
FPGA of Acceleration of Stochastic Simulation

A Design Project Report

Presented to the School of Electrical and Computer Engineering of

Cornell University

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering, Electrical and Computer Engineering

Submitted by

Tian Gao (tg293)

MEng Field Advisor: Bruce Robert Land

Degree Date January 2014

Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title: FPGA of Acceleration of Stochastic Simulation

Author: Tian Gao

Abstract:

This project is designed to implement a stochastic algorithm on an FPGA system to

accelerate a biological simulation. A fast national disease spread prediction

algorithm is needed to anticipate the tendency of an infectious disease to spread in a

given geography. Using a traditional computing system, the simulation would require

large execution time as the model size grows. The project explores methods for

implementing such an algorithm on an FPGAsystem. By utilizing the parallel features

of an FPGA, we may find a way to run the whole simulation in real time. In this

project, a MATLAB simulation is firstly designed for a hardware compatible algorithm

for an SIR model, which is a basic disease spread model. Then, three kinds of FPGAs

are used to implement the algorithm. Finally, some verification is applied to validate

the result. The project has successfully implemented a hardware compatible

algorithm for an SIR model on an FPGA system.

Executive Summary

 The project is designed to parallelize a stochastic algorithm for solving an SIR

model so that it can be implemented on an FPGA system. It explores a method to

implement the parallelizable stochastic algorithm on an FPGA, where anaccurate

random number generator is easier to build and all the computations can be

executed at the same time. In this way, we reduce the complexity in time so we can

actually simulate more individuals in real time, which contributes to making a large

scale stochastic simulation system.

 The MATLAB simulation was tested before the algorithm is actually

implemented on the board. To make the algorithm compatible with hardware, we

use a unified clock for every execution which makes the system discrete instead of

continuous. This implementation fits the FPGA system well, where a universal clock

is used to trigger the registers.

 After validating the algorithm on MATLAB, we implement the first version on a

TerasicDE2 board. The parameters of the SIR model are set in MATLAB code and a

random network is generated in MATLAB. The associated Verilog code is

automatically written by file print function in MATLAB. The seeds of hardware

random number generator are randomly assigned in MATLAB as well.

Therefore,every time the MATLAB code is run, there is a new network and a new

random number generator set generated.

 The algorithm executes successfully on the DE2 board, generating the results on

a VGA screen. We expanded the algorithm to two other boards: DE2-115 and

DE2i-150 for a larger scale of network. The maximum of individuals we can simulate

on DE2i-150 is 140 individuals with 14 connections in average for each individual. We

also have done some verificationbetween the hardware implementation vs. software

simulation and the random number generator. The project goals are completeand

potential remains for future development.

CONTENTS

1 introduction ... 1

2 Design and Implementation .. 2

2.1 SIR Model .. 2

2.2 Discrete SIR Model Algorithm ... 3

2.3 Random Network Generation ... 4

2.4 Software Simulation .. 4

2.5 Hardware Implementation .. 5

2.5.1 SIR Cell .. 5

2.5.2 Random Number Generator .. 5

2.5.3 Block for Each Individual .. 5

2.5.4 Adder Tree ... 7

2.5.5 MATLAB to Verilog ... 7

2.6 Output Method ... 8

2.7 Timing Issue ... 8

3 Tests and Results.. 9

3.1 Control on Board ... 9

3.2 Simulation Results ... 9

3.3 FPGA Simulation .. 12

3.4 Verification .. 13

4 Evaluation .. 16

4.1 Speed ... 16

4.1.1 Time vs Probability ... 17

4.1.2 Time vs Individual Number .. 18

4.1.3 Time vs Average Connection Number ... 20

4.1.4 The Actual Acceleration ... 21

4.2 Area ... 22

4.2.1 Different Individual Number with Same Connections 23

4.2.2 Different Connection Number with Same Individual Number 24

4.2.3 The Final Result in FPGA .. 24

4.3 Summary ... 25

5 Conclusion .. 25

6 Acknowledgement ... 26

7 Reference ... 26

8 Appendix .. 27

8.1 MATLAB Code .. 27

8.2 TOP Module ... 37

8.3 How To Use ... 44

1

1 INTRODUCTION

As the performance of the computing systems improves, researchers are trying

to predict complicated, real life situations using stochastic algorithms. However, it is

becoming more difficult to execute a large network in serial processors because of

the large scale of data and nodes to compute. Thus, parallelization tends to be the

new solution to solve such stochastic simulations. An FPGA system provides an

excellent platform to explore such parallel solutions. Instead of using traditional

CPUs as the main processors, An FPGA system executes the simulation using

compiled HDL code running on FPGA hardware using register and logic elements. In

this way, increasing scale of the simulation leads to a tradeoff between FPGA area

and simulation execution time. Evena relatively large network with many nodes can

be computed on an FPGA system in real time, as long as the FPGA has enough logic

elements.

In this project, we explore a way to implement a stochastic simulation;an SIR

model on an FPGA system. The Verilog code is automatically generated by MATLAB

code, by which parameters of the model are easily modified and a whole new

random network is built for every MATLAB run. The simulation on the FPGA system

can execute with the initial seeds for every random number generator, which would

give out the exact result for every run, or it can be based on the seeds determined by

time, which would result in a different output for the same network. The output is

displayed on a VGA screen, showing the figure of infected individuals vs. time.

2

2 DESIGN AND IMPLEMENTATION

2.1 SIR MODEL

There are many different algorithms for stochastic models. We choose the SIR

model for the simulation becausethe SIR model (representing Susceptible, Infectious

and Recovered) is a basic, direct model that is widely used for modeling large scale

disease outbreaks. It is a good model for initial investigation and is compatible with

hardware design.

In the SIR model, initially, all individuals are susceptible which means they can

be infected by other individuals. Then, several individuals are set to be infectious at

the beginning of the simulation. Each individual has its own network, providing

interconnection with other individuals in the simulation. Then, with these

connections, the disease spreads. A susceptible individual connected to an infectious

one could become infected. Also, the infectious individual could recover from the

disease. In this particular model, the recovered individual cannot be infected again.

By observing the number of individuals of each group, we can see the trends of the

disease, which also provides validation. For the simulation, if our results are correct,

the number figure should be like the following graph, where blue dots represent

susceptible individuals, green represents infectious individuals and red represents

recovered individuals.

3

Figure 1Theoretical SIR model result, blue for S, green for I, and red for R

2.2 DISCRETE SIR MODEL ALGORITHM

The SIR model could be solved mathematically under some constraints. However,

we need to simulate it on hardware to achieve a more realistic process. Thus, we

need to figure out a hardware compatible algorithm for the SIR model.

Instead of treating the model as a continuous one, we decided to make it

discrete which is how things work in hardware. That means, there is a minimum time

step in the whole system. For every time step, there is a small possibility that an

infected individual infects a susceptible one that is connected to it, or that the

individual recovers. If this time step becomesinfinitely small, as the infect/recover

probability approaches zero, the model becomes continuous.

In fact, if the time step is small enough, which means the infect/recover

probability of each time step is small enough, we can take this discrete model as a

continuous one with small error. If the error is acceptable (the probability of two

individuals changing states in one time step is small), we can treat the model as a

valid model.

4

2.3 RANDOM NETWORK GENERATION

To simulate the model, we need to build a network first. The network implies

the relations between individuals. Two individuals can either be only connected or

unconnected which means they can infect each other or not. The network is a

bidirectional graph because if an individual can infect another, then it can be

infected by it.

In this project, we use MATLAB to generate the random network. First the

parameters; individual number and average connections per individual, are set at

simulation start. Next we generate connections based on the parameters. We

randomly choose two different individuals. If they are already connected, this pair of

individuals is skipped. Otherwise we build a connection between them. In this way,

we could generate a network with a totalconnection number of individual number

multiplying average connections per individual. Then we generate a graph based on

the connections we build and save it in the matrix.

2.4 SOFTWARE SIMULATION

To test the algorithm, we simulate it on MATLAB before we actually implement

it on the FPGA. After we generate the network, we randomly select several

individuals (the number is set as parameters by users) to be infected initially. Then

we start the simulation. We have two arrays to store the states of the individual; the

current states and the next states. For each individual, we check whether it is

currently infected. If it is, we search for every individual that is connected to it,

generate a random number from 0 to 1, and compare the number to the probability.

If the number is within the probability, we set the next state of the individual as

infected. Also, if the individual is currently infected, we generate another random

number to see whether it would recover next cycle. After going through all the

individuals in the network, the current state of the individuals is updated as next

5

state. This process will repeat until there are no infected individuals and this ends

the simulation.

2.5 HARDWARE IMPLEMENTATION

2.5.1 SIR Cell

In the hardware implementation, each individual is abstracted as a block which

contains a state machine representing the state of the individual. The state machine

has two bits, one represents whether it is infectious, another represents whether is

susceptible. There is an input signal for the cell that implies whether there is a

source that would infect it next cycle. If there is, and the cell is susceptible, the

infectious bit would set to one on the next cycle. Also the susceptible would clear.

There’s another input signal as the recover signal, which is similar as the infectious

signal, triggering the cell from infected to recover.

2.5.2 Random Number Generator

The core part of this design is the random number generator (RNG) which

determines every random process. The performance of the RNG is the key to get a

valid result. In our design, we choose a 63-bit linear feedback shift register as the

RNG. The RNG is based on “A special-purpose processor for the Monte Carlo

simulation of ising spin systems”by A. Hoogland, J. Spaa, B. Selman and A.

Compagner but modified to use 63 bit shift register. The RNG generates a 64-bit

random number every 4 cycles.

2.5.3 Block for Each Individual

For each individual, a hardware block is designed as follows

6

Figure 2 Schematic of Hardware for Each Individual

 For each direction of every connection, there is a RNG rolling the dice. The

output of the RNG and a fixed value which is the probability value set in MATLAB are

going through a comparator. The comparator’s enable signal is controlled by the

source individual. If the source individual is infected and the RNG generates a

number that is within the probability, the comparator will output a positive signal.

Since each individual could be infected by any individual that is connected to it, all

the infectious signals are OR together to generate the infectious input of SIR cell.

There is a similar structure for recovery. The slightly difference is that the

comparator is always enabled because only when the SIR cell is in the infected state,

will it read the recover signal.

 By duplicating this structure, we can generate a SIR model network. When some

of the SIR cells are set to infected, the simulation will start.

7

2.5.4 Adder Tree

To observe the result of the simulation, we need to sum up the number of

infected individuals every several time step. Since a ripple adder is to slow for this

application especially when the individual numbers are high, we implemented an

adder tree to sum the data. In addition, we pipelined the adder tree to achieve a

smaller cycle time.

2.5.5 MATLAB to Verilog

 Since we want to build different networks and assign different seeds for the RNG,

we have to make the design more flexible. In this project, we used a MATLAB

program to generate Verilog with the file writing function in MATLAB. There are five

parameters of the model that we can change for a different simulation: probability

of infection, probability of recovery, total individuals, average connections for each

individual, and number of initially infected individuals.

 The MATLAB program will generate a network based on the given parameters,

then set the initial condition for the network. With the network established, the

MATLAB program will write a Verilog file for the hardware implementation. The

Verilog code will have hardware connections that describe the network generated in

MATLAB. The seeds for random number generators are also randomly generated by

MATLAB.

 MATLAB also builds the adder tree based on the actual number of individual in

the simulation.

 By using MATLAB to generate the Verilog code, the program is much more

flexible and easy to modify. Anytime we need a new set of parameters or want a

new network or random seed, we only need to change MATLAB parameters and

generate a new code. This simplifies the often difficult task of modifying Verilog for

each simulation change.

8

2.6 OUTPUT METHOD

 To observe the result of the simulation, we need to sum up the infected

individuals every several time steps. The interval between additions can be changed

by the switches on the FPGA board.To display the results, we used a VGA screen.

During the simulation, the sums are saved in SRAM. After saving 640 results (the

width of the screen), the simulation stops. The curve of the results will be displayed

on VGA screen only the simulation completes. The VGA controller is from Jordan

Crittenden.

2.7 TIMING ISSUE

There are several timing issues that we need to consider for the design. First, a

universal clock is required for the FPGA to work. The FPGA provides a 50MHz

internal clock which is a good baseline frequency for testing. However, there are

parts in our design that require a slower clock. The VGA control module needs a

25MHz clock, which is provided by an Altera Phase Lock Loop design that is included

in the Altera IP library. The adder tree and data storage do not requirehigh speed

clocks, but prescalar to trigger the register is not a good design because that may

cause the latency and edge conflict. To avoid these issues, we implemented a

counter inside the adder and storage module. By counting a number of values before

executing a data add and store, we are triggering the execution on the real clock

edge, but also get the slower frequency.If future experiments require higher clock

speed, we need to use a PLL to increase the frequency for our main clock.

9

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

3 TESTS AND RESULTS

3.1 CONTROL ON BOARD

We control basic simulation function with user accessible devices on the FPGA

board. There are two buttons to restart the simulation: one is to restart the

simulation with the initial seeds fixed by MATLAB, the other is to restart the

simulation with another set of seeds, selected at random. To fit the output graph to

the screen, we need to modify the time scale determined by the SRAM add and store

function. By setting switches, we can control the counter frequency for the SRAM,

thus controlling storage speed for the results.

3.2 SIMULATION RESULTS

Before actually implementing the algorithm on hardware, we tried our algorithm

on a MATLAB simulation. As we discussed above, we can set five parameters to

explore the SIR model. As an initial experiment, we set the P_Infecting =

P_Recovering = 0.001 with a network of 100 people and 10 average connections with

two individuals initially infected. We simulate using these settings, four times. The

following figures show the relation between number of infected individuals to

simulation cycles.

0 1000 2000 3000 4000 5000 6000

0

10

20

30

40

50

60

70

10

Figure 3 number of infected individuals vs cycles, P=0.001, 100 individuals with 10 average connections

 As we can see, the output curve looks similar: a sharp rising and a relatively low

falling, which matches the theoretical result for the SIR model we discussedin section

2.1. However, the curve is not smooth because the individual number is relatively

low. If we increase the individual number to 1000, similar results are shown in figure

4:

Figure 4 number of infected individual vs cycles, P=0.001, 1000 individuals with 10 average connections

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000 7000
0

100

200

300

400

500

600

700

800

900

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200

300

400

500

600

700

800

900

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200

300

400

500

600

700

800

900

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200

300

400

500

600

700

800

900

11

 This result looks smoother than the result with 100 individuals while it also

illustrates characteristic features of an SIR model where the number of infected

individuals rises quickly and falls relatively slowly.

 If we double the probability of infection and recovery to 0.002, which could be

approximately considered as double the time scale, we should expect the similar

curve with half cycle number. The actual simulation is as follows:

Figure 5 number of infected individuals vs cycles, P=0.002, 1000 individuals with 10 average connections

 Basically we can say the time axis decreases by half which is our expectation.

 In the SIR model, if the recoveryprobability is much more than the infection

probability, it is possible that the disease would not spread. To test this feature, we

set the recoveryprobability five times larger than the infectionprobability, with a

network of 100 individuals and 10 average connections.

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

400

500

600

700

800

900

12

Figure 6 number of infected individual vs cycles, P_Recovery = 0.005, P_Infection=0.001, 100 individuals with 10

average connections

 The third result shows that the disease has not spread at all.

The MATLAB simulation results match the theoretical result well, which suggests

that the discrete algorithm is valid when the time step is small enough. By verifying

our initial ideas with MATLAB simulations, we next implementedthe algorithm on

the FPGA.

3.3 FPGA SIMULATION

 With the same parameters for the network, the MATLAB simulation and the

FPGA simulation should yield similar results, especially when the number

ofindividuals in the simulation is relatively large. We began by implementing the

same parameters on MATLAB and FPGA (P_Infecting = P_Recovering = 0.001,

0 500 1000 1500 2000 2500
0

5

10

15

0 500 1000 1500 2000 2500
0

5

10

15

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 500 1000 1500 2000 2500
0

5

10

15

20

25

13

Individual Number = 100, Average Connection = 10, Initial Infected Individuals = 2),

and the results are as follows:

Figure 7 Comparison between MATLAB simulation result (left, and FPGA simulation result (right), P=0.001, 100

individuals with 10 average connections

 As we can see from the figures, the results from MATLAB simulation and FPGA

are similar with the same graphical shapes, with a steep initial rising followed by a

slow decay in the number of infected individuals. However, similar results do not

validate the FPGA version completely.

3.4 VERIFICATION

To verify the simulation, we need three more steps. First, with the same RNG,

FPGA and MATLAB should yield exactly same results.This comparison would validate

the Verilog code generation technique in MATLAB. Second, testing of the hardware

RNG is required, especially compared to the MATLAB rand() function which is

adequate for the stochastic simulation. Finally if we repeat the simulation on FPGA

with the same seeds for all RNGs, the result should not change at all, proving the

stability of the hardware simulation.

 We implemented a 64-bit XOR shift hardware RNG on MATLAB, so we can use

the exact same RNG in MATLAB and the FPGA, which establishes the foundation for

the first step of verification. To run the same simulation on MATLAB and FPGA, we

saved the entire network and the initial seeds for every RNG for hardware

1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30

40

50

60

14

implementation and we use the same conditions for software simulation. In this way,

every step should be exactly the same so the results should be identical.

 However, it is difficult to tell difference between two similar graphs. A better

way is to reduce the total individual number, making the result special, unique and

easy to identify.

 We used 10 individuals for verification, and the MATLAB/FPGA simulation

yielded the identical results as follows:

Figure 8 number of infected individualsvs cycles on MATLAB simulation (left) and FPGA simulation (right) with

exactly same network and random number generator with same seeds

 This test shows that the hardware simulation runs exactly as we expected so the

implementation and the sampling is correct.

 Random number generator is the most vital part of a stochastic simulation. It

determines the quality of the simulation. An XOR linear feedback shift register is a

common solution for RNG in hardware because it is relatively inexpensive (in terms

of FPGA resources) and fast. In this case, we need to prove that it is good enough for

the simulation.

 We used two methods to test the RNG: A chi-square test and Aserial-correlation

test. Since we used rand() function in MATLAB forgenerating the seeds for hardware

RNG and software simulation, we basically assume that the rand() function is good

enough for the whole simulation. Therefore, we just need to compare the hardware

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

15

RNG and the rand() function. Once the RNG is as good as the rand() function, it is

good enough for hardware simulation.

 For chi-square test, we repeated the test 50 times which generated 5000

random numbers. If the confidence is more than 90%, our test passed. Less than 90%

would indicate a failed test. If in one test, one of the RNG shows a better result, we

add a good to it.

 For s-c test, we used lag=1 and lag=5, and the confidence is also 90%.

 The results are as follows:

Chi-Square S-C lag = 1 S-C lag = 5

pass fail good pass fail good pass fail good

RNG 46 4 30 46 4 27 49 1 27

Rand() 44 6 20 41 9 25 45 5 23

Table 1 verification test comparison for hard random number generator and rand() function in MATLAB

 From the chart, we can observe that hardware RNG shows an even better

performance than rand() function in MATLAB. Consequently, the RNG is sufficient for

our simulation.

 The last thing we need to check is the stability. Since the results should remain

the same if the seeds for RNGs are the same, we canrepeat the simulation and check

for stability. In this case, we sampled the number of infected individual in the first

2000 steps as a flag value and observe this value between simulations. The results

showed that the flag values stayed the same for every simulation, which proved the

stability of the simulation.

16

4 EVALUATION

 Speed and area are the two most significant factors we should pay attention to

in this project. We transferred the algorithm from software to hardware to make it

faster, so we firstly analyze the speed difference between the MATLAB program and

FPGA simulation.

4.1 SPEED

In the FPGA design, the speed of execution is determined by the total cycle

number and clock frequency. The cycle number varies from network to network and

the clock frequency is limited by the hardware time constraint. If the cycle number is

fixed and the clock frequency is set, the execution time can be calculated as

 𝑇𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 =
𝐶𝑦𝑐𝑙𝑒 𝑁𝑢𝑚𝑏𝑒𝑟

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
× 4

 The factor 4 is required because we generate one random number in four

cycles.This implies that we can update the entire network every four cycles.

First we need to analyze the cycle number of the execution. As expected, cycle

number is affected by connection number, individual number and the probability

settings. Since we’ve proved that the MATLAB simulation yields the same result as

the FPGA simulation, we can run our test in MATLAB, which makes it easier to obtain

result data.

For the comparison, we can obtain accurate execution time in the MATLAB

simulation. For the same network, we obtain the execution time in MATLAB and

calculate the time it would take in the FPGA based on cycle number. This would give

us a comparison between software and hardware.

17

Admittedly, MATLAB is relatively slow software for testing algorithms, but we

can use MATLAB as a rough guide for comparison of software and hardware

implementations.

4.1.1 Time vsProbability

Firstly, we will observe the impact of Probability. We fixed the network

parameter at500 individuals, 20 average connections per individual and 2 initial

infected individuals. Next we sweep the Probability for both infected and recovery

from 0.00025 to 0.04. For every Probability we repeat the simulation with the same

parameters 20 times and get the average execution time and cycle number. In the

figure, X axis is probability.

P of I and R 0.00025 0.0005 0.00075 0.001 0.002 0.003 0.004

MATLAB Exec T(ms) 37198 15467 10530 7800 3845 2753 1958

Cycle Number 30550 13796 9829 7282 3656 2581 1786

Table 2 MATLAB Execution time and number of total cycles with different probability

Figure 9 MATLAB Execution time and number of total cycles with different probability

As we can see in the chart, the execution time in MATLAB has a similar tendency

with cycle number, which is in proportional with execution time in hardware.

0

5000

10000

15000

20000

25000

30000

35000

40000

0.00025 0.0005 0.00075 0.001 0.002 0.003 0.004

Time vs Probability

Execution Time(ms) Cycle Number

18

Actually, if we divide two rows from the table and normalize that, we can get the

figure below where Y axis is normalized time ratio between software and hardware.

Figure 10normalized time comparison between software and hardware with different probability

 We can see that the fluctuation is really small, basically within 10%. This result

implies that the probabilitydoes not have a huge impact on the difference between

software and hardware. This is not difficult to understand because the change of

Probability only increases the cycle number. For software simulation, the time for

each cycle approximately stays the same. In other words, the absolute value of

Probability won’t affect the difference between software simulation and hardware

simulation.

4.1.2 Time vs Individual Number

 Next we can explore the impact of individuals. We fix the Probability of infection

and recovery at 0.0005. Also we set the average connection number at 15. Then we

sweep the individual number from 100 to 1000. In fact, for the large scale simulation,

it is intuitive that the average connection number for each individual is fixed because,

as in real life, one person closely related to a certain number of people, independent

of population size. In the figure, X axis is Individual number.

0.85

0.9

0.95

1

1.05

1.1

1.15

0.00025 0.0005 0.00075 0.001 0.002 0.003 0.004

Normalized Time Comparison with Different
Probability

19

 100 200 300 400 500 750 1000

MATLAB Exec T(ms) 4157 6419 9142 11879 14024 21887 29898

Cycle Number 12243 12521 13527 14028 13789 15743 16717

Table 3 MATLAB Execution time and number of total cycles with different individuals

Figure 11 MATLAB Execution time and number of total cycles with different individuals

Figure 12 normalized time comparison between software and hardware with different individuals

 As we can see in the chart, with individual numbers growing, the speed

difference between software and hardware changes significantly. The software

execution time increases linearly. However, cycle number is relatively stable. This

0

5000

10000

15000

20000

25000

30000

35000

0 200 400 600 800 1000 1200

Time vs Individual Numbers

Execution Time(ms) Cycle Number

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200

Normalized Time Comparison with Different
Individual Number

20

means, while the scale of the network is increasing, the speed of hardware

simulation basically stays the same, but the software simulation slows down. The

ratio of the execution time between software and hardware increases linearly. This is

because, in software, each cycle takes more time to execute, but in hardware, the

computation is in parallel, limited only by the resources available in the FPGA.

4.1.3 Time vs Average Connection Number

Next, we could change the average connection number with the same

Probability 0.0005 and the same total individual number 500. We will increase the

average connection number per individual from 10 to 40. In the figure, X axis is the

average connection number.

 10 15 20 25 30 35 40

MATLAB Exec T(ms) 14149 15265 16224 18244 18689 20179 20772

Cycle Number 15501 15057 14314 15374 14078 13565 12940

Table 4 MATLAB Execution time and number of total cycles with different average connections

Figure 13 MATLAB Execution time and number of total cycles with different individuals

0

5000

10000

15000

20000

25000

10 15 20 25 30 35 40

Time vs Average Connection Number

Execution Time(ms) Cycle Number

21

Figure 14 normalized time comparison between software and hardware with different average connections

 With the average connection number increasing, the execution time of software

increases. This is mainly due to the increasing time of each cycle. However, the cycle

number decreases because with more connections, the disease spread faster and it

takes less time to finish. The hardware simulation shows a better tendency in time

aspect with increasing average connection number.

4.1.4 The Actual Acceleration

The discussion above is based on an ideal situation that we have a large enough

FPGA which can hold as many individuals as we want. However, in this project, due

to the limited resources of the FPGA the largest simulation is 140 individuals with 14

average connections per individual.

With these parameters and a probability of 0.0005, we run the simulation 20

times and convert the cycle time to actual execution time with a 100MHz clock,

which is the best we can achieve on DE2i-150 without any timing issues, we can get

the comparison graph as follows

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 15 20 25 30 35 40

Normalized Time Comparison with Different
Average Connection Number

22

Figure 15 speed comparison between FPGA simulation and MATLAB simulation

As we can see in the figure, the acceleration is basically between 800 and 1000

times. This is a good result for hardware implementation. As we have discussed

above, with the scale of the network increasing, we can definitely get a better

acceleration with a parallel computing method.

4.2 AREA

Basically, the FPGA converts the complexity from time to area. Area is an

important issue we need to analyze because it limits the scale of our simulation. In

our design, the most costly part is the random number generator. So the area of the

whole design is mainly determined by the total RNG number, which is the total

connection number plus individual number. Each individual also has a small state

machine and some basic logic for the state machine, requiring the use of some logic

elements. Finally, there are some basic parts to complete the design, such as PLL,

VGA controller, and adder. These will require a fixed number of logic elements.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Actual Acceleration Comparison

23

4.2.1 Different Individual Number with Same Connections

First we want to observe the impact of individual numbers, so we tested some

parameters with identical connection numbers but different individual numbers. We

compiled four times with the same parameters using different network and take the

average number. For area, we use the logic elements requiredwithin FPGA.

Individual#/Average Con# 12/10 15/8 20/6 24/5 30/4

Network 1 8005 8779 8954 9734 10605

Network 2 8212 8851 9372 9668 10249

Network 3 8072 8641 9233 9670 10673

Network 4 8142 8990 9580 9597 10112

Average Area 8108 8815 9285 9667 10410

Table 5 number of logic elements required in FPGA for different individuals but same total connections

Figure 16 number of logic elements required in FPGA for different individuals but same total connections

 From the figure we can see that the area is approximately linear to the individual

number with the same total connection number which is our expectation. We can

also roughly calculate that each individual would take about 100 logic elements.

0

2000

4000

6000

8000

10000

12000

10 15 20 25 30

Area vs Different Individual Number but Same
Total Connections

Area

24

4.2.2 Different Connection Number with Same Individual Number

Next, we fixed the individual number to 20, and sweep the average connection

number from 4 to 10.

Individual#/Average Con # 20/4 20/6 20/8 20/10

Network 1 6872 9163 11591 14363

Network 2 6592 9579 11800 14297

Network 3 6943 9370 12078 14295

Network 4 6730 9509 11591 14088

Average Area 6784 9405 11765 14261

Table 6 number of logic elements required by FPGA for the same individuals but different average connections

Figure 17 number of logic elements required by FPGA for the same individuals but different average connections

 From the figure we can see, the area is in linear with the total connection

number using identical individual numbers. We can roughly calculate that each

connection takes 60-65 logic elements.

4.2.3 The Final Result in FPGA

In our final design, we used DE2i-150 which has about 150k logic elements. Our

maximum implementation is 140 individuals with 14 average connections per

individual. In our data above, it should take about 140*14*62.5 + 140*100 = 136k

0

2000

4000

6000

8000

10000

12000

14000

16000

60 110 160 210

Area vs Different Connection Number

Area

25

elements. The actual number of logic elements required is 146k. The error is mainly

due to the rough estimation for an individual/connection, but also probably because

of the relatively large network. A large network may cause a deep adder tree which

would lead to a larger use of logic elements.

4.3 SUMMARY

In summary, probability would not greatly impact execution time differences

between software and hardware a lot, so probability changes have little impact on

acceleration. As individual number and average connection number grow, the better

hardware simulation performs, relative to software execution time. Based on this,

we can confidently anticipate that with larger scale of network, the hardware

simulation would have an even fasterspeed compared to software simulation.

The downside of hardware simulation is the area. The number of logic elements

basically grows linearly with total connections. So with the scale of the network

increasing, we requirea larger FPGA, or a series of FPGAs. In DE2i-150, we can

simulate 140 individuals with 14 average connections per individual.

5 CONCLUSION

In this project, we designed a FPGA based device to simulate SIR model, which is

about 1000 times faster than it is in MATLAB. The Verilog code is automatically

generated in MATLAB and the parameters are set in MATLAB as well. The use of

Verilog code generation provides excellent design flexibility. A well designed

hardware random number generator is introduced to ensure the simulation is valid.

The hardware simulation is verified for solving SIR model compared to theoretical

method. For future development, it is predicted that the FPGA model would give an

even better performance when the model scales to even larger devices or a network

of FPGA devices.

26

6 ACKNOWLEDGEMENT

I would like to thank Professor Bruce Land who is the advisor for me MEng

project. His advice and help truly makes the project easier for me to accomplish. He

also provided many ideas to improve and validate the design. Without his help, the

project would be painful and difficult, and I might not be able to finish it in time.

Also, I would like to thank Joseph Skovira and Professor Dave Schneider who

help me a lot during the weekly meeting. They provided me information that I’m not

familiar with so I can actually think in that region and try to study related knowledge.

At last, I really want to thank Cornell University for provided me such a good

research environment that I can sit down and think. It’s a great experience studying

here and I sincerely the university continued success.

7 REFERENCE

[1] A. Hoogland, J. Spaa, B. Selman and A. Compagner, A special-purpose processor

for the Monte Carlo simulation of ising spin systems, Journal of Computational

Physics, Volume 51, Issue 2, August 1983, Pages 250-260

[2] Skyler Schneider, VGA control module,

http://people.ece.cornell.edu/land/courses/ece5760/StudentWork/ss868/ss868_VG

A_Controller.zip

[3] “Compartmental models in epidemiology”, Wikipedia,

http://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology

[4] DE2i-150 specification on Terasic website,

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo

=11&No=529&PartNo=1

[5] Altera PLL IP, http://www.altera.com/literature/ug/altera_pll.pdf

27

8 APPENDIX

8.1 MATLAB CODE

clc;clear;

%%%%%%%%%%%Parameters Are HERE!!!!!!!!!

P=0.001; %Probability that an infected person get another

P_Recover=0.001; %Probability of recovering

Avr_Con_Num=14; %average of connections of one person

Infected_Num=2; %the infected people number when start

People_Num=140; %Total number of people(sample)

%%%%%%%%%%%Parameters Done!!!!!!!!

Log_People_Num = ceil(log2(People_Num));

char16='0123456789ABCDEF';

Ptemp=P;

P_Recovertemp=P_Recover;

charP=[];

charP_Recover=[];

InitInfected=zeros(People_Num,1);

Individual=zeros(People_Num,2); %graph, including Num of people and

their connections

Col_Num_Max=2;

fori=1:1:People_Num %build graph(connections)

Individual(i,1)=i;

end

for Relation=1:1:People_Num*Avr_Con_Num/2 %build relation

flag=0;

while (flag==0)

 temp1=ceil(rand()*People_Num);

 temp2=ceil(rand()*People_Num);

if (temp1~=temp2)

fori=2:1:Col_Num_Max

if Individual(temp1,i)==temp2

break; %if reduplicate, break for

elseif Individual(temp1,i)==0 %valid relation

Individual(temp1,i)=temp2;

for j=2:1:Col_Num_Max %non-direction link

if Individual(temp2,j)==0

Individual(temp2,j)=temp1;

flag=1;

break;

28

elseif j==Col_Num_Max

 Individual=[Individual,zeros(People_Num,1)];

Col_Num_Max=Col_Num_Max+1;

Individual(temp2,j+1)=temp1;

flag=1;

break;

end

end

break;

elseifi==Col_Num_Max

 Individual=[Individual,zeros(People_Num,1)];

Col_Num_Max=Col_Num_Max+1;

end

end

end

end

end

Individual = [Individual,zeros(People_Num,1)]; % add a colomn of zeroat

the end

fori=1:1:4 %create 16_bit char for Probability

Ptemp=Ptemp*16;

charP=[charP,char16(floor(Ptemp)+1)];

Ptemp=Ptemp-floor(Ptemp);

P_Recovertemp=P_Recovertemp*16;

charP_Recover=[charP_Recover,char16(floor(P_Recovertemp)+1)];

P_Recovertemp=P_Recovertemp-floor(P_Recovertemp);

end

i=1;

whilei<=Infected_Num

getInf=ceil(People_Num*rand());

ifInitInfected(getInf,1)==0

InitInfected(getInf,1)=1;

i=i+1;

end

end

fid=fopen('SIR.v','wt');

fid_simu = fopen('simu.txt','wt');

%---

% print relation in the txt file

%---

fori=1:1:People_Num

29

 j=1;

while (Individual(i,j)~=0)

fprintf(fid_simu,'%i ',Individual(i,j));

 j=j+1;

end

if (InitInfected(i,1) == 0)

fprintf(fid_simu,'0\n');

else

fprintf(fid_simu,'-1\n');

end

end

%---

%module SIR(clk,Reset_All,Reset_I,S,I);

%---

fprintf(fid,'module SIR(clk,Reset_All,Reset_I,S,I);\n');

fprintf(fid,'\tinput wire clk,Reset_All,Reset_I;\n');

fprintf(fid,'\toutput wire [%i:1]S;\n',People_Num);

fprintf(fid,'\toutput wire [%i:1]I;\n',People_Num);

fprintf(fid,'\twire Reset = Reset_All | Reset_I;\n');

fprintf(fid,'\twirestate_in;\n');

fprintf(fid,'\tassignstate_in=0;\n');

fprintf(fid,'\twire [15:0]Constin_en;\n');

fprintf(fid,'\twire [15:0]Constin_dis;\n');

fprintf(fid,'\tassignConstin_en=15''h%s;\n',charP);

fprintf(fid,'\tassignConstin_dis=15''h%s;\n',charP_Recover);

fori=1:1:People_Num

fprintf(fid,'\twireen%i;\n',i);

fprintf(fid,'\twireresult_dis%i;\n',i);

fprintf(fid,'\twire [63:1]seed_dis%i;\n',i);

fprintf(fid,'\twire [15:0]rand_dis%i;\n',i);

ifInitInfected(i,1)==0

fprintf(fid,'\tSIR_cellSIR%i (clk, en%i, result_dis%i, Reset, S [%i],

I[%i]);\n',i,i,i,i,i);

else

fprintf(fid,'\tSIR_cellSIR%i (clk, 1, result_dis%i, Reset, S [%i],

I[%i]);\n',i,i,i,i);

end

fprintf(fid,'\trand63

rand63_dis%i(.rand_out(rand_dis%i), .seed_in(seed_dis%i), .state_in(s

tate_in), .clock_in(clk), .reset_in(Reset_All));\n',i,i,i);

30

fprintf(fid,'\tComparator

compdis%i(.clk(clk),.rst(Reset),.Constin(Constin_dis),.Variablein(ran

d_dis%i),.en(I[%i]),.Result(result_dis%i));\n',i,i,i,i);

fprintf(fid,'\tassignseed_dis%i=63''h',i);

temp_char = char16(ceil(rand()*8));

fprintf(fid,'%c',temp_char);

fprintf(fid_simu,'%c',temp_char);

for j=1:1:15 %assign seeds

temp_char = char16(ceil(rand()*16));

fprintf(fid,'%c',temp_char);

fprintf(fid_simu,'%c',temp_char);

end

fprintf(fid_simu,'\n');

fprintf(fid,';\n');

for j=2:1:Col_Num_Max

target = Individual(i,j);

if target == 0

break;

end

fprintf(fid,'\twire result_en%i_to_%i;\n',i,target);

fprintf(fid,'\twire [63:1]seed_en%i_to_%i;\n',i,target);

fprintf(fid,'\twire [15:0]rand_en%i_to_%i;\n',i,target);

fprintf(fid,'\tassign seed_en%i_to_%i=63''h',i,target);

temp_char = char16(ceil(rand()*8));

fprintf(fid,'%c',temp_char);

fprintf(fid_simu,'%c',temp_char);

for k=1:1:15 %assign seeds

temp_char = char16(ceil(rand()*16));

fprintf(fid,'%c',temp_char);

fprintf(fid_simu,'%c',temp_char);

end

fprintf(fid_simu,'\n');

fprintf(fid,';\n\trand63

rand63_en%i_to_%i(.rand_out(rand_en%i_to_%i), .seed_in(seed_en%i_to_%

i), .state_in(state_in), .clock_in(clk), .reset_in(Reset_All));\n',i,

target,i,target,i,target);

fprintf(fid,'\tComparator

compen%i_to_%i(.clk(clk),.rst(Reset),.Constin(Constin_en),.Variablein

(rand_en%i_to_%i),.en(I[%i]),.Result(result_en%i_to_%i));\n',i,target

,i,target,i,i,target);

end

end

31

%---

% Relations

%---

fori=1:1:People_Num %relation

fprintf(fid,'\tassignen%i=1''b0',i);

 j=2;

while j<=Col_Num_Max&& Individual(i,j)~=0

fprintf(fid,' | result_en%i_to_%i',Individual(i,j),i);

 j=j+1;

end

fprintf(fid,';\n');

end

fprintf(fid,'endmodule\n');

%---

% module SIR_cell(clk, StoIEn, ItoREn, Reset, S, I);

%---

fprintf(fid,'moduleSIR_cell (clk, StoIEn, ItoREn, Reset, S, I);\n');

fprintf(fid,'\toutputreg S,I;\n');

fprintf(fid,'\tinput wire clk,StoIEn,ItoREn,Reset;\n');

fprintf(fid,'\talways @ (posedgeclk)\n');

fprintf(fid,'\tbegin\n');

fprintf(fid,'\t\tif (Reset)\n');

fprintf(fid,'\t\tbegin\n');

fprintf(fid,'\t\t\tS<=1''b1;\n');

fprintf(fid,'\t\t\tI<=1''b0;\n');

fprintf(fid,'\t\tend\n');

fprintf(fid,'\t\telse\n');

fprintf(fid,'\t\tbegin\n');

fprintf(fid,'\t\t\tif (StoIEn&& S)\n');

fprintf(fid,'\t\t\tbegin\n');

fprintf(fid,'\t\t\t\tS<=1''b0;\n');

fprintf(fid,'\t\t\t\tI<=1''b1;\n');

fprintf(fid,'\t\t\tend\n');

fprintf(fid,'\t\t\tif (ItoREn&& I)\n');

fprintf(fid,'\t\t\tbegin\n');

fprintf(fid,'\t\t\t\tI<=1''b0;\n');

fprintf(fid,'\t\t\tend\n');

fprintf(fid,'\t\tend\n');

fprintf(fid,'\tend\n');

fprintf(fid,'endmodule\n');

%---

%module Comparator (clk,rst,Constin,Variablein,en,Result);

%---

32

fprintf(fid,'module Comparator

(clk,rst,Constin,Variablein,en,Result);\n');

fprintf(fid,'\tinput wire [15:0] Variablein;\n');

fprintf(fid,'\tinput wire [15:0] Constin;\n');

fprintf(fid,'\tinput wire clk,rst,en;\n');

fprintf(fid,'\toutputreg Result;\n');

fprintf(fid,'\treg [1:0]state;\n');

fprintf(fid,'\tregtempResult;\n');

fprintf(fid,'\talways @ (posedgeclk)\n');

fprintf(fid,'\tbegin\n');

fprintf(fid,'\t\tif (rst)\n');

fprintf(fid,'\t\tbegin\n');

fprintf(fid,'\t\t\tstate<=2''b00;\n');

fprintf(fid,'\t\t\tResult<=1''b0;\n');

fprintf(fid,'\t\t\ttempResult<=1''b0;\n');

fprintf(fid,'\t\tend\n');

fprintf(fid,'\t\telse\n');

fprintf(fid,'\t\tbegin\n');

fprintf(fid,'\t\t\tcase (state)\n');

fprintf(fid,'\t\t\t2''b00:\n');

fprintf(fid,'\t\t\t\tbegin\n');

fprintf(fid,'\t\t\t\t\tResult<= (en &&Variablein<Constin);\n');

fprintf(fid,'\t\t\t\tend\n');

fprintf(fid,'\t\t\tendcase\n');

fprintf(fid,'\t\t\tstate<= state + 1''b1;\n');

fprintf(fid,'\t\tend\n');

fprintf(fid,'\tend\n');

fprintf(fid,'endmodule\n');

%---

%module rand63(rand_out, seed_in, state_in, clock_in, reset_in);

%---

fprintf(fid,'module rand63(rand_out, seed_in, state_in, clock_in,

reset_in);\n');

fprintf(fid,'\toutput wire [15:0] rand_out ;\n');

fprintf(fid,'\tinput wire state_in ;\n');

fprintf(fid,'\tinput wire clock_in, reset_in ;\n');

fprintf(fid,'\tinput wire [63:1] seed_in; \n');

fprintf(fid,'\treg [4:1] sr1, sr2, sr3, sr4, sr5, sr6, sr7, sr8, sr9, sr10,

sr11, sr12, sr13, sr14, sr15, sr16;\n');

fprintf(fid,'\tparameterreact_start=1''b0 ;\n');

fprintf(fid,'\tassignrand_out = {sr1[3], sr2[3], sr3[3], sr4[3],sr5[3],

sr6[3], sr7[3], sr8[3],sr9[3], sr10[3], sr11[3], sr12[3],sr13[3],

sr14[3], sr15[3], sr16[3]} ;\n');

33

fprintf(fid,'\talways @ (posedgeclock_in)\n');

fprintf(fid,'\tbegin\n');

fprintf(fid,'\t\tif (reset_in)\n');

fprintf(fid,'\t\tbegin\n');

fprintf(fid,'\t\t\tsr1 <= seed_in[4:1] ;\n');

fprintf(fid,'\t\t\tsr2 <= seed_in[8:5] ;\n');

fprintf(fid,'\t\t\tsr3 <= seed_in[12:9] ;\n');

fprintf(fid,'\t\t\tsr4 <= seed_in[16:13] ;\n');

fprintf(fid,'\t\t\tsr5 <= seed_in[20:17] ;\n');

fprintf(fid,'\t\t\tsr6 <= seed_in[24:21] ;\n');

fprintf(fid,'\t\t\tsr7 <= seed_in[28:25] ;\n');

fprintf(fid,'\t\t\tsr8 <= seed_in[32:29] ;\n');

fprintf(fid,'\t\t\tsr9 <= seed_in[36:33] ;\n');

fprintf(fid,'\t\t\tsr10 <= seed_in[40:37] ;\n');

fprintf(fid,'\t\t\tsr11 <= seed_in[44:41] ;\n');

fprintf(fid,'\t\t\tsr12 <= seed_in[48:45] ;\n');

fprintf(fid,'\t\t\tsr13 <= seed_in[52:49] ;\n');

fprintf(fid,'\t\t\tsr14 <= seed_in[56:53] ;\n');

fprintf(fid,'\t\t\tsr15 <= seed_in[60:57] ;\n');

fprintf(fid,'\t\t\tsr16 <= {1''b0,seed_in[63:61]} ;\n');

fprintf(fid,'\t\tend\n');

fprintf(fid,'\t\telse\n');

fprintf(fid,'\t\tbegin\n');

fprintf(fid,'\t\t\tsr1 <= {sr1[3:1], sr16[3]^sr15[3]} ;\n');

fprintf(fid,'\t\t\tsr2 <= {sr2[3:1], sr16[3]^sr1[4]} ;\n');

fprintf(fid,'\t\t\tsr3 <= {sr3[3:1], sr1[4]^sr2[4]} ;\n');

fprintf(fid,'\t\t\tsr4 <= {sr4[3:1], sr2[4]^sr3[4]} ;\n');

fprintf(fid,'\t\t\tsr5 <= {sr5[3:1], sr3[4]^sr4[4]} ;\n');

fprintf(fid,'\t\t\tsr6 <= {sr6[3:1], sr4[4]^sr5[4]} ;\n');

fprintf(fid,'\t\t\tsr7 <= {sr7[3:1], sr5[4]^sr6[4]} ;\n');

fprintf(fid,'\t\t\tsr8 <= {sr8[3:1], sr6[4]^sr7[4]} ;\n');

fprintf(fid,'\t\t\tsr9 <= {sr9[3:1], sr7[4]^sr8[4]} ;\n');

fprintf(fid,'\t\t\tsr10 <= {sr10[3:1], sr8[4]^sr9[4]} ;\n');

fprintf(fid,'\t\t\tsr11 <= {sr11[3:1], sr9[4]^sr10[4]} ;\n');

fprintf(fid,'\t\t\tsr12 <= {sr12[3:1], sr10[4]^sr11[4]} ;\n');

fprintf(fid,'\t\t\tsr13 <= {sr13[3:1], sr11[4]^sr12[4]} ;\n');

fprintf(fid,'\t\t\tsr14 <= {sr14[3:1], sr12[4]^sr13[4]} ;\n');

fprintf(fid,'\t\t\tsr15 <= {sr15[3:1], sr13[4]^sr14[4]} ;\n');

fprintf(fid,'\t\t\tsr16 <= {sr16[3:1], sr14[4]^sr15[4]} ;\n');

fprintf(fid,'\t\tend\n');

fprintf(fid,'\tend\n');

fprintf(fid,'endmodule\n');

%---

34

%module Infected_Adder_Tree(clk,rst,I,sumI)

%---

Adder_Tree = [];

Adder_Num = ceil(People_Num/2);

Tree_Depth = 0;

while (Adder_Num>1)

Adder_Tree = [Adder_Tree,Adder_Num];

Adder_Num = ceil(Adder_Num/2);

Tree_Depth = Tree_Depth + 1;

end

fprintf(fid,'moduleInfected_Adder_Tree(clk,rst,I,sumI);\n');

fprintf(fid,'\tinputclk,rst;\n');

fprintf(fid,'\tinput [%i:1]I;\n',People_Num);

fprintf(fid,'\toutput wire [%i:0]sumI;\n',Log_People_Num);

fprintf(fid,'\twire [%i:0]sumI_temp;\n',Log_People_Num);

fprintf(fid,'\treg [%i:0]sumI_r;\n',Log_People_Num);

fprintf(fid,'\treg [%i:1]Itemp;\n',People_Num);

fprintf(fid,'\tassignsumI = sumI_r;\n');

fori = 1:1:Tree_Depth

for j = 1:1:Adder_Tree(i)

fprintf(fid,'\treg [%i:0]adder_%i_%i;\n',i,i,j);

end

end

if (Tree_Depth ~= 0)

fprintf(fid,'\tassignsumI_temp = adder_%i_1 +

adder_%i_2;\n',Tree_Depth,Tree_Depth);

else

fprintf(fid,'\tassignsumI_temp = Itemp;\n');

end

fprintf(fid,'\talways @ (posedgeclk)\n');

fprintf(fid,'\tbegin\n');

fprintf(fid,'\t\tItemp[%i:1]<=I[%i:1];\n',People_Num,People_Num);

fori = 1:1:Tree_Depth

for j = 1:1:Adder_Tree(i)

if (i==1) %%First line

if (2*j<=People_Num)

fprintf(fid,'\t\tadder_%i_%i<=

Itemp[%i]+Itemp[%i];\n',i,j,(2*j-1),2*j);

else

fprintf(fid,'\t\tadder_%i_%i<= Itemp[%i];\n',i,j,(2*j-1));

end

else

if (2*j<=Adder_Tree(i-1))

35

fprintf(fid,'\t\tadder_%i_%i<=

adder_%i_%i+adder_%i_%i;\n',i,j,i-1,(2*j-1),i-1,2*j);

else

fprintf(fid,'\t\tadder_%i_%i<= adder_%i_%i;\n',i,j,i-1,(2*j-1));

end

end

end

end

fprintf(fid,'\t\tsumI_r<= sumI_temp;\n');

fprintf(fid,'\tend\n');

fprintf(fid,'endmodule\n');

%---

%module

VGA_DISPLAY(VGA_CAL_CLK,VGA_RST,Coord_X,Coord_Y,WriteAddrX,WriteAddrY

,WriteInBits,sumI,IsReadFlag)

%---

fprintf(fid,'module

VGA_DISPLAY(VGA_CAL_CLK,VGA_RST,Coord_X,Coord_Y,WriteAddrX,WriteAddrY

,WriteInBits,sumI,IsReadFlag,counter_fix);\n');

fprintf(fid,'\tinput VGA_CAL_CLK;\n');

fprintf(fid,'\tinput VGA_RST;\n');

fprintf(fid,'\tinput [9:0]Coord_X;\n');

fprintf(fid,'\tinput [8:0]Coord_Y;\n');

fprintf(fid,'\toutputreg [9:0]WriteAddrX;\n');

fprintf(fid,'\toutputreg [8:0]WriteAddrY;\n');

fprintf(fid,'\toutputreg [15:0]WriteInBits;\n');

fprintf(fid,'\toutputregIsReadFlag;\n');

fprintf(fid,'\tinput [10:0]sumI;\n');

fprintf(fid,'\tinput [7:0]counter_fix;\n');

fprintf(fid,'\treg Start;\n');

fprintf(fid,'\treg [7:0]counter;\n');

fprintf(fid,'\talways @ (posedge VGA_CAL_CLK or posedge VGA_RST)\n');

fprintf(fid,'\tbegin\n');

fprintf(fid,'\t\tif (VGA_RST)\n');

fprintf(fid,'\t\tbegin\n');

fprintf(fid,'\t\t\tIsReadFlag<=1''b0;\n');

fprintf(fid,'\t\t\tWriteAddrX<=Coord_X[9:0];\n');

fprintf(fid,'\t\t\tWriteAddrY<=Coord_Y[8:0];\n');

fprintf(fid,'\t\t\tWriteInBits<=16''h0000;\n');

fprintf(fid,'\t\t\tStart<=1''b0;\n');

fprintf(fid,'\t\t\tcounter<=8''b0;\n');

36

fprintf(fid,'\t\tend\n');

fprintf(fid,'\t\telse\n');

fprintf(fid,'\t\tbegin\n');

fprintf(fid,'\t\t\tif (counter >= counter_fix)\n');

fprintf(fid,'\t\t\tbegin\n');

fprintf(fid,'\t\t\t\tif (Start==1''b0)\n');

fprintf(fid,'\t\t\t\tbegin\n');

fprintf(fid,'\t\t\t\t\tStart<=1''b1;\n');

fprintf(fid,'\t\t\t\t\tWriteAddrX<=10''b0;\n');

fprintf(fid,'\t\t\t\t\tWriteAddrY<=9''d479-{sumI,2''b0};\n');

fprintf(fid,'\t\t\t\t\tWriteInBits<= 16''hFF00;\n');

fprintf(fid,'\t\t\t\tend\n');

fprintf(fid,'\t\t\t\telse if (WriteAddrX>=10''d639)\n');

fprintf(fid,'\t\t\t\tbegin\n');

fprintf(fid,'\t\t\t\t\tIsReadFlag<=1''b1;\n');

fprintf(fid,'\t\t\t\tend\n');

fprintf(fid,'\t\t\t\telse if (WriteAddrX[0]==1''b0)\n');

fprintf(fid,'\t\t\t\tbegin\n');

fprintf(fid,'\t\t\t\t\tWriteAddrX<=WriteAddrX+1;\n');

fprintf(fid,'\t\t\t\t\tWriteAddrY<=9''d479-{sumI,2''b0};\n');

fprintf(fid,'\t\t\t\t\tWriteInBits<=

(WriteAddrY==9''d479-{sumI,2''b0})? 16''hFFFF : 16''hFF00;\n');

fprintf(fid,'\t\t\t\tend\n');

fprintf(fid,'\t\t\t\telse\n');

fprintf(fid,'\t\t\t\tbegin\n');

fprintf(fid,'\t\t\t\t\tWriteAddrX<=WriteAddrX+1;\n');

fprintf(fid,'\t\t\t\t\tWriteAddrY<=9''d479-{sumI,2''b0};\n');

fprintf(fid,'\t\t\t\t\tWriteInBits<= 16''h00FF;\n');

fprintf(fid,'\t\t\t\tend\n');

fprintf(fid,'\t\t\t\tcounter<= 8''b0;\n');

fprintf(fid,'\t\t\tend\n');

fprintf(fid,'\t\t\telse\n');

fprintf(fid,'\t\t\tbegin\n');

fprintf(fid,'\t\t\t\tcounter<= counter + 1''b1;\n');

fprintf(fid,'\t\t\tend\n');

fprintf(fid,'\t\tend\n');

fprintf(fid,'\tend\n');

fprintf(fid,'endmodule');

fclose(fid);

fclose(fid_simu);

37

%---

%SIRTest.v

%---

fid=fopen('SIRTest.v','wt');

fprintf(fid,'`timescale 1ns/1ns\n');

fprintf(fid,'`include "SIR.v"\n');

fprintf(fid,'moduleSIRTest;\n');

fprintf(fid,'\tregclk,rst;\n');

fprintf(fid,'\twire [%i:1]S;\n',People_Num);

fprintf(fid,'\twire [%i:1]I;\n',People_Num);

fprintf(fid,'\tSIR SIR1(.clk(clk),.Reset(rst),.S(S),.I(I));\n');

fprintf(fid,'\talways\n');

fprintf(fid,'\tbegin\n');

fprintf(fid,'\t\t#10 clk=~clk;\n');

fprintf(fid,'\tend\n');

fprintf(fid,'\tinitial\n');

fprintf(fid,'\tbegin\n');

fprintf(fid,'\t\tclk=1''b0;\n');

fprintf(fid,'\t\t#5 rst=1''b1;\n');

fprintf(fid,'\t\t#10 rst=1''b0;\n');

fprintf(fid,'\tend\n');

fprintf(fid,'endmodule\n');

fclose(fid);

8.2 TOP MODULE

// --

// -- Stochastic Simulation --

// -- Cornell MEng Project --

// -- By TianGao --

// -- Fall 2013 --

// -- Advisor: Bruce Land --

// -- on board DE2i-150 --

// --

module DE2_TOP

 (

 //////////////////// Clock Input ////////////////////

 CLOCK_50, // 50 MHz

 //////////////////// Push Button //////////////////////

 KEY,

38

 //////////////////// SWITCH ////////////////////////

 SW,

 //////////////////// HEX ////////////////////////////

 HEX0,

 HEX1,

 HEX2,

 HEX3,

 HEX4,

 HEX5,

 HEX6,

 HEX7,

 /////////////////////// SSRAM /////////////////////////

 SRAM_BE,

 SRAM0_CS_N,

 SRAM1_CS_N,

 SRAM_ADSC_N,

 SRAM_GW_N,

 SRAM_ADSP_N,

 SRAM_ADV_N,

 SRAM_CLK,

 SRAM_OE_N,

 SRAM_WE_N,

 SRAM_DQ,

 SRAM_ADDR,

 /////////////////// VGA ////////////////////////////

 VGA_CLK, // VGA Clock

 VGA_HS, // VGA H_SYNC

 VGA_VS, // VGA V_SYNC

 VGA_BLANK, // VGA BLANK

 VGA_SYNC, // VGA SYNC

 VGA_R, // VGA Red[9:0]

 VGA_G, // VGA Green[9:0]

 VGA_B // VGA Blue[9:0]

);

 //////////////////////// Clock Input ////////////////////////

 input CLOCK_50; // 50 MHz

 ////////////////////////// Push Button //////////////////////////

 input [3:0]KEY;

 //////////////////////// SWITCH /////////////////////////////

 input [17:0]SW;

 //////////////////////// HEX ///////////////////////////////

 output [6:0] HEX0;

39

 output [6:0] HEX1;

 output [6:0] HEX2;

 output [6:0] HEX3;

 output [6:0] HEX4;

 output [6:0] HEX5;

 output [6:0] HEX6;

 output [6:0] HEX7;

 //////////////////////// SRAM ///////////////////////////////

 output [3:0] SRAM_BE;

 output SRAM0_CS_N;

 output SRAM1_CS_N;

 output SRAM_ADSC_N;

 output SRAM_GW_N;

 output SRAM_ADSP_N;

 output SRAM_ADV_N;

 output SRAM_CLK;

 output SRAM_OE_N;

 output SRAM_WE_N;

 inout [31:0] SRAM_DQ;

 output [19:0] SRAM_ADDR;

 //////////////////////// VGA ////////////////////////////

 output VGA_CLK; // VGA Clock

 output VGA_HS; // VGA H_SYNC

 output VGA_VS; // VGA V_SYNC

 output VGA_BLANK; // VGA BLANK

 output VGA_SYNC; // VGA SYNC

 output [7:0] VGA_R; // VGA Red[9:0]

 output [7:0] VGA_G; // VGA Green[9:0]

 output [7:0] VGA_B; // VGA Blue[9:0]

 //

 // CLOCK

 wire CLK_MAIN;

 // SRAM

 assign SRAM_BE = 4'b0000; // Byte enable

 assign SRAM0_CS_N = 1'b0; // chip 0 enable

 assign SRAM1_CS_N = 1'b0; // chip 1 disable

 assign SRAM_ADSC_N = 1'b0; // SRAM Controller Address Status

 assign SRAM_GW_N = 1'b1; // SRAM global Write Enable

 //assign SRAM_ADSP_N = 1'b1; // SSRAM Processor Address Status;

 assign SRAM_ADV_N = 1'b1; // burst address advance

 assign SRAM_OE_N = 1'b0; // SRAM output Enable

40

 //assign SRAM_ADDR = 19'b0;

 assign SRAM_CLK = CLOCK_50;

 //assign SRAM_DQ = 16'hzzzz;

 wire [31:0] mSEG7_DIG;

 reg [31:0] Cont;

 wire VGA_CTRL_CLK;

 wire AUD_CTRL_CLK;

 wire [7:0] mVGA_R;

 wire [7:0] mVGA_G;

 wire [7:0] mVGA_B;

 wire [19:0] mVGA_ADDR; //video memory address

 wire [9:0] Coord_X, Coord_Y; //display coods

 wire DLY_RST;

 assign TD_RESET = 1'b1; // Allow 27 MHz input

 //assign AUD_ADCLRCK = AUD_DACLRCK;

 //assign AUD_XCK = AUD_CTRL_CLK;

 Reset_Delay r0 (.iCLK(CLOCK_50),.oRESET(DLY_RST));

 VGA_Audio_PLL p1 (

 .areset(~DLY_RST),.inclk0(CLOCK_50),.c0(VGA_CTRL_CLK),.c2(VGA_CLK));

 MAIN_PLL p2 (.areset(~DLY_RST),.inclk0(CLOCK_50),.c0(CLK_MAIN));

 VGA_Controller u1 (// Host Side

 .iCursor_RGB_EN(4'b0111),

 .oAddress(mVGA_ADDR),

 .oCoord_X(Coord_X),

 .oCoord_Y(Coord_Y),

 .iRed(mVGA_R),

 .iGreen(mVGA_G),

 .iBlue(mVGA_B),

 // VGA Side

 .oVGA_R(VGA_R),

 .oVGA_G(VGA_G),

 .oVGA_B(VGA_B),

 .oVGA_H_SYNC(VGA_HS),

 .oVGA_V_SYNC(VGA_VS),

 .oVGA_SYNC(VGA_SYNC),

 .oVGA_BLANK(VGA_BLANK),

 // Control Signal

41

 .iCLK(VGA_CTRL_CLK),

 .iRST_N(DLY_RST));

 assign mVGA_R = {Coord_X[0]? SRAM_DQ[0]:SRAM_DQ[15], 7'b0} ;

 assign mVGA_G = {Coord_X[0]? SRAM_DQ[1]:SRAM_DQ[14], 7'b0};

 assign mVGA_B = {Coord_X[0]? SRAM_DQ[2]:SRAM_DQ[13], 7'b0} ;

 //assign mVGA_R = {SRAM_DQ[15:11],3'b0} ;

 //assign mVGA_G = {SRAM_DQ[10:6],3'b0};

 //assign mVGA_B = {SRAM_DQ[5:0],2'b0} ;

 //SIR MODULE

 wire [8:0]sumI;

 wire SIR_CLK,SIR_RST,SIR_RESET_I;

 wire ADDER_CLK;

 wire [150:1]SIR_S;

 wire [150:1]SIR_I;

 //VGA stuff

 wireIsReadFlag; //whether finish writing, 0 for not read, 1 for read

 reg Start;

 wire [9:0]WriteAddrX; //SRAM X address for writing

 wire [8:0]WriteAddrY; //SRAM Y address for writing

 wire [15:0]WriteInBits; //16bit temporary write in SRAM

 wire VGA_CAL_CLK;

 //wire [7:0]counter_fix = 8'b00100000; //VGA prescalar

 wire [7:0]VGA_counter_fix = {SW[7:1],1'b1};

 //Here is my code

 //assign SIR_CLK = SW[10];

 assign SIR_CLK = CLK_MAIN;

 assign ADDER_CLK = CLK_MAIN;

 assign VGA_CAL_CLK = CLK_MAIN;

 wire [15:0]temp_out;

/* HexDigit HD0

 (

 .segs (HEX0),

 .num (temp_out[3:0])

);

 HexDigit HD1

42

 (

 .segs (HEX1),

 .num (temp_out[7:4])

);

 HexDigit HD2

 (

 .segs (HEX2),

 .num (temp_out[11:8])

);

 HexDigit HD3

 (

 .segs (HEX3),

 .num (temp_out[15:12])

);*/

 RST_DELAY RST0 //delay the reset signal to avoid glitch

 (

 .clk(VGA_CAL_CLK),

 .rst_in(~KEY[0]),

 .rst_out(SIR_RST)

);

 RST_DELAY RST1

 (

 .clk(VGA_CAL_CLK),

 .rst_in(~KEY[1]),

 .rst_out(SIR_RESET_I)

);

 Infected_Adder_TreeADDR1(ADDER_CLK,SIR_RST,SIR_I,sumI);

 SIR SIR1(

 .clk(SIR_CLK),

 .Reset_All(SIR_RST),

 .Reset_I(SIR_RESET_I),

 .S(SIR_S),

 .I(SIR_I),

 //.temp_out(temp_out)

);

 VGA_DISPLAY VGA_DIS(

 .VGA_CAL_CLK(VGA_CAL_CLK),

 .VGA_RST(SIR_RST | SIR_RESET_I),

 .Coord_X(Coord_X),

 .Coord_Y(Coord_Y),

 .WriteAddrX(WriteAddrX),

 .WriteAddrY(WriteAddrY),

43

 .WriteInBits(WriteInBits),

 .sumI(sumI),

 .IsReadFlag(IsReadFlag),

 .counter_fix(VGA_counter_fix)

);

 assign SRAM_WE_N = IsReadFlag? 1'b1 : 1'b0;

 assign SRAM_DQ[15:0] = IsReadFlag? 16'hzzzz : //if reading, let read

 WriteInBits; //if writing, write 16 bits

 assign SRAM_ADDR = IsReadFlag ?

 {Coord_X[9:1],Coord_Y[8:0]}: //

if it's reading, get 6bits X and 9bits Y because memory has 16bits

 {WriteAddrX[9:1], WriteAddrY};

 assign SRAM_ADSP_N = IsReadFlag ? 1'b0 : 1'b1;

endmodule //top module

module RST_DELAY

(

 clk,

 rst_in,

 rst_out

);

 inputclk;

 inputrst_in;

 outputregrst_out;

 reg [19:0] counter;

 always @ (posedgeclk)

 begin

 if (rst_in == 1'b0)

 begin

 counter<= 20'b0;

 rst_out<= 1'b0;

 end

 else

 begin

 counter = counter + 1'b1;

 if (counter == {1'b1,19'b0})

 begin

 rst_out<= 1'b1;

 end

 end

44

 end

endmodule

8.3 HOW TO USE

Open the code generation.m in MATLAB. Set the parameters on the top and run.

The MATLAB code will generate a SIR.v file in the folder. Copy the SIR.v file and paste

it into the folder of the FPGA design. Compile the design in Quartus and download it

in the FPGA.

KEY0 is reset with initialized seed and KEY1 is reset with random seed. The

output is a standard VGA signal from board. Connect that to a VGA screen.

