes the handshake on the module board side. However, once the 
command has been acknowledged, the module board must open the solenoid valve for the 
appropriate amount of time to dispense the specified liquid. This is done by calling 
valveDuration, which will be discussed in the following paragraphs. Once valveDuration 
terminates, the module board communication function returns to a state where it waits for an 
address message from the main board. 
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Ultrasonic Sensor and Valve Control 

 Once a module receives a command to dispense a certain volume of liquid, then the 
module must then open a solenoid valve to dispense the liquid out of the plastic bottle. The flow 
rate of the ingredient out of the bottle is a function of the amount of liquid in the bottle, so an 
expression relating liquid volume and flow rate must be reached. However, the exact expression 
for determining flow rate as a function of volume is difficult for several reasons. First, it is 
difficult to determine the volume in the bottle because the shape of the bottle is not easily 
modeled. Next, the valve combined with the tubes and connectors makes the pressure drop 
calculations difficult due to my inexperience in fluid mechanics. A poor physical model of the 
bottle combined with a poor model of the pressure drops in the valve, tubes, and connectors 
would lead to a very inaccurate dispensing of ingredient from the bottle. 
 No analytical solution could be reached, so the problem of determining how long to hold 
the valve open for was empirically determined. Ultimately, the goal was to find a way to 
determine the volume in the bottle, which could then be used to find the flow rate, which in turn 
gives a duration of time to hold the solenoid valve open for the dispense the correct amount of 
liquid. However, since no accurate expressions could be found for any of the intermediate steps, 
an experimental mapping from the height of the liquid in the bottle to duration of time to hold 
open the valve to dispense a particular volume of liquid was developed. This was a very slow 
process, but a discussion of the experiment is found in the Results section of this design report. 
The mapping of liquid height to amount of time to hold the valve open was used instead of 
mapping height to flow rate because determining how long to hold the valve open as a function of 
flow rate is difficult. As the valve is held open, the height of the liquid changes, and so either the 
height is going to have to be dynamically calculated or reread from the sensor. 
 Both of these schemes would make the dispensing process slow, so a mapping of liquid 
height to duration to hold the valve open is used. Determining liquid height is done by an 
ultrasonic sensor mounted on top of the ingredient bottle. The ultrasonic sensor has a four-pin 
interface – it has 5V and ground connections, a trigger pin, and an echo pin. To save power, the 
ultrasonic sensor is not constantly sending out ultrasonic pulses and measuring the distance. It 
only performs a measurement when a 10 microsecond pulse is sent to the trigger pin. At that 
point, the sensor sends out a series of ultrasonic pulses and performs calculations to get a distance 
measurement. 
 The calculated distance is output from the sensor to the object on the echo pin in the form 
of a signal pulse ranging from a few hundreds of microseconds to tens of milliseconds. The sensor 
datasheet provides a formula for determining measured distance from the output pulse width, but 
an experiment was run to determine the validity of this model. The datasheet for the ultrasonic 
sensor can be found in Appendix G. The experiment, the results of which are discussed in the 
Results section of this design report, indicated that the model was not quite correct. The data had 
similar functional form to the model, so an experimentally determined model was created to be 
able to more accurately estimate distance based on the ultrasonic pulse width. A lookup table 
would have been the most accurate way to estimate distance based on pulse width, but the 
experimental setup in the laboratory did not allow for accurately determining a distance for each 
possible pulse width. Across the length of the plastic bottle, the experimental model was within 
±3% accuracy. This model was computationally simple so it did not hinder performance. 
 Interfacing with the ultrasonic sensor presented an interesting challenge. The hardware 
timers on the microcontroller have the feature of being able to detect a logic level change on a pin 
and immediately stop the timer, called the Interrupt Capture Unit. This feature is useful for 
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determining pulse width, but only when the start time of the pulse is known. To initiate the sensor 
reading, the microcontroller needs to send a pulse of at least 10 microseconds (called the trigger 
pulse) to the sensor’s trigger pin. The sensor sends a series of ultrasonic pulses to determine 
distance, then at some point later, the output (also known as the echo) pulse starts. The datasheet 
does not provide any references for knowing when the echo pulse starts with respect to the trigger 
pulse. Either the Interrupt Capture Unit would have to be configured to trigger on pulse edges of 
the echoed pulse, or the interrupt would only be triggered on the falling edge and the sensor 
would have to be recalibrated. 
 Instead, Timer 1 was used in conjunction with an edge transition pin interrupt on pin C2, 
separate from the timer interrupts. Whenever a command is received to dispense an ingredient, 
and sensor reading was initiated by putting an 11 microsecond pulse on pin C3 by using the 
_delay_us function from util/delay.h. This is not as accurate as using a hardware timer because 
the delay function does not account for time to execute ISRs, but it was simpler than setting up a 
microsecond time base ISR. The sensor is triggered by anything larger than a 10 microsecond 
pulse, so attempting to send an 11 microsecond pulse that is elongated by an ISR is acceptable. 
 After the microsecond delay is finished, an edge-triggered interrupt on pin C2 is enabled 
and the software waits until pin C2 goes high and then low again, indicating a full pulse has 
occurred. On the rising edge of the echo pulse, the edge triggered ISR is entered and Timer 1 is 
cleared and started with a prescalar of eight, giving a 0.5 microsecond time base. At the falling 
edge of the pin interrupt, Timer 1 is stopped to get the time between when the start pulse was sent 
and when the echo was received. The resulting time is then converted to twice the distance in 
centimeters and rounded to get an effective rounding to the nearest 0.5 centimeters. This result is 
then used to index into a table of valve durations. 
 As discussed, a mapping from liquid height to number of milliseconds to hold the valve 
open was experimentally determined. Ultrasonic readings are rounded to the nearest 0.5 
centimeters, so the table of valve durations must has an entry for each 0.5 centimeter. The 
ultrasonic sensor data sheet claims the sensor is accurate to 0.3 centimeters but it is safer to not 
approach the maximum accuracy bounds. The discussion of the valve experiments can be found 
in the Results section of this report. The end result of these experiments is that for each 0.5 
centimeters increment, the CAMS module microcontroller knows how long to open the solenoid 
valve for in order to dispense one unit (22mL) of liquid. 
 Despite the experimentation and data analysis that was part of the design process, the final 
process for dispensing an ingredient is very simple. First, a reading of the ultrasonic sensor is 
initiated and read. Next, the value from the sensor reading is converted to a distance in 
centimeters, which is then rounded to the nearest .5 centimeter. This is stored as a number twice 
as big because indices of an array must be integers. This number is combined with the number of 
parts (units of volume) to dispense and indexed into a table to determine how long to hold the 
valve open for. Lastly, the microcontroller drives pin C0, the pin connected to the opto-isolator 
(discussed previously in Electrical Design) high for the specified number of milliseconds to open 
the valve and start dispensing liquid. Hardware timer 0 is used as a millisecond time base and 
after the specified amount of time, the pin is driven low to shut off the valve. If a cocktail requires 
multiple parts of the same component, the module board waits for 500 milliseconds for the valve 
to settle and repeats this process for each part of liquid to dispense. 
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Results 

Sensor Experiments 
 

 As discussed in the Design section of this report, calibration of the ultrasonic sensor and 
ingredient dispensing required calibration to yield accurate data. For the ultrasonic sensor, I ran 
an experiment to determine the accuracy of the sensor and to check the accuracy of the model on 
the datasheet. I set up a microcontroller to initiate a sensor reading every 500ms and an 
oscilloscope was connected to the echo pin on the ultrasonic sensor so that the pulse width could 
be accurately determined. A tape measure was taped to the laboratory bench and the breadboard 
with the microcontroller and ultrasonic sensor was clamped to the table. A rectangular piece of 
aluminum was placed on the tape measure to attain a flat surface facing the ultrasonic sensor 
while being able to read the tape measure. 
 Basic initial experimentation indicated that the sensor was not accurate at distances closer 
than 4cm, despite the data sheet indicating that the sensor was accurate to 2cm. Between 4cm and 
2cm, the sensor would jump between readings – holding the aluminum in one place would 
sometimes make the oscilloscope read one pulse width but would randomly jump between that 
reading and a few microseconds more. Instead of trying to handle this sporadic behavior in 
software, it is more reliable to impose a maximum fill line restriction on the bottle to ensure that 
the liquid is never closer than 4cm from the ultrasonic sensor. 
 After the lower bound on distance-to-sensor was determined, the ultrasonic sensor was 
tested over a range of 20cm, which was chosen because the length of the bottle from end to end 
(including the hose connector) was 24cm. Distance increments of one-half centimeter were used, 
so 40 data points were collected in total. The results of this experiment can be found in Table E1. 
The datasheet for the ultrasonic sensor provided a formula for determining measurement distance 
as a function, which is given in equation 1: 

 ��������	(��) 	 = 	
����	(��)

��
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However, my results found that the datasheet model was not quite accurate. The slope of the line 
of data points was correct, but at certain points the experimental data had slightly different 
constant offsets from the model. Instead of relying on the datasheet model, I developed a 
piecewise experimental model. At all points in the experimental model, the slope of the 
experimental model was the same as the datasheet model – an additional 58 microseconds per 
centimeter. However, between 4cm and 7cm the plot was shifted down by 40 microseconds, 
between 8cm and 21cm the plot was shifted down by 20 microseconds, and between 21.5cm and 
24cm the plot was shifted down by 55 microseconds. The data for the experimental model can be 
found in Table E1, and a visual representation is found in Figure E1. As indicated in Table E2, the 
between percent error between the experimental data and the experimental model was very low. 
The experimentally determined model was within ±3% accuracy. The mean squared error was 
.021%, and the standard deviation was 1.33%. The piecewise linear model was easy to program 
on the microcontroller using a few conditional statements and floating point operations. 

UART Bus Reliability 
 

 The design of the CAMS requires that modules disconnect themselves from transmitting 
on the bus when not in use. According to the ATEMGA1284P datasheet, the UART transmitter 
can be turned on and off at will. The datasheet does not specify after how many cycles the 
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transmitter is enabled that it is available to send data, so the software polls the transmit buffer 
empty flag (UDRE1 in the UCSR1A register) to wait until the transmitter is ready. When the bus 
is weakly pulled to ground through a large resistor, the first byte that is sent after a UART 
transmitter is enabled is always corrupted. The root cause of the corrupt byte issue had not been 
determined, but it is expected that when the bus goes from passively being pulled low to being 
driven high when the UART transmitter turns on, then the receiver confuses this transition with a 
transition associated with a UART byte in a message. 
 This issue is resolved by weakly pulling the bus to 5V so that when the transmitter is 
turned on there are no voltage level transitions. Pulling the bus to 5V eliminated all reliability 
issues – all transactions were successful without any retries. However, the communication stack 
was able to handle the errors with pulling the bus to ground with low level software. If a 
handshake with a module fails, then the main board retries twice more. Testing the bus reliability 
while pulling to ground revealed that the UART bus timing is able to correct itself without any 
software intervention. The byte transmission is successful on either the second or the third try. A 
successful full drink ordering process on a system where the bus is pulled to ground can be found 
in Figure A2. 
 

Valve Calibration Tests 
 

 As discussed in the Mechanical Design section of this report, a direct mapping from liquid 
height in the container to duration to hold the valve open was created instead of a mathematical 
model of the flow rate. Determining this mapping was done in two steps. First, a characterization 
experiment was run to obtain a rough estimate on the flow rate at each height. The results of this 
experiment were analyzed to estimate a duration to hold the valve open for at each liquid height. 
Another experiment was run in which the valves were held open for the estimated amount of time 
and the number of mL of water dispensed was recorded. Based on the data from the first two 
experiments, another estimate was determined and the second experiment was repeated. This 
process continued for 1 additional run until the correct valve duration was determined. The results 
of the characterization experiment can be found in Table E3, and the results of the estimation 
experiments can be found in Tables E4. The final mapping of liquid height to valve duration can 
be found in Table E4. 
 The first experiment run was the characterization experiment. In this set up, the ingredient 
bottle was filled to 4cm below the top of the bottle with water, and the valve was periodically held 
open for a constant amount of time and the volume of liquid, measured in mL was measured. On 
each measurement, the starting height of the liquid was measured and the liquid was dispensed 
into a graduated cylinder. This experiment was run three times, and the results can be found in 
Table E4. Originally, I intended to average over three runs and use that average as a basis for my 
estimation. However, the first two data sets were inconsistent while the third data set was self-
consistent and consistent with the expected results from Bernoulli’s Principle that a taller height 
of volume gives a higher flow rate at constant pressure. In each of the data sets, a few points had 
to be thrown out due to fidelity of data. Either some of the water had spilled and so an accurate 
volume could not be determined, or the distance was not measured properly prior to dispensing. 
Regardless of these omitted data points, plotting the first two data sets with a linear trend gives 
very poor correlation with the data whereas plotting a linear trend line from the third data gives 
strong correlation. 
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 Instead of taking an average over all three of these data sets, a trend line is formed using 
the last data set. The measurement of 4.5cm on the third trial is clearly an outlier, so it is removed 
to improve accuracy of the trend line but included in the graph in the same color as the rest of the 
data series. The graph of all three runs with the trend line from the third data set is found in Figure 
E2. The trend line was useful for characterization of the valve and very useful for determining a 
first pass estimation for valve duration for 22mL of liquid. The equation for the trend line is: 
 

������	���������	��	100	��	(��) = −0.3767 ∗ ��������	��	%����&(��) + 26.72(��) 
 
Dividing this by the total time (100 ms) gives an average flow rate which can be used to estimate 
time to dispense 22mL. The flow rate is not constant over the duration because of the switching 
time of the valve, but the average is a good first-order approximation without analyzing the 
mechanical properties of the solenoid. Linearity of the data provided an easy first-pass estimation 
for determining how long to hold the valve open. The first estimation is given in Table E4, which 
lists a distance, valve duration (in ms), and measured volume. 
 On the estimation experiments, the estimated values are rounded to the nearest 
millisecond, so only a millisecond timer was used to coordinate the valve. The maximum possible 
error on this scheme is one-half of a millisecond. The internal counter that sets the millisecond 
time base is cleared right before the valve timing starts to ensure that that the number of 
milliseconds the valve is held open is as accurate as possible. Even with this rounding scheme, the 
estimated values are within ±.5% accuracy. Based on the results of the first run, a second run was 
conducted to get a better estimate for a 22mL valve duration. To arrive at the second estimates, 
the difference between the dispensed and desired volumes was divided by the slope of the flow 
rate graph from the characterization experiment and was added to the valve durations from the 
first run. The goal of this was to try to add the exact amount of time needed to compensate for the 
undershoot of the first run. This was a valid method because no volumes dispensed in the first run 
were greater than 22 mL. Estimates for the first data run generally were less than 22mL but were 
sporadic. Only 10 out of 27 dispensed volumes were within 1 mL of 22 mL for the first run, 
whereas 21 out of 26 volumes were between 21 mL and 23 mL. An even more accurate mapping 
could be determined by further by iterating the process of determining an average flow rate, 
determining the difference between desired and measured volume dispensed, and adjusting the 
duration for each distance. These estimates were carefully formulated and demonstrated that a 
linear equation could not be used to determine valve duration. 
 However, further iterations were not pursued because the limited accuracy of the 
measurement system would eclipse the inaccuracy of the valve durations. During the estimation 
experiments, the bottle was filled to very near each half centimeter marking. Normal operation of 
the CAMS does not result in the liquid levels falling exactly at these intervals. In some sections of 
the ingredient bottle dispensing 22mL drops the liquid height .5cm, but in other sections it drops 
the height by a different amount. The ultrasonic sensing software rounds the liquid height to the 
nearest .5cm, so error will be introduced if the actual height is not a multiple of .5cm. 
 There was one last issue with the test set up and the success of this prototype of the 
CAMS. The ingredient bottle is too thin for the ultrasonic sensor to measure properly. When the 
top of the liquid is very close to the top of the bottle, the ultrasonic measurement is very accurate 
and allows the valve to be held open for the appropriate number of milliseconds. However the 
sensor effectively saturates at 10cm, as it reads all further distances as 10cm. To get an accurate 
distance throughout the entire length of the ingredient bottle, a bottle of adequate thickness 
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throughout needs to be selected. Such a bottle could not be found within the time constraints of 
this design project, but it is a major design concern for the future to ensure accurate operation at 
all times. 
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Future Work 

Reducing Electronics Cost 
 

 The CAMS prototype is not optimized for cost – most components were selected because 
they were either readily available or because I already have development experience with those or 
similar components. As a result, there are many cost and complexity optimizations to be made to 
help further reduce the price. 
 Without the PCB and breadboard costs, the electrical components for the module cost 
$24.40. The easiest way to cut costs of circuitry is to shrink the MCU. Even within the ATMEGA 
series, there are several other microcontrollers that are cheaper with enough functionality to fulfil 
the needs of the CAMS. The currently used ATMEGA1284P has a base price of $7.75, whereas 
the ATMEGA324P and ATMEGA48P have base prices of $6.10 and $2.75, respectively. Using 
the ATMEGA48 would save $5 on board costs and would require minimal development cost 
because the microcontrollers are in the same product family. For reference, purchasing 100 
ATMEGA48 microcontrollers in bulk would cost $2.0034 per unit, whereas the same number of 
ATMEGA1284P would cost $5.73 per unit. Switching to the ATMEGA 48 and purchasing in 
bulk would reduce the cost of each module board by $5.7466. 
 Another way to save on board cost is to update the circuit that drives the solenoid valve. 
Currently, the valve is driven by an opto-isolator circuit, which costs $1.93 in resistors, 
transistors, and an IC. Switching to a circuit that is based on a single power NFET could reduce 
the cost of circuitry because it requires fewer components. One such example transistor is the 
Fairchild Semiconductor RFD3055LESM9A NMOSFET. This transistor can handle a drain 
current of 11A (the CAMS runs between 1.6A and 2A), it can handle a Vds of 60V (CAMS runs 
between 6V and 7V), and it can handle up to 38W of power (CAMS uses at most 14W). This 
NFET costs $0.78 for individual units (a savings of $1.15), and purchasing 100 units costs $0.524 
per unit, which is a savings of $1.406 per module. Combining the savings of the updated solenoid 
driver with the updated microcontroller can save $7.1526 per board, which gives a total module 
savings of 6.9%. 
 Designing the CAMS was done with a prototyping board for the ATMEGA1284P and 
used several breadboards and DIP components. The prototyping board has some extra hardware 
on it that is not needed for a production board, and combining the DIP components on the 
breadboard on to the same board as the microcontroller would eliminate the need for the $5.95 
breadboard entirely. To promote reusability of the prototyping boards, the ATMEGA1284P chips 
used are DIP components that fit into sockets mounted on the boards. This way, if a $7.75 chip 
breaks, the chip can be replaced without having to replace the entire $57.92 board. However, for a 
production board, the $0.51 DIP socket is not needed because the chips are not expected to break. 
Also located on the development board was an FTDI chip and associated components used to 
communicate with a PC over a serial connection. The CAMS prototype uses the Port D UART 
pins, and does not need any PC connection, so all of that hardware can be removed. All of the 
serial connection hardware costs $5.40. Removing other unused components such as the debug 
LED, unused port pins, and other assorted breakout pins and jumpers saves only about $0.25. 
Removing all debug hardware and the whiteboard in total would save $12.11 on total module 
costs. Both removing debug hardware and updating the circuitry/buying in bulk saves $19.26 per 
module, which is an overall savings of 18.60% per module. 
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 Aside from reducing circuitry on the boards, purchasing circuit boards in bulk can 
significantly save on the cost. It is impossible to know exactly how much purchasing a circuit 
board in bulk would cost until the entire board is designed. A board redesign cannot begin until a 
new set of parts is selected. After that, the debug hardware would be removed from the prototype 
board, the new parts would be added, and additional utility would be added to make the product 
more robust. Instead of mounting the board on a whiteboard, screw holes could be added to 
physically mount the board to the structure of the module. Additionally, the existing UART bus is 
a set of wires plugged into breadboards, so a proper method of constructing an arbitrarily sized 
bus must be designed, then incorporated into the new circuit board design. 
 After the board design is updated to be used on a proper product, the circuit boards can be 
ordered in bulk to reduce costs. Advanced Circuits, a PCB manufacturer, offers a calculator for 
estimating board price for a simple two-layer board based on board dimensions (Advanced 
Circuits, 2014). Using the dimensions of the existing prototyping boards, purchasing 100 boards 
would cost $4.02 per board, which is a savings of $28.98, or 29.6% over the existing module 
costs. Combined with previously discussed methods of reducing electronics cost on the boards, I 
estimate that each module could be made for $55.35, which is 46.6% cheaper than the prototypes. 
This calculation does not include purchasing all components in bulk, or conducting full trade 
studies to determine the cheapest components that can be used while still maintaining proper 
operation of the CAMS. 
 

Mechanical Design Updates 
 

 Analyzing cost changes to the mechanical design is more complicated. From the parts list, 
Table D5, it is clear that the best way to reduce mechanical cost is to use a different solenoid 
valve and to use a different connector to go from the plastic bottle to the tubing. The cost of the 
tubing and connectors can be reduced by purchasing components in bulk, but the cost of the valve 
and the hose connector dominates the mechanical cost. It may be possible to find a cheaper 
solenoid valve of the same size, but careful attention must be paid so that the new valve is also 
beverage safe. Similarly, another connector may be found to connect the ingredient bottle to the 
tubing, but it also must be of a safe material. However, to properly optimize costs of the 
mechanical subsystem, a proper trade study needs to be conducted across all solenoid valves, and 
possibly other types of electrically controlled valves to determine what the cheapest solution is. A 
basic search seems to indicate that valves of a smaller diameter are cheaper, which is expected, 
but a full study must be conducted to validate these claims. Not only should a trade study be 
conducted for the plastic bottle connectors, but other connection schemes should be investigated 
to see if there is a more efficient way to connect the bottle to the tubing. 
 However, as previously discussed, the mechanical design of the CAMS was not completed 
before the submission of this design report. A 20oz soda bottle was used to hold ingredients 
because it was readily available, but it did not lead to the most robust design. The cost of this 
bottle was not taken into account because it is difficult to estimate the cost, although it is expected 
that the cost of the plastic is low. However, for a more robust design, another container type 
should be selected. This container must be safe to hold alcohols for long periods of time and must 
allow a rectangular hole in the top to house the ultrasonic sensor. It is likely that this container 
will cost more than the cheap plastic soda bottle, but it is also possible that a new container would 
have an NPT or other standard connection, which would allow for the use of a cheap 
polypropylene or polyethylene connector instead of the expensive brass hose connector. 
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Unfortunately, it is impossible to know exactly how the cost will change until other container 
designs are investigated and evaluated for cost and applicability to the system. 
 The largest mechanical component that needs a proper redesign in the structure used to 
hold the valve, ingredient container, and module board. The existing design uses wooden and 
Styrofoam components that were available in the laboratory during design. Not only are those 
designs not reproducible because the wooden structure is a custom structure left over from old lab 
equipment, but it is not desirable to reproduce those designs because they are not well suited for 
the CAMS. A proper design would have a more stable way to hold the ingredient bottle in place 
and a sturdier method of holding the valve based on the exact weight and dimensions of the valve. 
Because the ultimate goal of the CAMS is to be a consumer product, it is important for the 
structural design to be able to handle getting knocked in to or otherwise battered by an ordinary 
user. Several structural designs must be prototyped and tested to determine cost and “user 
friendliness” of each design to read the optimal design. 
 

User Interface Updates 
 

 Another aspect of the CAMS design that was not fully completed was the user interface 
for ordering cocktails. As discussed, the existing design has the framework for ordering any 
cocktail off of the menu, but it has to be done from a plain serial terminal. The purpose of the 
basic serial communications was to demonstrate the method that the menu information and 
selection could be efficiently transmitted to and from the user. Now that the basic infrastructure is 
in place, there are several ways to update the user interface without having to redesign way 
information is encoded. The most cost effective way to do this is to use a Bluetooth module and a 
smartphone app to take drink orders from customers. A user would download an application for 
their smartphone that would perform the same tasks as the current menu and ordering scheme but 
would not require the orders to be placed one by one at a terminal. 
 When the application is first started, it attempts to establish communication with the main 
module. Once communication is established, the main module would then send the menu over the 
Bluetooth connection. However, instead of a user simply choosing a number from a list, the 
application would display just the name and ingredients in a more user friendly way than just 
plain text. It would also be easy to have options to sort and search through drinks in a number of 
ways, such as alphabetically, popularity, by ingredient list, or by alcohol content. The Android 
development environment could be used to quickly write and test such an application. 
 The system cost would be increased by the cost of the Bluetooth module used for 
communication, although the serial chip would not be necessary, which would counteract some of 
the cost.  However, there are two main challenges associated with using a smartphone application. 
The first is coming up with a secure way to run set up and diagnostics on the system. The current 
implementation requires that the bartender populate the modules in stock from the same terminal 
that a user uses. The bartender would either have to still use a serial connection to set up the 
modules and receive status messages about the system, or he would have to be running a different 
application that had only utilities for populating modules and receiving messages. This would 
require additional software development to write a second application and to allow one 
application to run set up the system and let other applications to order cocktails regularly. To 
service all beverage requests in parallel, the main module would also likely need to implement a 
queue of cocktails to be ordered and keep track of which devices ordered which beverages. When 
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a beverage reaches the front of the queue and is prepared, a notification would be sent to the 
appropriate device to let the right user know to come to the bar and pay for their beverage. 
 The second challenge associated with using a Bluetooth framework is that a Bluetooth 
master can only actively communicate with up to 7 slaves. There has been some research into 
constructing ad-hoc networks of Bluetooth devices, but Bluetooth is not a common means of 
communication, so there are very few resources on how to build an ad hoc network on 
smartphones. The ad hoc network would replace the Smartphone applications can be turned on 
and off at any time, so the Bluetooth network needs to be able to handle many users coming 
online and going offline frequently. Other communication technologies can potentially be used 
but Bluetooth is very attractive for the CAMS because only a single Bluetooth module needs to be 
used for the entire system and most smartphones come packaged with a Bluetooth module. Also, 
because there aren’t many other Bluetooth devices that would be used in a bar, it is likely that 
there wouldn’t be any competition for resources with the Bluetooth module. A user might be 
trying to send data over the cellular network or use WiFi on their phones at any time, but 
Bluetooth is only used for a few types of uses, and those uses are generally orthogonal to the 
CAMS, so the CAMS would have sole use of the Bluetooth module. 
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Conclusions 

  
 At the time of submission of this design report, a small scale CAMS prototype can been 
successfully constructed and tested in the laboratory. This prototype contains one fully 
constructed module with the ingredient bottle, valve assembly, and ultrasonic sensor mounted and 
functioning together. A second development module is also in use that does not have a structure 
built but also has a valve and ultrasonic sensor connected properly that function in the same 
manner as the first module. Extensive experiments were conducted to characterize the ultrasonic 
sensor and the solenoid valve so that they could be used as accurately as possible during CAMS 
operation to consistently deliver cocktails to a user in a timely manner. 
 There are several shortcomings with the prototype which have been identified throughout 
this report. The most notable is that a proper mechanical structure has not been designed and 
implemented, and the ingredient bottle gets too narrow at points for the ultrasonic sensor to 
function properly. These are not particularly challenging design constraints, but due to the limited 
development time allowed by this project they could not be addressed at this time. Aside from the 
noted shortcomings, there are also several ways to improve the existing CAMS design. Many of 
these ways were discussed in this report, and these improvements range from an improved user 
interface to optimizing the bill of materials used to reduce costs without sacrificing functionality.
 All of this being said, the CAMS prototype was successful. The major design subsystems 
either function correctly, or specific issues have been identified to fix the design. The existing 
system allows for a large range of functionality across many modules. A user must program the 
system to indicate which ingredients are in which modules, but different ingredients can be 
programmed each time at start up and the CAMS will determine which cocktails it can prepare. 
When a user orders a beverage, the main board sends a command over the UART bus to all 
module boards, and the appropriate module board responds to the command over the UART bus 
and utilizes and ultrasonic sensor to determine how long to hold a solenoid valve open for to 
dispense the correct amount of liquid. 
 Most importantly, the prototype meets all of its core design premises. First, the CAMS is 
less expensive than all existing systems, even though the prototype has additional hardware 
needed for development and debugging. A full mechanical design is going to add cost per 
module, but there are many cost optimizations that can be done for the electrical design to drive 
down the cost per module so that the CAMS is still more cost effective than all other systems. 
Second, the CAMS is scalable. The current initialization process and the UART bus scheme allow 
a wide range of modules to be used to prepare many different cocktails. Minor software updates 
will be required to provide an even greater range of ingredients and cocktails, but the software 
infrastructure for these additions already exists. The software architecture will not have to be 
altered to accommodate for additional modules. All of the system components function properly 
together and the prototype design easily allows the expansion from a few modules up to a 
maximum of 64. The constructed modules, cost analysis, and system structure clearly demonstrate 
a strong proof-of-concept for the Cocktail Automation Management System to be an accurate, 
cheap, and scalable bartending automation system. 
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Appendix A: Software and User Interface 
This Appendix contains a reference for the user interface of the CAMS. Table A1 shows the mapping from 
ingredient number to ingredient name which is used during initialization to specify what ingredients are in 
each module. Only a limited number of cocktails were used for prototyping the CAMS, but a listing of the 
cocktails used and their respective recipes is contained in Table A2. Figure A1 shows an example 
sequence for a successful initialization of the CAMS and the ordering of a single cocktail. Figure A2 
shows a successful ordering process where the system uses a bus that is pulled to ground instead of to 5V. 
For a complete listing of the software of the CAMS, please contact cig23@cornell.edu. 

 
Table A1 – List of Ingredient Numbers and Names 

Ingredient Number Ingredient Name 

0 Vodka 

1 Rum 

2 Gin 

3 Peach Schnapps 

4 Orange Juice 

5 Grenadine 

6 Coke 

 
 

Table A2 – List of Cocktails 

Cocktail 
Name 

Number 
of Parts 
Vodka 

Number 
of Parts 

Rum 

Number 
of Parts 

Gin 

Number 
of Parts 
Peach 

Schnapps 

Number 
of Parts 
Orange 
Juice 

Number 
of Parts 

Grenadine 

Number 
of Parts 
Coke 

Screwdriver 1 0 0 0 2 0 0 

Rum and 
Coke 

0 2 0 0 0 0 1 

Potpourri 1 1 1 1 1 1 1 

Gin and 
Juice 

0 0 1 0 1 0 0 

Cherry 
Schnapps 

0 0 0 1 0 2 0 

 



P a g e  | 33 

 

 
Figure A1 – Example Successful Serial Console Output 

 

Starting... 

What is in slot 0? 

4 

What is in slot 1? 

6 

What is in slot 2? 

2 

What is in slot 3? 

5 

What is in slot 4? 

0 

What is in slot 5? 

99 

 

Have vodka in slot 4 

gin in slot 2 

orange juice in slot 0 

grenadine in slot 3 

coke in slot 1 

 

Current Menu: 

 

Item 0, Screwdriver: 

  1 parts vodka 

  2 parts oj 

 

Item 1, Gin and Juice: 

  1 parts gin 

  1 parts oj 

 

What drink would you like to order? 

0 

You have selected 0 

Screwdriver: 

  1 parts vodka 

  2 parts oj 

 

This drink needs 1 parts of vodka, which is located in module 4 

Attempting to request 1 parts from module 4 

success! 

transaction complete 

This drink needs 2 parts of oj, which is located in module 0 

Attempting to request 2 parts from module 0 

success! 

transaction complete 

What drink would you like to order? 
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Figure A2 – Example Successful Ordering Sequence Using a Grounded Bus 

  

 

What drink would you like to order? 

0 

You have selected 0 

Screwdriver: 

  1 parts vodka 

  2 parts oj 

 

This drink needs 1 parts of vodka, which is located in module 4 

Attempting to request 1 parts from module 4 

no response 

Attempting to request 1 parts from module 4 

success! 

transaction complete 

This drink needs 2 parts of oj, which is located in module 0 

Attempting to request 2 parts from module 0 

no response 

Attempting to request 2 parts from module 0 

success! 

transaction complete 

What drink would you like to order? 
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Appendix B: Mechanical Design  

Figure B1 – Front Mechanical View of a CAMS module 
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Figure B2 – SolidWorks Model of Mechanical Structure 

  



P a g e  | 37 

 

Appendix C: Circuit Board Schematics and Design 
 

The design and layout for the ATMEGA1284P breakout board is taken with permission from 

Nathan Chun (nic4) and Bruce Land (brl4). The board schematic and design can be found in the 

design report for the board (Chun, 2010). 

The schematics found below are the full schematics for both the main and module boards. The 

schematics do not indicate which components are on the breakout board and which are external. 

Please refer to the breakout board design schematics for a reference for on board components. 

Tables D2 and D3 in Appendix D contain a listing of all parts used on each board. Figures C1 and 

C3 contain schematics of the main and module boards and Figures C2 and C4 contain pictures of 

the constructed circuits, respectively. Figure C5 contains the schematics of the CAN Bus breakout 

board that was designed but not used in the prototype. 
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Figure C2 – Constructed Main Board 

Figure C1 – Main Board Schematic 
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Figure C3 – Module Board Schematic 

Figure C4 – Constructed Module Board (Solenoid Valve and Valve Power Rail Connections Disconnected) 
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Figure C5 – AT90CAN128 Breakout Board 

  



P a g e  | 41 

 

Appendix D: Component Costs 
 

This Appendix contains a reference for the part numbers and costs used to estimate a price for each CAMS 
module. Please note that the values listed in these tables are for reference only, the actual price and 
availability of electrical and mechanical components may vary significantly. The electrical component 
costs here are all taken from digikey.com (Digi-Key Electronics, 2014), unless otherwise listed. The 
mechanical component details are all taken from usplastics.com (United States Plastics Corporation, 
2014). Price comparisons for the existing systems are taken from their respective product websites (Party 
Robotics, 2014), (BoozeBots, 2014), (Monsieur, 2014). 

  
Table D1 - Electrical Components  

Component Name Manufacturer Part Number Unit Cost 

Diode Comchip Technology 1N4001-G $0.11 

NFET Infineon Technologies BUZ73 H3046 $1.34 

1MΩ Resistor Stackpole Electronics CF14JT1M00 $0.08 

100kΩ Resistor Stackpole Electronics CF14JT100K $0.08 

10kΩ Resistor Stackpole Electronics CF14JT10K0 $0.08 

330Ω Resistor Stackpole Electronics CF14JT330R $0.08 

100Ω Resistor Stackpole Electronics CF14JT100R $0.08 

1uF Capacitor Kemet C1206C104K3RACTU $0.20 

100nF Capacitor Kemet C1206C104K3RACTU $0.10 

10nF Capacitor Kemet C1206C103JARACTU $0.12 

4.7nF Capacitor Kemet C1206C472K5RACTU $0.14 

22pF Capacitor Kemet C1206C220K5GACTU $0.16 

16MHz Crystal CTS-Frequency Controls MP160 $0.66 

Green LED Lumex, Inc SSL-LX5093PGD $.055 

Opto-isolator Lite-On Inc 4N35 $0.43 

DIP Socket Assmann WSW 
Components 

A40-LC-TT $0.51 

UART-USB 
Converter 

Future Technology 
Devices Limited 

FT232RL-REEL $4.50 

5V Regulator Texas Instruments LM340LAZ-5.0/NOPB $0.95 

USB-B Socket On-Shore Technology, 
Inc 

USB-B1HSB6 $0.54 

Single Row Male Pin 
Header 

Molex Inc 0022284360 $0.00356/pin 

Dual Row Male Pin 
Header 

All Electronics DHS-40 $0.0375/row1 

Microcontroller Atmel ATMEGA1284P $7.75 

2.1mm Power Jack CUI Inc PJ-002A $0.93 

Ultrasonic Sensor Hobby King HC-SR04 $2.892 

SPDT Switch C&K Components AYZ010AGRLC $0.91 

White Breadboard Adafruit 239 $5.953 

Custom PCB Advanced Circuits N/A $334 

                                                
1 (All Electronics Corporation, 2014) 
2 (Hobby King, 2014) 
3 (Adafruit Industries, 2014) 
4 (Advanced Circuits, 2014) 
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Table D2 – Main Board Components  

Component Name Unit Cost Quantity Total Price 

Diode $0.11 1 $0.11 

10kΩ Resistor $0.08 1 $0.08 

330Ω Resistor $0.08 2 $0.16 

100Ω Resistor $0.08 1 $0.08 

1uF Capacitor $0.20 2 $0.40 

100nF Capacitor $0.10 5 $0.50 

10nF Capacitor $0.12 1 $0.12 

4.7nF Capacitor $0.14 1 $0.14 

22pF Capacitor $0.16 2 $0.32 

16MHz Crystal $0.66 1 $0.66 

Green LED $.055 1 $.055 

DIP Socket $0.51 1 $0.51 

UART-USB 
Converter 

$4.50 1 $4.50 

5V Regulator $0.95 1 $0.95 

USB-B Socket $0.54 1 $0.54 

Single Row Male Pin 
Header 

$0.00356/pin 42 pins $0.14952 

Dual Row Male Pin 
Header 

$0.0375/row 3 rows $0.1125 

Microcontroller $7.75 1 $7.75 

2.1mm Power Jack $0.93 1 $0.93 

SPDT Switch $0.91 1 $0.91 

White Breadboard $5.95 1 $5.95 

Custom PCB $33 1 $33 

Total Cost   $57.92 
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Table D3 – Module Board Components  

Component Name Unit Cost Quantity Total Price 

Diode $0.11  2 $0.22  

10kΩ Resistor $0.08  1 $0.08  

1kΩ Resistor $0.08  2 $0.16  

330Ω Resistor $0.08  2 $0.16  

100Ω Resistor $0.08  1 $0.08  

1uF Capacitor $0.20  2 $0.40  

100nF Capacitor $0.10  9 $0.90  

22pF Capacitor $0.16  2 $0.32  

16MHz Crystal $0.66  1 $0.66  

Green LED $0.06  1 $0.06  

DIP Socket $0.51  1 $0.51  

UART-USB 

Converter 
$4.50  1 $4.50  

5V Regulator $0.95  1 $0.95  

Opto-isolator $0.43  1 $0.43  

USB-B Socket $0.54  1 $0.54  

Single Row Male 

Pin Header 
$0.00356/pin 42 pins $0.01  

Dual Row Male Pin 

Header 
$0.0375/row 3 rows $0.11  

Microcontroller $7.75  1 $7.75  

2.1mm Power Jack $0.93  1 $0.93  

SPDT Switch $0.91  1 $0.91  

White Breadboard $5.95  1 $5.95  

Custom PCB $33  1 $33.00  

1MΩ Resistor $0.08  1 $0.08  

10kΩ Resistor $0.08  1 $0.08  

330Ω Resistor $0.08  2 $0.16  

NFET $1.34  1 $1.34  

Ultrasonic Sensor $3.13  1 $2.89 

Total Electrical Cost     $63.42  
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Table D4– Mechanical Components  

Component Name Manufacturer Part Number Unit Cost 

Brass ¾” Garden Hose to ½” Hose 
Barb 

Watts LFA-684 $9.995  

HDPE ½” Male NPT to ½” Hose Barb 

Converter 
United States Plastic Corporation 62017 $0.36  

Brass Solenoid Valve Geerte 2W-160-15 $24.956  

Bev-A-Line Plastic Tubing United States Plastic Corporation 56282 $2.62/foot 

HDPE ½” Male NPT to ½” Hose Barb 

90o elbow 
United States Plastic Corporation 62043 $0.55  

HDPE ½” Hose Barb T Connector United States Plastic Corporation 62067 $0.55  

Polypropylene ½” Hose Barb 90o 

elbow 
Genova 22520 $0.587  

Polypropylene ½” Hose Barb Y 

Splitter 
United States Plastic Corporation 62256 $0.91  

 
Table D5 – Single Valve Module Mechanical Components 

Component Name Unit Cost Quantity Total Price 

Brass ¾” Garden Hose to ½” Hose Barb $9.99  1 $9.99  

HDPE ½” Male NPT to ½” Hose Barb Converter $0.36  2 $0.72  

Brass Solenoid Valve $24.95  1 $24.95  

Bev-A-Line Plastic Tubing $2.62/foot 1.5 feet $3.93  

Plastic ½” Male NPT to ½” Hose Barb 90o elbow $0.58  1 $0.58  

Total Mechanical Cost     $40.17  

 
Table D6 – Compressed Air Module Mechanical Components 

Component Name Unit Cost Quantity Total Price 

Brass ¾” Garden Hose to ½” Hose Barb $9.99  1 $9.99  

Plastic ½” Male NPT to ½” Hose Barb Converter $0.36  2 $0.72  

Brass Solenoid Valve $24.95  2 $49.90  

Bev-A-Line Plastic Tubing $2.62/foot 3 feet $7.86  

Plastic ½” Male NPT to ½” Hose Barb 90o elbow $0.55  2 $1.10  

Polypropylene ½” Hose Barb Y Splitter $0.91  1 $0.91  

Total Mechanical Cost     $70.48  

 
 
 
 
 
 
 

                                                
5 (Lowes Home Improvement, 2014) 
6 (Adafruit Industries, 2014) 
7 (Lowes Home Improvement, 2014) 
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Table D7 – Compressed Air System Module Costs 

Component Name Price 

Total Mechanical Cost $70.48  

Total Electrical Cost $63.18 

Total Module Cost $133.66  

 
Table D8 – Single Valve Module Costs 

Component Name Price 

Total Mechanical Cost $40.17  

Total Electrical Cost $63.18  

Total Module Cost $103.35 

  
Table D9 – Price Comparisons 

Product Number of 
Modules 

Total Cost Effective Cost 
Per Module 

Price Relative to 
CAMS Cost 

CAMS 2 $265.10  $132.55  - 

BoozeBot 2 $683.81 $341.91  257.95% 

CAMS 4 $471.80  $117.95  - 

BoozeBot 4 $1112.26 $278.07  235.75% 

CAMS 7 $781.86  $111.69  - 

Bartendro 7 $2499.99 $357.14  319.75% 

CAMS 8 $885.21  $110.65  - 

BoozeBot 8 $1283.64 $160.46  145.01% 

Monsieur 8 $3,999 .99 $499.88  451.76% 

CAMS 15 $1608.68 $107.25  - 

Bartendro 15 $3699.99 $246.67  230.00% 

CAMS 16 $1712.03 $107.00  - 

BoozeBot 16 $1883.48 $117.72  110.01% 
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Appendix E: Experimental Results 

 

This Appendix contains the tables and graphs of raw data gathered from the experiments used to 

determine the accuracy of components used the CAMS. Table E1 contains the data from the test 

to determine the mapping from ultrasonic sensor output pulse width to distance in centimeters, 

along with the model from the datasheet and experimentally determined model. Figure E1 graphs 

these results for a visual representation of the models. Table E2 gives the calculated percent error 

between the two models and the data gathered from the experiment. Table E3 contains the data 

from the first valve experiment, where the valve was held open for a constant duration and the 

dispensed volume was measured as function of liquid height in the ingredient bottle. Figure E2 

graphs these results and plots the trend line of the most accurate data set. Table E4 contains the 

data from the two runs of the experiment to determine the duration of time to hold the valve open 

to dispense 22mL.  

 
Table E1 – Results of Ultrasonic Sensor Test 

Measured Sensor 
Distance (cm) Measured Pulse Width Datasheet Model 

Experimental Model 

4 194 232 192 

4.5 222 261 221 

5 248 290 250 

5.5 278 319 279 

6 306 348 308 

6.5 330 377 337 

7 360 406 366 

7.5 408 435 415 

8 432 464 444 

8.5 464 493 473 

9 492 522 502 

9.5 532 551 531 

10 572 580 560 

10.5 604 609 589 

11 636 638 618 

11.5 644 667 647 

12 692 696 676 

12.5 696 725 705 

13 728 754 734 

13.5 756 783 763 

14 784 812 792 

14.5 812 841 821 

15 840 870 850 

15.5 868 899 879 

16 890 928 908 
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16.5 920 957 937 

17 950 986 966 

17.5 980 1015 995 

18 1000 1044 1024 

18.5 1040 1073 1053 

19 1070 1102 1082 

19.5 1100 1131 1111 

20 1140 1160 1140 

20.5 1170 1189 1169 

21 1200 1218 1198 

21.5 1200 1247 1197 

22 1220 1276 1226 

22.5 1250 1305 1255 

23 1280 1334 1284 

23.5 1310 1363 1313 

24 1330 1392 1342 

 
 
 

 
Figure E1 – Graph of Ultrasonic Sensor Test 
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Table E2 – Error of Ultrasonic Sensor Models 

Measured Sensor Distance (cm) Datasheet Model Error Experimental Model Error 

4 19.59% -1.03% 

4.5 17.57% -0.45% 

5 16.94% 0.81% 

5.5 14.75% 0.36% 

6 13.73% 0.65% 

6.5 14.24% 2.12% 

7 12.78% 1.67% 

7.5 6.62% 1.72% 

8 7.41% 2.78% 

8.5 6.25% 1.94% 

9 6.10% 2.03% 

9.5 3.57% -0.19% 

10 1.40% -2.10% 

10.5 0.83% -2.48% 

11 0.31% -2.83% 

11.5 3.57% 0.47% 

12 0.58% -2.31% 

12.5 4.17% 1.29% 

13 3.57% 0.82% 

13.5 3.57% 0.93% 

14 3.57% 1.02% 

14.5 3.57% 1.11% 

15 3.57% 1.19% 

15.5 3.57% 1.27% 

16 4.27% 2.02% 

16.5 4.02% 1.85% 

17 3.79% 1.68% 

17.5 3.57% 1.53% 

18 4.40% 2.40% 

18.5 3.17% 1.25% 

19 2.99% 1.12% 

19.5 2.82% 1.00% 

20 1.75% 0.00% 

20.5 1.62% -0.09% 

21 1.50% -0.17% 

21.5 3.92% -0.67% 

22 4.59% 0.08% 

22.5 4.40% 0.00% 

23 4.22% -0.08% 

23.5 4.05% -0.15% 

24 4.66% 0.53% 
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Table E3 – Results of Constant Duration Valve Test 

 Volume Dispensed in 100 ms (mL) 

Distance from Sensor to 

Liquid (cm) First Run (mL) Second Run (mL) Third Run (mL) 

4 23 24 25 

4.5 23 18 32 

5 23  24 

5.5 18 30 - 

6 23 - 25 

6.5 - 24 - 

7 29 - 24 

7.5 14 23 24 

8 23 - - 

8.5 30 22 24 

9 21 - 23 

9.5 - 17 23 

10 - 20 23 

10.5 21 23 22 

11 18 29 23 

11.5 25 21 22 

12 21 - 23 

12.5 21 15 23 

13 14 20 22 

13.5 21 28 22 

14 20 12 22 

14.5 26 23 21 

15 19 20 21 

15.5 15 28 21 

16 19 16 20 

16.5 25 22 20 

17 19 15 20 
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Figure E2 – Volume Dispensed in 100ms vs Distance from Ultrasonic Sensor to Top of Liquid  
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Table E4 – Calibration Data for Valve Durations 

 Run 1 Run 2 

Distance from 
Sensor to Liquid 

(cm) 

Valve Duration 
(ms) 

Volume 
Dispensed (mL) 

Valve Duration 
(ms) 

Volume 
Dispensed (mL) 

4 87 20 93 24.5 

4.5 88 20.5 92 23 

5 89 20 94 24 

5.5 89 20.5 93 23 

6 90 21 93 23 

6.5 91 20.5 95 23 

7 91 20 97 23.5 

7.5 92 21 95 23 

8 93 20.5 97 21 

8.5 94 21 96 22 

9 94 20 100 23.5 

9.5 95 21 98 22 

10 96 20 101 23 

10.5 97 20 102 23.5 

11 97 20 103 22.5 

11.5 98 20 104 24 

12 99 20 104 23 

12.5 100 22 100 21.5 

13 101 20.5 105 22 

13.5 102 22.5 100 21.5 

14 103 19.5 109 22 

14.5 103 21 106 21.5 

15 104 21 107 21 

15.5 105 21 108 22 

16 106 20 112 21 

16.5 107 21 110 21 

17 108 20 114 22 
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Appendix G: Ultrasonic Sensor Datasheet 
 

The datasheet for the ultrasonic sensor is not hosted on the manufacturer’s site, but is hosted instead at 

micropik.com (Ultrasonic Ranging Module HC-SR04). However, the manufacturer’s product page has 

several other resources listed, including a User’s Manual and Software Library for integration with an 

Arduino (HC-SR04 Ultrasonic Sensor, 2011). 
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