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Abstract: 

The topic of my master of engineering design project is designing an 

android application which helps soothing the bikers’ pain when they are 

tired from bike riding. The application can switch to different playlists based 

on bikers’ speed and heart rate. The whole system mainly consists of two 

parts: the embedded hardware attached on the bike which probes bike 

speed and heart rate using a microcontroller, and the customized android 

music player application where the playlists switching AI (Artificial 

Intelligence) resides. These two parts communicates via bluetooth 

connection. This design project is an implementation-orientated project, 

and all the designs are deliberately considered in terms of good user 

experience and hardware mounting simplicity.  
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Executive Summary 

In places like Ithaca where there are a lot of steer slopes, riding a bike can be real 

challenging. People always get tired after a long ride or when riding up a steer slope, 

and would want some inspiring and encouraging music to help them regenerate and get 

back on track. My design project is implementing a system which helps bikers to get rid 

of tiredness by playing inspiring music after diagnosing that the biker is not in good 

physical condition. The human interface of the whole system is a customized android 

music player which has AI functioning as discussed above. However, for the proper 

function of the music player AI, inputs from MCU (microcontroller unit) which works as 

training attributes is needed to implement.  

In this design project, an android application which works both as a physical condition 

monitor and a music player with AI (Artificial Intelligence) mounted is implemented. The 

design project consists of five major steps. First, requirement analysis was performed 

before any real implementation design started. In this design phase, the functionality of 

the whole system was deliberately and concretely defined. Second, high level design of 

both embedded hardware and android software was performed. In this design phase, 

the collaboration and functional partitioning between embedded hardware and android 

application were defined, while the functionality, expected outcome, and the test 

strategy were designed. Third, the hardware was built and tested independently for both 

accuracy and robustness. Forth, the customized android music player was implemented 

incrementally, with each separate function being thoroughly tested before moving to the 

next function realization. Last, the whole system was tested in reality in terms of 

debugging and performance improvement.  

This design project is an implementation-oriented project which consists of circuit 

design, microcontroller programming using C/C++, android application development, 

and UI design by writing xml layout file. In this project, I learned the basic developing 

cycle of software development, and learned how to write efficient android app which 

manages and release resources properly. Last but not least, I learned how to build a 

system from scratch up only by myself and how to master new things in a short time.  
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1. Introduction 

1.1 Background 

In places like Ithaca where there are a lot of steer slopes, riding a bike can be real 

challenging. People always get tired after a long ride or when riding up a steer slope, 

and would want some inspiring and encouraging music to help them regenerate and get 

back on track. Basically, the main purpose of my design is to use music to sooth the 

pain from exhausting bike rides. 

There are massive numbers of music app release in android market. Most of them don’t 

aim at implementing AI (Artificial Intelligence) on app in the work out setting. In other 

words, they are not smart enough to play different music based on users’ physical 

condition. When people are working out, they tend to listen to music to have distraction 

from physical tiredness. Hence, a music player which is smart enough to diagnose 

people’s tastes for different music in different physical condition is in demand.  

My design project is implementing a system which helps bikers to get rid of tiredness by 

playing inspiring music after diagnosing that the biker is not in good physical condition. 

The human interface of the whole system is a customized android music player which 

has AI functioning as discussed above. However, for the proper function of the music 

player AI, inputs from MCU (microcontroller unit) which works as training attributes is 

needed to implement.  

1.2 Functional Requirement 

To ensure basic functionality of the system, certain requirements are needed and they 

are listed below. 

Priority Name Category Additional Description 

Must Real-time Speed 
Measurement 

Circuit  N/A 

Must Real-time Heart Rate Meter Circuit N/A 

Must Microcontroller Design Circuit/Software Using microcontroller to 
process electric signal 
while driving Bluetooth 

module 

Must Bluetooth connection Circuit/Software N/A 

Must PuTTY Serial Connection for Test N/A 
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Measurement Accuracy& 
Robustness Test 

Must Bare Bone Android Music 
App Development 

Software N/A 

Must UI Design Software/Design N/A 

Optional User Experience 
Improvement 

Software/Design N/A 

Must Software Bluetooth 
Connection and Socket 
Stream Management 

Software N/A 

Must Android App Software 
Monitor 

Software embedded a speed and 
heart rate monitor into the 

main UI of the app 

Optional Resources Release 
Optimization 

Software Releasing memory or CPU 
resources when threads 

are not actually in 
execution loop  

Must AI Design and 
Implementation 

Software N/A 

Must System Level Test Test N/A 

 

1.3 Cost 

The cost of my design mainly comes from embedded hardware. The components I used 

are listed below with their costs. 

Name Number Unit Cost / $ 

Arduino UNO Board 1 20 

Bluetooth Silver Mate 1 40 

12 v Buttery Sockets 1 5 

Magnet & Sensor Pair 1 2 

IR emitter/Receiver 1 N/A 

Capacitors Several N/A 

Resisters Several N/A 

Op-amp 2 N/A 

Wire Several N/A 

Dupont Line 8  0.1 

 

The cost of the system is 68 dollars for hand-assembled. For mass-production, the price 

can be reduced to less than 30 dollars.  

 



8 
 

2. High Level Design 

The major component of the system is an android smart phone application which can 

switch to different music playlists adapting to different bike speed patterns and bikers’ 

real-time heart rate. The playlists’ switching AI is a combination of KNN (K-nearest 

neighbor) algorithm, average speed hysteresis control, and on-line expert learning. To 

build this AI, a training phase which takes real-time speed and heart rate as training 

attributes is needed before any actual AI control.  

The design system mainly consists of two parts. The first part is the hardware 

embedded on the bike which handles the speed and heart rate measurement. The 

second part is the customized android app where the playlists’ switching AI is built. 

These two parts must be connected for real-time data transmission. In general, both 

USB connection and Bluetooth connection can be used as time-efficient communication 

methods. In practice, Bluetooth module was chosen because bluetooth is wireless, 

maximize the separation and independence of the bike hardware and smartphone. 

Meanwhile, using USB as connection may cause severe safety issue, since USB wire is 

very likely to get stuck into the spinning wheel. However, the disadvantage of bluetooth 

connection is battery consuming, so in the Android app I designed, battery efficiency 

management was deliberately taken care of.   

2.1 High-level Design of Embedded Hardware 

For the bike embedded hardware design, I chose Arduino UNO microcontroller. Arduino 

UNO board is a single-board microcontroller; the hardware consists of an open-source 

hardware board based on ATmega328, a 16 MHz ceramic resonator, a USB connection, 

a power jack, an ICSP header, a reset button and several chip LEDs. Arduino board is a 

sophisticated open-source hardware board which is designed to make the application of 

interactive objects or environment more accessible. Arduino has its own IDE (Integrated 

Design Environment) and a set of library which makes writing software code extremely 

easy for beginners. The Arduino UNO board does not need an additional programmer 

for downloading code to the microcontroller, instead, the USB and the on-board 

Atmega16U2 programmed as a USB-to-serial converter can be used along with its IDE 

to download code to the on-board microcontroller. In my design, the Arduino UNO board 
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is responsible for measuring the bike speed and heart rate, as well as driving the 

Bluetooth module which talks to Android smart phone. 

For Bluetooth hardware, I chose Bluetooth Mate Silver (WRL-12576 RoHS) 

manufactured by Sparkfun Company (http://www.sparkfun.com). These radios work as 

a serial (RX/TX) pipe, and are a great wireless replacement for serial cables. Any serial 

stream from 2400 to 115200 bps can be passed seamlessly. The bluetooth chip being 

used by Bluetooth Mate Siler is RN-42, which is perfect for short range, battery powered 

applications. The RN-42 uses only 26 uA in sleep mode while still being discoverable 

and connectable. RN-42 has a communication radius of 10 meters, which is sufficient 

enough for the bike & android system. 

In all method for measuring bike speed, the easiest way is to count time interval for a 

full revolution of the bike wheel. In order to minimize the damage to bike integrity as well 

as making the whole embedded hardware detachable from the bike, the magnet and 

magnetic sensor pair are used to signal a whole revolution of the wheel.  By attaching a 

magnet to the spoke of the wheel and fixing the magnetic sensor on the hub, we can 

easily get the revolution signal. There are a lot of alternative hardware design choices 

such as IR transceiver pair, optical grating & obstacle pair, DC motor etc., but the 

magnet & magnetic sensor pair was chosen because they can be dismounted easily, 

and it minimizes the circuitry stretching to the wheel while having good stability and 

reliability.  

2.2 High-level Design of Bluetooth Connection 

As mentioned in previous part, the Bluetooth Mate Silver module I used is of good 

stability for duplex TX/RX serial communication. In my design, Arduino board is the 

master and the android smart phone is the slave. I made this design choice because 

writing to bluetooth module buffer is not blocking while listening to incoming data is 

blocking. So, if Arduino board wants to listen to incoming data from android smart 

phone, it has to have a separate thread doing so. For simplicity, I decided not to 

introduce multi-thread to Arduino microcontroller. In other words, to keep things simple, 

Arduino writing to bluetooth buffer is allowed and Arduino listening to incoming data will 

not allowed. 
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Because of the aforementioned implementation decision, Arduino only knows the time 

interval between each revolution instead of the real speed because the wheel size 

cannot be set by user to Arduino microcontroller. So Arduino microcontroller only 

transmits the time interval as raw data to the smart phone, and the android app takes 

over the task of calculating as well as displaying the real-time speed. 

2.3 High-level Design of Android App  

The Android app is the only user interface (UI) for the whole design system, so it should 

have both AI and speed & heart rate monitor implemented. The development of the 

Android app mainly consists of two parts: functionality realization and UI design. These 

two parts of design are dependent and nested with each other, so a systematic scheme 

is indispensable before any actual software development being done. 

To develop a heavily customized android app, the best design methodology is 

incremental design, which is also known as divide & conquer. In consideration of 

functionality, a music player with different playlists is the base of the app. So, my first 

step of the software development is building a well functioned music player (bare-bone 

version is the available resources on-line [1] ) with 4 playlists: one (we will call it overall 

playlist below) containing all the music, the other three (we will call it functional playlists 

below) containing music to be played in different mode (identifying as energetic, tired, 

and normal mode). User can add different music to different functional playlists when 

browsing the overall playlist, or users can hit previous & next button in main interface to 

switch to different music and hit corresponding heart button to add the current playing 

music to different functional playlists. After this design step, the main UI is shown in 

Figure 1. 

The second step of my app development is handling the bluetooth connection and 

wireless data transmission. In this step, two UI activities are added – bluetooth pre-

connection UI and setting UI (shown in Figure 2 and Figure 3). Bluetooth pre-connection 

UI is responsible for handling connection to the Silver Mate Bluetooth module before the 

main UI. In setting UI, Users can enter the wheel size and enable speed measurement 

using a toggle button. When finishing the second step, the android app can display the 

current bike speed as well as the wheel size on main UI while playing music. 
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                    Figure 1 – Main UI Design                 Figure 2 – Bluetooth Pre-connection UI 

The third step of my app development is learning speed & heart rate pattern. In this step 

a training phase UI is added. Users can enter training phase by clicking on speed 

display field on screen, and the training phase takes real-time speed and real-time heart 

rate as training attributes as well as taking corresponding binary tags which indicate 

whether the biker is tired or not as training classification results. In this training phase, 

the real-time data will be displayed at UI as shown in Figure 4, and user can click the 

image button to toggle the binary training classification tags with 1 indicating “tired” and 

0 indicating “energetic”. The training data will be written to a file in external flash 

memory which will be used for part of switching playlists AI when the on-line learning 

starts.  

The forth step is building the playlists switching AI. Generally, the combination of KNN 

algorithm, average speed hysteresis control (details discussed in section 4.3) and on-

line expert learning method is chosen as the control AI. In this step, the prediction result 

of whether the biker is tired or not will be displayed on screen, and music playlists is 

switched from one to anther also by this prediction result. Users can click the prediction 

result field on screen to indicate a wrong prediction, and the corresponding real-time 

attributes and classification tag will be added to training data as new samples. This is 
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exactly what on-line learning should do. Meanwhile, two seek bars are added in setting 

UI to let users change the desirable controlling sensitivity for speed hysteresis control. 

Control information including hysteresis threshold and average speed update frequency 

can be displayed on screen by clicking the setting button after on-line learning starts. 

                     

                        Figure 3 – Setting UI                                      Figure 4 – Training UI 

The last step is testing the app in a real bike system and debug & optimizing the system 

in functionality level. In this step, the playlists switching AI will be thoroughly tested on 

prediction accuracy, running efficiency as well as robustness. 

The design cycle of android application is shown in Figure 5. 



13 
 

 

Figure 5 – Android Application Design Cycle 
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3. Bike Embedded Hardware Based on Arduino Board 

In this section, I will talk in details about one of the two sub-systems in the whole design 

system: the bike embedded hardware. The bike embedded hardware is responsible for 

counting the time interval between two consecutive revolutions, and calculating the time 

interval between two consecutive heart beats. It should also be responsible for driving 

the bluetooth module and transmit the raw data to the android smart phone. Test of the 

functionality is important in terms of stability and reliability. The overall bike embedded 

system hardware is shown in Figure 6. 

    

Figure 6 – The Bike Embedded Hardware Overall 

3.1 Speed Measurement Principle 

In my design, a pair of magnet & magnetic sensor is used for signaling each individual 

revolution. The design choice has been discussed in the first section. In this part, I will 

discuss the design & principle details about the speed measurement hardware. 

The operating principle of the magnetic sensor is shown in Figure 7. Basically, it follows 

the Hall Effect. The behavior of the magnetic sensor is that when being near a strong 

magnetic field, it behave like a short circuit, when removing the magnetic field, it behave 

like an open circuit. Based on this behavior, I mounted a magnet on the spoke of the 

wheel, and then I fixed the sensor on the hub. So, for each revolution, the sensor meets 

the magnet for one time and the electric property between the two points of the sensor 

gets changed for one time. This electric property change can be used for signaling a 

whole revolution. Figure 8 shows how the magnetic & magnetic sensor pair is fixed on 

the bike. 
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Figure 7 – The Magnetic Sensor Operating Principle 

        

Figure 8 – The Detailed Position of Magnet & Magnetic Sensor 

3.2 Heart Rate Meter Implementation 

The heart rate meter can be built using noninvasive infrared light which probes blood 

pressure and pulse rate in a fingertip. The principle of using infrared light to probe heart 

rate is that finger absorbs more IR if there is more blood and since each heart beat 

sends more blood into the finger, the IR absorption is changed. However, this change is 

very small, so a serious of amplifiers is needed. Meanwhile, the band-pass filters are 

also needed because it helps to get rid of unwanted steady signals and noise at higher 

frequencies, avoiding them from being amplified too much and blocking the desired 

small changing signal. The circuit schematic of the heart rate meter is shown in Figure 9. 

[2] 
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Figure 9 – The Schematic of Heart Rate Meter 

3.3 Hardware Schematic 

The output of the magnetic sensor and the heart rate monitor are fed to two external 

interrupt ports in Arduino board, and counting for time intervals are handled in the 

interrupt service routine (ISR). The block diagram for the whole system is shown in 

Figure 10. 

 

Figure 10 – Schematic for the Whole Bike Embedded Hardware System 

3.4 Arduino Software Code 

One consideration of choosing Arduino board rather than building my own custom MCU 

board is that Arduino IDE & relevant usable library makes software development on 

MCU very easy and neat. Arduino has a SoftwareSerial library which can extend any 

output ports of the MCU to TX/RX serial port. Since Arduino UNO board use ATmega32 

MCU, which has only 1 TX/RX port and is used to download code from Arduino IDE, 
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SoftwareSerial library is extremely useful for handling other TX/RX serial connectivity. 

As for counting time interval between two consecutive revolutions, an Arduino built-in 

function called millis() which returns the current time since last time reset in the unit of 

millisecond can be used. For a typical bike speed which is 10 m/s and a typical wheel 

size which is 26 inches, the time interval for a whole wheel revolution is 207.24 ms. So 

using Arduino system function millis() to calculate time interval of a whole wheel 

revolution only introduce up to 0.5% error. For the typical heart rate which is 60 

beat/min, using millis() function only introduces 0.1% error. So, we can use millis() 

function for both attributes calculation since it is accurate enough for this design system. 

Meanwhile, the counter which millis() function uses overflows in 49 days, which is 

obviously enough for maintaining the correctness of counting time interval for the bike 

system. 
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4. Android App Development 

The real challenge for this design project is developing this highly customized android 

app. The android app developing cycle is shown in Figure 5. In this section, I will talk in 

details about the functionality implementation and the AI design choice. 

4.1 A Simple Android Music Player 

The functionality of the simple music player which is the base of the app has been 

discussed in section 2.3. In this section, the implementation details are mainly focused 

on. 

Eight classes are associated with the functionality of the simple music player: class 

WorkOutMusicPlayerActivity, class PlayListActivity, class PlayListFastActivity, class 

PlayListNormalActivity, class PlayListSlowActivity, class SongsManager, class 

PlayListManage, and class Utilities. Basically, each of them is responsible for one 

specific functionality or UI performance. By calling getPlayList() in SongManager, an 

ArrayList containing information(name and path) of all songs in external SD card music 

folder(Absolute path: /storage/extSdCard/music/) in the form of HashMap<String, String> 

would be returned. Collaborating with a method public void playSongs(int songIndex) in 

class WorkOutMusicPlayerActivity, which extracts music path from the aforementioned 

HashMap and add it to the data source of a MediaPlayer instance, a single song can be 

played. 

Class PlayListActivity is responsible for generating a ListView of all music. Each music 

in the ListView can be clicked to play or be added to different functional playlists. Class 

PlayListFastActivity, PlayListNormalActivity, and PlayListSlowActivity are responsible for 

generating ListView of corresponding functional playlists. Class Utilities contains all the 

method needed to calculate and update timer SeekBar in music player main UI.  

In class WorkOutMusicPlayerActivity, other than main UI thread, there is another 

background runnable thread, mUpdateTimeTask which updates the timer bar of the 

music player main UI. 
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4.2 Bluetooth Connection and Data Transmission 

Android OS has rich resources of higher level API and relevant classes which can 

handle Bluetooth discovering, connection, and duplex data transmission including 

writing to Bluetooth TX write buffer and listening for incoming raw bytes.  

Class BTConnection handles bluetooth connection and data transmission by creating a 

bluetooth socket and getting input and output stream from this socket. First, this activity 

(this class extends class Activity) searches for all available bluetooth devices using an 

instance of bluetooth adapter and put them in a ListView. Then for each item of the 

ListView, onClick listeners are set to enable the corresponding bluetooth connection. 

Basically, bluetooth connection is handled in a separate thread, and the connection 

socket is obtained by calling createRfcommSocketToServiceRecord(UUID) method of 

the bluetooth device. UUID (Universal Unique Identifier) represents some common 

service protocol that bluetooth device supports. Specifying UUID when creating rfcomm 

service makes the client which connects to the host being able to identify the host. For a 

serial port, the UUID can be defined as follows. 

 

public static final UUID MY_UUID = UUID.fromString("00001101-0000-1000-8000-

00805f9b34fb"); 

 

After generating the socket, the connect method in BluetoothSocket instance can be 

called to launch the real connection. The simplest way to pass the BluetoothSocket to 

another class which extends Activity is to create a VariableHolder class and initiate 

BluetoothSocket field in it. The VariableHolder class can be accessed by any classes in 

the same package; by adopting this small trick, the problem of intent.putExtra not being 

able to pass BluetoothSocket to another activity can be easily solved.  

After Bluetooth connection, WorkOutMusicPlayerActivity is invoked. An inner class 

BTtranceiver which extends class Thread is used to maintain duplex data transmission 

(read and write) and displays the incoming data on the main UI. The Bluetooth read 

which listens to incoming data is blocking, so Bluetooth read cannot be handled in main 

UI thread, otherwise it would block the UI and make everything visible very slow. The 

bluetooth write, on the other hand, is not blocking, and can be handled in main UI 
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thread. Constructing an inner class which extends Thread to maintain duplex data 

transmission is a good and simple design choice since it allows read and write to be 

constructed in the same class but in different thread by overriding run method, letting 

bluetooth listening method running in background thread, and constructing regular 

method bluetooth write in UI thread. In order to make sure the data displaying having 

good instantaneity, this new thread should be granted highest executing priority. Note 

that the raw bytes from bluetooth read buffer should be processed to corresponding 

real-time speed or real-time heart rate before Handler post them on UI. 

4.3 Implementation of Playlists Switching AI  

After clicking the launch button, the on-line learning starts and the prediction result is 

used for playlists switching. The major idea behind this AI choice decision is finding the 

best trade-off between learning efficiency and prediction accuracy. The playlists 

switching AI should have high learning and predicting efficiency because there are 

limited hardware resources in a smart phone and there are already a bunch of 

applications sharing the limited resources. The learning AI should have good calculation 

efficiency in order to keep the UI responds quickly. Meanwhile, the learning AI should 

also have good prediction accuracy, but the more sophisticated the learning model is, 

the more intense the calculation would be. So, although kernel SVM (Support Vector 

Machine) usually has good practical prediction accuracy and has good overfitting 

control mechanism, it is not a good learning AI in this design because solving convex 

optimization problem would consume a lot of CPU resources and thus makes the 

application extremely slow.  

In this design, the playlists switching AI is a combination of KNN (K Nearest Neighbor), 

average speed hysteresis control, and on-line expert learning. It will be discussed in 

details in this section. Figure 11 shows what the main UI looks like after AI learning 

algorithm starts to run. 
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Figure 11 – Main UI after AI Learning Algorithm Starts 

(The third picture indicates wrong prediction after user clicking the mode display field) 

4.3.1 K Nearest Neighbor (KNN) Methodology 

The KNN algorithm is among the simplest of all machine learning algorithms. It is a type 

of instance-based learning, and the basic idea of this principle is to weight the 

contributions of the neighbors so that the nearer neighbors contribute more to the 

average than the more distant ones. A newly observed sample can be classified as in 

the same class as the majority votes of its k-nearest neighbors’.  

The training examples are vectors in a multidimensional feature space, each with a 

class label. And the training phase of the algorithm consists only of storing the feature 

vectors and class labels of the training samples. In KNN, a similarity function is needed 

to find the nearest neighbors. A commonly used similarity function for continuous 

variables is Euclidean distance, and it is also a good choice in this design. Intuitively, 

the more similar the newly observed sample is to a training sample, the more likely that 

the class labels are the same. 
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4.3.2 Average Speed Hysteresis Control Method 

Dynamic average speed hysteresis control is a very simple but efficient method for 

tiredness prediction.  The principle behind is very straightforward and intuitive. Basically, 

the average speed in a certain period of time is used as the separating point of whether 

the biker is tired or not. In order to introduce some robustness and increase the 

prediction accuracy, the hysteresis is adopted. To be specific, when real-time speed 

exceeds some certain value plus the dynamic average speed, the prediction decision is 

changed to “energetic”; when real-time speed is less than dynamic average speed 

deduct some certain value, the prediction decision is changed to “tired”. The certain 

value mentioned above is the sensitive threshold which can be adjusted in setting UI. 

The hysteresis dynamic average speed control is shown in Figure 12. 

Dynamic average speed is the average speed in a period of time which is updated 

frequently (the update frequency can be set by users in setting UI). It is calculated in the 

following way. In the bluetooth listening thread, real time speed is pushed into an 

ArrayBlockingQueue which has capacity of 100 elements. In the AI prediction thread, 

When ArrayBlockingQueue gets full, it calculated the average speed based on all the 

elements in that blocking queue, and then pop out some number of old real time speed 

data. The number of elements being popped out is another indicator of controlling 

sensitivity, and it can also be set in setting UI by user. One of the most important things 

in maintaining the ArrayBlockingQueue is that it should never be full for a long time, 

otherwise it will block the bluetooth listening thread and make the main UI act extremely 

slow.  

To better visualize the control parameter (hysteresis threshold and dynamic average 

speed update frequency), a new feature is introduced to the setting button. After 

launching the control mode, clicking on setting button would return a dialog with basic 

information of control parameter as shown in Figure 13, that is, two hysteresis 

boundaries, and an average speed update distance. 
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Figure 12 – Hysteresis Dynamic Average Speed Control 

 

Figure 13 – Dialog Showing Control Parameter Information 

4.3.3 On-line Expert Learning Methodology 

In this design, KNN (K Nearest Neighbor) algorithm and average speed hysteresis 

control both work as an individual prediction expert. An on-line expert learning 

mechanism is used to combine these experts’ prediction together and make the final 

prediction decision. To be specific, the prediction result (tired or energetic) is based on 

the majority votes of both experts’ prediction multiplied by their own confident weight. 

Every time there is a misprediction reported by user, the corresponding mispredicted 
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experts will have to reduce its confident weight by half. This on-line expert learning 

mechanism guarantees that the “bad” expert will have little influence on the prediction 

decision after making certain amounts of mistakes. Furthermore, it is called on-line 

learning because the experts learn from mistakes. Every time a mistake is made, the 

real-time speed and heart rate as well as classification tag would be written to training 

data file as a new training sample. The next time KNN algorithm runs, the AI can learn 

from more samples, which helps increasing the future prediction accuracy.  

4.4 Maintaining Multi-thread in Android App 

As was stated in the previous part, four threads are running in the android app design: 

main UI thread, Bluetooth data listening thread, controlling thread, and the thread which 

updates timer bar in main UI. It is important to maintain the concurrency of these 

running threads since there are sharing resources between threads. Basically, if a 

method in a class is defined as synchronized, the instance of this object can only be 

grabbed and updated by one thread at a time. So, two classes called 

SpeedLearnFlagHolder and BTReadThFlagHolder are created and the methods in them 

are defined as synchronized to maintain concurrency for sharing resources when 

different thread trying to access them at the same time.  

4.5 Life Cycle of the Android App Design 

 

Figure 14 – Life Cycle of an Android Activity 

Figure 14 shows a simplified illustration of the Activity lifecycle, expressed as a step 

pyramid. This shows how, for every callback used to take the activity a step toward the 
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Resumed state at the top, there's a callback method that takes the activity a step down. 

The activity can also return to the resumed state from the Paused and Stopped state.  

In my app design, all the setup work is done in the overrode onCreate() method. For 

class WorkOutMusicPlayerActivity, that includes setting up content view of layout file 

(a .xml file in res/layout folder), defining all the functionality of Button, ListView, 

TextView, Handler, etc., setting up three different running thread, setting up all the 

object activity listener, handling music play, etc. The onPause() method should not be 

overrode, and in the onDestroy() method, the Bluetooth connection should be canceled, 

the BluetoothSocket static field in VariableHolder class should be set back to null, the 

ArrayBlockingQueue should be emptied, all the playlist should be set to null, all the 

running thread should be interrupted and set to null, and all the MediaPlayer resources 

should be released.  
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5. Experimental Result 

In this section, various types of experiments are done to verify the functionality of this 

design project. There are four major parts that need to be tested. The first one is the 

speed measurement, which verifies both the circuit and ISR processing feasibility. The 

second one is the heart rate measurement, which verifies the circuit reliability. The third 

one is the bluetooth transmission which should be proved quick and error-free. And the 

last one is the prediction results (tired or energetic) verification.  

5.1 Speed Measurement Unit Test 

Speed is measured using magnet & magnetic sensor pair and the time interval of a 

whole wheel revolution is calculated in an external ISR. For unit test of this speed 

monitor, the output signal of the magnetic sensor should have periodically steady time 

intervals when user peddles in a constant rate. When user peddles in increasing rate, 

the output signal should also become denser.  

The output signal of the magnetic sensor is shown in Figure 15 and Figure 16, from 

which we can see that the time interval differentiates little when user peddles at a 

constant rate, and time interval becomes shorter when peddling speeds up. PuTTy is 

used to print out the time intervals calculated in ISR in the setting of constant peddling 

rate, and the result is shown in Figure 17. The standard deviation of the measurement 

data shown in Figure 17 is 6.11. As a result, compared with the mean which is 403.17, 

the standard deviation can be considered small enough, which means the real time 

speed measurement is steady and reliable.  
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Figure 15 – The Output of the Magnetic Sensor When User Peddles in Constant Speed 

 

Figure 16 – The Output of the Magnetic Sensor When User Accelerative Peddles  
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Figure 17 - PuTTy Window for Speed Measurement Test with the Time Interval in 

Milliseconds Transmitted 

5.2 Heart Rate Measurement Unit Test 

The heart rate measurement circuit is shown in section 3.2. The output of the second 

amplifier is shown in Figure 18. After auto-threshold adjustment, the signal is sharpen 

based on average voltage of the transient period, and the corresponding output signal is 

shown in Figure 19. PuTTy is used to record the measurement data of heart rate and 

the result is shown in Figure 20. To test the reliability of the heart rate meter, 42 

measurement data which indicates time intervals between two consecutive heart beats 

in milliseconds is recorded when the user’s physical condition is steady. The distribution 

of these heart rate measurement data is drawn in Figure 21. By writing a python script, 

we can get that the mean of these data is 928.34 and the standard deviation is 28.22. 

We can see from the histogram (Figure 21) that the measurement data approximates 

normal distribution, in which the mean is a good representation of the real heart rate 

and the standard deviation is small enough compared with the mean so that the error 

range of the measurement is allowable.   
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Figure 18 – Output Signal of the Second Amplifier in Heart Rate Meter Circuit 

 

Figure 19 – Output Signal of the Heart Rate Meter Circuit 
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Figure 20 – PuTTy Window for Heart Rate Measurement Test with the Heart Beat Interval 

in Millisecond Transmitted 

 

Figure 21 – Distribution of the Same Measurement 

(Mean: 928.34, Standard Deviation: 28.22) 
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5.3 Bluetooth Transmission Test 

As was discussed in former sections, bluetooth data transmission should be both quick 

and reliable. The bluetooth module is driven by Arduino microcontroller as software 

UART and the transmission is done periodically in Arduino’s loop() function. Bluetooth 

serial debugger is used to test the quick and reliable bluetooth transmission. Hardware 

UART of the Arduino board which transmits the same data via USB to PuTTy is used to 

work as a control group so that the bluetooth transmission reliability can be tested. The 

testing result is shown in Figure 22, it is the same as what PuTTy shows.  

 

Figure 22 – Real Time Data in Bluetooth Serial Debugger 

5.4 AI Performance  

In this section, the prediction performance of AI is tested. As mentioned in section 4.3, 

there are two experts making predictions individually. They are KNN and dynamic 

average speed hysteresis control. The final prediction result is the weighted average of 

both experts, and each expert’s confidential weight is the same at the beginning and 

reduced by half every time user reports a misprediction which is caused by 

corresponding expert’s wrong decision. The AI performance is tested in three steps. 

First, after long times of on-line training, in which the reported misprediction is written 

into KNN training data, KNN training samples stored in the phone external storage 

space should be good and representative. These training samples should be sufficient 
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enough for correctly classifying new samples in low error rate. So the first step of the AI 

performance verification is testing the KNN misprediction frequency after long time 

training. Second, the other expert – dynamic average speed hysteresis control should 

be tested separately for prediction accuracy. Third, the on-line expert scheme as a 

whole should be tested for prediction accuracy. All the test should be road test. 

5.4.1 KNN Training Data after Road Test 

As is described in section 4.3, there are two ways for KNN to accumulate training data. 

In training phase, all the user feedback and the attributes (real-time speed and heart 

rate) are written to an external storage file as basic KNN training data. After the training 

phase, KNN accumulates new training samples every time it makes a misprediction. So 

we can expect that after a long time of training and reporting misprediction, KNN model 

can gather sufficient training data which gives good prediction with low error rate. To 

verify this, I did a simple road test.  

First of all, I train the KNN in the training phase as discussed in section 2.3. After the 

training phase, I read out the training data and plot them in Figure 23. We can easily 

see from the figure that there are two clusters far apart from each other, and the KNN 

decision boundary is nearly a horizontal line, which means heart rate works as the 

major contribution for the prediction result. This result is reasonable since in the training 

phase, we only train KNN with very limited number of scenario, so we cannot expect the 

training data will provides sufficient accuracy for classifying all combination in 2-D plane 

as shown in Figure 23.  

Second, after the basic training phase, KNN will predict based on the decision boundary 

shown in Figure 23. After 6 misclassification reported by user, new KNN training 

samples are written in external storage file, and the new KNN decision boundary is as 

shown in Figure 24. We can see from this figure that there are a big change in decision 

boundary since new points added to Figure 24 are all misclassified samples, which is 

mean to improve the KNN prediction accuracy. Meanwhile, we can see that the decision 

boundary becomes not smooth and at some place not reasonable since only 6 new 

samples are added to the plot and they are only local representative. With the number 

of misclassification report increasing, we can expect the decision boundary becomes 
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more reasonable. Figure 25 shows that when 5 more new points are added to the plot, 

the decision boundary becomes smoother and more reasonable. Based on Figure 23 – 

25, we can expect that after a long time of training and reporting misprediction, KNN 

model can gather sufficient training data which gives good prediction with low error rate.  

 

Figure 23 – KNN Training Samples and Decision Boundary After a Simple Training Phase 
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Figure 24 – KNN Training Samples and Decision Boundary After 6 On-line Training 

Misclassification Report 

 

Figure 25 – KNN Training Samples and Decision Boundary After 11 On-line Training 

Misclassification Report 
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5.4.2 Road Test for Dynamic Average Speed Hysteresis Control 

Dynamic average speed hysteresis control is a simple but efficient way to make 

prediction of whether the biker is tired or not. The major advantage of this method is that 

it does not require any training so that it is simple enough to maintain. Meanwhile, it has 

sensitive responds to external scenario change. To verify the real performance, this 

prediction expert was tested individually in a road test. The experience shows that this 

experts works well for long time non-stopping workout scenarios. In dense traffic light 

scenarios, a deceleration caused by road control would be mispredicted as biker getting 

tired.   
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6. Conclusion and Future Work 

In this design, I build a smart android music player for bikers. KNN, average speed 

hysteresis control, and on-line expert learning are built as decision AI for music playlists 

switch prediction. The whole system contains not only the android software, but also 

contains Arduino microcontroller and peripheral circuit design. These two parts are 

designed individually and test individually. At last, a system level test is performed for 

debugging and optimization. 

There are still some possible future works that can be done to refine the whole design. 

1. More thorough road test should be done to verify the AI performance. The road 

tests should contain comprehensive traffic and road scenarios, and the accuracy 

criteria should be quantified in terms of number of mispredictions per mile.  

2. The prediction is made by learning from heart rate and speed pattern. In the 

future, more attributes can be added such as gravity, slope, weather and so on. 

3. Currently, the app is highly customized for single user because all the training 

data is store in one file. In the future, multiple user support can be made in the 

app. 

4. Resources optimization can be further made in order to reduce the chance of 

thrashing. This app is intensively resources consuming because it has a lot of 

background running thread and high level of I/O traffic. Optimization should be 

made in order for this app to be a good residence and not killed by android 

operating system. 

5. For safety consideration, buttons which are used for training feedback and 

misprediction report can be added to the handlebar. This avoids user clicking on 

phone screen when riding the bike, which makes the whole design system safer 

to use in reality.  
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