

1

Microcontroller Control System for Heart Valve Bioreactor

A Design Project Report

Presented to the School of Electrical and Computer

Engineering of Cornell University

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering, Electrical and Computer Engineering

Submitted by Kang Li (kl694)

 MEng Field Advisor: Bruce Robert Land

Degree Date: January 2015

2

Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title: Microcontroller control system for heart valve bioreactor

Author: Kang Li (kl694)

Abstract:

The project team of Butcher Lab has developed a bioreactor culture system to mimic the cardiac

cycle for the invitro conditioning of 3D printed tissue engineered heart valve conduits. I designed

a microcontroller control system to control the flow of the whole system and collect data sent

from transducers. This will help the bio-print team to investigate cell and construct function

under dynamic, physiological conditions and do further research.

I designed a microcontroller control system for the heart valve bioreactor using ATmega 1284P

microcontroller. It can control the flow of the whole system based on the specified parameters

and collect data in MATLAB. This will help Butcher Lab do further analysis.

3

Executive Summary

This project continues the design and development of a cyclic flow heart valve bioreactor for use

in culturing and conditioning of tissue engineered heart valves in the Butcher Lab in BME

department. The bioreactor can simulate the flow between left ventricle and aorta of the heart

to mechanically stimulate the cells of the tissue engineered aortic semi lunar heart valve.

My part in this project is to design a microcontroller control system for the heart valve bioreactor.

It can control the flow of the whole system based on the specified parameters and collect data in

MATLAB.

I use the built-in ADC of ATmega 1284P microcontroller. The microcontroller reads the signal of

four pressure transducers: high tank, low tank, ventricle, and aorta. And the microcontroller has

to control one pump and one solenoid valve. The pump is turned on/off based on the pressure

difference between high tank and low tank: if the pressure difference exceeds the upper

threshold, the pump will stop working; if the pressure difference is smaller than the lower

threshold, the pump will start working. The two-way solenoid valve is controlled based on the

pressure of aorta. If the pressure of aorta exceeds the threshold, the valve will be open;

otherwise it will be closed. And I built two junction boxes for controlling the pump and the

two-way solenoid valve. The junction boxes can connect the low power and the high power by

using relay switch. It can make the project safe to use. In this way, we can control the flow inside

the microcontroller to mimic the actual flow in the heart valve system of human.

The values of the thresholds differ every time we run the bioreactor. I use MATLAB to

communicate with the microcontroller. MATLAB sends different commands to the microcontroller

and the microcontroller will give feedback based on the commands. The user can check the

current state of the whole system, change the values of the parameters and collect data using

MATLAB. During data collection, MATLAB will plot real-time wave forms of the four transducers.

After finishing the data collection, MATLAB will store the data for further analysis.

The future work could be that we can design our own prototype board instead of using bread

board so the whole system could be more compact. And also, we can build several parallel TEHV

chambers instead of just one.

Content

1

Content

Introduction ... 1

High Level Design ... 4

Hardware design ... 6

Software design ... 9

Microcontroller Part ... 9

1. TRT (Tiny Real Time) .. 9

2. Internal ADC of ATmega 1284P .. 11

MATLAB Part ... 13

Result and Analysis ... 16

Conclusion ... 17

Acknowledgement ... 17

APPENDIX A User Manual .. 18

1. Hardware setup .. 18

2. Run MATLAB code .. 18

APPENDIX B Parts Number .. 21

APPENDIX C Source Code... 22

pump_trt_28.c ... 22

Heart_valve-MCU.m ... 29

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

1

 Introduction

This project continues the design and development of a cyclic flow heart valve bioreactor for use

in culturing and conditioning of tissue engineered heart valves in the Butcher Lab. The bioreactor

has to simulate the flow between left ventricle and aorta of the heart to mechanically stimulate

the cells of the tissue engineered aortic semi lunar heart valve.

Figure 1. Heart Valve Bioreactor

The microcontroller system is needed for controlling the flow of the bioreactor. The flow diagram

is shown in Figure 2.

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

2

The bottom circuit is composed of a chamber with the membrane, a pump, a high pressured tank

and a low pressurized tank. There are two solenoid valves, which allow us to control the pulse

rate. The pump is controlled by the pressure difference of the high pressured tank and the low

pressurized tank. And the solenoid valve is controlled by the timer relay. Only water circulates in

this bottom circuit.

The top circuit is composed of a chamber with the membrane, a Tissue Engineered Heart Valves

(TEHV) chamber, an air tank, a media reservoir and a two-way solenoid valve. The air tank is used

for pressurizing the TEHV chamber to maintain a constant value of aorta pressure. The two-way

solenoid valve is controlled by the pressure of aorta. If the pressure of aorta reaches the

threshold value, the valve will be open.

Figure 2. Bioreactor Process Flow Diagram

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

3

Figure 3. Example of Pump and Solenoid Valve control procedure

We can see one example of pump and solenoid valve control procedure in Figure 3. The pump is

turned on/off based on the pressure difference between high tank and low tank: if the pressure

difference exceeds the upper threshold, the pump will stop working; if the pressure difference is

smaller than the lower threshold, the pump will start working. The two-way solenoid valve is

controlled based on the pressure of aorta. If the pressure of aorta exceeds the threshold, the

valve will be open; otherwise it will be closed.

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

4

High Level Design

I use ATmega 1284P microcontroller in this project. I use the built-in Analog to Digital Converter

to read the signal from the four transducers and control the pump based on the pressure

difference of high tank and low tank and control the two-way solenoid valve based on the

pressure of aorta. I also use MATLAB to communicate the microcontroller with the PC. I collect

data and plot real-time waveforms using MATLAB. I also use TRT (Tiny Real Time) to implement

multitasking on the microcontroller. The High Level Design diagram is shown in Figure 3.

There are several variables I need to change or monitor in this project. Parts of them are

calculated for calibrating the bioreactor by using MATLAB. And the rest of the variables are set

every time we want to change the state of the bioreactor. They are as follows:

Name Description Need to change?

P_diff This is the pressure difference between high tank and low tank,

which is used for controlling the pump.

Y

dP_MA Moving Average of the pressure. This parameter and “delta” help

P_diff to determine the upper and lower pressure thresholds for

the pump.

N

Bias Pressure bias. This is calculated by the former designer for

eliminating the noise.

N

thres The threshold pressure of the aorta pressure. When the pressure

of aorta pressure reaches this value, the valve will open.

Y

delta This variable is multiplied by dP_MA every time when the

microcontroller compares the pressure difference.

Y

Gain This variable is multiplied by the measured pressure difference by

Microcontroller for comparing the expected P_diff.

N

Table 1. Key variables and the descriptions

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

5

Figure 4. High Level Design

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

6

Hardware design

Junction Box

I need to use microcontroller to control the pump and solenoid valve, which are both driven by

110V wall AC. But the output of the microcontroller is 5V DC. So I need junction boxes which

contain a relay switch to control the AC circuits.

Figure 5. Junction boxes

The major parts of the junction box include solid state relay, wall switch and wall socket. The

circuit diagram is shown as in Figure 6.

The junction has a power plug which can be put in any wall socket. This plug provide the power of

the junction box. The wall socket and wall switch are on the surface of the junction box. The plug

of the pump or the solenoid can be put in the wall socket. And the wall switch can cut off the AC

circuit in case of emergency situation. In this way, we can energize the pump or the two-way

solenoid valve.

Inside the junction box, the AC live line first goes into one exposed lead of the wall switch. Then it

comes out from the other lead of the wall switch and goes into one exposed lead of the AC

output of the solid state relay. After coming out from the other lead of the AC output of the solid

state relay, the live line connects one of the exposed lead of the wall socket, eventually. And the

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

7

neutral line of the power plug directly connects the other exposed lead of the wall socket. And

the ground line of the power plug connects both of the ground lead of the wall switch and the

wall socket. The low-voltage input side of the solid relay switch connects the microcontroller

through a 3.5mm audio cable. So if the microcontroller signal is high (5 volts), the AC output of

the solid state relay conducts. So the load (the pump or the two-way solenoid valve) of the AC

circuit can be energized.

Figure 6. Circuit Diagram of Junction Box

In this way, I keep all the high power circuit inside the junction box so that the system is very safe.

And also the wall switch can cut the circuit off in case of dangerous situation.

Hardware for microcontroller

The outputs of the four transducers are all currents which are in the range of 4-20 mA. But the

built-in ADC of ATmega 1284P can only convert voltage to digital signal. So I put a 250 Ω resistor

in serial with each transducer. The microcontroller measures the voltage drop between the two

MCU Signal MCU GND

Solid State

Relay

Wall AC AC Live

AC Neutral

AC Ground

Junction Box

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

8

leads of the resistor.

I need four ADCs in this project. So the GND of the microcontroller should connect one lead of

each resistors and PIN A0 ~ PIN A3 connects the other lead of each resistor. PIN D2 connects the

junction box which controls the pump and PIN C0 connects the junction box which controls the

two-way solenoid valve.

The whole setup is shown in Figure 7.

Figure 7. Hardware setup for Heart Valve Bioreactor

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

9

Software design

Microcontroller Part

1. TRT (Tiny Real Time)

I use TRT (Tiny Real Time) to implement the multi-tasking on the microcontroller. TRT is a

real-time kernel which was written by Dan Henriksson and Anton Cervin (technical report). Aso

see the ECE 4760 webpage about TRT. This kernel has some characteristics which make it very

suitable for this project.

Multitask can run on the same ATmega 1284P microcontroller chip.

Every task has its own release and dead time. The scheduling algorithm is Earliest Deadline First

(EDF).

There are semaphores to protect shared resources (e.g. memory, or the UART) which are used by

more than one task.

In this project, I create two task using Tiny Real Time: pump_control and PC_communication. The

task pump_control is reading the signal sending from the four transducers continuously. And it

control the pump based on the pressure difference between high tank and low tank. And it also

controls the two-way solenoid valve based on the pressure of the aorta transducer.

The task PC_communication is reading the serial port. If it receives command sending from the

serial port, it will parse the command and react correspondingly. There are three different

commands based on the first character of the string. They are as follows:

1) “c”: If the first character of the string is “c” (check), which means the PC want to check

the current state of the microcontroller, PC_communication will send back a string which

contains the value of P_diff, dP_MA, delta, Gain, Bias, and threshold of the aorta

pressure transducer. The format is “P_diff%fdP_MA%fdelta%fGain%fBias%fThres%d”.

This string will be parsed in MATLAB.

2) “o”: If the first character of the string is “o” (operation), which means the user wants to

change the value of the key variables, PC_communication will parse the following string

of the command and load the value to the corresponding variables which are used in the

pump_control task.

3) “s”: If the first character of the string is “s” (send), which means the PC is collecting data

http://people.ece.cornell.edu/land/courses/ece4760/RTOS/TinyRealTime.pdf
http://people.ece.cornell.edu/land/courses/ece4760/TinyRealTime/index.html

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

10

and needs the microcontroller to send the data of the four transducers and the pump

signal, PC_communication will package the demanding data into a string and send it back

to PC through serial port. The format of the string is “H%3dL%3dV%3dA%3dU%1d” and it

will be parsed in MATLAB on PC.

These two tasks may access the same variables at the same time. So the TRT will manage these

accesses by using semaphore. The main functions I use in this project is as follows:

Function Description

void trtInitKernel(uint16_t idletask_stack) Sets up the kernel data structures. The

parameter is the desired stack size of the idle

task. For a null idle task, a stack size of 80

should be sufficient.

void trtCreateTask(void (*fun)(void*),

uint16_t stacksize,

uint32_t release, uint32_t deadline, void *args)

Identifies a function to the kernel as a thread.

The parameters specify a pointer to the

function, the desired stack size, the initial

release time, the initial deadline time, and an

arbitrary data input structure. The release time

and deadline must be updated in each task

whenever trtSleepUntil is called. The task

structures are statically allocated. Be sure to

configure MAXNBRTASKS in the kernel file to

be big enough. When created, each task

initializes 35 bytes of storage for registers, but

stack size minimum is around 40 bytes. If any

task stack is too small, the system will crash!

uint32_t trtCurrentTime(void) Get the current global time in timer ticks.

void trtSleepUntil(uint32_t release,

uint32_t deadline)

Puts a task to sleep by making it ineligible to

run until the release time. After the release

time, it will run when it has the nearest

deadline. Never use this function in an ISR. The

(deadline) - (release time) should be greater

than the execution time of the thread between

trtSleepUntil calls so that the kernel can meet

all the deadlines. If you give a slow task a

release time equal to its deadline, then it has

to execute in zero time to meet deadline, and

nothing else can run until the slow task

completes.

void trtCreateSemaphore(uint8_t semnumber,

uint8_t initval)

Creates a semaphore with identifier

semnumber and initval initial value. Be sure to

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

11

configure MAXNBRSEMAPHORES in the kernel

file to be big enough. The identifier number is

1-based, so the first semaphore you define

should be numbered 1.

void trtWait(uint8_t semnumber) Adds one to the semaphore. If another thread

is waiting on the semaphore, and has a nearer

deadline, a context switch will occur. You can

use this function in an ISR.

void trtSignal(uint8_t semnumber) Returns the count of the specified semaphore

(before it is decremented). If the semaphore

has a nonzero value, the value is decremented.

Your task must check the return value. This

function does not block. You can use this

function in an ISR.

Table TRT function and description (from TRT introduction page of ECE 4760)

2. Internal ADC of ATmega 1284P

I use the built–in Analog to Digital Converter of ATmega 1284P. This ADC is a 10-bit successive

approximation ADC. In this project, I only use the first 8-bit for the ADC. I use four input pins of

the chip (A0~A3) and the internal reference voltage is 5V. I use single-ended conversion for all the

four

By the external circuits, I make the voltage of the input pin is in the range 0~5V. So the calculation

of ADC is as follows:

ADC =
𝑉𝑖𝑛

5𝑉
 × 255

For example, if the input voltage of Pin A0 is 3.4V, the microcontroller will store (173)10 which is

(10101101)2 in register ADCH after the Analog to Digital Conversion.

I need to set some of the registers to implement this ADC. The first register is ADMUX. I set the

first two bits to “01” which means the reference voltage is 5V. And I set Bit 5 to “1” to left adjust

the result of the conversion. And for Bits 4~0, I set 0b00000 to 0b00011 in the state machine

because I need to use channel 0 to channel 4 and I don’t need to add gain to the output. The

second register which is also very important is ADCSRA. The most significant bit of ADCSRA is

ADEN. I set it to “1” to enable the ADC. The second most significant bit of ADCSRA is ADSC. I set

this bit to “1” to indicate the start of ADC. When the conversion is complete, it returns to zero. So

I can also use this bit to test if the conversion is done and then start the next conversion. After

the conversion, the data is stored in ADCH. I load the value to the corresponding variable after

http://people.ece.cornell.edu/land/courses/ece4760/TinyRealTime/index.html

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

12

the conversion.

The ADC procedure is implemented in pump_control subroutine. I design a state machine to read

four channels of the ADC and send out the pump control signal. The state machine is as follows:

DIFFERENCE:

In this state, we measure the values of the pressure of high tank and low tank. I use a while-loop

“while (ADCSRA & (1<<ADSC));” to wait for ADC. After this loop, the value in ADCH can be used.

So I load the value to variable P_tank_H which stores the value of high tank pressure. Then I set

the ADC registers as follows:

ADMUX = (1<<REFS0) | (1<<ADLAR) + 0b00001;

 ADCSRA |= (1<<ADSC) ;

The first line indicates the channel is changed to channel 1 (Pin A1) and the reference voltage is

5V and the result is left adjusted. The second line starts another ADC procedure.

Then I load the value of ADCH to P_tank_L which stores the pressure of the low tank. After that, I

also need to set the channel to channel 2 (Pin A2). I also set two variables called HighTank_total

and LowTank_total to eliminate the noise of the ADC. I set a count and every time we enter this

state (DIFFERENCE) the count will increment by 1. If the count reaches 50, the microcontroller

will compare the value of HighTank_total and LowTank_total by this sentence: deltaP =

((float)HighTank_total - (float)LowTank_total) / 50 * Gain; (See Table 1 for details).

The value of variable “Gain” is set from the MATLAB and protected by TRT since it is used in two

tasks. After this calculation, I can use deltaP to control the pump. If(deltaP < P_diff - delta *

dP_MA) , we should turn on the pump. The variables “P_diff”, “delta”, and “dP_MA” are also set

from MATLAB and protected by TRT. If(deltaP >= P_diff + delta * dP_MA), we should turn off the

pump.

VENTRICLE:

This state only reads the data of Pin A2. And the microcontroller will load the value of ADCH to

variable “P_ventricle” and change the channel to channel 3 (Pin A3).

AORTA:

This state reads the data of Pin A3. The microcontroller will load the value of ADCH to variable

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

13

“P_aorta” and change the channel to channel 0 (Pin A0). And also, the microcontroller will

control the two-way solenoid valve in this state. If P_aorta is bigger than the threshold value

(variable “thres”), the microcontroller will send an open signal to the valve. Otherwise, the

microcontroller will send a close signal. In this state, the microcontroller also put the four variable

in a page whose format is H%3dL%3dV%3dA%3dU%1d. This is used for sending data to MATLAB.

MATLAB Part

I use MATLAB to communicate with the microcontroller and collect data. It is fairly easy to set up

the serial port in MATLAB. The basic steps of the MATLAB code are as follows:

1. Load the calibration parameters of the bioreactor

These parameters which are essential for the bioreactor control were created by the

former students during the calibration time of the whole bioreactor system. They are in

the form of mat file. So we can load them directly.

2. Close all the peripheral of the computer and open the serial port

Before we open the serial port of the computer, we need to make sure all the

instruments are deleted by using “delete(instrfindall);”. Then we can open the serial port

by the command:

fid = serial(“com8”);

 fopen(fid);

 Otherwise, MATLAB may get the runtime error.

3. Check the current state of the microcontroller

After we open the serial port, we can communicate with the microcontroller through

USB cable. First thing we want to know is what kind of state the microcontroller or the

bioreactor is. So we can send a check signal which is a single character “c” in my design

to the microcontroller. The microcontroller receives the check signal and sends back a

piece of information containing the current state. The format of the information is

“P_diffXXXdP_MAXXXdeltaXXXGainXXXBiasXXXThresXXX”. Then MATLAB parses the

information by using “strfind” function. And finishing parsing this information, MATLAB

will print out the parsed information in the command window. So the user will check the

current state of the whole system (Please check User Manual for screen captures).

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

14

4. Set the value of the key variables through user interface and send them to microcontroller

Since we get the information of the state, we might want to change it to satisfy the

demand of this period of data collection. After printing out the state of the

microcontroller, MATLAB will ask the user “Do you want to change the current values?” If

the user types in 0, the state won’t change and the MATLAB starts collecting data; If the

user types in 1, MATLAB will prompt the user to change the state of the system. After

finishing changing the value, MATLAB will print out the value which the user just typed in

and ask the user “Please type in 1 or 0 (1 for correct)”. If the user types in 0, the whole

procedure of changing values will start over again; if the user types in 1, MATLAB will

send the new value to the microcontroller and starts to collect data. The format of the

string which MATLAB sends to the microcontroller is “oPXXXfCXXXDXXXGXXXBXXXTXXX”

and this string will be parsed in microcontroller.

5. Start to collect data and plot the real-time waveform of the four transducers

After changing the value of the key variables, we can collect data now. I use a for-loop to

do the data collection. Instead of letting the microcontroller send data continuously, I

design a simple “handshaking” protocol because MATLAB is very bad at dealing with

memory control and it may flush the memory if we don’t control the data transfer. The

first thing is that MATLAB sends a character “s” to the microcontroller. The

microcontroller recognizes the character and then sends back a string whose format is

“HXXXLXXXVXXXAXXXUX”. This string contains the value of the four transducers (High

tank, Low tank, Ventricle, Aorta) and the pump signal (high or low). MATLAB will parse

the string and send values to the corresponding variable. And then MATLAB plots the

points in the figure. After finishing plotting, MATLAB will send “s” again and start the

whole procedure again until it reaches the length of the time period we set.

In this way, the whole procedure of data collection is under control. Notice that we have

to use pause() function between sending “s” and receiving the string, even when we only

need a really short pause. Otherwise, the real time waveform will stuck and the whole

waveform will appear after we finish collecting data.

6. Save the data of the four transducers for further analysis

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

15

The last step is that we save the data to a mat file for further analysis. The data we want

to save is High_tank, Low_tank, Ventricle, and Aorta. And then we delete all the other

internal variables. At last, MATLAB will print a pink information telling the user what

format of the saved data is.

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

16

Result and Analysis

The microcontroller system is used for collecting data in out lab. We can use these data to do

further analysis. This is just a simple example. Figure 8 shows the porcine heart valve pressure

when P_diff equals 150 mmHg and the applied aorta pressure equals 0. Figure 9 shows the 3D

printed heart valve pressure when P_diff equals 150 mmHg and the applied aorta pressure

equals 0. We can compare these two figures to check if the printed valve satisfies our demand.

Figure 8. Porcine heart valve pressure waveform when P_diff = 150 mmHg

Figure 9. 3D printed heart valve pressure waveform when P_diff = 150 mmHg

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

17

Conclusion

I designed a microcontroller control system for the heart valve bioreactor. It can control the flow

of the whole system based on the specified parameters and collect data in MATLAB.

The future work could be that we can design our own prototype board instead of using bread

board so the whole system could be more compact. And also, we can build several parallel TEHV

chambers instead of just one.

Acknowledgement

I would like to thank my advisor Bruce Land for all his instruction. His advice of junction box really

make the project much safer. And he taught me how to change the clock frequency to make the

TRT run for much longer time. All these things make the project much easier for me to

accomplish.

And I also want to thank all the team members in our bio-print team, especially Laura. She is

always so patient and kind. When I started to participate in this project, I know nothing about the

machenism of heart valve and the bioreactor. She told me how to start and what goal we should

achieve. When I have questions, she always explains to me no matter how stupid the question is.

And also for Alain, Dan, and Duan, you guys are always helping me when I have problems.

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

18

APPENDIX A

User Manual

1. Hardware setup

Currently, I put all the wire connections on the bread board so all the circuit should be

set up as in Figure. And then we should connect the microcontroller and the PC through

USB cable.

2. Run MATLAB code

Before we run the MATLAB code, we should check “Device Manager” to see which serial

port we are using to connect the microcontroller. Then we should go to the fifth line of

the MATLAB scripts and change “com8” to the serial port we are using.

After that, we can run our MATLAB code. The first thing we can see is the time length of

this experiment, as shown in Figure 10.

Figure 10. Prompt line of time length

We should type in how long we want to collect data. Notice that the user must type in an

integer in this procedure.

Then the MATLAB will send the current state of the whole system, as shown in Figure 11.

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

19

Figure 11. The current state of the whole system

These information is sent back from the microcontroller. If we want to change the state,

we should type in “1”; otherwise we should type in “0”. After we type in “1”, the MATLAB

will guide us to change the values of some key variables, as shown in Figure 12.

Figure 12. Change the values of key variables

After we check the desired value of the key variables, we should type in “1” if all the

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

20

values are correct; otherwise we should type in “0” and start the whole procedure over

again.

After we determine the value of the key parameters, MATLAB will start to collect data.

MATLAB will plot the real-time waveforms of the four transducers, as shown in Figure 13.

Figure 13. Real-time Waveforms of four transducers

We can monitor the pressures by these real-time waveforms.

After we reached the time length of this experiment, MATLAB will store the four vectors

of the values of the four pressures in a mat file and prompt a pink line to tell the user

what format of the saved data is, as shown in Figure 14.

Figure 14. File format

In this way, we can guarantee that there will never be two files which have the same

name and we can use the data to do further analysis.

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

21

APPENDIX B

Parts Number

Microcontroller (All from lab)

Part Name Quantities

ATmega 1284P chip 1

Prototype Board 1

Resistors Several

USB cable 1

Junction Box × 2 (Parts number are all from Grainger)

Quantities Parts Number Part Name

2 6X063 LEVITON Wall Switch,1-Pole,Toggle,Brown

2 6A702 LEVITON Receptacle,20A,125V,5-20R,2P,3W,1PH

2 6XC61 RACO Box, Plastic 2 Gang

2 1LXT1 HUBBELL WIRING DEVICE-KELLEMS Wall Plate,2Gang,Nylon,Ivory

2 6C900 OMRON Relay, Solid State

4 5XFP9 NO BRAND NAME ASSIGNED Extension Cord,6ft,16/3,13A,SJT,Black

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

22

APPENDIX C

Source Code

pump_trt_28.c

/*---*/

/*This script is written for MENG Project: Heart Valve Bioreactor

 by Kang Li (kl694), Cornell University*/

#define F_CPU 16000000UL

#include "trtSettings.h"

#include "trtkernel_1284.c"

#include <avr/interrupt.h>

#include <avr/pgmspace.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <avr/sleep.h>

#define begin {

#define end }

// serial communication library

// Don't mess with the semaphores

#define SEM_RX_ISR_SIGNAL 1

#define SEM_STRING_DONE 2 // user hit <enter>

#include "trtUart.h"

#include "trtUart.c"

#define DIFFERENCE 11

#define AORTA 12

#define VENTRICLE 13

#define READ(U, N) ((U) >> (N) & 1u)

#define SET(U, N) ((void)((U) |= 1u << (N)))

#define CLR(U, N) ((void)((U) &= ~(1u << (N))))

#define FLIP(U, N) ((void)((U) ^= 1u << (N)))

#define SEM_SEND 3

#define SEM_INPUT 4

#define SEM_SQUARE 5

#define T_OVERFLOW 500

// UART file descriptor

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

23

// putchar and getchar are in uart.c

FILE uart_str = FDEV_SETUP_STREAM(uart_putchar, uart_getchar, _FDEV_SETUP_RW);

int args[2];

unsigned char P_tank_H, P_tank_L;

double P_diff;

int count;

double deltaP;

double delta;

double time_squarewave, dP_MA, Gain, Bias;

int thres,T;

float P, C, D, G, B;

unsigned char P_aorta, P_ventricle;

unsigned char channel_flag ;

long HighTank_total, LowTank_total;

int pumpSignal;

char sendData[14];

void initialize(void);

int main(void)

begin

 initialize();

 set_sleep_mode(SLEEP_MODE_IDLE);

 sleep_enable();

 while (1)

 begin

 CLR(PORTD,1);

 sleep_cpu();

 end

end

void pump_control(void * args)

begin

 uint32_t rel,dead;

 while(1)

 begin

 switch(channel_flag)

 begin

 case (DIFFERENCE):

 // wait for ADC done

 while (ADCSRA & (1<<ADSC));

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

24

 P_tank_H = ADCH;

 ADMUX = (1<<REFS0) | (1<<ADLAR) + 0b00001;

 ADCSRA |= (1<<ADSC) ;

 HighTank_total += P_tank_H;

 // wait for ADC done

 while (ADCSRA & (1<<ADSC));

 P_tank_L = ADCH;

 //Reference voltage is 5V; Write one to ADLAR to left adjust the result; Select

the PINA1(ADC1) as analog input

 ADMUX = (1<<REFS0) | (1<<ADLAR) + 0b00010;

 ADCSRA |= (1<<ADSC) ;

 LowTank_total += P_tank_L;

 count++;

 if (count >= 50)

 begin

 count = 0;

 trtWait(SEM_INPUT);

 deltaP = ((float)HighTank_total - (float)LowTank_total) / 50 * Gain;

 trtSignal(SEM_INPUT);

 HighTank_total = 0;

 LowTank_total = 0;

 //load the values sent from MATLAB and protect the variables using TRT

 trtWait(SEM_INPUT);

 P_diff = P;

 dP_MA = C;

 delta = D;

 Gain = G;

 Bias = B;

 thres = T;

 trtSignal(SEM_INPUT);

 //if P_diff, dP_MA, delta are all zeros, don't start the pump

 if((P_diff > 0) || (dP_MA > 0) || (delta > 0))

 begin

 if(deltaP < P_diff - delta * dP_MA)

 begin

 SET(PORTD, 2); // turn on the pump

 trtWait(SEM_SEND);

 pumpSignal = 1;

 trtSignal(SEM_SEND);

 end

 if(deltaP >= P_diff + delta * dP_MA)

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

25

 begin

 CLR(PORTD, 2); // turn off the pump

 trtWait(SEM_SEND);

 pumpSignal = 0;

 trtSignal(SEM_SEND);

 end

 end

 else

 begin

 CLR(PORTD, 2);

 end

 end

 channel_flag = VENTRICLE;

 break;

 case (VENTRICLE):

 // wait for ADC done

 while (ADCSRA & (1<<ADSC));

 P_ventricle = ADCH;

 //Reference voltage is 5V; Write one to ADLAR to left adjust the result; Select

the PINA3(ADC3) as analog input

 ADMUX = (1<<REFS0) | (1<<ADLAR) + 0b00011;

 ADCSRA |= (1<<ADSC) ;

 channel_flag = AORTA;

 break;

 case (AORTA):

 while (ADCSRA & (1<<ADSC));

 P_aorta = ADCH;;

 if(P_aorta >= thres)

 begin

 CLR(PORTC,0); // open the two-way solenoid valve

 end

 else

 begin

 SET(PORTC,0); // close the two-way solenoid vale (the valve is closed

when energized)

 end

 //Reference voltage is 5V; Write one to ADLAR to left adjust the result; Select

the PINA0(ADC0) as analog input

 ADMUX = (1<<REFS0) | (1<<ADLAR) + 0b00000;

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

26

 ADCSRA |= (1<<ADSC) ;

 trtWait(SEM_SEND);

 // put the four variables in a package

 sprintf(sendData, "H%3dL%3dV%3dA%3dU%1d",P_tank_H,P_tank_L,

P_ventricle, P_aorta, pumpSignal);

 trtSignal(SEM_SEND);

 channel_flag = DIFFERENCE;

 break;

 end

 rel = trtCurrentTime() + SECONDS2TICKS(0.01);

 dead = trtCurrentTime() + SECONDS2TICKS(0.011);

 trtSleepUntil(rel, dead);

 end

end

void PC_communication(void * args)

begin

 char cmd[40], P_str[10], C_str[10], D_str[10], G_str[10], B_str[10], T_str[10];

 int p, c, d, g, b, t;

 while(1)

 begin

 fscanf(stdin, "%s", cmd) ;

 if (cmd[0] == 'o') // change the value of the protected variables

 begin

 // parse the received string

 p = strchr(cmd,'P')-cmd;

 c = strchr(cmd,'C')-cmd;

 d = strchr(cmd,'D')-cmd;

 g = strchr(cmd,'G')-cmd;

 b = strchr(cmd,'B')-cmd;

 t = strchr(cmd,'T')-cmd;

 strlcpy(P_str, cmd + p + 1, c - p);

 strlcpy(C_str, cmd + c + 1, d - c);

 strlcpy(D_str, cmd + d + 1, g - d);

 strlcpy(G_str, cmd + g + 1, b - g);

 strlcpy(B_str, cmd + b + 1, t - b);

 strlcpy(T_str, cmd + t + 1, strlen(cmd) - t);

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

27

 trtWait(SEM_INPUT);

 //load the values to corresponding variables

 sscanf(P_str, "%f", &P);

 sscanf(C_str, "%f", &C);

 sscanf(D_str, "%f", &D);

 sscanf(G_str, "%f", &G);

 sscanf(B_str, "%f", &B);

 sscanf(T_str, "%d", &T);

 trtSignal(SEM_INPUT);

 end

 if (cmd[0] == 's') // send the package to PC

 begin

 trtWait(SEM_SEND);

 fprintf(stdout, "%s", sendData);

 trtSignal(SEM_SEND) ;

 end

 if (cmd[0] == 'c') // check the current state of the whole system

 begin

 trtWait(SEM_INPUT);

 fprintf(stdout, "\rP_diff%fdP_MA%fdelta%fGain%fBias%fThres%d\n", P_diff,

dP_MA, delta, Gain, Bias, thres);

 trtSignal(SEM_INPUT);

 end

 end

end

void initialize(void)

begin

 CLKPR = (1 << CLKPCE);

 CLKPR = (1 << CLKPS0) | (1 << CLKPS1); // set divide by 8

 //PINA is input

 DDRA = 0x00;

 PORTA = 0x00;

 //PIND is output

 DDRD = 0xff;

 PORTD = 0x00;

 //PINC is output

 DDRC = 0xff;

 PORTC = 0x00;

 ADMUX = (1<<REFS0) | (1<<ADLAR) + 0b00000;

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

28

 ADCSRA = (1<<ADEN) | (1<<ADSC) + 7 ;

 channel_flag = DIFFERENCE;

 P_tank_H = 0;

 P_tank_L = 0;

 P_aorta = 0;

 P_ventricle = 0;

 P_diff = 0;

 delta = 0;

 dP_MA = 0;

 Gain = 0;

 Bias = 0;

 time_squarewave = 0;

 thres = 0;

 count = 0;

 T=0;

 //ini uart

 trt_uart_init();

 stdout = stdin = stderr = &uart_str;

 trtInitKernel(300);

 trtCreateSemaphore(SEM_RX_ISR_SIGNAL, 0) ; // uart receive ISR semaphore

 trtCreateSemaphore(SEM_STRING_DONE,0) ; // user typed <enter>

 trtCreateSemaphore(SEM_SEND, 1) ;

 trtCreateSemaphore(SEM_INPUT, 1) ;

 trtCreateSemaphore(SEM_SQUARE, 1) ;

 trtCreateTask(PC_communication, 300, SECONDS2TICKS(0.15), SECONDS2TICKS(0.25),

&(args[0]));

 trtCreateTask(pump_control, 300, SECONDS2TICKS(0.01), SECONDS2TICKS(0.015),

&(args[1]));

 sei();

end

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

29

Heart_valve-MCU.m

clc;clear; % clean the screen and workspace

load CalibTransducer.mat; % load the calibration parameters

close all; % close all the figures

delete(instrfindall); % delete all the instruments

fid = serial('com8'); % open serial port

s.BytesAvailableFcnMode = 'byte'; % set the parameters of the serial port

s.InputBufferSize = 5000;

s.BytesAvailableFcnCount = 10;

s.BaudRate = 9600;

s.BytesAvailableFcn = @my_callback;

s.Timeout = 3000;

fopen(fid);

fprintf('Please type in the time length of this data collection\n'); % prompt the user to type in the

data length

timeout = input('Time length in minutes: ');

timeout_used = timeout * 60 ; % convert minutes to seconds

fprintf(fid,'c\n');

check = [];

scaler = 5/255* 393.3217; %convert the units to mmHg

sample_rate = 44; % samples/second

while ((isempty(check)) || (check(1) ~= 'P')) % check the current state of the whole system

 check = fscanf(fid, '%s');

 P_diff_location = strfind(check, 'P_diff'); % parse the string

 dP_MA_location = strfind(check, 'dP_MA');

 delta_location = strfind(check, 'delta');

 Gain_location = strfind(check, 'Gain');

 Bias_location = strfind(check, 'Bias');

 Thres_location = strfind(check, 'Thres');

 P_diff_current = str2double(check((P_diff_location + 6):(dP_MA_location - 1)));

 dP_MA_current = str2double(check((dP_MA_location + 5):(delta_location - 1)));

 delta_current = str2double(check((delta_location + 5):(Gain_location - 1)));

 Gain_current = str2double(check((Gain_location + 4):(Bias_location - 1)));

 Bias_current = str2double(check((Bias_location + 4):(Thres_location - 1)));

 Thres_current = str2double(check((Thres_location + 5):length(check))) * scaler - 388.2081;

end

fprintf('\nThe current values of P_diff, dP_MA, delta, Gain,and Bias are as follows:'); % display the

current state

fprintf('\n\t\t\t\tP_diff = %f', P_diff_current);

fprintf('\n\t\t\t\tdP_MA = %f', dP_MA_current);

fprintf('\n\t\t\t\tdelta = %f', delta_current);

fprintf('\n\t\t\t\tGain = %f', Gain_current);

fprintf('\n\t\t\t\tBias = %f', Bias_current);

fprintf('\n\t\t\t\tThreshold Aorta Pressure = %f', Thres_current);

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

30

fprintf('\n***\n\r');

fprintf('\rDo you want to change the current values?\n') % ask the user to change value

check_flag = input('Please input 1 or 0 (1 for changing values)');

if(check_flag ~= 0)

 finish_input_flag = 0;

 while(finish_input_flag == 0)

 fprintf('\nPlease input the value of P_diff (the default value is 100)\n');

 P_diff = input('P_diff = ');

 if (size(P_diff) == 0)

 P_diff_used = 100;

 else

 P_diff_used = P_diff;

 end

 fprintf('\nPlease input the value of delta (the default value is 1)\n');

 delta = input('delta = ');

 if (size(delta) == 0)

 delta_used = 1 ;

 else

 delta_used = delta;

 end

 fprintf('\nPlease input the value of the threshold aorta pressure (the default prssure =

77.5723989 mmHg)\n');

 thres = input('thres = ');

 if (size(thres) == 0)

 Thres_used = 77.5723989 ;

 else

 Thres_used = thres;

 end

 fprintf('P_diff = %f, delta = %f, threshold aorta voltage = %f\nIs this correct?\n', ...

 P_diff_used, delta_used, Thres_used);

 finish_input_flag = input('Please input 1 or 0 (1 for correct)\n');

 if ((finish_input_flag ~= 0))

 clear delta P_diff finish_input_flag thres;

 break;

 end

 end

else

 P_diff_used = P_diff_current;

 delta_used = delta_current;

 Thres_used = Thres_current;

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

31

end

R_Use = 250;

Gain_total = a_Transducer * R_Calib / R_Use * 5 /255;

Bias_used = b_Transducer;

Thres_convert = round((Thres_used + 388.2081) / 393.3217 * 255 / 5);

send_packet = sprintf('P%06.2fC%06.3fD%dG%06.3fB%06.3fT%d', P_diff_used, dP_MA,

delta_used, Gain_total, Bias_used, Thres_convert);

fprintf(fid,'o%s\r', send_packet); % send the new value to microcontroller

clear P_diff_current dP_MA_current delta_current %clear the internal variables

clear Gain_current Bias_current

clear P_diff_location dP_MA_location delta_location

clear Gain_location Bias_location Thres_current

%initialize the vectors%initialize the vectors

Low_tank = zeros(timeout_used * sample_rate, 1);

High_tank = zeros(timeout_used * sample_rate, 1);

Ventricle = zeros(timeout_used * sample_rate, 1);

Aorta = zeros(timeout_used * sample_rate, 1);

PumpSignal = zeros(timeout_used * sample_rate, 1);

i_real = 1;

% set the figure handles

figureHandle1 = figure('NumberTitle','off',...

 'Name','High Tank Pressure',...

 'Color',[0 0 0],'Visible','on');

axesHandle1 = axes('Parent',figureHandle1,...

 'YGrid','on',...

 'YColor',[0.9725 0.9725 0.9725],...

 'XGrid','on',...

 'XColor',[0.9725 0.9725 0.9725],...

 'Color',[0 0 0],'xlim', [0, timeout_used], 'ylim', [0, 120] * scaler-388.2081);

hold on;

plotHandle1 =

plot(axesHandle1,i_real,High_tank(1,1),'g',i_real,PumpSignal(1,1),'r','Marker','.','LineWidth',1);

xlabel('Time in seconds','FontWeight','bold','FontSize',10,'Color',[1 1 0]);

ylabel('High Tank Pressure in mmHg','FontWeight','bold','FontSize',10,'Color',[1 1 0]);

title('High Tank Pressure','FontSize',15,'Color',[1 1 0]);

figureHandle2 = figure('NumberTitle','off',...

 'Name','Low Tank Pressure',...

 'Color',[0 0 0],'Visible','on');

axesHandle2 = axes('Parent',figureHandle2,...

 'YGrid','on',...

 'YColor',[0.9725 0.9725 0.9725],...

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

32

 'XGrid','on',...

 'XColor',[0.9725 0.9725 0.9725],...

 'Color',[0 0 0],'xlim', [0, timeout_used], 'ylim', [0, 120] * scaler-388.2081);

hold on;

plotHandle2 =

plot(axesHandle2,i_real,Low_tank(1,1),'g',i_real,PumpSignal(1,1),'r','Marker','.','LineWidth',1);

xlabel('Time in seconds','FontWeight','bold','FontSize',10,'Color',[1 1 0]);

ylabel('Low Tank Pressure in mmHg','FontWeight','bold','FontSize',10,'Color',[1 1 0]);

title('Low Tank Pressure','FontSize',15,'Color',[1 1 0]);

figureHandle3 = figure('NumberTitle','off',...

 'Name','Ventricle Pressure',...

 'Color',[0 0 0],'Visible','on');

axesHandle3 = axes('Parent',figureHandle3,...

 'YGrid','on',...

 'YColor',[0.9725 0.9725 0.9725],...

 'XGrid','on',...

 'XColor',[0.9725 0.9725 0.9725],...

 'Color',[0 0 0],'xlim', [0, timeout_used], 'ylim', [0, 120] * scaler-388.2081);

hold on;

plotHandle3 = plot(axesHandle3,i_real,Ventricle(1,1),'Marker','.','LineWidth',1,'Color',[0 1 0]);

xlabel('Time in seconds','FontWeight','bold','FontSize',10,'Color',[1 1 0]);

ylabel('Ventricle Pressure in mmHg','FontWeight','bold','FontSize',10,'Color',[1 1 0]);

title('Ventricle Pressure','FontSize',15,'Color',[1 1 0]);

figureHandle4 = figure('NumberTitle','off',...

 'Name','Aorta Pressure',...

 'Color',[0 0 0],'Visible','on');

axesHandle4 = axes('Parent',figureHandle4,...

 'YGrid','on',...

 'YColor',[0.9725 0.9725 0.9725],...

 'XGrid','on',...

 'XColor',[0.9725 0.9725 0.9725],...

 'Color',[0 0 0],'xlim', [0, timeout_used], 'ylim', [0, 120] * scaler-388.2081);

hold on;

plotHandle4 = plot(axesHandle4,i_real,Ventricle(1,1),'Marker','.','LineWidth',1,'Color',[0 1 0]);

xlabel('Time in seconds','FontWeight','bold','FontSize',10,'Color',[1 1 0]);

ylabel('Aorta Pressure in mmHg','FontWeight','bold','FontSize',10,'Color',[1 1 0]);

title('Aorta Pressure','FontSize',15,'Color',[1 1 0]);

PropName1(1)={'YData'};

PropName1(2)={'Color'};

PropName1(3)={'XData'};

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

33

PropName2(1)={'YData'};

PropName2(2)={'Color'};

PropName2(3)={'XData'};

PropVal1(1,2)={[0 1 0]};

PropVal1(2,2)={[0 1 0]};

PropVal2(1,2)={[0 1 0]};

PropVal2(2,2)={[0 1 0]};

% start to collect data and plot the real-time waveform

for i = 2:(timeout_used * sample_rate)

 fprintf(fid, '%c\r','s');

 pause(0.001);

 f_test = fscanf(fid,'%s');

 if ((~isempty(f_test)) && (f_test(1) == 'H'))

 i_real = i_real + 1;

 H = find(f_test == 'H');

 L = find(f_test == 'L');

 V = find(f_test == 'V');

 A = find(f_test == 'A');

 U = find(f_test == 'U');

 High_tank(i_real,1) = str2double(f_test((H + 1):(L - 1)))*scaler-388.2081;

 Low_tank(i_real,1) = str2double(f_test((L + 1):(V - 1)))*scaler-388.2081;

 Ventricle(i_real,1) = str2double(f_test((V + 1):(A - 1)))*scaler-388.2081;

 Aorta(i_real,1) = str2double(f_test((A + 1):(U - 1)))*scaler-388.2081;

 PumpSignal(i_real,1) = str2double(f_test((U + 1):(length(f_test) - 1)))*200;

 PropVal1(1,1)={High_tank(1:i_real)};

 PropVal1(1,3)={[1:i_real] / sample_rate};

 PropVal1(2,1)={PumpSignal(1:i_real)};

 PropVal1(2,3)={[1:i_real] / sample_rate};

 set(plotHandle1,PropName1,PropVal1);

 set(plotHandle2,'YData',Low_tank(1:i_real),'XData',[1:i_real] / sample_rate);

 PropVal2(1,1)={Low_tank(1:i_real)};

 PropVal2(1,3)={[1:i_real] / sample_rate};

 PropVal2(2,1)={PumpSignal(1:i_real)};

 PropVal2(2,3)={[1:i_real]/ sample_rate};

 set(plotHandle2,PropName2,PropVal2);

 set(plotHandle3,'YData',Ventricle(1:i_real),'XData',[1:i_real] / sample_rate);

 set(plotHandle4,'YData',Aorta(1:i_real),'XData',[1:i_real] / sample_rate);

 end

end

Microcontroller Control System for Heart Valve Bioreactor

Kang Li (kl694)

34

timelength = timeout_used / 60;

% savefile is the name of the saved file

savefile = sprintf('%d_%2d_%2d_%2d_%2d_%d',

year(now),month(now),day(now),hour(now),minute(now),timelength);

cprintf(-[1,0,1],'\n\rThe format of the name of the saved file is

"Year_Month_Day_Hour_Minute_Timelength"\n\r"');

% save the four vectors to a mat file

save(savefile, 'High_tank', 'Low_tank', 'Ventricle', 'Aorta');

%clear all the internal variables

clear f f1 H L A V over timelength timeout_used send_packet t_Average;

clear figureHandle1 figureHandle2 figureHandle3 figureHandle4;

clear plotHandle1 plotHandle2 plotHandle3 plotHandle4;

clear axesHandle1 axesHandle2 axesHandle3 axesHandle4;

clear i i_real check check_flag s savefile timeout f_test;

clear Square_current Square_used Square_location scaler;

clear Bias_used Gain_total P_diff_used PropName1 PropName2 PropVal1 PropVal2

clear R_Calib R_used U a_Transducer b_Transducer dP_MA dV_MA R_Use delta_used

% close the serial port

fclose(fid);

delete(fid);

clear fid

