
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

 Simulation of stochastic model like SIR model is very useful.

However, the software simulation of this kind of model becomes

so slow with the individual number increasing, so this project

provides a much faster hardware solution for it.

 A simulation is implemented on MATLAB to test and verify the

mathematical algorithm

 The final project is implemented on DE-115 board using

Verilog, which gives a much faster performance than on PC

 To make the Verilog code more flexible and variable, a MATLAB

program is designed to automatically generate the Verilog code

ABSTRACT

DESIGN

 Instead of solving the problem in continuous domain, we use

discrete domain which is compatible with hardware system.

Moreover, we use a uniform time step for simulation, which lead

to a fixed infecting and recovering probability for every step.

 The most important component for this project is a high

performance random number generator(RNG). In this case, we use

a 64-bit XOR feedback shift register as the RNG, which is easy to

implement in FPGA.

 Five parameters are set to describe the SIR model

Design and Implement

RESULTS and VERIFICATION

EVALUATION

 Since we need a easily changeable code for implementing, a

MATLAB program is designed with which users can change just

the parameters and get auto-generated Verilog code.

REFERENCES

[1]A. Hoogland, J. Spaa, B. Selman and A. Compagner, A special-

purpose processor for the Monte Carlo simulation of ising spin

systems, Journal of Computational Physics, Volume 51, Issue

2, August 1983, Pages 250-260

[2]http://www.cse.wustl.edu/~jain/cse567-08/ftp/k_27trg.pdf

[3]http://en.wikipedia.org/wiki/Compartmental_models_in_epide

miology

Chi-Square S-C lag = 1 S-C lag = 5

pass fail good pass fail good pass fail good

RNG 46 4 30 46 4 27 49 1 27

Rand() 44 6 20 41 9 25 45 5 23

0.0001 0.001 0.01 0.1 1

MATLAB

FPGA 1MHz

FPGA 10MHz

FPGA 50MHz

Time/s

Time/s

Tian Gao(tg293)
School of Electrical and Computer Engineering, Cornell University

FPGA of Acceleration of Stochastic simulation

 The hardware realization for one individual is as follows
 The most important factors of the implementation is speed and

area. The major purpose to transplant the simulation from

software to hardware is to accelerate it and how many

individuals could be implemented is determined by area.

CONCLUSION

 We designed a hardware solution to accelerate the simulation

for SIR model and implemented it on Altera DE2-115 board

 MATLAB simulation was introduced to validate the mathematical

algorithm for the simulation

 Verilog code was automatically generated from a MATLAB

program which made it easier to change the parameters

 We used a 64-bit XOR feedback shift register as random number

generator in FPGA and prove it to be good enough for simulation

 Verilog code was verified by comparing to the MATLAB version

with the same RNG

 The final implementation was stable during repeats

 The hardware solution gave a 5000 times better speed with 120

individuals than software

BACKGROUND

Susceptible Infectious Recovered

Infect Recover

 In SIR model, each individual has to be one of the three stages:

S(Susceptible), I(Infectious) or R(Recovered)

 Once the individual is recovered, it can’t be infected again

 We can abstract the real world local relationship network to a

simplified one, where each individual is connected to all the

closely related ones, which means they can infect others

through connections

 Initially, one or several individuals are set to be infectious and

the transition rates(possibility for infecting and recovering) are

fixed

 If we observe the number of individuals of each state, assuming

all the individuals are randomly connected, we should expect a

theoretical result as below

 The green one, which indicates the number of infected

individuals, is the data that we observe in the actual simulation

Probability of Infecting Probability of Recovering

Individual Number Average Connections Infected Number

MATLAB
Generate a random network
Set initial infected situation

Generate random seeds for RNG
Write Verilog code

based on given parameters

FPGA
Implement hardware network
Compute with a uniform clock
Result is determined by RNG

Add the infected individuals up
Display on VGA screen

 If SIR cell is in S state, any connected infected individual could

infect it with specified random number

 If SIR cell is in I state, it could recover with specified random

number

 P_StoI and P_ItoR are fixed based on parameters, if RNG gives out

a number less than fixed P, the comparer gives out 1 which

enables the next stage.

 First of all, we test the algorithm in MATLAB simulation

 MATLAB simulation gives out a similar result as theoretical one

which has a sharp rising and a slow decaying.

 If we double the possibility for both infecting and recovering, the

shapes of the figures stay similar but the time steps decrease a

half, which shows the validation of the algorithm

 After implementing on the FPGA, we get a result from

FPGA, compared to MATLAB version with the same parameters

(P_Infecting = P_Recovering = 0.001, Individual Number =

100, Average Connection = 10, Initial Infected Individuals = 2) as

below

1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30

40

50

60

 However, even the figures seems to be similar, we can’t assert

that the implementation on FPGA is correct except that we can

get exactly same results from MATLAB and FPGA

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

800

900

0 1000 2000 3000 4000 5000 6000
0

100

200

300

400

500

600

700

800

900

 For verification, there are three steps:

 First, with the same RNG, FPGA and MATLAB should give out

exactly same results, which proves the Verilog code authentic

 Second, test the RNG that we used, especially compare it with the

MATLAB rand() function which we assume is good enough

 Last, repeat the simulation on FPGA, with the same seeds for

RNG, the result should not change

 To examine the FPGA version, we build a same RNG on MATLAB and

give them the same seeds as FPGA. Also, setting a smaller group of

individual makes it easier to identify them

 The exactly same results below validate the FPGA implementation

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

 To test the RNG, two methods are introduced: Chi-Square Test and

Serial-Correlation Test

 Compared to rand() function in MATLAB, the RNG in this project

not only pass the tests more, but shows more better results

 At last, we add the infected numbers of first 2000 steps together

and display it on board, the number stays the same during repeats

 For MATLAB simulation, with the parameters mentioned

above, the average computing time is 4s with 7000 time steps.

 For FPGA simulation, with the same parameters and 50MHz

clock, the computing time is 0.56ms

 As we can see, FPGA version shows a much better performance

even with a relatively slow clock frequency

 On Altera DE2-115 board with 115000 logic elements, the

maximum individual number that can be implemented is about

120.

 In general, the hardware solution transfers the complexity in

time to area, which may provide a good way to simulate a large

network in real time.

http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts

