
Let Music Ease Your Bike Ride!

A Design Project Report

Presented to the School of Electrical and Computer Engineering of Cornell

University in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering, Electrical and Computer Engineering

Submitted by

Siyu Chen

MEng Field Advisor: Bruce Land

Degree Date: January, 2015

1

Abstract

Master of Engineering Program

School of Electrical and Computer Engineering

Cornell University

Design Project Report

Project Title: Let Music Ease Your Bike Ride!

Author: Siyu Chen

Abstract:

The topic of my master of engineering design project is designing an

android application which helps soothing the bikers’ pain when they are

tired from bike riding. The application can switch to different playlists based

on bikers’ speed and heart rate. The whole system mainly consists of two

parts: the embedded hardware attached on the bike which probes bike

speed and heart rate using a microcontroller, and the customized android

music player application where the playlists switching AI (Artificial

Intelligence) resides. These two parts communicates via bluetooth

connection. This design project is an implementation-orientated project,

and all the designs are deliberately considered in terms of good user

experience and hardware mounting simplicity.

2

Executive Summary

In places like Ithaca where there are a lot of steer slopes, riding a bike can be real

challenging. People always get tired after a long ride or when riding up a steer slope,

and would want some inspiring and encouraging music to help them regenerate and get

back on track. My design project is implementing a system which helps bikers to get rid

of tiredness by playing inspiring music after diagnosing that the biker is not in good

physical condition. The human interface of the whole system is a customized android

music player which has AI functioning as discussed above. However, for the proper

function of the music player AI, inputs from MCU (microcontroller unit) which works as

training attributes is needed to implement.

In this design project, an android application which works both as a physical condition

monitor and a music player with AI (Artificial Intelligence) mounted is implemented. The

design project consists of five major steps. First, requirement analysis was performed

before any real implementation design started. In this design phase, the functionality of

the whole system was deliberately and concretely defined. Second, high level design of

both embedded hardware and android software was performed. In this design phase,

the collaboration and functional partitioning between embedded hardware and android

application were defined, while the functionality, expected outcome, and the test

strategy were designed. Third, the hardware was built and tested independently for both

accuracy and robustness. Forth, the customized android music player was implemented

incrementally, with each separate function being thoroughly tested before moving to the

next function realization. Last, the whole system was tested in reality in terms of

debugging and performance improvement.

This design project is an implementation-oriented project which consists of circuit

design, microcontroller programming using C/C++, android application development,

and UI design by writing xml layout file. In this project, I learned the basic developing

cycle of software development, and learned how to write efficient android app which

manages and release resources properly. Last but not least, I learned how to build a

system from scratch up only by myself and how to master new things in a short time.

3

Table of Contents

1. Introduction .. 6

1.1 Background ... 6

1.2 Functional Requirement .. 6

1.3 Cost .. 7

2. High Level Design .. 8

2.1 High-level Design of Embedded Hardware .. 8

2.2 High-level Design of Bluetooth Connection .. 9

2.3 High-level Design of Android App .. 10

3. Bike Embedded Hardware Based on Arduino Board ... 14

3.1 Speed Measurement Principle ... 14

3.2 Heart Rate Meter Implementation.. 15

3.3 Hardware Schematic ... 16

3.4 Arduino Software Code ... 16

4. Android App Development .. 18

4.1 A Simple Android Music Player .. 18

4.2 Bluetooth Connection and Data Transmission .. 19

4.3 Implementation of Playlists Switching AI .. 20

4.3.1 K Nearest Neighbor (KNN) Methodology ... 21

4.3.2 Average Speed Hysteresis Control Method ... 22

4.3.3 On-line Expert Learning Methodology .. 23

4.4 Maintaining Multi-thread in Android App ... 24

4.5 Life Cycle of the Android App Design ... 24

5. Experimental Result ... 26

5.1 Speed Measurement Unit Test .. 26

5.2 Heart Rate Measurement Unit Test ... 28

5.3 Bluetooth Transmission Test .. 31

5.4 AI Performance ... 31

4

5.4.1 KNN Training Data after Road Test .. 32

5.4.2 Road Test for Dynamic Average Speed Hysteresis Control...................................... 35

6. Conclusion and Future Work .. 36

Reference .. 37

5

List of Figures

Figure 1 – Main UI Design…………………………………………………………………………………………11

Figure 2 – Bluetooth Pre-connection UI………………………………………………………………………….11

Figure 3 – Setting UI……………………………………………………………………………………………….12

Figure 4 – Training UI………………………………………………………………………………………………12

Figure 5 – Android Application Design Cycle……………………………………………………………………13

Figure 6 – The Bike Embedded Hardware Overall……………………………………………………………..14

Figure 7 – The Magnetic Sensor Operating Principle…………………………………………………………..15

Figure 8 – The Detailed Position of Magnet & Magnetic Sensor……………………………………………...15

Figure 9 – The Schematic of Heart Rate Meter………………………………………………………………....16

Figure 10 – Schematic for the Whole Bike Embedded Hardware System…………………………………...16

Figure 11 – Main UI after AI Learning Algorithm Starts………………………………………………………...21

Figure 12 – Hysteresis Dynamic Average Speed Control……………………………………………………...23

Figure 13 – Dialog Showing Control Parameter Information…………………………………………………..23

Figure 14 – Life Cycle of an Android Activity…………………………………………………………………….24

Figure 15 – The Output of the Magnetic Sensor When User Peddles in Constant Speed………………...27

Figure 16 – The Output of the Magnetic Sensor When User Accelerative Peddles………………………...27

Figure 17 - PuTTy Window for Speed Measurement Test with the Time Interval in Milliseconds
Transmitted…….28

Figure 18 – Output Signal of the Second Amplifier in Heart Rate Meter Circuit……………………………..29

Figure 19 – Output Signal of the Heart Rate Meter Circuit…………………………………………………….29

Figure 20 – PuTTy Window for Heart Rate Measurement Test with the Heart Beat Interval in Millisecond
Transmitted…….30

Figure 21 – Distribution of the Same Measurement…………………………………………………………….30

Figure 22 – Real Time Data in Bluetooth Serial Debugger…………………………………………………….31

Figure 23 – KNN Training Samples and Decision Boundary After a Simple Training Phase………………33

Figure 24 – KNN Training Samples and Decision Boundary After 6 On-line Training Misclassification
Report……..34

Figure 25 – KNN Training Samples and Decision Boundary After 11 On-line Training Misclassification

Report……..34

6

1. Introduction

1.1 Background

In places like Ithaca where there are a lot of steer slopes, riding a bike can be real

challenging. People always get tired after a long ride or when riding up a steer slope,

and would want some inspiring and encouraging music to help them regenerate and get

back on track. Basically, the main purpose of my design is to use music to sooth the

pain from exhausting bike rides.

There are massive numbers of music app release in android market. Most of them don’t

aim at implementing AI (Artificial Intelligence) on app in the work out setting. In other

words, they are not smart enough to play different music based on users’ physical

condition. When people are working out, they tend to listen to music to have distraction

from physical tiredness. Hence, a music player which is smart enough to diagnose

people’s tastes for different music in different physical condition is in demand.

My design project is implementing a system which helps bikers to get rid of tiredness by

playing inspiring music after diagnosing that the biker is not in good physical condition.

The human interface of the whole system is a customized android music player which

has AI functioning as discussed above. However, for the proper function of the music

player AI, inputs from MCU (microcontroller unit) which works as training attributes is

needed to implement.

1.2 Functional Requirement

To ensure basic functionality of the system, certain requirements are needed and they

are listed below.

Priority Name Category Additional Description

Must Real-time Speed
Measurement

Circuit N/A

Must Real-time Heart Rate Meter Circuit N/A

Must Microcontroller Design Circuit/Software Using microcontroller to
process electric signal
while driving Bluetooth

module

Must Bluetooth connection Circuit/Software N/A

Must PuTTY Serial Connection for Test N/A

7

Measurement Accuracy&
Robustness Test

Must Bare Bone Android Music
App Development

Software N/A

Must UI Design Software/Design N/A

Optional User Experience
Improvement

Software/Design N/A

Must Software Bluetooth
Connection and Socket
Stream Management

Software N/A

Must Android App Software
Monitor

Software embedded a speed and
heart rate monitor into the

main UI of the app

Optional Resources Release
Optimization

Software Releasing memory or CPU
resources when threads

are not actually in
execution loop

Must AI Design and
Implementation

Software N/A

Must System Level Test Test N/A

1.3 Cost

The cost of my design mainly comes from embedded hardware. The components I used

are listed below with their costs.

Name Number Unit Cost / $

Arduino UNO Board 1 20

Bluetooth Silver Mate 1 40

12 v Buttery Sockets 1 5

Magnet & Sensor Pair 1 2

IR emitter/Receiver 1 N/A

Capacitors Several N/A

Resisters Several N/A

Op-amp 2 N/A

Wire Several N/A

Dupont Line 8 0.1

The cost of the system is 68 dollars for hand-assembled. For mass-production, the price

can be reduced to less than 30 dollars.

8

2. High Level Design

The major component of the system is an android smart phone application which can

switch to different music playlists adapting to different bike speed patterns and bikers’

real-time heart rate. The playlists’ switching AI is a combination of KNN (K-nearest

neighbor) algorithm, average speed hysteresis control, and on-line expert learning. To

build this AI, a training phase which takes real-time speed and heart rate as training

attributes is needed before any actual AI control.

The design system mainly consists of two parts. The first part is the hardware

embedded on the bike which handles the speed and heart rate measurement. The

second part is the customized android app where the playlists’ switching AI is built.

These two parts must be connected for real-time data transmission. In general, both

USB connection and Bluetooth connection can be used as time-efficient communication

methods. In practice, Bluetooth module was chosen because bluetooth is wireless,

maximize the separation and independence of the bike hardware and smartphone.

Meanwhile, using USB as connection may cause severe safety issue, since USB wire is

very likely to get stuck into the spinning wheel. However, the disadvantage of bluetooth

connection is battery consuming, so in the Android app I designed, battery efficiency

management was deliberately taken care of.

2.1 High-level Design of Embedded Hardware

For the bike embedded hardware design, I chose Arduino UNO microcontroller. Arduino

UNO board is a single-board microcontroller; the hardware consists of an open-source

hardware board based on ATmega328, a 16 MHz ceramic resonator, a USB connection,

a power jack, an ICSP header, a reset button and several chip LEDs. Arduino board is a

sophisticated open-source hardware board which is designed to make the application of

interactive objects or environment more accessible. Arduino has its own IDE (Integrated

Design Environment) and a set of library which makes writing software code extremely

easy for beginners. The Arduino UNO board does not need an additional programmer

for downloading code to the microcontroller, instead, the USB and the on-board

Atmega16U2 programmed as a USB-to-serial converter can be used along with its IDE

to download code to the on-board microcontroller. In my design, the Arduino UNO board

9

is responsible for measuring the bike speed and heart rate, as well as driving the

Bluetooth module which talks to Android smart phone.

For Bluetooth hardware, I chose Bluetooth Mate Silver (WRL-12576 RoHS)

manufactured by Sparkfun Company (http://www.sparkfun.com). These radios work as

a serial (RX/TX) pipe, and are a great wireless replacement for serial cables. Any serial

stream from 2400 to 115200 bps can be passed seamlessly. The bluetooth chip being

used by Bluetooth Mate Siler is RN-42, which is perfect for short range, battery powered

applications. The RN-42 uses only 26 uA in sleep mode while still being discoverable

and connectable. RN-42 has a communication radius of 10 meters, which is sufficient

enough for the bike & android system.

In all method for measuring bike speed, the easiest way is to count time interval for a

full revolution of the bike wheel. In order to minimize the damage to bike integrity as well

as making the whole embedded hardware detachable from the bike, the magnet and

magnetic sensor pair are used to signal a whole revolution of the wheel. By attaching a

magnet to the spoke of the wheel and fixing the magnetic sensor on the hub, we can

easily get the revolution signal. There are a lot of alternative hardware design choices

such as IR transceiver pair, optical grating & obstacle pair, DC motor etc., but the

magnet & magnetic sensor pair was chosen because they can be dismounted easily,

and it minimizes the circuitry stretching to the wheel while having good stability and

reliability.

2.2 High-level Design of Bluetooth Connection

As mentioned in previous part, the Bluetooth Mate Silver module I used is of good

stability for duplex TX/RX serial communication. In my design, Arduino board is the

master and the android smart phone is the slave. I made this design choice because

writing to bluetooth module buffer is not blocking while listening to incoming data is

blocking. So, if Arduino board wants to listen to incoming data from android smart

phone, it has to have a separate thread doing so. For simplicity, I decided not to

introduce multi-thread to Arduino microcontroller. In other words, to keep things simple,

Arduino writing to bluetooth buffer is allowed and Arduino listening to incoming data will

not allowed.

10

Because of the aforementioned implementation decision, Arduino only knows the time

interval between each revolution instead of the real speed because the wheel size

cannot be set by user to Arduino microcontroller. So Arduino microcontroller only

transmits the time interval as raw data to the smart phone, and the android app takes

over the task of calculating as well as displaying the real-time speed.

2.3 High-level Design of Android App

The Android app is the only user interface (UI) for the whole design system, so it should

have both AI and speed & heart rate monitor implemented. The development of the

Android app mainly consists of two parts: functionality realization and UI design. These

two parts of design are dependent and nested with each other, so a systematic scheme

is indispensable before any actual software development being done.

To develop a heavily customized android app, the best design methodology is

incremental design, which is also known as divide & conquer. In consideration of

functionality, a music player with different playlists is the base of the app. So, my first

step of the software development is building a well functioned music player (bare-bone

version is the available resources on-line [1]) with 4 playlists: one (we will call it overall

playlist below) containing all the music, the other three (we will call it functional playlists

below) containing music to be played in different mode (identifying as energetic, tired,

and normal mode). User can add different music to different functional playlists when

browsing the overall playlist, or users can hit previous & next button in main interface to

switch to different music and hit corresponding heart button to add the current playing

music to different functional playlists. After this design step, the main UI is shown in

Figure 1.

The second step of my app development is handling the bluetooth connection and

wireless data transmission. In this step, two UI activities are added – bluetooth pre-

connection UI and setting UI (shown in Figure 2 and Figure 3). Bluetooth pre-connection

UI is responsible for handling connection to the Silver Mate Bluetooth module before the

main UI. In setting UI, Users can enter the wheel size and enable speed measurement

using a toggle button. When finishing the second step, the android app can display the

current bike speed as well as the wheel size on main UI while playing music.

11

 Figure 1 – Main UI Design Figure 2 – Bluetooth Pre-connection UI

The third step of my app development is learning speed & heart rate pattern. In this step

a training phase UI is added. Users can enter training phase by clicking on speed

display field on screen, and the training phase takes real-time speed and real-time heart

rate as training attributes as well as taking corresponding binary tags which indicate

whether the biker is tired or not as training classification results. In this training phase,

the real-time data will be displayed at UI as shown in Figure 4, and user can click the

image button to toggle the binary training classification tags with 1 indicating “tired” and

0 indicating “energetic”. The training data will be written to a file in external flash

memory which will be used for part of switching playlists AI when the on-line learning

starts.

The forth step is building the playlists switching AI. Generally, the combination of KNN

algorithm, average speed hysteresis control (details discussed in section 4.3) and on-

line expert learning method is chosen as the control AI. In this step, the prediction result

of whether the biker is tired or not will be displayed on screen, and music playlists is

switched from one to anther also by this prediction result. Users can click the prediction

result field on screen to indicate a wrong prediction, and the corresponding real-time

attributes and classification tag will be added to training data as new samples. This is

12

exactly what on-line learning should do. Meanwhile, two seek bars are added in setting

UI to let users change the desirable controlling sensitivity for speed hysteresis control.

Control information including hysteresis threshold and average speed update frequency

can be displayed on screen by clicking the setting button after on-line learning starts.

 Figure 3 – Setting UI Figure 4 – Training UI

The last step is testing the app in a real bike system and debug & optimizing the system

in functionality level. In this step, the playlists switching AI will be thoroughly tested on

prediction accuracy, running efficiency as well as robustness.

The design cycle of android application is shown in Figure 5.

13

Figure 5 – Android Application Design Cycle

14

3. Bike Embedded Hardware Based on Arduino Board

In this section, I will talk in details about one of the two sub-systems in the whole design

system: the bike embedded hardware. The bike embedded hardware is responsible for

counting the time interval between two consecutive revolutions, and calculating the time

interval between two consecutive heart beats. It should also be responsible for driving

the bluetooth module and transmit the raw data to the android smart phone. Test of the

functionality is important in terms of stability and reliability. The overall bike embedded

system hardware is shown in Figure 6.

Figure 6 – The Bike Embedded Hardware Overall

3.1 Speed Measurement Principle

In my design, a pair of magnet & magnetic sensor is used for signaling each individual

revolution. The design choice has been discussed in the first section. In this part, I will

discuss the design & principle details about the speed measurement hardware.

The operating principle of the magnetic sensor is shown in Figure 7. Basically, it follows

the Hall Effect. The behavior of the magnetic sensor is that when being near a strong

magnetic field, it behave like a short circuit, when removing the magnetic field, it behave

like an open circuit. Based on this behavior, I mounted a magnet on the spoke of the

wheel, and then I fixed the sensor on the hub. So, for each revolution, the sensor meets

the magnet for one time and the electric property between the two points of the sensor

gets changed for one time. This electric property change can be used for signaling a

whole revolution. Figure 8 shows how the magnetic & magnetic sensor pair is fixed on

the bike.

15

Figure 7 – The Magnetic Sensor Operating Principle

Figure 8 – The Detailed Position of Magnet & Magnetic Sensor

3.2 Heart Rate Meter Implementation

The heart rate meter can be built using noninvasive infrared light which probes blood

pressure and pulse rate in a fingertip. The principle of using infrared light to probe heart

rate is that finger absorbs more IR if there is more blood and since each heart beat

sends more blood into the finger, the IR absorption is changed. However, this change is

very small, so a serious of amplifiers is needed. Meanwhile, the band-pass filters are

also needed because it helps to get rid of unwanted steady signals and noise at higher

frequencies, avoiding them from being amplified too much and blocking the desired

small changing signal. The circuit schematic of the heart rate meter is shown in Figure 9.

[2]

16

Figure 9 – The Schematic of Heart Rate Meter

3.3 Hardware Schematic

The output of the magnetic sensor and the heart rate monitor are fed to two external

interrupt ports in Arduino board, and counting for time intervals are handled in the

interrupt service routine (ISR). The block diagram for the whole system is shown in

Figure 10.

Figure 10 – Schematic for the Whole Bike Embedded Hardware System

3.4 Arduino Software Code

One consideration of choosing Arduino board rather than building my own custom MCU

board is that Arduino IDE & relevant usable library makes software development on

MCU very easy and neat. Arduino has a SoftwareSerial library which can extend any

output ports of the MCU to TX/RX serial port. Since Arduino UNO board use ATmega32

MCU, which has only 1 TX/RX port and is used to download code from Arduino IDE,

17

SoftwareSerial library is extremely useful for handling other TX/RX serial connectivity.

As for counting time interval between two consecutive revolutions, an Arduino built-in

function called millis() which returns the current time since last time reset in the unit of

millisecond can be used. For a typical bike speed which is 10 m/s and a typical wheel

size which is 26 inches, the time interval for a whole wheel revolution is 207.24 ms. So

using Arduino system function millis() to calculate time interval of a whole wheel

revolution only introduce up to 0.5% error. For the typical heart rate which is 60

beat/min, using millis() function only introduces 0.1% error. So, we can use millis()

function for both attributes calculation since it is accurate enough for this design system.

Meanwhile, the counter which millis() function uses overflows in 49 days, which is

obviously enough for maintaining the correctness of counting time interval for the bike

system.

18

4. Android App Development

The real challenge for this design project is developing this highly customized android

app. The android app developing cycle is shown in Figure 5. In this section, I will talk in

details about the functionality implementation and the AI design choice.

4.1 A Simple Android Music Player

The functionality of the simple music player which is the base of the app has been

discussed in section 2.3. In this section, the implementation details are mainly focused

on.

Eight classes are associated with the functionality of the simple music player: class

WorkOutMusicPlayerActivity, class PlayListActivity, class PlayListFastActivity, class

PlayListNormalActivity, class PlayListSlowActivity, class SongsManager, class

PlayListManage, and class Utilities. Basically, each of them is responsible for one

specific functionality or UI performance. By calling getPlayList() in SongManager, an

ArrayList containing information(name and path) of all songs in external SD card music

folder(Absolute path: /storage/extSdCard/music/) in the form of HashMap<String, String>

would be returned. Collaborating with a method public void playSongs(int songIndex) in

class WorkOutMusicPlayerActivity, which extracts music path from the aforementioned

HashMap and add it to the data source of a MediaPlayer instance, a single song can be

played.

Class PlayListActivity is responsible for generating a ListView of all music. Each music

in the ListView can be clicked to play or be added to different functional playlists. Class

PlayListFastActivity, PlayListNormalActivity, and PlayListSlowActivity are responsible for

generating ListView of corresponding functional playlists. Class Utilities contains all the

method needed to calculate and update timer SeekBar in music player main UI.

In class WorkOutMusicPlayerActivity, other than main UI thread, there is another

background runnable thread, mUpdateTimeTask which updates the timer bar of the

music player main UI.

19

4.2 Bluetooth Connection and Data Transmission

Android OS has rich resources of higher level API and relevant classes which can

handle Bluetooth discovering, connection, and duplex data transmission including

writing to Bluetooth TX write buffer and listening for incoming raw bytes.

Class BTConnection handles bluetooth connection and data transmission by creating a

bluetooth socket and getting input and output stream from this socket. First, this activity

(this class extends class Activity) searches for all available bluetooth devices using an

instance of bluetooth adapter and put them in a ListView. Then for each item of the

ListView, onClick listeners are set to enable the corresponding bluetooth connection.

Basically, bluetooth connection is handled in a separate thread, and the connection

socket is obtained by calling createRfcommSocketToServiceRecord(UUID) method of

the bluetooth device. UUID (Universal Unique Identifier) represents some common

service protocol that bluetooth device supports. Specifying UUID when creating rfcomm

service makes the client which connects to the host being able to identify the host. For a

serial port, the UUID can be defined as follows.

public static final UUID MY_UUID = UUID.fromString("00001101-0000-1000-8000-

00805f9b34fb");

After generating the socket, the connect method in BluetoothSocket instance can be

called to launch the real connection. The simplest way to pass the BluetoothSocket to

another class which extends Activity is to create a VariableHolder class and initiate

BluetoothSocket field in it. The VariableHolder class can be accessed by any classes in

the same package; by adopting this small trick, the problem of intent.putExtra not being

able to pass BluetoothSocket to another activity can be easily solved.

After Bluetooth connection, WorkOutMusicPlayerActivity is invoked. An inner class

BTtranceiver which extends class Thread is used to maintain duplex data transmission

(read and write) and displays the incoming data on the main UI. The Bluetooth read

which listens to incoming data is blocking, so Bluetooth read cannot be handled in main

UI thread, otherwise it would block the UI and make everything visible very slow. The

bluetooth write, on the other hand, is not blocking, and can be handled in main UI

20

thread. Constructing an inner class which extends Thread to maintain duplex data

transmission is a good and simple design choice since it allows read and write to be

constructed in the same class but in different thread by overriding run method, letting

bluetooth listening method running in background thread, and constructing regular

method bluetooth write in UI thread. In order to make sure the data displaying having

good instantaneity, this new thread should be granted highest executing priority. Note

that the raw bytes from bluetooth read buffer should be processed to corresponding

real-time speed or real-time heart rate before Handler post them on UI.

4.3 Implementation of Playlists Switching AI

After clicking the launch button, the on-line learning starts and the prediction result is

used for playlists switching. The major idea behind this AI choice decision is finding the

best trade-off between learning efficiency and prediction accuracy. The playlists

switching AI should have high learning and predicting efficiency because there are

limited hardware resources in a smart phone and there are already a bunch of

applications sharing the limited resources. The learning AI should have good calculation

efficiency in order to keep the UI responds quickly. Meanwhile, the learning AI should

also have good prediction accuracy, but the more sophisticated the learning model is,

the more intense the calculation would be. So, although kernel SVM (Support Vector

Machine) usually has good practical prediction accuracy and has good overfitting

control mechanism, it is not a good learning AI in this design because solving convex

optimization problem would consume a lot of CPU resources and thus makes the

application extremely slow.

In this design, the playlists switching AI is a combination of KNN (K Nearest Neighbor),

average speed hysteresis control, and on-line expert learning. It will be discussed in

details in this section. Figure 11 shows what the main UI looks like after AI learning

algorithm starts to run.

21

Figure 11 – Main UI after AI Learning Algorithm Starts

(The third picture indicates wrong prediction after user clicking the mode display field)

4.3.1 K Nearest Neighbor (KNN) Methodology

The KNN algorithm is among the simplest of all machine learning algorithms. It is a type

of instance-based learning, and the basic idea of this principle is to weight the

contributions of the neighbors so that the nearer neighbors contribute more to the

average than the more distant ones. A newly observed sample can be classified as in

the same class as the majority votes of its k-nearest neighbors’.

The training examples are vectors in a multidimensional feature space, each with a

class label. And the training phase of the algorithm consists only of storing the feature

vectors and class labels of the training samples. In KNN, a similarity function is needed

to find the nearest neighbors. A commonly used similarity function for continuous

variables is Euclidean distance, and it is also a good choice in this design. Intuitively,

the more similar the newly observed sample is to a training sample, the more likely that

the class labels are the same.

22

4.3.2 Average Speed Hysteresis Control Method

Dynamic average speed hysteresis control is a very simple but efficient method for

tiredness prediction. The principle behind is very straightforward and intuitive. Basically,

the average speed in a certain period of time is used as the separating point of whether

the biker is tired or not. In order to introduce some robustness and increase the

prediction accuracy, the hysteresis is adopted. To be specific, when real-time speed

exceeds some certain value plus the dynamic average speed, the prediction decision is

changed to “energetic”; when real-time speed is less than dynamic average speed

deduct some certain value, the prediction decision is changed to “tired”. The certain

value mentioned above is the sensitive threshold which can be adjusted in setting UI.

The hysteresis dynamic average speed control is shown in Figure 12.

Dynamic average speed is the average speed in a period of time which is updated

frequently (the update frequency can be set by users in setting UI). It is calculated in the

following way. In the bluetooth listening thread, real time speed is pushed into an

ArrayBlockingQueue which has capacity of 100 elements. In the AI prediction thread,

When ArrayBlockingQueue gets full, it calculated the average speed based on all the

elements in that blocking queue, and then pop out some number of old real time speed

data. The number of elements being popped out is another indicator of controlling

sensitivity, and it can also be set in setting UI by user. One of the most important things

in maintaining the ArrayBlockingQueue is that it should never be full for a long time,

otherwise it will block the bluetooth listening thread and make the main UI act extremely

slow.

To better visualize the control parameter (hysteresis threshold and dynamic average

speed update frequency), a new feature is introduced to the setting button. After

launching the control mode, clicking on setting button would return a dialog with basic

information of control parameter as shown in Figure 13, that is, two hysteresis

boundaries, and an average speed update distance.

23

Figure 12 – Hysteresis Dynamic Average Speed Control

Figure 13 – Dialog Showing Control Parameter Information

4.3.3 On-line Expert Learning Methodology

In this design, KNN (K Nearest Neighbor) algorithm and average speed hysteresis

control both work as an individual prediction expert. An on-line expert learning

mechanism is used to combine these experts’ prediction together and make the final

prediction decision. To be specific, the prediction result (tired or energetic) is based on

the majority votes of both experts’ prediction multiplied by their own confident weight.

Every time there is a misprediction reported by user, the corresponding mispredicted

24

experts will have to reduce its confident weight by half. This on-line expert learning

mechanism guarantees that the “bad” expert will have little influence on the prediction

decision after making certain amounts of mistakes. Furthermore, it is called on-line

learning because the experts learn from mistakes. Every time a mistake is made, the

real-time speed and heart rate as well as classification tag would be written to training

data file as a new training sample. The next time KNN algorithm runs, the AI can learn

from more samples, which helps increasing the future prediction accuracy.

4.4 Maintaining Multi-thread in Android App

As was stated in the previous part, four threads are running in the android app design:

main UI thread, Bluetooth data listening thread, controlling thread, and the thread which

updates timer bar in main UI. It is important to maintain the concurrency of these

running threads since there are sharing resources between threads. Basically, if a

method in a class is defined as synchronized, the instance of this object can only be

grabbed and updated by one thread at a time. So, two classes called

SpeedLearnFlagHolder and BTReadThFlagHolder are created and the methods in them

are defined as synchronized to maintain concurrency for sharing resources when

different thread trying to access them at the same time.

4.5 Life Cycle of the Android App Design

Figure 14 – Life Cycle of an Android Activity

Figure 14 shows a simplified illustration of the Activity lifecycle, expressed as a step

pyramid. This shows how, for every callback used to take the activity a step toward the

25

Resumed state at the top, there's a callback method that takes the activity a step down.

The activity can also return to the resumed state from the Paused and Stopped state.

In my app design, all the setup work is done in the overrode onCreate() method. For

class WorkOutMusicPlayerActivity, that includes setting up content view of layout file

(a .xml file in res/layout folder), defining all the functionality of Button, ListView,

TextView, Handler, etc., setting up three different running thread, setting up all the

object activity listener, handling music play, etc. The onPause() method should not be

overrode, and in the onDestroy() method, the Bluetooth connection should be canceled,

the BluetoothSocket static field in VariableHolder class should be set back to null, the

ArrayBlockingQueue should be emptied, all the playlist should be set to null, all the

running thread should be interrupted and set to null, and all the MediaPlayer resources

should be released.

26

5. Experimental Result

In this section, various types of experiments are done to verify the functionality of this

design project. There are four major parts that need to be tested. The first one is the

speed measurement, which verifies both the circuit and ISR processing feasibility. The

second one is the heart rate measurement, which verifies the circuit reliability. The third

one is the bluetooth transmission which should be proved quick and error-free. And the

last one is the prediction results (tired or energetic) verification.

5.1 Speed Measurement Unit Test

Speed is measured using magnet & magnetic sensor pair and the time interval of a

whole wheel revolution is calculated in an external ISR. For unit test of this speed

monitor, the output signal of the magnetic sensor should have periodically steady time

intervals when user peddles in a constant rate. When user peddles in increasing rate,

the output signal should also become denser.

The output signal of the magnetic sensor is shown in Figure 15 and Figure 16, from

which we can see that the time interval differentiates little when user peddles at a

constant rate, and time interval becomes shorter when peddling speeds up. PuTTy is

used to print out the time intervals calculated in ISR in the setting of constant peddling

rate, and the result is shown in Figure 17. The standard deviation of the measurement

data shown in Figure 17 is 6.11. As a result, compared with the mean which is 403.17,

the standard deviation can be considered small enough, which means the real time

speed measurement is steady and reliable.

27

Figure 15 – The Output of the Magnetic Sensor When User Peddles in Constant Speed

Figure 16 – The Output of the Magnetic Sensor When User Accelerative Peddles

28

Figure 17 - PuTTy Window for Speed Measurement Test with the Time Interval in

Milliseconds Transmitted

5.2 Heart Rate Measurement Unit Test

The heart rate measurement circuit is shown in section 3.2. The output of the second

amplifier is shown in Figure 18. After auto-threshold adjustment, the signal is sharpen

based on average voltage of the transient period, and the corresponding output signal is

shown in Figure 19. PuTTy is used to record the measurement data of heart rate and

the result is shown in Figure 20. To test the reliability of the heart rate meter, 42

measurement data which indicates time intervals between two consecutive heart beats

in milliseconds is recorded when the user’s physical condition is steady. The distribution

of these heart rate measurement data is drawn in Figure 21. By writing a python script,

we can get that the mean of these data is 928.34 and the standard deviation is 28.22.

We can see from the histogram (Figure 21) that the measurement data approximates

normal distribution, in which the mean is a good representation of the real heart rate

and the standard deviation is small enough compared with the mean so that the error

range of the measurement is allowable.

29

Figure 18 – Output Signal of the Second Amplifier in Heart Rate Meter Circuit

Figure 19 – Output Signal of the Heart Rate Meter Circuit

30

Figure 20 – PuTTy Window for Heart Rate Measurement Test with the Heart Beat Interval

in Millisecond Transmitted

Figure 21 – Distribution of the Same Measurement

(Mean: 928.34, Standard Deviation: 28.22)

31

5.3 Bluetooth Transmission Test

As was discussed in former sections, bluetooth data transmission should be both quick

and reliable. The bluetooth module is driven by Arduino microcontroller as software

UART and the transmission is done periodically in Arduino’s loop() function. Bluetooth

serial debugger is used to test the quick and reliable bluetooth transmission. Hardware

UART of the Arduino board which transmits the same data via USB to PuTTy is used to

work as a control group so that the bluetooth transmission reliability can be tested. The

testing result is shown in Figure 22, it is the same as what PuTTy shows.

Figure 22 – Real Time Data in Bluetooth Serial Debugger

5.4 AI Performance

In this section, the prediction performance of AI is tested. As mentioned in section 4.3,

there are two experts making predictions individually. They are KNN and dynamic

average speed hysteresis control. The final prediction result is the weighted average of

both experts, and each expert’s confidential weight is the same at the beginning and

reduced by half every time user reports a misprediction which is caused by

corresponding expert’s wrong decision. The AI performance is tested in three steps.

First, after long times of on-line training, in which the reported misprediction is written

into KNN training data, KNN training samples stored in the phone external storage

space should be good and representative. These training samples should be sufficient

32

enough for correctly classifying new samples in low error rate. So the first step of the AI

performance verification is testing the KNN misprediction frequency after long time

training. Second, the other expert – dynamic average speed hysteresis control should

be tested separately for prediction accuracy. Third, the on-line expert scheme as a

whole should be tested for prediction accuracy. All the test should be road test.

5.4.1 KNN Training Data after Road Test

As is described in section 4.3, there are two ways for KNN to accumulate training data.

In training phase, all the user feedback and the attributes (real-time speed and heart

rate) are written to an external storage file as basic KNN training data. After the training

phase, KNN accumulates new training samples every time it makes a misprediction. So

we can expect that after a long time of training and reporting misprediction, KNN model

can gather sufficient training data which gives good prediction with low error rate. To

verify this, I did a simple road test.

First of all, I train the KNN in the training phase as discussed in section 2.3. After the

training phase, I read out the training data and plot them in Figure 23. We can easily

see from the figure that there are two clusters far apart from each other, and the KNN

decision boundary is nearly a horizontal line, which means heart rate works as the

major contribution for the prediction result. This result is reasonable since in the training

phase, we only train KNN with very limited number of scenario, so we cannot expect the

training data will provides sufficient accuracy for classifying all combination in 2-D plane

as shown in Figure 23.

Second, after the basic training phase, KNN will predict based on the decision boundary

shown in Figure 23. After 6 misclassification reported by user, new KNN training

samples are written in external storage file, and the new KNN decision boundary is as

shown in Figure 24. We can see from this figure that there are a big change in decision

boundary since new points added to Figure 24 are all misclassified samples, which is

mean to improve the KNN prediction accuracy. Meanwhile, we can see that the decision

boundary becomes not smooth and at some place not reasonable since only 6 new

samples are added to the plot and they are only local representative. With the number

of misclassification report increasing, we can expect the decision boundary becomes

33

more reasonable. Figure 25 shows that when 5 more new points are added to the plot,

the decision boundary becomes smoother and more reasonable. Based on Figure 23 –

25, we can expect that after a long time of training and reporting misprediction, KNN

model can gather sufficient training data which gives good prediction with low error rate.

Figure 23 – KNN Training Samples and Decision Boundary After a Simple Training Phase

34

Figure 24 – KNN Training Samples and Decision Boundary After 6 On-line Training

Misclassification Report

Figure 25 – KNN Training Samples and Decision Boundary After 11 On-line Training

Misclassification Report

35

5.4.2 Road Test for Dynamic Average Speed Hysteresis Control

Dynamic average speed hysteresis control is a simple but efficient way to make

prediction of whether the biker is tired or not. The major advantage of this method is that

it does not require any training so that it is simple enough to maintain. Meanwhile, it has

sensitive responds to external scenario change. To verify the real performance, this

prediction expert was tested individually in a road test. The experience shows that this

experts works well for long time non-stopping workout scenarios. In dense traffic light

scenarios, a deceleration caused by road control would be mispredicted as biker getting

tired.

36

6. Conclusion and Future Work

In this design, I build a smart android music player for bikers. KNN, average speed

hysteresis control, and on-line expert learning are built as decision AI for music playlists

switch prediction. The whole system contains not only the android software, but also

contains Arduino microcontroller and peripheral circuit design. These two parts are

designed individually and test individually. At last, a system level test is performed for

debugging and optimization.

There are still some possible future works that can be done to refine the whole design.

1. More thorough road test should be done to verify the AI performance. The road

tests should contain comprehensive traffic and road scenarios, and the accuracy

criteria should be quantified in terms of number of mispredictions per mile.

2. The prediction is made by learning from heart rate and speed pattern. In the

future, more attributes can be added such as gravity, slope, weather and so on.

3. Currently, the app is highly customized for single user because all the training

data is store in one file. In the future, multiple user support can be made in the

app.

4. Resources optimization can be further made in order to reduce the chance of

thrashing. This app is intensively resources consuming because it has a lot of

background running thread and high level of I/O traffic. Optimization should be

made in order for this app to be a good residence and not killed by android

operating system.

5. For safety consideration, buttons which are used for training feedback and

misprediction report can be added to the handlebar. This avoids user clicking on

phone screen when riding the bike, which makes the whole design system safer

to use in reality.

37

Reference

[1] Avi Tamadaon. (2012). Android Building Audio Player Tutorial.

http://www.androidhive.info/2012/03/android-building-audio-player-tutorial/

[2] Bruce Land. (2011). Pulse Meter Project.

http://people.ece.cornell.edu/land/curie/curie_2011/Projects_2011/Pulse_meter_project

_brl4.pdf

http://www.androidhive.info/2012/03/android-building-audio-player-tutorial/
http://people.ece.cornell.edu/land/curie/curie_2011/Projects_2011/Pulse_meter_project_brl4.pdf
http://people.ece.cornell.edu/land/curie/curie_2011/Projects_2011/Pulse_meter_project_brl4.pdf

