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Abstract:  

This project is designed to implement a stochastic algorithm on an FPGA system to 

accelerate a biological simulation. A fast national disease spread prediction 

algorithm is needed to anticipate the tendency of an infectious disease to spread in a 

given geography. Using a traditional computing system, the simulation would require 

large execution time as the model size grows. The project explores methods for 

implementing such an algorithm on an FPGAsystem. By utilizing the parallel features 

of an FPGA, we may find a way to run the whole simulation in real time. In this 

project, a MATLAB simulation is firstly designed for a hardware compatible algorithm 

for an SIR model, which is a basic disease spread model. Then, three kinds of FPGAs 

are used to implement the algorithm. Finally, some verification is applied to validate 

the result. The project has successfully implemented a hardware compatible 

algorithm for an SIR model on an FPGA system.  

 

 



Executive Summary 

 The project is designed to parallelize a stochastic algorithm for solving an SIR 

model so that it can be implemented on an FPGA system. It explores a method to 

implement the parallelizable stochastic algorithm on an FPGA, where anaccurate 

random number generator is easier to build and all the computations can be 

executed at the same time. In this way, we reduce the complexity in time so we can 

actually simulate more individuals in real time, which contributes to making a large 

scale stochastic simulation system. 

 The MATLAB simulation was tested before the algorithm is actually 

implemented on the board. To make the algorithm compatible with hardware, we 

use a unified clock for every execution which makes the system discrete instead of 

continuous. This implementation fits the FPGA system well, where a universal clock 

is used to trigger the registers.  

 After validating the algorithm on MATLAB, we implement the first version on a 

TerasicDE2 board. The parameters of the SIR model are set in MATLAB code and a 

random network is generated in MATLAB. The associated Verilog code is 

automatically written by file print function in MATLAB. The seeds of hardware 

random number generator are randomly assigned in MATLAB as well. 

Therefore,every time the MATLAB code is run, there is a new network and a new 

random number generator set generated.  

 The algorithm executes successfully on the DE2 board, generating the results on 

a VGA screen. We expanded the algorithm to two other boards: DE2-115 and 

DE2i-150 for a larger scale of network. The maximum of individuals we can simulate 

on DE2i-150 is 140 individuals with 14 connections in average for each individual. We 

also have done some verificationbetween the hardware implementation vs. software 

simulation and the random number generator. The project goals are completeand 

potential remains for future development. 
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1 INTRODUCTION 

As the performance of the computing systems improves, researchers are trying 

to predict complicated, real life situations using stochastic algorithms. However, it is 

becoming more difficult to execute a large network in serial processors because of 

the large scale of data and nodes to compute. Thus, parallelization tends to be the 

new solution to solve such stochastic simulations. An FPGA system provides an 

excellent platform to explore such parallel solutions. Instead of using traditional 

CPUs as the main processors, An FPGA system executes the simulation using 

compiled HDL code running on FPGA hardware using register and logic elements. In 

this way, increasing scale of the simulation leads to a tradeoff between FPGA area 

and simulation execution time. Evena relatively large network with many nodes can 

be computed on an FPGA system in real time, as long as the FPGA has enough logic 

elements.  

In this project, we explore a way to implement a stochastic simulation;an SIR 

model on an FPGA system. The Verilog code is automatically generated by MATLAB 

code, by which parameters of the model are easily modified and a whole new 

random network is built for every MATLAB run. The simulation on the FPGA system 

can execute with the initial seeds for every random number generator, which would 

give out the exact result for every run, or it can be based on the seeds determined by 

time, which would result in a different output for the same network. The output is 

displayed on a VGA screen, showing the figure of infected individuals vs. time.  
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2 DESIGN AND IMPLEMENTATION 

2.1 SIR MODEL 

There are many different algorithms for stochastic models. We choose the SIR 

model for the simulation becausethe SIR model (representing Susceptible, Infectious 

and Recovered) is a basic, direct model that is widely used for modeling large scale 

disease outbreaks. It is a good model for initial investigation and is compatible with 

hardware design. 

In the SIR model, initially, all individuals are susceptible which means they can 

be infected by other individuals. Then, several individuals are set to be infectious at 

the beginning of the simulation. Each individual has its own network, providing 

interconnection with other individuals in the simulation. Then, with these 

connections, the disease spreads. A susceptible individual connected to an infectious 

one could become infected. Also, the infectious individual could recover from the 

disease. In this particular model, the recovered individual cannot be infected again. 

By observing the number of individuals of each group, we can see the trends of the 

disease, which also provides validation. For the simulation, if our results are correct, 

the number figure should be like the following graph, where blue dots represent 

susceptible individuals, green represents infectious individuals and red represents 

recovered individuals. 
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Figure 1Theoretical SIR model result, blue for S, green for I, and red for R 

2.2 DISCRETE SIR MODEL ALGORITHM 

The SIR model could be solved mathematically under some constraints. However, 

we need to simulate it on hardware to achieve a more realistic process. Thus, we 

need to figure out a hardware compatible algorithm for the SIR model. 

Instead of treating the model as a continuous one, we decided to make it 

discrete which is how things work in hardware. That means, there is a minimum time 

step in the whole system. For every time step, there is a small possibility that an 

infected individual infects a susceptible one that is connected to it, or that the 

individual recovers. If this time step becomesinfinitely small, as the infect/recover 

probability approaches zero, the model becomes continuous.  

In fact, if the time step is small enough, which means the infect/recover 

probability of each time step is small enough, we can take this discrete model as a 

continuous one with small error. If the error is acceptable (the probability of two 

individuals changing states in one time step is small), we can treat the model as a 

valid model.  
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2.3 RANDOM NETWORK GENERATION 

To simulate the model, we need to build a network first. The network implies 

the relations between individuals. Two individuals can either be only connected or 

unconnected which means they can infect each other or not. The network is a 

bidirectional graph because if an individual can infect another, then it can be 

infected by it.  

In this project, we use MATLAB to generate the random network. First the 

parameters; individual number and average connections per individual, are set at 

simulation start. Next we generate connections based on the parameters. We 

randomly choose two different individuals. If they are already connected, this pair of 

individuals is skipped. Otherwise we build a connection between them. In this way, 

we could generate a network with a totalconnection number of individual number 

multiplying average connections per individual. Then we generate a graph based on 

the connections we build and save it in the matrix.  

2.4 SOFTWARE SIMULATION 

To test the algorithm, we simulate it on MATLAB before we actually implement 

it on the FPGA. After we generate the network, we randomly select several 

individuals (the number is set as parameters by users) to be infected initially. Then 

we start the simulation. We have two arrays to store the states of the individual; the 

current states and the next states. For each individual, we check whether it is 

currently infected. If it is, we search for every individual that is connected to it, 

generate a random number from 0 to 1, and compare the number to the probability. 

If the number is within the probability, we set the next state of the individual as 

infected. Also, if the individual is currently infected, we generate another random 

number to see whether it would recover next cycle. After going through all the 

individuals in the network, the current state of the individuals is updated as next 
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state. This process will repeat until there are no infected individuals and this ends 

the simulation.  

2.5 HARDWARE IMPLEMENTATION 

2.5.1 SIR Cell 

In the hardware implementation, each individual is abstracted as a block which 

contains a state machine representing the state of the individual. The state machine 

has two bits, one represents whether it is infectious, another represents whether is 

susceptible. There is an input signal for the cell that implies whether there is a 

source that would infect it next cycle. If there is, and the cell is susceptible, the 

infectious bit would set to one on the next cycle. Also the susceptible would clear. 

There’s another input signal as the recover signal, which is similar as the infectious 

signal, triggering the cell from infected to recover.  

2.5.2 Random Number Generator 

The core part of this design is the random number generator (RNG) which 

determines every random process. The performance of the RNG is the key to get a 

valid result. In our design, we choose a 63-bit linear feedback shift register as the 

RNG. The RNG is based on “A special-purpose processor for the Monte Carlo 

simulation of ising spin systems”by A. Hoogland, J. Spaa, B. Selman and A. 

Compagner but modified to use 63 bit shift register. The RNG generates a 64-bit 

random number every 4 cycles.  

2.5.3 Block for Each Individual 

For each individual, a hardware block is designed as follows 
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Figure 2 Schematic of Hardware for Each Individual 

 For each direction of every connection, there is a RNG rolling the dice. The 

output of the RNG and a fixed value which is the probability value set in MATLAB are 

going through a comparator. The comparator’s enable signal is controlled by the 

source individual. If the source individual is infected and the RNG generates a 

number that is within the probability, the comparator will output a positive signal. 

Since each individual could be infected by any individual that is connected to it, all 

the infectious signals are OR together to generate the infectious input of SIR cell. 

There is a similar structure for recovery. The slightly difference is that the 

comparator is always enabled because only when the SIR cell is in the infected state, 

will it read the recover signal.  

 By duplicating this structure, we can generate a SIR model network. When some 

of the SIR cells are set to infected, the simulation will start.  



7 

 

2.5.4 Adder Tree 

To observe the result of the simulation, we need to sum up the number of 

infected individuals every several time step. Since a ripple adder is to slow for this 

application especially when the individual numbers are high, we implemented an 

adder tree to sum the data. In addition, we pipelined the adder tree to achieve a 

smaller cycle time. 

2.5.5 MATLAB to Verilog 

 Since we want to build different networks and assign different seeds for the RNG, 

we have to make the design more flexible. In this project, we used a MATLAB 

program to generate Verilog with the file writing function in MATLAB. There are five 

parameters of the model that we can change for a different simulation: probability 

of infection, probability of recovery, total individuals, average connections for each 

individual, and number of initially infected individuals.  

 The MATLAB program will generate a network based on the given parameters, 

then set the initial condition for the network. With the network established, the 

MATLAB program will write a Verilog file for the hardware implementation. The 

Verilog code will have hardware connections that describe the network generated in 

MATLAB. The seeds for random number generators are also randomly generated by 

MATLAB. 

 MATLAB also builds the adder tree based on the actual number of individual in 

the simulation. 

 By using MATLAB to generate the Verilog code, the program is much more 

flexible and easy to modify. Anytime we need a new set of parameters or want a 

new network or random seed, we only need to change MATLAB parameters and 

generate a new code. This simplifies the often difficult task of modifying Verilog for 

each simulation change. 
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2.6 OUTPUT METHOD 

 To observe the result of the simulation, we need to sum up the infected 

individuals every several time steps. The interval between additions can be changed 

by the switches on the FPGA board.To display the results, we used a VGA screen. 

During the simulation, the sums are saved in SRAM. After saving 640 results (the 

width of the screen), the simulation stops. The curve of the results will be displayed 

on VGA screen only the simulation completes. The VGA controller is from Jordan 

Crittenden.  

2.7 TIMING ISSUE 

There are several timing issues that we need to consider for the design. First, a 

universal clock is required for the FPGA to work. The FPGA provides a 50MHz 

internal clock which is a good baseline frequency for testing. However, there are 

parts in our design that require a slower clock. The VGA control module needs a 

25MHz clock, which is provided by an Altera Phase Lock Loop design that is included 

in the Altera IP library. The adder tree and data storage do not requirehigh speed 

clocks, but prescalar to trigger the register is not a good design because that may 

cause the latency and edge conflict. To avoid these issues, we implemented a 

counter inside the adder and storage module. By counting a number of values before 

executing a data add and store, we are triggering the execution on the real clock 

edge, but also get the slower frequency.If future experiments require higher clock 

speed, we need to use a PLL to increase the frequency for our main clock.  
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3 TESTS AND RESULTS 

3.1 CONTROL ON BOARD 

We control basic simulation function with user accessible devices on the FPGA 

board. There are two buttons to restart the simulation: one is to restart the 

simulation with the initial seeds fixed by MATLAB, the other is to restart the 

simulation with another set of seeds, selected at random. To fit the output graph to 

the screen, we need to modify the time scale determined by the SRAM add and store 

function. By setting switches, we can control the counter frequency for the SRAM, 

thus controlling storage speed for the results.  

3.2 SIMULATION RESULTS 

Before actually implementing the algorithm on hardware, we tried our algorithm 

on a MATLAB simulation. As we discussed above, we can set five parameters to 

explore the SIR model. As an initial experiment, we set the P_Infecting = 

P_Recovering = 0.001 with a network of 100 people and 10 average connections with 

two individuals initially infected. We simulate using these settings, four times. The 

following figures show the relation between number of infected individuals to 

simulation cycles. 
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Figure 3 number of infected individuals vs cycles, P=0.001, 100 individuals with 10 average connections 

 As we can see, the output curve looks similar: a sharp rising and a relatively low 

falling, which matches the theoretical result for the SIR model we discussedin section 

2.1. However, the curve is not smooth because the individual number is relatively 

low. If we increase the individual number to 1000, similar results are shown in figure 

4: 

 

 

Figure 4 number of infected individual vs cycles, P=0.001, 1000 individuals with 10 average connections 
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 This result looks smoother than the result with 100 individuals while it also 

illustrates characteristic features of an SIR model where the number of infected 

individuals rises quickly and falls relatively slowly. 

 If we double the probability of infection and recovery to 0.002, which could be 

approximately considered as double the time scale, we should expect the similar 

curve with half cycle number. The actual simulation is as follows: 

 

 

Figure 5 number of infected individuals vs cycles, P=0.002, 1000 individuals with 10 average connections 

 Basically we can say the time axis decreases by half which is our expectation.  

 In the SIR model, if the recoveryprobability is much more than the infection 

probability, it is possible that the disease would not spread. To test this feature, we 

set the recoveryprobability five times larger than the infectionprobability, with a 

network of 100 individuals and 10 average connections.  
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Figure 6 number of infected individual vs cycles, P_Recovery = 0.005, P_Infection=0.001, 100 individuals with 10 

average connections 

 The third result shows that the disease has not spread at all. 

The MATLAB simulation results match the theoretical result well, which suggests 

that the discrete algorithm is valid when the time step is small enough. By verifying 

our initial ideas with MATLAB simulations, we next implementedthe algorithm on 

the FPGA.  

3.3 FPGA SIMULATION 

 With the same parameters for the network, the MATLAB simulation and the 

FPGA simulation should yield similar results, especially when the number 

ofindividuals in the simulation is relatively large. We began by implementing the 

same parameters on MATLAB and FPGA (P_Infecting = P_Recovering = 0.001, 

0 500 1000 1500 2000 2500
0

5

10

15

0 500 1000 1500 2000 2500
0

5

10

15

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 500 1000 1500 2000 2500
0

5

10

15

20

25



13 

 

Individual Number = 100, Average Connection = 10, Initial Infected Individuals = 2), 

and the results are as follows: 

 

Figure 7 Comparison between MATLAB simulation result (left, and FPGA simulation result (right), P=0.001, 100 

individuals with 10 average connections 

 As we can see from the figures, the results from MATLAB simulation and FPGA 
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implementation and we use the same conditions for software simulation. In this way, 

every step should be exactly the same so the results should be identical. 

 However, it is difficult to tell difference between two similar graphs. A better 

way is to reduce the total individual number, making the result special, unique and 

easy to identify. 

 We used 10 individuals for verification, and the MATLAB/FPGA simulation 

yielded the identical results as follows: 

 

Figure 8 number of infected individualsvs cycles on MATLAB simulation (left) and FPGA simulation (right) with 

exactly same network and random number generator with same seeds 
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RNG and the rand() function. Once the RNG is as good as the rand() function, it is 

good enough for hardware simulation. 

 For chi-square test, we repeated the test 50 times which generated 5000 

random numbers. If the confidence is more than 90%, our test passed. Less than 90% 

would indicate a failed test. If in one test, one of the RNG shows a better result, we 

add a good to it. 

 For s-c test, we used lag=1 and lag=5, and the confidence is also 90%. 

 The results are as follows: 

 

Chi-Square  S-C  lag = 1  S-C  lag = 5  

 

pass  fail  good  pass  fail  good  pass  fail  good  

RNG  46  4  30  46  4  27  49  1  27  

Rand()  44  6  20  41  9  25  45  5  23  

Table 1 verification test comparison for hard random number generator and rand() function in MATLAB 

 From the chart, we can observe that hardware RNG shows an even better 

performance than rand() function in MATLAB. Consequently, the RNG is sufficient for 

our simulation. 

 The last thing we need to check is the stability. Since the results should remain 

the same if the seeds for RNGs are the same, we canrepeat the simulation and check 

for stability. In this case, we sampled the number of infected individual in the first 

2000 steps as a flag value and observe this value between simulations. The results 

showed that the flag values stayed the same for every simulation, which proved the 

stability of the simulation. 
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4 EVALUATION 

 Speed and area are the two most significant factors we should pay attention to 

in this project. We transferred the algorithm from software to hardware to make it 

faster, so we firstly analyze the speed difference between the MATLAB program and 

FPGA simulation.  

4.1 SPEED 

In the FPGA design, the speed of execution is determined by the total cycle 

number and clock frequency. The cycle number varies from network to network and 

the clock frequency is limited by the hardware time constraint. If the cycle number is 

fixed and the clock frequency is set, the execution time can be calculated as  

 𝑇𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 =
𝐶𝑦𝑐𝑙𝑒  𝑁𝑢𝑚𝑏𝑒𝑟

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
× 4 

 The factor 4 is required because we generate one random number in four 

cycles.This implies that we can update the entire network every four cycles.  

First we need to analyze the cycle number of the execution. As expected, cycle 

number is affected by connection number, individual number and the probability 

settings. Since we’ve proved that the MATLAB simulation yields the same result as 

the FPGA simulation, we can run our test in MATLAB, which makes it easier to obtain 

result data.  

For the comparison, we can obtain accurate execution time in the MATLAB 

simulation. For the same network, we obtain the execution time in MATLAB and 

calculate the time it would take in the FPGA based on cycle number. This would give 

us a comparison between software and hardware.  
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Admittedly, MATLAB is relatively slow software for testing algorithms, but we 

can use MATLAB as a rough guide for comparison of software and hardware 

implementations.  

4.1.1 Time vsProbability 

Firstly, we will observe the impact of Probability. We fixed the network 

parameter at500 individuals, 20 average connections per individual and 2 initial 

infected individuals. Next we sweep the Probability for both infected and recovery 

from 0.00025 to 0.04. For every Probability we repeat the simulation with the same 

parameters 20 times and get the average execution time and cycle number. In the 

figure, X axis is probability. 

P of I and R 0.00025 0.0005 0.00075 0.001 0.002 0.003 0.004 

MATLAB Exec T(ms) 37198 15467 10530 7800 3845 2753 1958 

Cycle Number 30550 13796 9829 7282 3656 2581 1786 

Table 2 MATLAB Execution time and number of total cycles with different probability 

 

Figure 9 MATLAB Execution time and number of total cycles with different probability 
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Actually, if we divide two rows from the table and normalize that, we can get the 

figure below where Y axis is normalized time ratio between software and hardware. 

 

Figure 10normalized time comparison between software and hardware with different probability 

 We can see that the fluctuation is really small, basically within 10%. This result 

implies that the probabilitydoes not have a huge impact on the difference between 
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 100 200 300 400 500 750 1000 

MATLAB Exec T(ms) 4157 6419 9142 11879 14024 21887 29898 

Cycle Number 12243 12521 13527 14028 13789 15743 16717 

Table 3 MATLAB Execution time and number of total cycles with different individuals 

 

Figure 11 MATLAB Execution time and number of total cycles with different individuals 

 

Figure 12 normalized time comparison between software and hardware with different individuals 
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means, while the scale of the network is increasing, the speed of hardware 

simulation basically stays the same, but the software simulation slows down. The 

ratio of the execution time between software and hardware increases linearly. This is 

because, in software, each cycle takes more time to execute, but in hardware, the 

computation is in parallel, limited only by the resources available in the FPGA. 

4.1.3 Time vs Average Connection Number 

Next, we could change the average connection number with the same 

Probability 0.0005 and the same total individual number 500. We will increase the 

average connection number per individual from 10 to 40. In the figure, X axis is the 

average connection number.  

 10 15 20 25 30 35 40 

MATLAB Exec T(ms) 14149 15265 16224 18244 18689 20179 20772 

Cycle Number 15501 15057 14314 15374 14078 13565 12940 

Table 4 MATLAB Execution time and number of total cycles with different average connections 

 

Figure 13 MATLAB Execution time and number of total cycles with different individuals 
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Figure 14 normalized time comparison between software and hardware with different average connections 

 With the average connection number increasing, the execution time of software 

increases. This is mainly due to the increasing time of each cycle. However, the cycle 

number decreases because with more connections, the disease spread faster and it 

takes less time to finish. The hardware simulation shows a better tendency in time 

aspect with increasing average connection number.  

4.1.4 The Actual Acceleration 

The discussion above is based on an ideal situation that we have a large enough 

FPGA which can hold as many individuals as we want. However, in this project, due 

to the limited resources of the FPGA the largest simulation is 140 individuals with 14 

average connections per individual.  

With these parameters and a probability of 0.0005, we run the simulation 20 

times and convert the cycle time to actual execution time with a 100MHz clock, 

which is the best we can achieve on DE2i-150 without any timing issues, we can get 

the comparison graph as follows 
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Figure 15 speed comparison between FPGA simulation and MATLAB simulation 

As we can see in the figure, the acceleration is basically between 800 and 1000 

times. This is a good result for hardware implementation. As we have discussed 

above, with the scale of the network increasing, we can definitely get a better 

acceleration with a parallel computing method.  

 

4.2 AREA 
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important issue we need to analyze because it limits the scale of our simulation. In 

our design, the most costly part is the random number generator. So the area of the 
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4.2.1 Different Individual Number with Same Connections 

First we want to observe the impact of individual numbers, so we tested some 

parameters with identical connection numbers but different individual numbers. We 

compiled four times with the same parameters using different network and take the 

average number. For area, we use the logic elements requiredwithin FPGA.  

Individual#/Average Con# 12/10 15/8 20/6 24/5 30/4 

Network 1 8005 8779 8954 9734 10605 

Network 2 8212 8851 9372 9668 10249 

Network 3 8072 8641 9233 9670 10673 

Network 4 8142 8990 9580 9597 10112 

Average Area 8108 8815 9285 9667 10410 

Table 5 number of logic elements required in FPGA for different individuals but same total connections 

 

Figure 16 number of logic elements required in FPGA for different individuals but same total connections 

 From the figure we can see that the area is approximately linear to the individual 

number with the same total connection number which is our expectation. We can 

also roughly calculate that each individual would take about 100 logic elements.  
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4.2.2 Different Connection Number with Same Individual Number 

Next, we fixed the individual number to 20, and sweep the average connection 

number from 4 to 10.  

Individual#/Average Con # 20/4 20/6 20/8 20/10 

Network 1 6872 9163 11591 14363 

Network 2 6592 9579 11800 14297 

Network 3 6943 9370 12078 14295 

Network 4 6730 9509 11591 14088 

Average Area 6784 9405 11765 14261 

Table 6 number of logic elements required by FPGA for the same individuals but different average connections 

 

Figure 17 number of logic elements required by FPGA for the same individuals but different average connections 

 From the figure we can see, the area is in linear with the total connection 

number using identical individual numbers. We can roughly calculate that each 

connection takes 60-65 logic elements.  

4.2.3 The Final Result in FPGA 
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elements. The actual number of logic elements required is 146k. The error is mainly 

due to the rough estimation for an individual/connection, but also probably because 

of the relatively large network. A large network may cause a deep adder tree which 

would lead to a larger use of logic elements.   

4.3 SUMMARY 

In summary, probability would not greatly impact execution time differences 

between software and hardware a lot, so probability changes have little impact on 

acceleration. As individual number and average connection number grow, the better 

hardware simulation performs, relative to software execution time. Based on this, 

we can confidently anticipate that with larger scale of network, the hardware 

simulation would have an even fasterspeed compared to software simulation. 

The downside of hardware simulation is the area. The number of logic elements 

basically grows linearly with total connections. So with the scale of the network 

increasing, we requirea larger FPGA, or a series of FPGAs. In DE2i-150, we can 

simulate 140 individuals with 14 average connections per individual.  

5 CONCLUSION 

In this project, we designed a FPGA based device to simulate SIR model, which is 

about 1000 times faster than it is in MATLAB. The Verilog code is automatically 

generated in MATLAB and the parameters are set in MATLAB as well. The use of 

Verilog code generation provides excellent design flexibility. A well designed 

hardware random number generator is introduced to ensure the simulation is valid. 

The hardware simulation is verified for solving SIR model compared to theoretical 

method. For future development, it is predicted that the FPGA model would give an 

even better performance when the model scales to even larger devices or a network 

of FPGA devices.  
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8 APPENDIX 

8.1 MATLAB CODE 

clc;clear; 

%%%%%%%%%%%Parameters Are HERE!!!!!!!!! 

P=0.001;   %Probability that an infected person get another 

P_Recover=0.001;    %Probability of recovering 

Avr_Con_Num=14;    %average of connections of one person 

Infected_Num=2;    %the infected people number when start 

People_Num=140;  %Total number of people(sample) 

%%%%%%%%%%%Parameters Done!!!!!!!! 

Log_People_Num = ceil(log2(People_Num)); 

char16='0123456789ABCDEF'; 

Ptemp=P; 

P_Recovertemp=P_Recover; 

charP=[]; 

charP_Recover=[]; 

InitInfected=zeros(People_Num,1); 

Individual=zeros(People_Num,2);  %graph, including Num of people and 

their connections 

Col_Num_Max=2; 

fori=1:1:People_Num             %build graph(connections) 

Individual(i,1)=i; 

end 

for Relation=1:1:People_Num*Avr_Con_Num/2  %build relation 

flag=0; 

while (flag==0) 

        temp1=ceil(rand()*People_Num); 

        temp2=ceil(rand()*People_Num); 

if (temp1~=temp2) 

fori=2:1:Col_Num_Max 

if Individual(temp1,i)==temp2 

break;  %if reduplicate, break for 

elseif Individual(temp1,i)==0  %valid relation 

Individual(temp1,i)=temp2; 

for j=2:1:Col_Num_Max %non-direction link 

if Individual(temp2,j)==0 

Individual(temp2,j)=temp1; 

flag=1; 

break; 
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elseif j==Col_Num_Max 

                            Individual=[Individual,zeros(People_Num,1)]; 

Col_Num_Max=Col_Num_Max+1; 

Individual(temp2,j+1)=temp1; 

flag=1; 

break; 

end 

end 

break; 

elseifi==Col_Num_Max 

                    Individual=[Individual,zeros(People_Num,1)]; 

Col_Num_Max=Col_Num_Max+1; 

end 

end 

end 

end 

end 

 

Individual = [Individual,zeros(People_Num,1)];  % add a colomn of zeroat 

the end 

 

fori=1:1:4       %create 16_bit char for Probability 

Ptemp=Ptemp*16; 

charP=[charP,char16(floor(Ptemp)+1)]; 

Ptemp=Ptemp-floor(Ptemp); 

P_Recovertemp=P_Recovertemp*16; 

charP_Recover=[charP_Recover,char16(floor(P_Recovertemp)+1)]; 

P_Recovertemp=P_Recovertemp-floor(P_Recovertemp); 

end 

i=1; 

whilei<=Infected_Num 

getInf=ceil(People_Num*rand()); 

ifInitInfected(getInf,1)==0 

InitInfected(getInf,1)=1; 

i=i+1; 

end 

end 

fid=fopen('SIR.v','wt'); 

fid_simu = fopen('simu.txt','wt'); 

%--------------------------------------------------- 

% print relation in the txt file 

%--------------------------------------------------- 

fori=1:1:People_Num 
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    j=1; 

while (Individual(i,j)~=0) 

fprintf(fid_simu,'%i ',Individual(i,j)); 

        j=j+1; 

end 

if (InitInfected(i,1) == 0) 

fprintf(fid_simu,'0\n'); 

else 

fprintf(fid_simu,'-1\n'); 

end 

end 

%--------------------------------------------------- 

%module SIR(clk,Reset_All,Reset_I,S,I); 

%--------------------------------------------------- 

fprintf(fid,'module SIR(clk,Reset_All,Reset_I,S,I);\n'); 

fprintf(fid,'\tinput wire clk,Reset_All,Reset_I;\n'); 

fprintf(fid,'\toutput wire [%i:1]S;\n',People_Num); 

fprintf(fid,'\toutput wire [%i:1]I;\n',People_Num); 

fprintf(fid,'\twire Reset = Reset_All | Reset_I;\n'); 

fprintf(fid,'\twirestate_in;\n'); 

fprintf(fid,'\tassignstate_in=0;\n'); 

fprintf(fid,'\twire [15:0]Constin_en;\n'); 

fprintf(fid,'\twire [15:0]Constin_dis;\n'); 

fprintf(fid,'\tassignConstin_en=15''h%s;\n',charP); 

fprintf(fid,'\tassignConstin_dis=15''h%s;\n',charP_Recover); 

 

fori=1:1:People_Num 

fprintf(fid,'\twireen%i;\n',i); 

fprintf(fid,'\twireresult_dis%i;\n',i); 

fprintf(fid,'\twire [63:1]seed_dis%i;\n',i); 

fprintf(fid,'\twire [15:0]rand_dis%i;\n',i); 

ifInitInfected(i,1)==0 

fprintf(fid,'\tSIR_cellSIR%i (clk, en%i, result_dis%i, Reset, S [%i], 

I[%i]);\n',i,i,i,i,i); 

else 

fprintf(fid,'\tSIR_cellSIR%i (clk, 1, result_dis%i, Reset, S [%i], 

I[%i]);\n',i,i,i,i); 

end 

fprintf(fid,'\trand63 

rand63_dis%i(.rand_out(rand_dis%i), .seed_in(seed_dis%i), .state_in(s

tate_in), .clock_in(clk), .reset_in(Reset_All));\n',i,i,i); 
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fprintf(fid,'\tComparator 

compdis%i(.clk(clk),.rst(Reset),.Constin(Constin_dis),.Variablein(ran

d_dis%i),.en(I[%i]),.Result(result_dis%i));\n',i,i,i,i); 

fprintf(fid,'\tassignseed_dis%i=63''h',i); 

temp_char = char16(ceil(rand()*8)); 

fprintf(fid,'%c',temp_char); 

fprintf(fid_simu,'%c',temp_char); 

for j=1:1:15    %assign seeds 

temp_char = char16(ceil(rand()*16)); 

fprintf(fid,'%c',temp_char); 

fprintf(fid_simu,'%c',temp_char); 

end 

fprintf(fid_simu,'\n'); 

fprintf(fid,';\n'); 

for j=2:1:Col_Num_Max 

target = Individual(i,j); 

if target == 0 

break; 

end 

fprintf(fid,'\twire result_en%i_to_%i;\n',i,target); 

fprintf(fid,'\twire [63:1]seed_en%i_to_%i;\n',i,target); 

fprintf(fid,'\twire [15:0]rand_en%i_to_%i;\n',i,target); 

fprintf(fid,'\tassign seed_en%i_to_%i=63''h',i,target); 

temp_char = char16(ceil(rand()*8)); 

fprintf(fid,'%c',temp_char); 

fprintf(fid_simu,'%c',temp_char); 

for k=1:1:15    %assign seeds 

temp_char = char16(ceil(rand()*16)); 

fprintf(fid,'%c',temp_char); 

fprintf(fid_simu,'%c',temp_char); 

end 

fprintf(fid_simu,'\n'); 

fprintf(fid,';\n\trand63 

rand63_en%i_to_%i(.rand_out(rand_en%i_to_%i), .seed_in(seed_en%i_to_%

i), .state_in(state_in), .clock_in(clk), .reset_in(Reset_All));\n',i,

target,i,target,i,target); 

fprintf(fid,'\tComparator 

compen%i_to_%i(.clk(clk),.rst(Reset),.Constin(Constin_en),.Variablein

(rand_en%i_to_%i),.en(I[%i]),.Result(result_en%i_to_%i));\n',i,target

,i,target,i,i,target); 

end 

 

end 
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%--------------------------------------------------- 

% Relations 

%--------------------------------------------------- 

fori=1:1:People_Num    %relation 

fprintf(fid,'\tassignen%i=1''b0',i); 

    j=2; 

while j<=Col_Num_Max&& Individual(i,j)~=0 

fprintf(fid,' | result_en%i_to_%i',Individual(i,j),i); 

        j=j+1; 

end 

fprintf(fid,';\n'); 

end 

fprintf(fid,'endmodule\n'); 

%--------------------------------------------------- 

% module SIR_cell(clk, StoIEn, ItoREn, Reset, S, I); 

%--------------------------------------------------- 

fprintf(fid,'moduleSIR_cell (clk, StoIEn, ItoREn, Reset, S, I);\n'); 

fprintf(fid,'\toutputreg S,I;\n'); 

fprintf(fid,'\tinput wire clk,StoIEn,ItoREn,Reset;\n'); 

fprintf(fid,'\talways @ (posedgeclk)\n'); 

fprintf(fid,'\tbegin\n'); 

fprintf(fid,'\t\tif (Reset)\n'); 

fprintf(fid,'\t\tbegin\n'); 

fprintf(fid,'\t\t\tS<=1''b1;\n'); 

fprintf(fid,'\t\t\tI<=1''b0;\n'); 

fprintf(fid,'\t\tend\n'); 

fprintf(fid,'\t\telse\n'); 

fprintf(fid,'\t\tbegin\n'); 

fprintf(fid,'\t\t\tif (StoIEn&& S)\n'); 

fprintf(fid,'\t\t\tbegin\n'); 

fprintf(fid,'\t\t\t\tS<=1''b0;\n'); 

fprintf(fid,'\t\t\t\tI<=1''b1;\n'); 

fprintf(fid,'\t\t\tend\n'); 

fprintf(fid,'\t\t\tif (ItoREn&& I)\n'); 

fprintf(fid,'\t\t\tbegin\n'); 

fprintf(fid,'\t\t\t\tI<=1''b0;\n'); 

fprintf(fid,'\t\t\tend\n'); 

fprintf(fid,'\t\tend\n'); 

fprintf(fid,'\tend\n'); 

fprintf(fid,'endmodule\n'); 

%--------------------------------------------------- 

%module Comparator (clk,rst,Constin,Variablein,en,Result); 

%--------------------------------------------------- 
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fprintf(fid,'module Comparator 

(clk,rst,Constin,Variablein,en,Result);\n'); 

fprintf(fid,'\tinput wire [15:0] Variablein;\n'); 

fprintf(fid,'\tinput wire [15:0] Constin;\n'); 

fprintf(fid,'\tinput wire clk,rst,en;\n'); 

fprintf(fid,'\toutputreg Result;\n'); 

fprintf(fid,'\treg [1:0]state;\n'); 

fprintf(fid,'\tregtempResult;\n'); 

fprintf(fid,'\talways @ (posedgeclk)\n'); 

fprintf(fid,'\tbegin\n'); 

fprintf(fid,'\t\tif (rst)\n'); 

fprintf(fid,'\t\tbegin\n'); 

fprintf(fid,'\t\t\tstate<=2''b00;\n'); 

fprintf(fid,'\t\t\tResult<=1''b0;\n'); 

fprintf(fid,'\t\t\ttempResult<=1''b0;\n'); 

fprintf(fid,'\t\tend\n'); 

fprintf(fid,'\t\telse\n'); 

fprintf(fid,'\t\tbegin\n'); 

fprintf(fid,'\t\t\tcase (state)\n'); 

fprintf(fid,'\t\t\t2''b00:\n'); 

fprintf(fid,'\t\t\t\tbegin\n'); 

fprintf(fid,'\t\t\t\t\tResult<= (en &&Variablein<Constin);\n'); 

fprintf(fid,'\t\t\t\tend\n'); 

fprintf(fid,'\t\t\tendcase\n'); 

fprintf(fid,'\t\t\tstate<= state + 1''b1;\n'); 

fprintf(fid,'\t\tend\n'); 

fprintf(fid,'\tend\n'); 

fprintf(fid,'endmodule\n'); 

%--------------------------------------------------- 

%module rand63(rand_out, seed_in, state_in, clock_in, reset_in); 

%--------------------------------------------------- 

fprintf(fid,'module rand63(rand_out, seed_in, state_in, clock_in, 

reset_in);\n'); 

fprintf(fid,'\toutput wire [15:0] rand_out ;\n'); 

fprintf(fid,'\tinput wire state_in ;\n'); 

fprintf(fid,'\tinput wire clock_in, reset_in ;\n'); 

fprintf(fid,'\tinput wire [63:1] seed_in; \n'); 

fprintf(fid,'\treg [4:1] sr1, sr2, sr3, sr4, sr5, sr6, sr7, sr8, sr9, sr10, 

sr11, sr12, sr13, sr14, sr15, sr16;\n'); 

fprintf(fid,'\tparameterreact_start=1''b0 ;\n'); 

fprintf(fid,'\tassignrand_out = {sr1[3], sr2[3], sr3[3], sr4[3],sr5[3], 

sr6[3], sr7[3], sr8[3],sr9[3], sr10[3], sr11[3], sr12[3],sr13[3], 

sr14[3], sr15[3], sr16[3]} ;\n'); 
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fprintf(fid,'\talways @ (posedgeclock_in)\n'); 

fprintf(fid,'\tbegin\n'); 

fprintf(fid,'\t\tif (reset_in)\n'); 

fprintf(fid,'\t\tbegin\n'); 

fprintf(fid,'\t\t\tsr1 <= seed_in[4:1] ;\n'); 

fprintf(fid,'\t\t\tsr2 <= seed_in[8:5] ;\n'); 

fprintf(fid,'\t\t\tsr3 <= seed_in[12:9] ;\n'); 

fprintf(fid,'\t\t\tsr4 <= seed_in[16:13] ;\n'); 

fprintf(fid,'\t\t\tsr5 <= seed_in[20:17] ;\n'); 

fprintf(fid,'\t\t\tsr6 <= seed_in[24:21] ;\n'); 

fprintf(fid,'\t\t\tsr7 <= seed_in[28:25] ;\n'); 

fprintf(fid,'\t\t\tsr8 <= seed_in[32:29] ;\n'); 

fprintf(fid,'\t\t\tsr9 <= seed_in[36:33] ;\n'); 

fprintf(fid,'\t\t\tsr10 <= seed_in[40:37] ;\n'); 

fprintf(fid,'\t\t\tsr11 <= seed_in[44:41] ;\n'); 

fprintf(fid,'\t\t\tsr12 <= seed_in[48:45] ;\n'); 

fprintf(fid,'\t\t\tsr13 <= seed_in[52:49] ;\n'); 

fprintf(fid,'\t\t\tsr14 <= seed_in[56:53] ;\n'); 

fprintf(fid,'\t\t\tsr15 <= seed_in[60:57] ;\n'); 

fprintf(fid,'\t\t\tsr16 <= {1''b0,seed_in[63:61]} ;\n'); 

fprintf(fid,'\t\tend\n'); 

fprintf(fid,'\t\telse\n'); 

fprintf(fid,'\t\tbegin\n'); 

fprintf(fid,'\t\t\tsr1 <= {sr1[3:1], sr16[3]^sr15[3]} ;\n'); 

fprintf(fid,'\t\t\tsr2 <= {sr2[3:1], sr16[3]^sr1[4]}  ;\n'); 

fprintf(fid,'\t\t\tsr3 <= {sr3[3:1], sr1[4]^sr2[4]}  ;\n'); 

fprintf(fid,'\t\t\tsr4 <= {sr4[3:1], sr2[4]^sr3[4]}  ;\n'); 

fprintf(fid,'\t\t\tsr5 <= {sr5[3:1], sr3[4]^sr4[4]}  ;\n'); 

fprintf(fid,'\t\t\tsr6 <= {sr6[3:1], sr4[4]^sr5[4]}  ;\n'); 

fprintf(fid,'\t\t\tsr7 <= {sr7[3:1], sr5[4]^sr6[4]}  ;\n'); 

fprintf(fid,'\t\t\tsr8 <= {sr8[3:1], sr6[4]^sr7[4]}  ;\n'); 

fprintf(fid,'\t\t\tsr9 <= {sr9[3:1], sr7[4]^sr8[4]}  ;\n'); 

fprintf(fid,'\t\t\tsr10 <= {sr10[3:1], sr8[4]^sr9[4]}  ;\n'); 

fprintf(fid,'\t\t\tsr11 <= {sr11[3:1], sr9[4]^sr10[4]}  ;\n'); 

fprintf(fid,'\t\t\tsr12 <= {sr12[3:1], sr10[4]^sr11[4]}  ;\n'); 

fprintf(fid,'\t\t\tsr13 <= {sr13[3:1], sr11[4]^sr12[4]}  ;\n'); 

fprintf(fid,'\t\t\tsr14 <= {sr14[3:1], sr12[4]^sr13[4]}  ;\n'); 

fprintf(fid,'\t\t\tsr15 <= {sr15[3:1], sr13[4]^sr14[4]}  ;\n'); 

fprintf(fid,'\t\t\tsr16 <= {sr16[3:1], sr14[4]^sr15[4]}  ;\n'); 

fprintf(fid,'\t\tend\n'); 

fprintf(fid,'\tend\n'); 

fprintf(fid,'endmodule\n'); 

%--------------------------------------------------- 
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%module Infected_Adder_Tree(clk,rst,I,sumI) 

%--------------------------------------------------- 

Adder_Tree = []; 

Adder_Num = ceil(People_Num/2); 

Tree_Depth = 0; 

while (Adder_Num>1) 

Adder_Tree = [Adder_Tree,Adder_Num]; 

Adder_Num = ceil(Adder_Num/2); 

Tree_Depth = Tree_Depth + 1; 

end 

fprintf(fid,'moduleInfected_Adder_Tree(clk,rst,I,sumI);\n'); 

fprintf(fid,'\tinputclk,rst;\n'); 

fprintf(fid,'\tinput [%i:1]I;\n',People_Num); 

fprintf(fid,'\toutput wire [%i:0]sumI;\n',Log_People_Num); 

fprintf(fid,'\twire [%i:0]sumI_temp;\n',Log_People_Num); 

fprintf(fid,'\treg [%i:0]sumI_r;\n',Log_People_Num); 

fprintf(fid,'\treg [%i:1]Itemp;\n',People_Num); 

fprintf(fid,'\tassignsumI = sumI_r;\n'); 

fori = 1:1:Tree_Depth 

for j = 1:1:Adder_Tree(i) 

fprintf(fid,'\treg [%i:0]adder_%i_%i;\n',i,i,j); 

end 

end 

if (Tree_Depth ~= 0) 

fprintf(fid,'\tassignsumI_temp = adder_%i_1 + 

adder_%i_2;\n',Tree_Depth,Tree_Depth); 

else 

fprintf(fid,'\tassignsumI_temp = Itemp;\n'); 

end 

fprintf(fid,'\talways @ (posedgeclk)\n'); 

fprintf(fid,'\tbegin\n'); 

fprintf(fid,'\t\tItemp[%i:1]<=I[%i:1];\n',People_Num,People_Num); 

fori = 1:1:Tree_Depth 

for j = 1:1:Adder_Tree(i) 

if (i==1)       %%First line 

if (2*j<=People_Num) 

fprintf(fid,'\t\tadder_%i_%i<= 

Itemp[%i]+Itemp[%i];\n',i,j,(2*j-1),2*j); 

else 

fprintf(fid,'\t\tadder_%i_%i<= Itemp[%i];\n',i,j,(2*j-1)); 

end 

else 

if (2*j<=Adder_Tree(i-1)) 
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fprintf(fid,'\t\tadder_%i_%i<= 

adder_%i_%i+adder_%i_%i;\n',i,j,i-1,(2*j-1),i-1,2*j); 

else 

fprintf(fid,'\t\tadder_%i_%i<= adder_%i_%i;\n',i,j,i-1,(2*j-1)); 

end 

end 

end 

end 

fprintf(fid,'\t\tsumI_r<= sumI_temp;\n'); 

fprintf(fid,'\tend\n'); 

 

fprintf(fid,'endmodule\n'); 

%--------------------------------------------------- 

%module 

VGA_DISPLAY(VGA_CAL_CLK,VGA_RST,Coord_X,Coord_Y,WriteAddrX,WriteAddrY

,WriteInBits,sumI,IsReadFlag) 

%--------------------------------------------------- 

fprintf(fid,'module 

VGA_DISPLAY(VGA_CAL_CLK,VGA_RST,Coord_X,Coord_Y,WriteAddrX,WriteAddrY

,WriteInBits,sumI,IsReadFlag,counter_fix);\n'); 

fprintf(fid,'\tinput VGA_CAL_CLK;\n'); 

fprintf(fid,'\tinput VGA_RST;\n'); 

fprintf(fid,'\tinput [9:0]Coord_X;\n'); 

fprintf(fid,'\tinput [8:0]Coord_Y;\n'); 

fprintf(fid,'\toutputreg [9:0]WriteAddrX;\n'); 

fprintf(fid,'\toutputreg [8:0]WriteAddrY;\n'); 

fprintf(fid,'\toutputreg [15:0]WriteInBits;\n'); 

fprintf(fid,'\toutputregIsReadFlag;\n'); 

fprintf(fid,'\tinput [10:0]sumI;\n'); 

fprintf(fid,'\tinput [7:0]counter_fix;\n'); 

fprintf(fid,'\treg Start;\n'); 

fprintf(fid,'\treg [7:0]counter;\n'); 

fprintf(fid,'\talways @ (posedge VGA_CAL_CLK or posedge VGA_RST)\n'); 

fprintf(fid,'\tbegin\n'); 

 

fprintf(fid,'\t\tif (VGA_RST)\n'); 

fprintf(fid,'\t\tbegin\n'); 

fprintf(fid,'\t\t\tIsReadFlag<=1''b0;\n'); 

fprintf(fid,'\t\t\tWriteAddrX<=Coord_X[9:0];\n'); 

fprintf(fid,'\t\t\tWriteAddrY<=Coord_Y[8:0];\n'); 

fprintf(fid,'\t\t\tWriteInBits<=16''h0000;\n'); 

fprintf(fid,'\t\t\tStart<=1''b0;\n'); 

fprintf(fid,'\t\t\tcounter<=8''b0;\n'); 
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fprintf(fid,'\t\tend\n'); 

 

fprintf(fid,'\t\telse\n'); 

fprintf(fid,'\t\tbegin\n'); 

fprintf(fid,'\t\t\tif (counter >= counter_fix)\n'); 

fprintf(fid,'\t\t\tbegin\n'); 

fprintf(fid,'\t\t\t\tif (Start==1''b0)\n'); 

fprintf(fid,'\t\t\t\tbegin\n'); 

fprintf(fid,'\t\t\t\t\tStart<=1''b1;\n'); 

fprintf(fid,'\t\t\t\t\tWriteAddrX<=10''b0;\n'); 

fprintf(fid,'\t\t\t\t\tWriteAddrY<=9''d479-{sumI,2''b0};\n'); 

fprintf(fid,'\t\t\t\t\tWriteInBits<= 16''hFF00;\n'); 

fprintf(fid,'\t\t\t\tend\n'); 

fprintf(fid,'\t\t\t\telse if (WriteAddrX>=10''d639)\n'); 

fprintf(fid,'\t\t\t\tbegin\n'); 

fprintf(fid,'\t\t\t\t\tIsReadFlag<=1''b1;\n'); 

fprintf(fid,'\t\t\t\tend\n'); 

fprintf(fid,'\t\t\t\telse if (WriteAddrX[0]==1''b0)\n'); 

fprintf(fid,'\t\t\t\tbegin\n'); 

fprintf(fid,'\t\t\t\t\tWriteAddrX<=WriteAddrX+1;\n'); 

fprintf(fid,'\t\t\t\t\tWriteAddrY<=9''d479-{sumI,2''b0};\n'); 

fprintf(fid,'\t\t\t\t\tWriteInBits<= 

(WriteAddrY==9''d479-{sumI,2''b0})? 16''hFFFF : 16''hFF00;\n'); 

fprintf(fid,'\t\t\t\tend\n'); 

fprintf(fid,'\t\t\t\telse\n'); 

fprintf(fid,'\t\t\t\tbegin\n'); 

fprintf(fid,'\t\t\t\t\tWriteAddrX<=WriteAddrX+1;\n'); 

fprintf(fid,'\t\t\t\t\tWriteAddrY<=9''d479-{sumI,2''b0};\n'); 

fprintf(fid,'\t\t\t\t\tWriteInBits<= 16''h00FF;\n'); 

fprintf(fid,'\t\t\t\tend\n'); 

fprintf(fid,'\t\t\t\tcounter<= 8''b0;\n'); 

fprintf(fid,'\t\t\tend\n'); 

fprintf(fid,'\t\t\telse\n'); 

fprintf(fid,'\t\t\tbegin\n'); 

fprintf(fid,'\t\t\t\tcounter<= counter + 1''b1;\n'); 

fprintf(fid,'\t\t\tend\n'); 

fprintf(fid,'\t\tend\n'); 

 

fprintf(fid,'\tend\n'); 

fprintf(fid,'endmodule'); 

 

fclose(fid); 

fclose(fid_simu); 
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%--------------------------------------------------- 

%SIRTest.v 

%--------------------------------------------------- 

fid=fopen('SIRTest.v','wt'); 

fprintf(fid,'`timescale 1ns/1ns\n'); 

fprintf(fid,'`include "SIR.v"\n'); 

fprintf(fid,'moduleSIRTest;\n'); 

fprintf(fid,'\tregclk,rst;\n'); 

fprintf(fid,'\twire [%i:1]S;\n',People_Num); 

fprintf(fid,'\twire [%i:1]I;\n',People_Num); 

fprintf(fid,'\tSIR SIR1(.clk(clk),.Reset(rst),.S(S),.I(I));\n'); 

fprintf(fid,'\talways\n'); 

fprintf(fid,'\tbegin\n'); 

fprintf(fid,'\t\t#10 clk=~clk;\n'); 

fprintf(fid,'\tend\n'); 

fprintf(fid,'\tinitial\n'); 

fprintf(fid,'\tbegin\n'); 

fprintf(fid,'\t\tclk=1''b0;\n'); 

fprintf(fid,'\t\t#5 rst=1''b1;\n'); 

fprintf(fid,'\t\t#10 rst=1''b0;\n'); 

fprintf(fid,'\tend\n'); 

fprintf(fid,'endmodule\n'); 

fclose(fid); 

 

8.2 TOP MODULE 

// -------------------------------------------------------------------- 

// -- Stochastic Simulation -- 

// -- Cornell MEng Project -- 

// -- By TianGao -- 

// -- Fall 2013 -- 

// -- Advisor: Bruce Land -- 

// -- on board DE2i-150 -- 

// -------------------------------------------------------------------- 

 

module DE2_TOP 

 ( 

  //////////////////// Clock Input  ////////////////////  

  CLOCK_50,      // 50 MHz 

  //////////////////// Push Button  ////////////////////// 

  KEY, 
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  ////////////////////  SWITCH   //////////////////////// 

  SW, 

  ////////////////////   HEX   //////////////////////////// 

  HEX0, 

  HEX1, 

  HEX2, 

  HEX3, 

  HEX4, 

  HEX5, 

  HEX6, 

  HEX7, 

  ///////////////////////  SSRAM   ///////////////////////// 

  SRAM_BE, 

  SRAM0_CS_N, 

  SRAM1_CS_N, 

  SRAM_ADSC_N, 

  SRAM_GW_N, 

  SRAM_ADSP_N, 

  SRAM_ADV_N, 

  SRAM_CLK, 

  SRAM_OE_N, 

  SRAM_WE_N, 

  SRAM_DQ, 

  SRAM_ADDR, 

  /////////////////// VGA  //////////////////////////// 

  VGA_CLK,         // VGA Clock 

  VGA_HS,       // VGA H_SYNC 

  VGA_VS,       // VGA V_SYNC 

  VGA_BLANK,      // VGA BLANK 

  VGA_SYNC,      // VGA SYNC 

  VGA_R,         // VGA Red[9:0] 

  VGA_G,       // VGA Green[9:0] 

  VGA_B        // VGA Blue[9:0] 

 ); 

 

 //////////////////////// Clock Input  //////////////////////// 

 input   CLOCK_50;    // 50 MHz 

 ////////////////////////// Push Button  ////////////////////////// 

 input    [3:0]KEY; 

 ////////////////////////  SWITCH   ///////////////////////////// 

 input    [17:0]SW; 

 ////////////////////////   HEX      /////////////////////////////// 

 output   [6:0] HEX0; 
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 output   [6:0] HEX1; 

 output   [6:0] HEX2; 

 output   [6:0] HEX3; 

 output   [6:0] HEX4; 

 output   [6:0] HEX5; 

 output   [6:0] HEX6; 

 output   [6:0] HEX7; 

 ////////////////////////   SRAM    /////////////////////////////// 

 output [3:0] SRAM_BE; 

 output   SRAM0_CS_N; 

 output   SRAM1_CS_N; 

 output   SRAM_ADSC_N; 

 output   SRAM_GW_N; 

 output   SRAM_ADSP_N; 

 output   SRAM_ADV_N; 

 output   SRAM_CLK; 

 output   SRAM_OE_N; 

 output   SRAM_WE_N; 

 inout   [31:0] SRAM_DQ; 

 output  [19:0] SRAM_ADDR; 

 //////////////////////// VGA   //////////////////////////// 

 output   VGA_CLK;       // VGA Clock 

 output   VGA_HS;     // VGA H_SYNC 

 output   VGA_VS;     // VGA V_SYNC 

 output   VGA_BLANK;    // VGA BLANK 

 output   VGA_SYNC;    // VGA SYNC 

 output [7:0] VGA_R;       // VGA Red[9:0] 

 output [7:0] VGA_G;     // VGA Green[9:0] 

 output [7:0] VGA_B;       // VGA Blue[9:0] 

 

 ////////////////////////////////////////////////////////////////////// 

 // CLOCK 

 wire  CLK_MAIN; 

 

 // SRAM 

 assign SRAM_BE     =  4'b0000; // Byte enable 

 assign SRAM0_CS_N  =  1'b0;  // chip 0 enable 

 assign SRAM1_CS_N  =  1'b0;    // chip 1 disable 

 assign SRAM_ADSC_N =  1'b0;    // SRAM Controller Address Status 

 assign   SRAM_GW_N   =  1'b1;    // SRAM global Write Enable 

 //assign SRAM_ADSP_N =  1'b1;  // SSRAM Processor Address Status; 

 assign SRAM_ADV_N  =  1'b1;    // burst address advance 

 assign SRAM_OE_N   =  1'b0;    // SRAM output Enable 
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 //assign   SRAM_ADDR   =  19'b0; 

 assign SRAM_CLK    =  CLOCK_50; 

 //assign SRAM_DQ  = 16'hzzzz; 

 

 wire [31:0] mSEG7_DIG; 

 reg  [31:0] Cont; 

 wire  VGA_CTRL_CLK; 

 wire  AUD_CTRL_CLK; 

 wire [7:0] mVGA_R; 

 wire [7:0] mVGA_G; 

 wire [7:0] mVGA_B; 

 wire [19:0] mVGA_ADDR;   //video memory address 

 wire [9:0]  Coord_X, Coord_Y; //display coods 

 wire  DLY_RST; 

 

 assign TD_RESET = 1'b1; // Allow 27 MHz input 

 //assign AUD_ADCLRCK = AUD_DACLRCK; 

 //assign AUD_XCK  = AUD_CTRL_CLK; 

 

 

 Reset_Delay   r0 ( .iCLK(CLOCK_50),.oRESET(DLY_RST) ); 

 

 VGA_Audio_PLL  p1 (

 .areset(~DLY_RST),.inclk0(CLOCK_50),.c0(VGA_CTRL_CLK),.c2(VGA_CLK) ); 

 

 MAIN_PLL    p2 ( .areset(~DLY_RST),.inclk0(CLOCK_50),.c0(CLK_MAIN) ); 

 VGA_Controller  u1 ( // Host Side 

        .iCursor_RGB_EN(4'b0111), 

        .oAddress(mVGA_ADDR), 

        .oCoord_X(Coord_X), 

        .oCoord_Y(Coord_Y), 

        .iRed(mVGA_R), 

        .iGreen(mVGA_G), 

        .iBlue(mVGA_B), 

        // VGA Side 

        .oVGA_R(VGA_R), 

        .oVGA_G(VGA_G), 

        .oVGA_B(VGA_B), 

        .oVGA_H_SYNC(VGA_HS), 

        .oVGA_V_SYNC(VGA_VS), 

        .oVGA_SYNC(VGA_SYNC), 

        .oVGA_BLANK(VGA_BLANK), 

        // Control Signal 
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        .iCLK(VGA_CTRL_CLK), 

        .iRST_N(DLY_RST) ); 

 

 

 

 assign  mVGA_R = {Coord_X[0]? SRAM_DQ[0]:SRAM_DQ[15], 7'b0} ; 

 assign  mVGA_G = {Coord_X[0]? SRAM_DQ[1]:SRAM_DQ[14], 7'b0}; 

 assign  mVGA_B = {Coord_X[0]? SRAM_DQ[2]:SRAM_DQ[13], 7'b0} ; 

 //assign  mVGA_R = {SRAM_DQ[15:11],3'b0} ; 

 //assign  mVGA_G = {SRAM_DQ[10:6],3'b0}; 

 //assign  mVGA_B = {SRAM_DQ[5:0],2'b0} ; 

 //SIR MODULE 

 wire [8:0]sumI; 

 wire SIR_CLK,SIR_RST,SIR_RESET_I; 

 wire ADDER_CLK; 

 wire [150:1]SIR_S; 

 wire [150:1]SIR_I; 

 

 //VGA stuff 

 

 wireIsReadFlag;     //whether finish writing, 0 for not read, 1 for read 

 reg Start; 

 wire [9:0]WriteAddrX;    //SRAM X address for writing 

 wire [8:0]WriteAddrY;    //SRAM Y address for writing 

 wire [15:0]WriteInBits;   //16bit temporary write in SRAM 

 wire VGA_CAL_CLK; 

 //wire [7:0]counter_fix = 8'b00100000; //VGA prescalar 

 wire [7:0]VGA_counter_fix = {SW[7:1],1'b1}; 

 

 

 //Here is my code 

 //assign SIR_CLK = SW[10]; 

 assign SIR_CLK = CLK_MAIN; 

 assign ADDER_CLK = CLK_MAIN; 

 assign VGA_CAL_CLK = CLK_MAIN; 

 wire [15:0]temp_out; 

  

/* HexDigit HD0  

 ( 

  .segs (HEX0), 

  .num (temp_out[3:0]) 

 ); 

 HexDigit HD1  
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 ( 

  .segs (HEX1), 

  .num (temp_out[7:4]) 

 ); 

 HexDigit HD2  

 ( 

  .segs (HEX2), 

  .num (temp_out[11:8]) 

 ); 

 HexDigit HD3  

 ( 

  .segs (HEX3), 

  .num (temp_out[15:12]) 

 );*/ 

 

 RST_DELAY RST0  //delay the reset signal to avoid glitch 

 ( 

  .clk(VGA_CAL_CLK), 

  .rst_in(~KEY[0]), 

  .rst_out(SIR_RST) 

 ); 

 RST_DELAY RST1 

 ( 

  .clk(VGA_CAL_CLK), 

  .rst_in(~KEY[1]), 

  .rst_out(SIR_RESET_I) 

 ); 

 Infected_Adder_TreeADDR1(ADDER_CLK,SIR_RST,SIR_I,sumI); 

 SIR SIR1( 

    .clk(SIR_CLK), 

    .Reset_All(SIR_RST), 

    .Reset_I(SIR_RESET_I), 

    .S(SIR_S), 

    .I(SIR_I), 

    //.temp_out(temp_out) 

     ); 

 VGA_DISPLAY VGA_DIS( 

        .VGA_CAL_CLK(VGA_CAL_CLK), 

        .VGA_RST(SIR_RST | SIR_RESET_I), 

        .Coord_X(Coord_X), 

        .Coord_Y(Coord_Y), 

        .WriteAddrX(WriteAddrX), 

        .WriteAddrY(WriteAddrY), 
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        .WriteInBits(WriteInBits), 

        .sumI(sumI), 

        .IsReadFlag(IsReadFlag), 

        .counter_fix(VGA_counter_fix) 

       ); 

 

 assign SRAM_WE_N     = IsReadFlag? 1'b1 : 1'b0; 

 assign SRAM_DQ[15:0] = IsReadFlag? 16'hzzzz :   //if reading, let read 

       WriteInBits;  //if writing, write 16 bits  

 assign SRAM_ADDR     = IsReadFlag ?  

                        {Coord_X[9:1],Coord_Y[8:0]}:   // 

if it's reading, get 6bits X and 9bits Y because memory has 16bits 

                        {WriteAddrX[9:1], WriteAddrY}; 

 assign SRAM_ADSP_N   = IsReadFlag ? 1'b0 : 1'b1; 

  

 

endmodule //top module 

 

module RST_DELAY  

( 

 clk, 

 rst_in, 

 rst_out 

); 

 inputclk; 

 inputrst_in; 

 outputregrst_out; 

 reg [19:0] counter; 

 always @ (posedgeclk) 

 begin 

  if (rst_in == 1'b0) 

  begin 

   counter<= 20'b0; 

   rst_out<= 1'b0; 

  end 

  else 

  begin 

   counter = counter + 1'b1; 

   if (counter == {1'b1,19'b0}) 

   begin 

    rst_out<= 1'b1; 

   end 

  end 
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 end 

endmodule 

 

8.3 HOW TO USE 

Open the code generation.m in MATLAB. Set the parameters on the top and run. 

The MATLAB code will generate a SIR.v file in the folder. Copy the SIR.v file and paste 

it into the folder of the FPGA design. Compile the design in Quartus and download it 

in the FPGA.  

KEY0 is reset with initialized seed and KEY1 is reset with random seed. The 

output is a standard VGA signal from board. Connect that to a VGA screen. 


