
Introduction

Hardware Design

Android Software Design

Figure 2 – Hardware Circuits Magnetic Sensor

Figure 3 – Bluetooth Module Arduino Board

Figure 5 – Main UI Control Parameter

In places like Ithaca where there are a lot of steer slopes, riding a

bike can be really challenging. People always get exhausted after a

long ride or when riding up a steer slope, and would want some

inspiring and encouraging music to help them regenerate and get

back on track. Basically, the main purpose of my design is to let

music sooth the pain from exhausting bike rides. The major function

of my design is making the Android smart phone switching to

different music playlists adapting to the bike speed change.

The design system consists of two parts: the hardware embedded

on the bike which handles the speed measurement, and the

customized Android app which can switch to different playlists

based on the change of speed pattern. The hardware communicates

with the Android app via Bluetooth, whose wireless feather

maximizes the separation and independency of the hardware and

the smart phone.

Figure 1 – Hardware Mounted on the Bike

The bike embedded hardware is responsible for counting the

time interval between two consecutive revolutions. It is also

designed to drive the Bluetooth module which transfers the raw

bytes of that interval to the Android smart phone.

For the bike embedded hardware design, Arduino UNO board

was chosen as the MCU. A pair of magnet & magnetic sensor

is used for signaling each individual revolution.

As shown in Figure 1, the magnet is mounted on the spoke of

the wheel, and the magnetic sensor is fixed on the hub. For

each revolution, the sensor meets the magnet for one time,

generating a voltage falling edge. By feeding it back to external

interrupt of MCU, the time interval between two consecutive

revolutions can be calculated.

The Bluetooth chip being used is RN-42, which has a

communication radius of 10 meters, being perfect for short

range, battery powered applications. RN-42 uses only 26 μA in

sleep mode while still being discoverable and connectable.

Hysteresis dynamic average speed control is adopted in the design. It is called
hysteresis control since the switching behavior is just like a hysteresis loop: slow
functional playlist is played when real time speed is lower than previous dynamic
average speed deducting some threshold (one of the sensitivity indicator, which can be
set by user), and only after real time speed exceeding previous dynamic average speed
plus the aforementioned threshold would the music player change back to play normal
functional playlists. When real time speed exceeding some preset value, fast functional
playlist will be played mainly as a warning of safety.

Let Music Ease Your Bike Ride!
Siyu Chen (sc2564@cornell.edu) Advisor: Prof. Bruce R. Land

Figure 4 –

Hysteresis

Average Speed

Control

Cornell University
School of Electrical and Computer Engineering

mailto:sc2564@cornell.edu

