

ECE 4999

Independent Project:

Wi-Fi Communication Using ESP8266 & PIC32

Mikhail Rudinskiy

Completed for Dr. Bruce Land

Introduction

The purpose of this independent project was to explore the capabilities of the new ESP8266

wireless module. The ESP8266 is a low cost wireless module with a complete AT command

library. This allows for easy integration with a Wi-Fi network through serial communication. The

ESP8266 was integrated with a PIC32 mirocontroller on a Microstick II development board. Two

modes of the ESP8266 were explored: as a station and access point. As a station, the system

connects to a wireless network and reads weather data from the internet. This data is parsed

and certain measures are displayed on an LCD screen. As an access point, the ESP hosts a small

html website while the PIC32 reads the temperature on demand from a temperature sensor.

This mode demonstrates the Wi-Fi chip’s ability to host and receive data simultaneously.

Overall, the ESP8266 SOC is an easy to use Wi-Fi radio that can be easily added to most

microcontroller projects using the serial protocol.

Hardware Design-ESP8266

The central component of this project is an ESP8266 Wi-Fi Module. This radio on chip features
an easy to use AT command set through a serial protocol. The chip itself also supports SPI
communication; however, the most common version of the module (ESP-01) and firmware is
designed for serial communication (Fig. 1). The ESP8266 module is equipped with a
microcontroller which allows it to operate without an external microcontroller. The ESP-01
version is equipped with two GPIO pins. Some other configurations of the board have a larger
number of GPIO pins and would be preferred if the onboard microcontroller is utilized. Another
consideration when selecting an ESP module is whether breadboard compatibility is required.
The ESP-01 version is not designed for such application.

Figure 1 The ESP8266 is available in various module configuration [1]. The main difference is the selection of pinouts from the
chip.

Connections on the ESP board module are detailed in Figure 2 and the wiring overview is
available in Figure 3. The breadboard implementation of this project was assembled without
current-limiting resistors and performed well.

Figure 2 The ESP pinout configuration is described above. The module uses 3.3V logic [2].

Figure 3 Wiring overview including firmware flashing provision [3].

The ESP8266 module comes with firmware preinstalled. It is useful to update the firmware to
the latest version. This requires running the esp8266_flasher.exe and installing the latest
firmware.bin file. A thorough explanation of the required steps is outlined by Dave Vandenbout
in ESP8266: Reflash Dance! [3]. Reflashing the ESP8266 board requires momentarily pulling the
RST pin to ground and then connecting GPIO0 to ground (Note: GPIO0 & GPIO2 should normally
be tied to VCC). This ESP8266 is running on firmware version v0.9.2.2 with a default baud rate
of 9600 (although some other firmware versions use other bauds by default).

Hardware Design-PIC 32

This project utilizes a PIC 32 bit mircontroller PIC32MX250F128B on a Microstick II development
board. This model of the PIC supports 2 UART communication channels both of which are used
in this project. One channel communicates with the Wi-Fi module while the other one is used
for debugging purposes.

Hardware Design-Temperature Sensor

The TI LM35 is a linear temperature sensor which increases 10mV for every °C (Fig. 4). It is
connected to an ADC pin on the PIC. The temperature sensor should be connected to a 5V
tolerant pin on the microcontroller.

Figure 4 Temperature sensor configuration [4].

Hardware Design-LCD Display

The LCD used in this project is an Electronic Assembly DOGM163W-A 3.3V monochromatic
display. It is used in the 4bit write only configuration. This means that the LCD is addressed with
only 4 data wires rather than the normal 8 wires necessary to write a bit. Instead of writing 8
bits, the system write a nibble of data. An enable and reset wire are also necessary for this
configuration. This configuration simplifies the wiring to the microcontroller. Figure 5 displays
the wiring diagram.

Hardware Design-Other

The complete system is depicted in Figure 6. Some miscellaneous objects include a power
supply and 3.3V regulator. The photograph also includes a 3.3V TTL logic board. The following
connections are also present on the system (along with LCD):

 PIC pin 18 – ESP TX

 PIC pin 17 – ESP RX

 PIC pin 16 – TTL RX

 PIC pin 15 – TTL TX

 PIC pin 26 – Temperature Sensor

Figure 5 LCD connection [5].

Software Design – Overview

The ESP 8266 module works based on AT commands. This version of firmware operates at 9600
baud and is terminated with a \r\n. The following are common commands used to
communicate with the module. A complete list of commands can be found in Appendix A.

 AT+RST – Reset the module

 AT+CWLAP – List available access points

 AT+CWJAP=”SSID”,”Password”- Join access SSID with Password

 AT+CWMODE=? – Set module as a 1) Station 2)Access point 3) Access point and station

 AT+CIPMUX – Allow single or multiple connections to be made

 AT+CIPSERVER=1,80 – Create server on port 80

 AT+CIPSEND=0,10 – Send 10 bytes to ID 0

 AT+CIPCLOSE=0 – Close connection

Two separate programs were created to demo the ESP8266. The first of these programs is titled
“WeatherStation”; its purpose is to connect to a network and read data off the internet. Since

Figure 6 Complete System.

both the Wi-Fi module and debug terminal are based on UART communication, writing to the
UART is detailed first.

Software Design – UART

The code CONU1.C and CONU2.C act as the UART libraries. UART1 is used to communicate with
the debug terminal while UART2 is used to write to the Wi-Fi Module. The code is initialized
with the following setup:

void initU1(void)
{
U1BRG = BRGVAL; // BAUD Rate Setting for 9600
U1MODE = U_ENABLE;
U1STA = U_TXRX; //set transmit polarity inverse and tranmit break bit
U1MODEbits.BRGH = 0; // standard mode
}

The putU1 command puts a single character to the UART transmit register:

int putU1(int c)
{
while (U1STAbits.UTXBF); // wait while Tx buffer full
U1TXREG = c;
return c;
}

Multiple characters can be places into the transmit buffer by calling the single putU1 command

multiple times using the putsU1 command.

void putsU1(char *s)

{

while(*s) // loop until *s == '\0' the end of the string

 putU1(*s++); // send the character and point to the next one

 putU1('\r'); // terminate with a cr / line feed

 putU1('\n');

}

Alternatively, a certain length of characters can be places with the putsU1point command.

void putsU1point(char *s, int i)
{
 int count=0;
 while (count<i) {
 putU1(*s++); //put new character
 count++; // increment counter
 }
 putU1('\r');
 putU1('\n');
}

Only UART2 (the Wi-Fi module UART) needs to be read back. This is done with an interrupt
based approach. The following code reads the receive buffer and stores it into a character
array. Although other more efficient data structures exist to store the received characters,
because of the small number of characters dealt with, this method was sufficient.

void __ISR(_UART_2_VECTOR, ipl2) UART2BHandler(void) { //if character becomes available
 s[u]= (char) (U2RXREG & 0x00ff); //read character and store it in an array
 u++;
 // Clear the UART RX interrupt flag bit
 IFS1bits.U2RXIF = 0;
}

Software Design – LCD

The LCD writes nibbles based on a library developed by Thomas Kiablo [5]. The libraries
functions most used in this implementation are the character and string write functions as
detailed below.

void write_character_LCD(char mychar) {
char * pt; //need to make a pointer
pt = &mychar;
update_Display(pt,1); //display single character using pt and numofchar =1

}

void write_string_LCD(char* chpointer) {

while (*chpointer != '\0'){
LCDWrite(*chpointer,1);
chpointer++;

}
}

Software Design – Main WeatherStation.c

The main program assigns the appropriate peripherals of the PIC microcontroller to its external
pins. It then disables the analog features of the pins and sets up the interrupt to receive data
from the Wi-Fi module. The LCD is initialized and a message is written to it. Finally, the function
of code dealing with the ESP8266 module is called.

The code begins by writing the AT+RST command to the module and waiting for a return. A
delay statement is used to wait for the return. The reset command in particular may take a long
time to return. If the module does not return an affirmative response, a message will be
displayed to the user.

 putsU2("AT+RST");
 do {
 delay(2000);
 if (strstr(s, "OK") != NULL) {
 putsU1("ESP8266 Reset & Ready");
 clear_display(); //clear the LCD display

 position_cursor(0); //position cursor to row 1
 write_string_LCD((char*) "Reset & Ready"); //outputs Message
 break;
 } else if (strstr(s, "FAIL") != NULL) {
 putsU1("Reset Failed");
 clear_display(); //clear the LCD display
 position_cursor(0); //position cursor to row 2
 write_string_LCD((char*) "Reset Failed"); //outputs Message
 break;
 }
 } while (1);
 clrstr(s);

Once the module has been reset, the code checks if the module is already connected to an

access point with the AT+CJWAP? command. The return is monitored and a flag is raised if the

module is not connected.

 putsU2("AT+CWJAP?"); // check if already connected to AP
 do {
 delay(500);
 putsU1(s);
 if (strstr(s,SSID) != NULL) {
 putsU1("already connected to wifi ap");
 position_cursor(16); //position cursor to row 1
 write_string_LCD((char*) "Alrdy connected to wifi ap"); //outputs Message
 connection=1;
 break;
 } else if (strstr(s, "ERROR") != NULL) {
 putsU1("connecting to access point...");
 //clear_display(); //clear the LCD display
 position_cursor(16); //position cursor to row 1
 write_string_LCD((char*) "connecting to access point..."); //outputs Message
 connection=0;
 break;
 }
 else
 {
 break;
 }
 } while (1);
 clrstr(s);

If the module needs to be connected, a string is concatenated with the AT+CWJAP command,

access point name and access point password as follows:

 char cmd[100];
 clrstr(cmd);
 if (connection == 0) { //if not connected
 strcat(cmd, "AT+CWJAP=\"");
 strcat(cmd, SSID);

 strcat(cmd, "\",\"");
 strcat(cmd, password);
 strcat(cmd, "\"");
 putsU2(cmd);

The string is written to the UART buffer and the return is monitored.

 do {
 delay(2000);
 putsU1(s);
 if (strstr(s, "OK") != NULL) {
 putsU1("connected to wifi ap");
 clear_display(); //clear the LCD display
 position_cursor(0); //position cursor to row 1
 write_string_LCD((char*) "WiFi Connected!"); //outputs Message
 connection =1;
 break;
 } else if (strstr(s, "FAIL") != NULL) {
 //putsU2("AT+CWQAP"); //quite access point
 putsU1("failed to connect, let me try again");
 clear_display(); //clear the LCD display
 position_cursor(0); //position cursor to row 1
 write_string_LCD((char*) "Connect Failed Let me try again"); //outputs Message
 putsU2("AT+CWQAP");
 delay(100);

 clrstr(s);
 putsU2(cmd);
 delay(100);

Next the mode and mux of the module are set. Setting the mode to 3 configures it as an access

point and station (so it can be used in either mode). Setting the mux to 1 allow the module to

make up to 4 connections. The commands associated with these actions are AT+CWMODE=3

and AT+CIPMUX=1. The code to place these commands and monitor the return is very similar to

those previously stated.

Connecting to the online weather station requires the following command:

 putsU2("AT+CIPSTART=4,\"TCP\",\"api.openweathermap.org\",80");

This sets a connection ID=4 and initiates a TCP connection to the listed site on port 80. Once the

connection is started, the AT+CIPSEND command is used forecast the number of byte that will

be sent to the ESP Wi-Fi station.

putsU2("AT+CIPSEND=4,91");

The code waits for the Wi-Fi module to return a “>” signifying that it is ready to receive a

transmission. The transmission is placed to the module.

putsU2("GET /data/2.5/station/find?lat=42&lon=-76&cnt=30 HTTP/1.0\r\nHost: api.openweathermap.org\r\n");

This line samples 30 nearest weather stations around the specified latitude and longitude.

Many of these stations are self-submitted by users to the openweather server. Other search

modes exist to retrieve weather; a user can call a specific station, search by city, zip code, etc.

These commands would require only minor modification of the get string.

Data that is received from the ESP8266 is headed by a +IPD. This program waits for an arbitrary

amount of time until the whole transmission is received. Future iterations should monitor the

end of the transmission instead.

Once the data is received and stored in a string, parameters of interested are retrieved from

the string by a keyword search. The following is an example of windspeed.

 char * windspeed;
 windspeed = strstr(s, "wind") + 15;
 position_cursor(32);
 write_string_LCD((char*) "windspeed: mps");
 position_cursor(43);
 write_array_LCD((char*) windspeed, 2);

As a final step, this individually parsed data is written to the LCD screen.

Software Design – Temperature Hosting

This version of the project hosts a simple HTML website and which reads a temperatures
sensors. Whenever a query is received, the system performs a series of ADCs, averages them,
and sends the data to the user. Although the configuration was only tested on an intranet
system, it should be easily scalable to an internet application. The only difference is that the
firewall settings of the router need to be configured to port incoming requests to the internal IP
address of the ESP8266 device. It was not possible to test this on Cornell’s routers.

The project described below connects to a Wi-Fi network, configures the ESP module to
appropriate settings and displays the internal IP assigned by the router to the ESP8266 device.
This IP address is displayed on the LCD screen. In your browser, type the IP address specified
followed by a “:80”. Make sure that your computer is connected to either same wireless
network as the ESP8266 or directly to the access point network created by the module.

Section of the following code is are similar to that described in the first program.

Software Design – ADC Temperature Reading

This code reads 4 temperature values and averages them. The result is displayed on the LCD
and stored to be used be sent to the user.

void ReadTemp(void){
 // Take an ADC reading on pin
 initADC(pin); //Initialize ADC for AN0 pin 2
 adcvalue=averagevalue(); //read and average 4 samples

 temp = (float) adcvalue * 330.0 / 1024.0;
 sprintf(tempvalue, "%.1f", temp);

 //write the temperature out to the LCD
 //clear_display(); //clear the LCD display
 position_cursor(32); //position cursor to row 1
 write_string_LCD((char *) "temp: C");
 position_cursor(38);
 write_string_LCD((char*) tempvalue);
}

Software Design – ESP8266 Initialization

The initialization of the module is similar with the exception of the server initialization

command.

 putsU2("AT+CIPSERVER=1,80");

This command starts a server on port 80. The program also reads and displays the internal IP

address assigned by the router using:

putsU2("AT+CIFSR");

Software Design – Main TemperatureSensor.c

Once the ESP module is initialized, the system waits for the “IPD” command to be received. This

means that the ESP module has received some communication (most likely a request from the

user). The code then reads the temperature sensor and concatenates an HTML string.

strncpy(website,"<!DOCTYPE html><html>"\
 ,strlen("<!DOCTYPE html><html>"));
 strcat(website,"<body style=\"background-color:lightblue\">"); …

The string length is calculated and also sent to the Wi-Fi module. It then waits for the “>”
command to be returned from the ESP. Once this is reaffirmed, the HTML string is written.

 putsU2(website); //write the HTML to the ESP8266
 delay(200);

The delay is used to verify that the whole string is written fully and the ESP module is not
overrun with the next command. Finally, the connection to the ESP8266 is closed

 putsU2("AT+CIPCLOSE=0");

A user see a website as displayed in figure 7.

Figure 7 Browser view of HTML site.

Results/Conclusion

The system is able to send and receive data over the internet. The ESP module does throw

different exceptions when a command does not go through as anticipated. This requires having

a logic structure able to handle each situation. This program is able to handle the exceptions for

the basic Wi-Fi operation. It will take more time to fully implement solutions for higher level

situation. As a next step, it is also beneficial to implement an interrupt that is able to detect

when the ESP module has returned a string. This will eliminate the need for delays in the

program. From an HTML perspective, having a javascript run buttons will allow for the system

to act as a remote controller. Sending a button call over the internet to a microcontroller can

have very beneficial applications.

Overall, the system is able to read weather and temperature data over the internet both as a

station and as a host. The ESP8266 module is easy to use once the communication structure is

established.

Software Code Acknowledgments

The following sources contributed to the knowledge and code used in this project.

 AllAboutEE YouTube channel: https://www.youtube.com/user/AllAboutEE/videos

 Thomas Kibalo: Beginner’s Guide to Programming the PIC 32

 Lucio Di Jasio: Programming the 32-bit Microcontroller in C

References

[1] [Online]. Available: http://randomnerdtutorials.com/getting-started-with-esp8266-wifi-transceiver-

review/.

[2] "BoxTec," [Online]. Available: http://playground.boxtec.ch/doku.php/wireless/esp8266.

[3] D. Vanedenbout, "XESS," [Online]. Available: http://www.xess.com/blog/esp8266-reflash/.

[4] "LM35 Precision Centigrade Temperature Sensor," [Online]. Available:

http://www.ti.com/lit/ds/symlink/lm35.pdf.

[5] T. Kibalo, Beginner's Guide to Programming the PIC32, Milford: Electronic Products, 2013.

Appendix A http://firatdeveci.com/wp-content/uploads/Electronics/ESP8266_AT_Command.pdf

https://www.youtube.com/user/AllAboutEE/videos
http://firatdeveci.com/wp-content/uploads/Electronics/ESP8266_AT_Command.pdf

ESP8266EX AT Instruction Set

Espressif: AT Instruction Set

Status Released

Current version V0.20

Author Xu Jingjie

Completion Date 2014.11.28

Reviewer

Completion Date

[] CONFIDENTIAL

[] INTERNAL [] PUBLIC

1/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

Version Info

Date Version Author Comments/Changes

2014.6.27 0.1 XuJingjie Draft

2014.7.11 0.11 XuJingjie Unvarnished transmission added

2014.8.12 0.15 XuJingjie 1、Added Timeout and IP settings for AP

 2、Edited description for server functions

 3、Support DNS

2014.9.25 0.18 XuJingjie 1、Added upgrade through network

 2、Added CWLAP

2014.11.10 0.19 XuJingjie Added UDP

2014.11.27 0.20 XuJingjie 1、Added set and get APIP/APMAC/STAIP

 /STAMAC

 2、Added start and stop DHCP

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without

notice.

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES

WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY

WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,

SPECIFICATION OR SAMPLE. All liability, including liability for infringement of

any proprietary rights, relating to use of information in this document is disclaimed. No

licenses express or implied, by estoppel or otherwise, to any intellectual property rights

are granted herein.

The Wi-Fi Alliance Member Logo is a trademark of the Wi-Fi Alliance.

All trade names, trademarks and registered trademarks mentioned in this document are

property of their respective owners, and are hereby acknowledged.

Copyright © 2013 Espressif Systems Inc. All rights reserved.

2/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

Table of Contents

 Version Info .. 2

 Table of Contents .. . 3

 1
 Overview .. . 5

 2 Instruction Description... . 6

 3 AT Instruction Listing ... 7

 4 Basic AT Instruction Set 8

 4.1 Overview 8

 4.2 Instructions .. . 8

 4.2.1 AT – Test AT startup .. 8

 4.2.2 AT+RST – Restart module .. 8

 4.2.3 AT+GMR – View version info .. 8

 4.2.4 AT+GSLP – Enter deep-sleep mode .. 9

 4.2.5 ATE – AT commands echo.. 9

 5 WIFI functions 9

 5.1 Overview 9

 5.2 Instructions ... 10

 5.2.1 AT+CWMODE – WIFI mode ... 10

 5.2.2 AT+CWJAP – Connect to AP ... 10

 5.2.3 AT+CWLAP – List available APs ... 11

 5.2.4 AT+CWQAP – Disconnect from AP ... 11

 5.2.5 AT+CWSAP – Configuration of softAP mode 12

 5.2.6 AT+CWLIF – IP of stations .. 12

 5.2.7 AT+CWDHCP – Enable/Disable DHCP ... 13

 5.2.8 AT+CIPSTAMAC – Set mac address of station 13

 5.2.9 AT+CIPAPMAC – Set mac address of softAP 14

 5.2.10 AT+ CIPSTA – Set ip address of station ... 14

 5.2.11 AT+ CIPAP – Set ip address of softAP ... 14

 6 TCP/IP Related ... 16

 6.1 Overview .. 16

 6.2 TCP/IP .. 16

 6.2.1 AT+ CIPSTATUS – Information about connection 16

 6.2.2 AT+CIPSTART – Start connection ... 17

 6.2.3 AT+CIPSEND – Send data .. 18

 6.2.4 AT+CIPCLOSE – Close TCP or UDP connection 18

 6.2.5 AT+CIFSR – Get local IP address ... 19

 6.2.6 AT+ CIPMUX – Enable multiple connections 20

 6.2.7 AT+ CIPSERVER – Configure as TCP server 20

 6.2.8 AT+ CIPMODE – Set transfer mode ... 20

 6.2.9 AT+ CIPSTO – Set server timeout .. 21

 6.2.10 AT+ CIUPDATE – Update through network 21

 6.2.11 +IPD – Receive network data .. 22

3/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set
 7 Q&A ... 23

4/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

1 Overview

This is the documentation for Espressif AT command instruction set and usage.

Instruction set is divided into: Basic AT commands, Wifi function, AT commands,

TCP / IP Toolbox AT commands.

Note: Please make sure that correct BIN(\esp_iot_sdk\bin\at) is already in the chip

(ESP8266) before the AT commands listed in this documentation can be used.

5/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

2 Instruction Description

Each instruction set contains four types of AT commands.

Type Instruction Format Description

Test AT+<x>=? Query the Set command or internal parameters

 and its range values.

Query AT+<x>? Returns the current value of the parameter.

Set AT+<x>=<…> Set the value of user-defined parameters in

 commands and run.

Execute AT+<x> Runs commands with no user-defined parameters.

Note:

1. Not all AT instruction has four commands.

2. [] = default value, not required or may not appear

3. String values require double quotation marks, for example:

AT+CWSAP=“ESP756190”,”21030826”,1,4

4. Baud rate = 115200

5. AT instruction ends with “\r\n”

6/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

3 AT Instruction Listing

Instructions Description

Basic

AT Test if AT startup

AT+RST Restart

AT+GMR View version info

AT+GSLP Enter deep-sleep mode

ATE AT commands echo

Wi-Fi

AT+CWMODE WIFI mode（station/softAP/station+softAP）

AT+CWJAP Connect to AP

AT+CWLAP Lists available APs

AT+CWQAP Disconnect from AP

AT+CWSAP Set parameters under AP mode

AT+CWLIF Get stations’ ip which are connected to ESP8266

 softAP

AT+CWDHCP Enable/Disable DHCP

AT+CIPSTAMAC Set mac address of ESP8266 station

AT+CIPAPMAC Set mac address of ESP8266 softAP

AT+CIPSTA Set ip address of ESP8266 station

AT+CIPAP Set ip address of ESP8266 softAP

TCP/IP

AT+CIPSTATUS Get connection status

AT+CIPSTART Establish TCP connection or register UDP port

AT+CIPSEND Send data

AT+CIPCLOSE Close TCP/UDP connection

AT+CIFSR Get local IP address

AT+CIPMUX Set multiple connections mode

AT+CIPSERVER Configure as server

AT+CIPMODE Set transmission mode

AT+CIPSTO Set timeout when ESP8266 runs as TCP server

AT+CIUPDATE For OTA（upgrade through network）

Data RX

+IPD Data received from network

7/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

4 Basic AT Instruction Set

4.1 Overview

Basic

Instruction Description

AT Test AT startup

AT+RST Restart module

AT+GMR View version info

AT+GSLP Enter deep-sleep mode

ATE AT commands echo or not

4.2 Instructions

4.2.1 AT – Test AT startup

AT – Test AT startup
Type：execute Response：
Instruction：

AT
OK

Param description：null

4.2.2 AT+RST – Restart module

AT+RST – Restart module
Type ：execute Response：

Instruction：

AT+RST
OK

Param description：null

4.2.3 AT+GMR – View version info

AT+GMR – View version info
Type ：execute Response：

Instruction： <number>

AT+GMR
OK

Param description：

 < number > version info，length：8 bytes

8/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

Note For example，response is 0017xxxxxx，then 0017 means the

 AT version.

 4.2.4 AT+GSLP – Enter deep-sleep mode

AT+GSLP – Enter deep-sleep mode
Type ：set Response：

Instruction： <time>

AT+GSLP=<time>
OK

Param description：

 < time > ms , set the sleep time of ESP8266 in ms.

 ESP8266 will wake up after X ms in deep-sleep.

Note Hardware has to support deep-sleep wake up (XPD_DCDC

 connects to EXT_RSTB with 0R).

4.2.5 ATE – AT commands echo

ATE – AT commands echo
Type ：set Response：
Instruction：

ATE
OK

Param description：

 ATE0 : Disable echo

 ATE1 : Enable echo

5 WIFI functions

5.1 Overview

WIFI

Instruction Description

AT+CWMODE WIFI mode（station/softAP/station+softAP）

AT+CWJAP Connect to AP

AT+CWLAP Lists available APs

AT+CWQAP Disconnect from AP

AT+CWSAP Set parameters under AP mode

AT+CWLIF Get station’s ip which is connected to ESP8266 softAP

AT+CWDHCP Enable/Disable DHCP

AT+CIPSTAMAC Set mac address of ESP8266 station

9/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

AT+CIPAPMAC Set mac address of ESP8266 softAP

AT+CIPSTA Set ip address of ESP8266 station

AT+CIPAP Set ip address of ESP8266 softAP

5.2 Instructions

5.2.1 AT+CWMODE – WIFI mode

AT+CWMODE - WIFI mode（station/softAP/station+softAP）

Type：test Response：

Function: +CWMODE:(value scope of <mode>)

Get value scope of wifi mode.

Instruction： OK

AT+CWMODE=?
Param description：

<mode>1 means Station mode

 2 means AP mode

 3 means AP + Station mode

Type：query Response：

Function: +CWMODE:<mode>

Query ESP8266’s current wifi

mode. OK

Instruction：

Param description：

Response：

OK

Param description：
The same as above.

AT+CWMODE?
The same as above.

Type：set
Function:
Set ESP8266 wifi mode
Instruction：

AT+CWMODE=<mode>

5.2.2 AT+CWJAP – Connect to AP

AT+CWJAP – Connect to AP
Type：query Response：

Function: + CWJAP:<ssid>

Query AP’s info which is connect by

ESP8266. OK

Instruction：

Param description：

AT+ CWJAP?
<ssid> string, AP’s SSID

10/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

 Type：set Response：

 Function:

 Set AP’s info which will be connect OK

 by ESP8266. ERROR

Instruction：

 Param description：

AT+ CWJAP =<ssid>,< pwd >

 <ssid> string, AP’s SSID

<pwd> string, MAX: 64 bytes

 5.2.3 AT+CWLAP – List available APs

 AT+CWLAP - Lists available APs

 Type：set Response：

 Function: + CWLAP: <ecn>,<ssid>,<rssi>,<mac>

 Search available APs with

 specific conditions. OK

 Instruction： ERROR

AT+ CWLAP =

 Param description：

The same as below.

 <ssid>,< mac >,<ch>

 Type ：execute Response：

 Function: + CWLAP: <ecn>,<ssid>,<rssi>,<mac>

 Lists all available APs.

 Instruction： OK

AT+CWLAP

 ERROR

Param description：

 < ecn >0 OPEN

1 WEP
2 WPA_PSK
3 WPA2_PSK

4 WPA_WPA2_PSK

<ssid> string, SSID of AP

<rssi> signal strength
<mac> string, MAC address

5.2.4 AT+CWQAP – Disconnect from AP

AT+CWQAP - Disconnect from AP
Type：test Response：
Function:
Only for test
Instruction：

11/ 23 Espressif Systems June 16, 2014

OK

Param description：

ESP8266EX AT Instruction Set

 AT+CWQAP=?

 Type ：execute Response：

 Function:

 Disconnect from AP. OK

Instruction：

 Param description：

 AT+ CWQAP

5.2.5 AT+CWSAP – Configuration of softAP mode

AT+ CWSAP – Configuration of softAP mode
Type：Query Response：

Function: + CWSAP:<ssid>,<pwd>,<chl>,<ecn>

Query configuration of

Param description：

softAP mode.

 The same as below.

Instruction：

AT+ CWSAP?

Type：Set Response：

Function:

Set configuration of OK

softAP mode. ERROR

Instruction：

 Note: This CMD is only available when softAP mode

AT+ CWSAP=
 enable, and need to follow by AT+RST to make it works.

Param description：

<ssid>,<pwd>,<chl>,
<ssid> string, ESP8266 softAP’ SSID

<pwd> string, MAX: 64 bytes

<ecn>
 <chl> channel id

< ecn >0 OPEN

2 WPA_PSK
3 WPA2_PSK
4 WPA_WPA2_PSK

5.2.6 AT+CWLIF – IP of stations

AT+ CWLIF– ip of stations which are connected to ESP8266 softAP
Type ：execute Response：

Function: <ip addr>

Get ip of stations which

are connected to OK

ESP8266 softAP Param description：

12/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

 Instruction： <ip addr> ip address of stations which are connected to

AT+CWLIF

ESP8266 softAP

5.2.7 AT+CWDHCP – Enable/Disable DHCP

AT+ CWDHCP – Enable/Disable DHCP
Type ：set Response：

Function:

Enable/Disable DHCP. OK

 Param description：

Instruction： <mode>

AT+CWDHCP=<mode>,<en>

0 : set ESP8266 softAP

1 : set ESP8266 station

 2 : set both softAP and station

 <en>

 0 : Enable DHCP

 1 : Disable DHCP

5.2.8 AT+CIPSTAMAC – Set mac address of station

AT+ CIPSTAMAC – Set mac address of ESP8266 station
Type ：query Response：

Function: +CIPSTAMAC:<mac>

Get mac address of ESP8266

station. OK

Instruction：

Param description：

AT+CIPSTAMAC?
<mac> string, mac address of ESP8266 station

Type ：set Response：

Function:

Set mac address of ESP8266 OK

station. Param description：

Instruction： <mac> string, mac address of ESP8266 station

AT+CIPSTAMAC=<mac>

13/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

5.2.9 AT+CIPAPMAC – Set mac address of softAP

AT+ CIPAPMAC – Set mac address of ESP8266 softAP
Type ：query Response：

Function: +CIPAPMAC:<mac>

Get mac address of ESP8266

softAP. OK

Instruction：

Param description：

AT+CIPAPMAC?
<mac> string, mac address of ESP8266 softAP

Type ：set Response：

Function:

Set mac address of ESP8266 OK

softAP. Param description：

Instruction： <mac> string, mac address of ESP8266 softAP

AT+CIPAPMAC=<mac>

5.2.10 AT+ CIPSTA – Set ip address of station

AT+ CIPSTA – Set ip address of ESP8266 station
Type ：query Response：

Function: +CIPSTA:<ip>

Get ip address of

ESP8266 station. OK

Instruction：

 Param description：

AT+CIPSTA?
 <ip> string, ip address of ESP8266 station

Type ：set Response：

Function:

Set ip address of OK

ESP8266 station. Param description：

Instruction： <ip> string, ip address of ESP8266 station

AT+CIPSTA=<ip>

5.2.11 AT+ CIPAP – Set ip address of softAP

AT+ CIPAP – Set ip address of ESP8266 softAP
Type ：query Response：
Function: +CIPAP:<ip>

14/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

Get ip address of

ESP8266 softAP.

Instruction：

AT+CIPAP?

Type ：set
Function:
Set ip address of
ESP8266 softAP.
Instruction：

AT+CIPAP=<ip>

15/ 23 June 16,
2014

Espressif Systems

 Response：

OK

Param description：

<ip> string, ip address of ESP8266 softAP

 OK

Param description：

<ip> string, ip address of ESP8266 softAP

ESP8266EX AT Instruction Set

6 TCP/IP Related

6.1 Overview

TCP/IP

Instruction Description

AT+ CIPSTATUS Get connection status

AT+CIPSTART Establish TCP connection or register UDP port

AT+CIPSEND Send data

AT+CIPCLOSE Close TCP/UDP connection

AT+CIFSR Get local IP address

AT+CIPMUX Set multiple connections mode

AT+CIPSERVER Configure as server

AT+CIPMODE Set transmission mode

AT+CIPSTO Set timeout when ESP8266 runs as TCP server

6.2 TCP/IP

6.2.1 AT+ CIPSTATUS – Information about connection

AT+ CIPSTATUS – Information about connection
Type ：execute Response：

Function: STATUS:<stat>

Get information about + CIPSTATUS:<id>,<type>,<addr>,<port>,<tetype>

connection.

Instruction: OK

AT+ CIPSTATUS
Param description：

<stat> 2: Got IP

 3: Connected

 4: Disconnected

 <id> id of the connection (0~4), for multi-connect

 <type> string, “TCP” or “UDP”

 <addr> string, IP address.

 <port> port number

 <tetype> 0: ESP8266 runs as client

 1: ESP8266 runs as server

16/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

6.2.2 AT+CIPSTART – Start connection

AT+CIPSTART – Establish TCP connection or register UDP port, start connection
Type ：test Response：

Function: 1) If AT+CIPMUX=0

Get the information of param. +CIPSTART:(<type>),(<IP

Instruction: address>),(<port>)[,(<local port>),(<mode>)]

AT+CIPSTART=?
+CIPSTART:(<type>),(<domain

name>),(<port>)[,(<local port>),(<mode>)]

 OK

 2) If AT+CIPMUX=1

 +CIPSTART:(id),(<type>),(<IP

 address>),(<port>)[,(<local port>),(<mode>)]

 +CIPSTART: (id), (<type>),(<domain

 name>),(<port>)[,(<local port>),(<mode>)]

 Param description：null

Type ：Set Response：

Function: OK

Start a connection as client. or

Instruction: ERROR

 If connection already exists, returns

1)Single connection ALREAY CONNECT

(+CIPMUX=0)

Param description：

AT+CIPSTART=
<id> 0-4 , id of connection

<type> string, “TCP” or “UDP”

<type>,<addr>,<port>
<addr> string, remote ip

<port> string, remote port

[,(<local port>),(<mode>)]
[<local port>] for UDP only

[<mode>] for UDP only

 0 : destination peer entity of UDP will not change.

2)Multiple connection 1 : destination peer entity of UDP can change once.

(+CIPMUX=1) 2 : destination peer entity of UDP is allowed to

AT+CIPSTART=
change.

<id><type>,<addr>,<port>
Note:

[<mode>] can only be used when [<local port>] is

[,(<local port>),(<mode>)]
set.

17/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

6.2.3 AT+CIPSEND – Send data

AT+CIPSEND – Send data
Type ：test Response：

Function:

Only for test. OK

Instruction: Param description：

AT+CIPSEND=?
null

Type ：Set Wrap return “>” after set command. Begins receive of

Function: serial data, when data length is met, starts transmission

Set length of the data that will of data.

be sent. For normal send.

Instruction: If connection cannot be established or gets

 disconnected during send, returns

1)For single connection: ERROR

(+CIPMUX=0) If data is transmitted successfully, returns

AT+CIPSEND=<length>

SEND OK

Note: This CMD

 Param description：

2) For multiple connection: <id> ID no. of transmit connection

(+CIPMUX=1) <length> data length, MAX 2048 bytes

AT+CIPSEND=

<id>,<length>

Type ：execute Response：

Function:

Send data. For unvarnished Wrap return “>” after execute command. Enters

transmission mode. unvarnished transmission, 20ms interval between each

Instruction: packet, maximum 2048 bytes per packet. When single

AT+CIPSEND
packet containing “+++” is received, it returns to

command mode.

 This command can only be used in unvarnished

 transmission mode which require to be single

 connection mode.

6.2.4 AT+CIPCLOSE – Close TCP or UDP connection

AT+CIPCLOSE – Close TCP or UDP connection
Type ：test Response：
Function:

18/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

Only for test. OK
Instruction:

AT+CIPCLOSE=?

Type ：Set Response：

Function: No errors, returns

Close TCP orUDP OK

connection.

Instruction: If connection <id> is disconnected, returns

 Link is not

For multiply connection Param description：

mode <id> ID no. of connection to close, when id=5, all

AT+CIPCLOSE=<id>

connections will be closed.

(id=5 has no effect in server mode)

Type ：execute Response：

Instruction: OK

 or

For single connection mode If no such connection, returns

AT+CIPCLOSE
ERROR

 Prints UNLINK when there is no connection

6.2.5 AT+CIFSR – Get local IP address

AT+CIFSR – Get local IP address
Type ：Test Response：

Function:

Only for test. OK

Instruction:

AT+CIFSR=?

Type ：Execute Response：

Function: + CIFSR:<IP address>

Get local IP address. + CIFSR:<IP address>

Instruction:

 OK

AT+ CIFSR
ERROR

Param description：

 <IP address>

 IP address of ESP8266 softAP

 IP address of ESP8266 station

19/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

6.2.6 AT+ CIPMUX – Enable multiple connections

AT+ CIPMUX – Enable multiple connections or not
Type ：Query Response：

Function: + CIPMUX:<mode>

Get param config.

Instruction: OK

AT+ CIPMUX?
Param description：

The same as below.

Type ：Set Response：

Function:

Set connection mode. OK

Instruction: If already connected, returns

AT+ CIPMUX=<mode>
Link is builded

Param description：

 <mode>0 single connection

 1 multiple connection

Note This mode can only be changed after all connections

 are disconnected. If server is started, reboot is

 required.

6.2.7 AT+ CIPSERVER – Configure as TCP server

AT+ CIPSERVER – Configure as TCP server
Type ：Set Response：

Function:

Set TCP server. OK

Instruction:

AT+ CIPSERVER=
Param description：

<mode> 0 Delete server (need to follow by restart)

<mode>[,<port>]
1 Create server

<port> port number, default is 333

Note 1、Server can only be created when AT+CIPMUX=1

 2、Server monitor will automatically be created when Server

 is created.

 3、When a client is connected to the server, it will take up

 one connection，be gave an id.

6.2.8 AT+ CIPMODE – Set transfer mode

AT+ CIPMODE – Set transfer mode

20/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

 Type ：Query Response：

 Function: + CIPMODE:<mode>

 Query transfer mode.

 Instruction: OK

AT+ CIPMODE?

Param description：

The same as below.

 Type ：Set Response：

 Function:

 Set transfer mode. OK

 Instruction: If already connected, returns

AT+CIPMODE=<mode>

Link is builded

Param description：

 <mode>0 normal mode

 1 unvarnished transmission mode

6.2.9 AT+ CIPSTO – Set server timeout

AT+ CIPSTO – Set server timeout
Type ：Query Response：

Function: + CIPSTO:<time>

Query server timeout.

Instruction: OK

AT+CIPSTO?
Param description：

The same as below.

Type ：Set Response：

Function:

Set server timeout. OK

Instruction: Param description：

AT+CIPSTO=<time> < time> server timeout, range 0~7200 seconds

6.2.10 AT+ CIUPDATE – Update through network

AT+ CIUPDATE – update through network
Type ：execute Response：

Function: +CIPUPDATE:<n>

Start upgrade.

Instruction: OK

AT+ CIUPDATE
Param description：

<n> 1 found server

 2 connect server

 3 got edition

Espressif Systems

21/ 23 June 16, 2014

ESP8266EX AT Instruction Set

 4 start update

 6.2.11 +IPD – Receive network data

 +IPD – Receive network data

 NOTE:

 1)Single connection: When the module receives network data, it will send

(+CIPMUX=0)

the data through the serial port using +IPD command

+IPD,<len>:<data>

Param description：

 <id> id no. of connection

 <len> data length

 2) Multiple connection <data> data received

(+CIPMUX=1)

+IPD,<id>,<len>:<data>

22/ 23 Espressif Systems June 16, 2014

ESP8266EX AT Instruction Set

7 Q&A

If you have any question about AT instructions, please contact us (support-

at@espressif.com) with information as follows:

(1) Version info of AT

Using “AT+GMR” to get the version info.

(2) Screenshot of the test steps, for example:

(3) Log:
ets Jan 8 2013,rst cause:1, boot mode:(3,3)

load 0x40100000, len 26336, room 16
tail 0
chksum 0xde

load 0x3ffe8000, len 5672, room 8
tail 0
chksum 0x69

load 0x3ffe9630, len 8348, room 8
tail 4

chksum 0xcb
csum 0xcb
SDK version:0.9.1
addr not ack when tx write cmd
mode : sta(18:fe:34:97:d5:7b) + softAP(1a:fe:34:97:d5:7b)

mailto:support-at@espressif.com
mailto:support-at@espressif.com

23/ 23 Espressif Systems June 16, 2014

