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Introduction

The DE1-SOC field programmable gate array (FPGA) is the focus of this independent study. The overall
goal is to see if this DE1-SOC will work as a sufficient replacement for the DE2 and DE2-115 FPGA’s
currently in use for the ECE 5760 course. The reason the DE1-SOC was chosen is due to the embedded
processor it has available. This project aims at redesigning the course labs and observing the difficulty

level / learning opportunities available.

FPGA

The FPGA that was utilized for the course of this project was the DE1-SoC. which is equipped with a
Hard Processor System (HPS) that is a Dual-core ARM Cortex-A9. The HPS made this FPGA an ideal
choice for this project to allow students to explore the ever growing field of embedded systems. Each core
runs at 800MHz and is equipped with 1GB of DDR3 SDRAM. The FPGA is part of the Cyclone V SoC

family from the Altera family. The FPGA is equipped for 85K programmable logic elements and 4,450
Kbits of embedded memory, 64 MB off-chip SDRAM, 6 fractional PLL’s, and 2 hard memory
controllers. Another key reason the DE1-SoC was chosen was due to the video support that it contains. It
has a VGA DAC with a VGA-out connector, as well as a TV decoder with a TV-in connector. All of the

connections of the DE1-SOC can be seen in figure 1. This figure also shows which hardware components

are connected to the ARM core and the FPGA fabric.
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Figure 1: DE1-SoC layout
User Manual [5]

Purpose

One of the reasons the DE1-SOC was chosen over other FPGA’s is due to the ARM core that it has
available. The embedded systems domain is quickly growing and the ability to have one device that
utilizes both an embedded processor and an FPGA opens a significant amount of opportunities for any
programmer. The flexibility of an FPGA with the ability to specialize a processor for specific tasks arms
the developer with a powerful tool as well. For example the developer has the ability to pick and choose

peripherals that get attached to the hard processor to maximize performance as much as possible. Using



the processor to control the peripherals attached the FPGA allows for ease of development of projects
(excluding the overhead associated with setting up the initial framework).

Another important factor of employing an the DE1-SOC is the evaluation of the results. The students will
be able to observe the power consumption, performance tradeoffs, and area when using a hardware
accelerator in contrast to a purely software design. This is possible by using the synthesis tools available

in Quartus.

Hard Processor vs Soft Processor

When an HDL developer comes to the point where a processor would be beneficial, two options are
available; a hardware processor or a software processor. A software processor is typically what has been
used in the past in the ECE 5760 course (the NIOS II processor). In some cases however, the processor
needs to be created from scratch and synthesized onto the FPGA. The FPGA fabric would be molded to

provide this “soft” processor with memory, memory controllers, busses, peripherals, etc... all of which
use up the FPGA’s logic elements. The benefit of this is that the developer is able to create a processor as

powerful as needed for the design. However, there is still the disadvantage that goes alongside the soft
processor, and that is performance. The NIOS II processor’s clock rate is slow when compared to that of
the ARM cores, in the past ECE 5760 has run this processor at speeds below 100 MHZ. There is also the

factor of bulkiness associated with the NIOS II processor, it has a large amount of overhead to provide
general purpose support.

On the other end of the spectrum is the hardware processor. This is a physical processor that is embedded

into the FPGA fabric for use by the developer; for example the ARM core attached to the DE1-SOC. The

hard processor does not need to be synthesized into logic elements thus freeing up some resource, and can
run at a clock rate much faster then the processor. Similar to the “soft” processor the “hard” processor can

be connected with as many peripherals from the FPGA side as needed.



Hardware / Software Integration

One of the primary goals of the independent study is to explore the hardware / software integration of
using the DE1-SOC FPGA. When the term hardware is used in this sense, it is referring to any code that
is developed in verilog and will run strictly on the FPGA side. The term software refers to any code that is
developed in C that targets the ARM core. The connection between these two components is a delicate

one with multiple factors that must be taken into account, with timing being one of the most important.

Hardware / Software Connection

The FPGA fabric and the ARM core are connected through two Advanced Microcontroller Bus
Architecture (AMBA) Advanced eXtensible Interface (AXI) bridge. Although these two components can
function completely independently, communication between the ARM core and FPGA fabric can be a
bottleneck for the overall system. That is why they are connected with two high speed 128-bit AMBA
AXI bus bridge called HPS-to-FPGA and FPGA-to-HPS. The datapath width for both bridges is not fixed
to 128 bits, it can be configured via QSYS to 32, 64, and 128. By having this variable data width, the
bridge can be tuned to for maximum performance when communication between the FPGA fabric and the
HPS L3 occurs. Figure 2 shows the interconnections between the FPGA and the HPS system. It also

shows how these two components are connected the global shared memory.
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Figure 2: The connection between the FPGA, HPS, L3 Cache
[youtube video link here]

In addition to the two high speed bridges, a lightweight HPS-to-FPGA bridge is also available. This
bridge provides access to the control and status register (CSR) slave ports in the FPGA fabric. The
lightweight HPS-to-FPGA bridge is 32-bits wide because usually CSR slaves are only 32 bits. By using
the lightweight port for control of slave ports such as PIO ports, the HPS-to-FPGA bridge can handle the
high speed burst transactions required for large data transfers. Figure 3 shows a demonstration of how the

lightweight AXI bus can be utilized. [cortex 9 pdf]

FPGA/QSYS

Figure 3: Demonstration of LWAXI bus



Applications
Virtual Address

The software that is ran on Linux (the ARM side) does not have access to the physical memory of any
peripherals running on the HPS; such as the Lightweight HPS-to-FPGA bridge. So in order to work
around this restriction, the physical address is mapped in the user space to give the developer access to the
peripherals connected. These peripherals can vary in their application, but for the purpose of this
independent study these peripherals were simply PIO ports. The entire span of the CSR can be mapped to
allow access to any peripheral slaves within the span. The following formula found in the DE1-SOC user
manual can be used to access the “Virtual Address” of these peripherals, this example is used for LED

accCess.

h2p Iw_led addr = virtual base + ( (unsigned long )( ALT LWFPGASLVS OFST + LED _PIO BASE

) & (‘unsigned long)( HW_REGS MASK))

This formula references macro’s that are automatically generated using a scripted provided on the
DE1-SOC REV. E cd. The only term/macro’s not created by the script is the “virtual base” and the

HW REGS SPAN/MASK term.
Virtual base is defined as:
virtual base = mmap( NULL, HW_REGS_SPAN, (PROT _READ | PROT_WRITE ), MAP_SHARED,

fd, HW REGS_BASE );

The HW_REGS BASE is defined as:



#define HW_REGS_SPAN (ALT _STM_OFST)

The HW_REGS SPAN is defined as:

#define HW_REGS_SPAN 0x0400000

The HW_REGS MASK that is used when creating the h2p lw led addr in the example is defined as:
#define HW_REGS SPAN (HW_REGS SPAN - 1)
All peripherals that sit within the span address can be accessed in the same fashion as the LED address

above.

Software Control of Lights

Hardware

One of first examples that was created was used to test how the HPS can control the hardware on the
FPGA side such as LED’s and SSEG display. This example explored various paths to allow this type of
control, however the end example just utilized a basic PIO port in QSYS. The overall goal of the example
was to control the LED’s via the Dip-Switches and the HPS.

From the very beginning the first step is to create the QSYS IP component for the HPS. This is set up
with specific parameters that will allow for complete customization of the processor. Figures 4 - 7 show

all of the different settings required for the HPS IP.
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Figure 4: HPS screenshot - FPGA Interface
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Detals 3%
System: soc_system  Path: hps 0

Arria V/Cyclone V Hard Processor System
altera_hps

Figure 5: HPS Screenshot - Peripheral Pins
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Figure 6: HPS Screenshot - HPS Clock
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The next step was to add the PIO ports required for controlling the LED’s, these were declared as an

Figure 7: HPS Screenshot - SDRAM

m

output 10 bit port. Next was the PIO ports for the switches, this was declared as an input 10 bit port. The

lightweight AXI master port of the HPS IP was connected to the peripherals. The reason the lightweight

port was used is due to the fact that their will only be control signals for these ports. From there, the

hardware was pretty much completed. All that remained was the instantiation of the SOC_System in the
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top level module and connecting it with the appropriate FPGA ports. Figure 8 shows the QSY'S project for

the LED - SW example.
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Figure 8: QSYS system LED-SW

Programming the FPGA

Programming the FPGA using the quartus also required one extra step. Since now there are two

components that appear in the toolchain, the developer must specify the .sof file. The steps to program it

are as follows;

1. click Auto Detect in the programmer window

2. Choose the device family for the FPGA (for the board used it was SCSEMAS5F31)

At this point there should be two devices in the tool chain, on called SOCVHPS, and another with the

device family name.

3. Right click the device and select Edit — Change File (show in the figure 9)
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Figure 9: Step 3 in programming the FPGA
4. Select the appropriate SOF file in the pop up window

5. Select Start to program the board.

Software

The next aspect of this was to write the C code that will run on the ARM core. This code was developed
in notepad++ on a windows platform and cross-compiled to run on the ARM core using a makefile found
on the DE1-SOC REV. E cd. The makefile from the CD was modified to adapt a more organized

directory where the source code and header files are located in separate folders; as well as the binaries
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produced. The main source code used a header file that was generated by a script called
“generate_hps qsys header.sh”. This header file contained macros for all of the memory addresses that
were assigned in the QSY'S project. Using these macro’s the virtual address space was mapped and ready
to be utilized. The next step was to create pointers that targeted the PIO ports memory locations using the
equation described in the previous section. At this point the code contains two pointers, one for the LED’s
and one for the Dip-Switches. The next step was to simply assign the value of Dip-Switches pointer to the

value of the LED’s pointers in an infinite loop. This allowed the flip of the switch to control the LED’s.

VGA Control From HPS

Another important feature of the DE1-SOC that needs to be explored is the VGA DAC. The ability to
control the VGA through the ARM core would allow for new and interesting designed to be developed. In
the past the course as typically used the NIOS II processor to allow students to develop C code to run on
the FPGA. As stated before however, the NIOS II processor causes a hit to performance because of the
large amount of overhead required. Also the there are FPGA resources such as logic blocks that are
utilized for the synthesis of the NIOS II processor, which increase the overall space of the design. That is
why if the same projects that were created to run on the NIOS II processor can be ported over to the ARM

core; the overall design would perform better, while giving students a great learning opportunity.

University Programs

One of the ideal aspects of using the NIOS II processor was the library supports that came with it. The
University Programs IP include a series of QSY'S components and C functions that allow for the NIOS II
to control the VGA screen seamlessly. The QSYS components involve the Pixel Buffer and the Character
Buffer that were previously used in the past. These components work by utilizing the double buffering
technique. This techniques allows the developer to write data to one of the buffers, the back buffer, and

swapping it with the other at the desired refresh rate. One of the greatest challenges faced was attempting
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to port these functions and components to utilize the ARM core instead of the NIOS II processor. The
hardware side of the conversion was not too daunting, however the software side is where the major
issues arose. The functions that were utilized to handle the buffer read/writes and buffer swaps required
the Board Support Package (BSP) that gets created with the NIOS II processor. Since the sole purpose of
this was to replace the NIOS II processors creation, this was not acceptable. After several modifications to
the makefile and attempting to work around the requirements, it became clear that it is not worth the

hassle; another approach was required.

Classical Approach

The second approach was to use the same techniques as in the early labs of ECE 5760 to control the
monitor, where HDL code is used to instantiate a chunk of memory and control the signals going directly
to the the vga monitor.

The most efficient manner in controlling the VGA DAC through the ARM core was by utilizing basic
PIO ports to communicate with the ARM core. The hardware side of the design consists of a Reset Delay
module, a Phase Lock Loop (PLL), M10k blocks (the Buffer), a VGA Controller imported from Lab 1 of
ECE 5670, and the last component of the hardware was an FSM.

The Reset Delay module was used to automatically reset the PLL on boot. The PLL module was created
from the IP Catalog to provide the system with clocks that would control the VGA controller, Memory,
and the FSM. The PLL also provided an out of phase clock that ran the VGA Monitor. The VGA
controller is used to assign all of the appropriate signals on the VGA_RGB lines as well as the sync
signals. The last component of the hardware was the FSM, which is used to control the timing. The FSM
creates the necessary 1 cycle delay for memory read and writes to go through.

There are few PIO ports connected to the hardware. These ports are the address, data, and write enable for
memory. Initially the system was created using 1 bit color (black and white) by allocating 640 x 480 =

307200 bits of memory of M10K blocks. Once the bugs in the FSM were corrected and the system was
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functioning with properly with 1 bit color, memory was upgraded to 8-bits. So now 640 x 480 x 8 =

2457600 bits of memory were allocated (exhausting 60% M10K blocks available). The entire QSYS

system can be seen in figure 10.
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Figure 10: Screenshot of VGA QSYS system

On the software side of the design the only thing software was responsible for was setting up the virtual

memory map (as explained in the LED - SW example), and setting the address, data, and write enable for

the VGA buffer. Which is summed up into one function that gets called with a set of coordinates and

color. Similar to Lab 1 from ECE 5760, the VGA memory system was set up in an X,Y coordinate system

were 0,0 is the top left of the monitor.

The function in software that sets the address, data, and write enable concatenates the X,Y coordinates

into one address before sending it off to the hardware. This is done by shifting the X coordinate over by 9

and adding the Y coordinate; this provides the address in 18 bit notation.
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Evaluation

Below are the statistics from compiling the VGA color example. Figure 11 shows that the logic utilization
of the design is very small, which makes sense because the design centered around using the ARM for all
logical operations. The hardware was simply responsible for making the appropriate connections. The
other important factor in observed in table 1 is the the memory allocation. The design uses M10K Blocks
to hold memory instead of SDRAM; which is not the most efficient of designs but there is still a

significant amount of M10K blocks remaining for future additions.

Synthesis - Area
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Figure 11: Area usage of VGA project
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Synthesis report

Family
Device
Timing Models
Logic utilization (in ALMs)
Total registers
Total pins
Total virtual pins
Total block memory bits
Total DSP Blocks
Total HSSI RX PCSs

Total HSSI PMA RX Deserializers

Total HSSI TX PCSs

Total HSSI PMA TX Serializers

Total PLLs
Total DLLs

Cyclone V
5CSEMA5F31C6
Final
935/32,070 (3 %)
1298
368 /457 (81 %)
0
2,457,600 / 4,065,280 (60 % )
0/87(0%)

S O O~

0
1/6(17 %)
1/4(25%)

Table 1: Synthesis Report

In order to see if this design can be used for any practical application a quick test was written. This tested

involved writing all 307,200 pixels of the monitor several times over and observing how much time it

would take. The easiest method to implement this design was two loops, one for the rows and one for the

columns. The same operation was performed 150 times to get an accurate average on how long it would

take. For the 150 iterations, it took a total time of 75 seconds; which comes out to roughly 500

milliseconds per iteration (500 milliseconds per frame). This operation takes much less time if the items

being drawn are smaller; so the test was modified to observe different box sizes. Table 2 shows how

different sizes affect the frame draw time:
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Size Time per Iteration (s) Total Time (s)
50x50 0.004067 0.610000
100x100 0.016267 2.440000
200x200 0.065200 9.780000
400x300 0.195667 29.350000
640x480 0.500667 75.100000

Table 2: Timing of various sized box
From these results one can see that animated projects, such as the lander game from Lab 3 of ECE 5760,

can be created using this foundation.

Conclusion

The few experiments that were created and ran on the FPGA prove that it is capable of being utilized for
the ECE 5760 course. The independent study has proved that the DE1-SOC would make a fine substitute
for the DE2-115 FPGA due to its adaptability for the previous labs, as well as offering new interesting
challenges for students to overcome. There are however downfalls that come with the DE1-SOC that need
to be worked around. Using the ARM core as a replacement for the NIOS II soft processor has added
certaining difficulties to the labs, but these difficulties are a great learning opportunity. The ARM core
will cause the students to be more concerned with the timing of the entire system because now there are
two completely independent components working at the same time. There is always room for
improvement with every experiment, with the DE1-SOC one of the biggest issues was compile time. On
average even the simplest designs would take more than 5 minutes to compile. This is largely due to the
HPS system that gets instantiated; however, there should be ways to reduce this. Another possible

opportunity to explore with the DE1-SOC is to construct a computationally heavy experiment and explore
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the tradeoff of using the ARM core in parallel with the FPGA. These tradeoffs would include
performance, power consumption, memory allocation, and bottleneck points that are slowing the
computation. One of the reasons this would be an interesting experiment is because developing complex
algorithms in C versus HDL is much simpler. If the hit to performance and power are not severe, then this

type of technology will be very important to learn as new engineers.
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