Bluetooth Low Energy Door Lock
with Ambient Noise Number Generation

A Design Report
Presented to the Engineering Division of the Graduate School of Cornell University
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering, Electrical and Computer Engineering

Submitted by Danielle Regis
Advised by Dr. Bruce Land
Date: May 2016

Abstract

Master of Electrical Engineering Program
Cornell University
Design Project Report

Project Title: Bluetooth Low Energy Door Lock with Ambient Noise Number
Generation
Author: Danielle Regis

Abstract:

This is a door lock that can be controlled via Bluetooth Low Energy from an iPhone.
The goal of this project was to include elements that would make the device more
secure and explore ambient noise as a source for random number generation. When
the user opens the application to open their lock they have to enter a 4-digit code.
They are then brought to a screen that asks them to enter a 10-digit code within 4
seconds. This ten-digit number is sent serially over Bluetooth LE from the Arduino.
Only after this number is correctly entered can the user open their lock. The total
system is comprised of an Arduino Uno, Red Bear Lab Bluetooth Low Energy shield,
microphone, and motorized door lock. The microcontroller handles the random
number generation from the ambient noise input, and the iPhone application
handles the actions taken to avoid access to the lock via a man in the middle attack.

Executive Summary

The internet of things has been rumored to be the next big thing. The
internet of things is a network of physical objects embedded with electronics that
enable them to collect and exchange data. The application of these devices often
make our lives much easier, but with the rapid development of these instruments
we often overlook security. As we start increasing the connectivity of physical
devices they often become susceptible to breaches in security. Security firms like
Kaspersky have shown the vulnerabilities in systems like smart homes, baby
monitors, car washes, and police surveillance systems. Whether a hacker wants to
wash their car for free, or watch someone else’s baby - IoT security flaws make it
possible.

Today’s applications of [oT devices are only the tip of the iceberg in regard to
its uses. In the future the IoT has the potential to help with smarter natural disaster
management, smarter healthcare, and smarter urban management. Although the
direction of this project didn’t explore any of these applications, a door lock was
chosen for this project because it's extremely critical to the safety of one’s home.
The novelty of this project ultimately lied in the exploration of randomly generated
numbers being sourced from ambient noise. The protection of the communication,
and data of [oT devices is critical thus discovering more secure ways to encrypt this
information is imperative.

Today, many random seeds for pseudo-random number generators are
actually not truly random. This is a problem because it leads to the creation of
encryption keys that can be predicted. The search for new means to create random
numbers is not a new problem, but creating random numbers with sound is. Sound
was chosen because the ambient noise in a room often has no traceable pattern so it
is a source that should be explored for encryption.

The objective of this MEng project is to create a Bluetooth Low Energy (LE)
door lock with ambient noise number generation. The main goal of this project is to
explore key generation from ambient noise, and it's degree of randomness. A
microphone will be used to collect the noise in the room, and it will then be
translated into a number. The number created from the ambient noise will be the
seed for the pseudo-random number generator. The numbers that are ultimately
generated are then statistically tested for randomness. Bluetooth LE was chosen for
the communication between the phone and the door lock because Bluetooth LE
requires there to be communication within a short range from the device. This is an
additional layer of potential security for the system over that of a system that
communicates across the Internet.

The human interface of the whole system is an iPhone application that first
presents a screen where the user has to input a simple 4 digit code. The second
layer of authentication ensures that the user is a human rather than a computer
automated system that has cycled through all of the possible codes for entry. The
application does this by getting a 10 digit audio generated random number from the
door that has to be reentered by the user within 4 seconds. Only after these two
steps have been passed can the user access the lock via Bluetooth Low Energy. The
combination of these steps, and the accessibility restrictions set on the system by
having the lock only connect to the user’s device make this lock a very secure option.

Table of Contents

gL (oY 10 Uotu o) o U OO 6
BACKEGTOUNA ..ottt ettt esse s s 6
EXISTING PrOAUCES c.cuuceieeeeeeetseesseeeeteesseseesse s ssses e s e s bbb 7
000 TN 7
DESIGN PTrODIEIM ..ottt 8

RN E] 40 B D LT =0 o TP 8
SYStem REQUITEIMENTS ..ot ss bbb 8
Hardware DeSign ChOICESoueuerereereeeesseesessessssesesssssssessessssssesssessssssssssssssssssssssssssssssssssesans 9

Microcontroller & BLE Shi€ld....oeeneeeeeeeseesesseesesesssessessssssssessssssssssssssessssssssnns 9
LiOCK ettt R AR AR AR 9
MicCrophone & MOTOT DIIVETeeeereeeeeseeseeseesseesessessessesssessesssssssessssssssssssssssssssssssesssssssans 9
Software DeSign ChOICESiecereeeerreesesseeseeeesseesss e ssssse s s ssss s sssssnees 10
(00200000100 01 (0r= 18 (o) o TP 10
ApPlication /10S OULHINE ...ttt eessessss s seesse s s s s ses s 10
SOUNA ANALY SIS coueuieurerreenrerseesseseesseesses e sesseessesssesssssses s s ss s s bbb s bbb nnssnsanes 11
RANAOM NUIMND T .ottt ettt see s s e 11
High Level Design of HAardWare........oeeenecneeecessesssseessessessessssssssssssssssssssssssssssssssssssssees 12
ArdUINO SOfEWATE COAE ...uueeieeeereeceeeeeeeeesseeeessee et s s sss s 13
High Level Design of iPhone ApPliCationoeoeneeneenseneesseeseeseeseessessessesssesseesseseees 14

IPhone AP DEVEIOPIMENT ... eeeeeeeereeeereeeessseses s sses s seesse s bbb s s 16
121 LD T oToTd o 003 0 o LTotu () o FVHO TP 16
L T o) o Yol =T=) o OSSPSR 17
RAnNdom NUMDET SCIEEM...... o ieeereeeeereereeseeseeeessessesse s sssssse s ssss s snees 17

RESUILS oottt s e s s R RS e R 18
APPIICALION TESES w.orrvueeeeureeeesreeseesseeeesseessessessseseessesss s s s s s sn s s s baes 18
Pseudo Random NUMDET TESESoereereereeneesseesessesssessesssessessesssssssssessssssssssssssssssssssssesssees 18
Interference with Other DeSIGNS.....o e sses s s sssssssssees 21
LT Lo LT TS 22

Conclusion and FULUIE WOTK........eeeeeseesesssesseeseesssssessssssessesssessssssssssssssssssssssssssssssssssssssees 22

RS (S) 0 L1 <X I 23

List of Figures

Figure 1: High-Level System DeSi@N......coeeneneeneeseesesseesessesssessessesssessssssssssssssssssssssesseees 13
Figure 2: App Password Screen Figure 3: App Random Number Screen....15
Figure 4: App Door Access Screen Figure 5: App Door Access Screen............ 15
Figure 6: Picture of FINal SYStEIM ...ttt sesses e ssessssssesssssssssees 18
Figure 7: MiCTOPNONE OUELPUL ... cceiereeeesreeeesreeseeseessseeessssssessssssessesssessssssesssesssssssssssssssssssssssssssnees 19
Figure 8: Zoomed In Microphone OULPULcreneeneenneeneeseeseesessessessessesssesessssessesesssessnees 20
Figure 9: Arduino random() With Seed Generated by Microphone........cccouereneerreennce. 20
Figure 10: Arduino random() Without Random Seed - Same Sequence Every Time21
Figure 11: Histogram Showing Distribution of random() Valuescurereneerneeneens 21

Introduction

Background

The internet of things has been rumored to be the next big thing. The internet of
things is a network of physical objects embedded with electronics that enable them
to collect and exchange data. The application of these devices often make our lives
much easier, but with the rapid development of these instruments we often
overlook security. As we start increasing the connectivity of physical devices they
often become susceptible to breaches in security. With the development of new [oT
devices security is often overlooked and this makes these devices especially
vulnerable. Security firms like Kaspersky have shown the vulnerabilities in systems
like smart homes, baby monitors, car washes, and police surveillance systems.
Whether a hacker wants to wash their car free of charge, or stalk someone via their
fitness tracker - [oT security flaws make it possible.

Wind River published a white paper on [oT security in January 2015 and one of their
main points was that it’s an unrealistic expectation that it is somehow possible to
compress 25 years of security evolution into novel [oT devices. Despite glaring and
gaping holes in many IoT devices they continue to be released, and the world that
we are living in has continued to become more connected. For instance, as recently
as May 2016 it has been released that computer scientists at University of Michigan
have discovered vulnerabilities in Samsung’s Smart Home automation system that
allowed them to carry out a host of remote attacks, including digitally picking
connected door locks from anywhere in the world. Samsung’s SmartThings system
is one of the leading Internet of Things platforms for smart homes and the
researches discovered that the attacks were made possible due to two intrinsic
design flaws that are not easily fixed. Information such as this forces us consumers
to think twice before using systems such as this to connect door locks and other
security-critical devices. Sadly many people don’t think twice because as time goes
on we are becoming more and more conditioned to “trust” technology.

My design project is exploring a simple way to make an [oT door lock more secure.
The human interface of the whole system is an iPhone application that first presents
a screen where the user has to input a simple 4 digit code. The second layer of
authentication ensures that the user is a human rather than a computer automated
system that has cycled through all of the possible codes for entry. The application
does this by getting a 10 digit random number from the door that has to be
reentered by the user within 4 seconds. Only after these two steps have been
passed can the user access the lock via Bluetooth Low Energy.

Existing Products

There are many wireless door locks out on the market today. Most of them come
with one or more means of entry which include RFID, WiFi, keypad, biometric
(fingerprint) or Bluetooth. Most of these locks open via app and can integrate with
the user’s home automation system. According to SafeWise the leading source for
home security and safety advice for the average consumer the electronic door locks
found below are suggested.

Kwikset Kevo

Yale Real Living Electronic Touch Screen Deadbolt
SoHoMIiLL YL 99 Keyless Electronic Keypad Lock
August Smart Lock

Samsung Digital Door Lock

Schlage Camelot Touchscreen Deadbolt

Sl Wi

Despite security concerns that have come to light with systems like Samsung’s
SmartThings more IoT locks continue to roll out onto the market every month. The
appeal of these devices is that they never require you to copy a key again. Many
offer you the ability to create virtual keys for family and guests and set windows of
access for particular users. The additional functionality that these locks provide
make them a great addition of many people’s lives despite their questionable
security.

The MEng project explored was a proof of concept of random number generation
from ambient noise in the form of a relatively secure IoT door lock. Although the
system may appear to not be as complex as the locks that are available on the
market, by not being connected to the internet, and not having any cloud
connectivity, this alternative is a very viable safe option.

Cost

One constraint for an average user is cost. The average wireless door lock on the
market today costs around $200. The lock created for this project is not only more
secure, but cheper.

Name Number Unit Cost/$
Arduino Uno Board 1 24.95
Red Bear Labs Bluetooth 1 19.99
Shield
Bi-Directional DC Motor 1 4.95
Driver Board
Lockitron Motorized Door 1 4495
Lock Body
Electret Microphone 1 7.95

Wire several N/A

AA Battery 4 1.50

The cost of the system is $108.79, but if this were to be mass-produced the price
would likely be less than $75.

Design Problem

The goal of this project is to design a proof of concept system that is more secure
than wireless locks on the market today. Many of the systems that are on the
market are susceptible to man in the middle attacks. For instance many of the
systems today can be hacked by simply scanning for open ports on the Web that are
commonly used by known control systems.

The Z wave wireless protocol is particularly popular for home automation. There
are millions of Z-Wave products worldwide and they can be found in thousands of
hotels, cruise ships, and vacation rentals. Yet ad Def Con 19 it was shown that some
of these devices were easily hacked by man in the middle attacks. Breaches like this
show that security of home systems needs to be reevaluated. For the scope of this
project the fundamental design problem faced was discovering where the weakest
points were for wireless locks and working to eliminate them.

This deliverable will show you a system that is resistant to man in the middle and
brute force attacks. The complete system will be of great interest to consumers who
are interested in freedom associated with wireless locks, but are weary of the
apparent security risks of many of the locks that are available on the market.

System Design
System Requirements

The main priority is to create a device that can only be accessed by the owner of the
device. To do this a two-step authentication process was chosen.

First, an iPhone application presents a screen where the user has to input a simple 4
digit code. Second, a 10 digit random number from the door that has to be
reentered by the user within 4 seconds is sent to the device. Only after these two
steps have been passed can the user access the lock via Bluetooth Low Energy.

The following requirements for the project were outlined:
* The system shall not be connected to the Web
* The system shall be compact
* The system shall be low cost (<$200)

* The system shall not be susceptible to man in the middle and brute force
attacks

* The system shall have a manual override

* The system shall be able to be powered by a battery pack

* The system shall be able to be controlled by an iPhone application

* The system shall only allow the lock to interact with the user’s device

Hardware Design Choices

Microcontroller & BLE Shield

The microcontroller board being used for this project is an Arduino Uno, which is
based on the ATmega328P. It has 14 digital input/output pins, 6 analog inputs, and
a 16MHz quartz crystal. It was primarily chosen for this project because of its vast
open source documentation, which makes it a great prototyping platform.
Additionally when looking for devices that could easily interface with a compatible
i0S device through Bluetooth LowEnergy (BLE), the Arduino Uno arose as the board
with the most options. Ultimately, the shield that was chosen was BedBearLab’s
BLE Shield Version 2.1 because of its compatibility with the Arduino Uno, and
Arduino Yun. Compatibility with the Arduino Yun was considered due to it being a
more robust board that is great for web connected or networked projects. Possible
web connectivity would be a great way to expand this project in the future.

Lock

The body of the lock chosen was that of the first generation wireless lock by
Lockitron. Lockitron was one of the first wireless locks to come to the market, but
after crowd funding in 2012, they had significant manufacturing, and software
issues. The mountain of issues that they faced, and years of delayed shipments led
them to scrapping their first generation design, and they are currently focusing all
development, and sales on their second-generation lock. With the scrapping of their
initial design, the body of their first generation design is available for sale through
websites like Adafruit. Lockitron has stripped down the initial device, and leaves
the guts of the device to be manipulated. The housing contains a geared down DC
motor, a 4xAA battery holder, and the mechanical rotation mechanism and detection
switches. Using this body is incredibly convenient due to the fact that it is easily fits
over a thumb turn deadbolt lock, and the lack of their control board, motor driver or
app, is easily replaced with alternatives more fitting for the direction of this project.

Microphone & Motor Driver

The last two components chosen for the device being built were an Adafruit TB6612
1.2A DC/stepper motor driver breakout board, and an Electret Microphone Amplier
- MAX 9814 with auto gain control. The driver breakout board was chosen due to it
being the driver used by those at Adafruit when they created an SMS-controlled
door lock using the same housing. Knowing that they used this breakout board
eliminates the question of if the driver is compatible. The microphone being used

for this project was chosen because unlike most other available microphones it is
not linear so the gain is not fixed. It samples audio levels over five to ten
milliseconds and adjusts the gain accordingly so the sound is never too loud or too
quiet. This microphone amplifies noise that is far away, and doesn’t allow loud
nearby noises to saturate the microphone. These qualities make this microphone
ideal for capturing even subtle noises that might be present in a room.

Software Design Choices

When deciding the specifications for this project there were a few choices that had
to be made ranging from the method of communication to the design of the
software.

Communication

There were a few factors that went into deciding on Bluetooth Low Energy as the
method of communication between the mobile device, and the Arduino Uno. Some
of the alternatives considered were Classic Bluetooth, and WiFi. Bluetooth Low
Energy was selected over Classic Bluetooth due to the reduced power consumption
of Bluetooth Low Energy in comparison to some of the high power alternatives like
WiFi. Battery life is an incredibly important factor for the scope of this project
because for a device as critical as a door lock, continuous and reliable battery is
absolutely necessary.

WiFi was eliminated as the means of communication due internet connectivity
allowing the device to be accessed from anywhere. For all of the smart door locks
currently on the market their focus is solely on providing the greatest amount of
access and flexibility to their device so WiFi provides them with the freedom to do
this. Considering that the focus of this smart door lock isn’t flexibility, but security,
the long range is actually a downfall. The device’s long range and the only barrier to
entry to control the device remotely being a password, leaves room for
improvement if security is the main focus for the device. Bluetooth has a finite max
range of about 10 meters, but in practice this range is not this large. With a shorter
range it ensures that the user trying to access the lock is actually within the range.
With this, an attacker trying to gain access to the lock can’t do it from very far away.
Also, with Bluetooth Low Energy only one device can be connected and interfacing
at a time with the slave device, which in this case will be the Arduino Uno. Being
that it can only connect with one device at a time, once the Bluetooth connection is
established, a third party can’t interfere. This is beneficial because it forces man in
the middle attacks to be increasingly difficult.

Application/iOS

Rather than just using the application as a means to access the lock, there are a few
layers of authentication added to boost the difficulty of falsifying credentials to the
lock. The first step to being able to access the lock is the user entering the i0OS
application and entering their unique 4 digit passcode.

10

Once access has been granted to the application, the user will request access to the
lock, and at this time, they will be sent a number from the lock. This number will be
randomly generated every time that the user requests access to the lock. Within 4
seconds the user has to retype the number which ensures that a human user is
interfacing with the lock.

The development of an iPhone application was chosen over developing an Android
application for two reasons. First, I have an iPhone already so the process of finding
a device enabled with BLE could be skipped. Secondly BLE was only introduced
with API 18 (Android 4.3) so the ability to connect via BLE has not been around as
long as on iPhone.

Sound Analysis

The decision to source the random number from a microphone, rather than some
other source of randomness that could be measured by one of the Arduino’s analog
inputs came from thinking about what is truly random. The noises in a room, along
with the introduction of gain to create distortion of the frequencies provide an arena
that is unpredictable. To get the random number that will be used, a microphone
will be used to send the sound to the Arduino Uno. The audio will be sampled and
processed to ultimately provide frequencies that will be placed into a 16 bit number.
This number will serve as the seed to the pseudo random number generator.

Random Number

For encryption there were many different choices as there has been research on the
creation of pseudo random numbers, and encryption for decades. The pseudo
random number generator chosen is Arduino’s random() function. The issue with
Arduino’s random function is that it generates the exact same list of pseudo random
numbers every time. An example of how the random function works is that if a slot
machine were built, and the first try was a winner - then you can be sure that if you
were to reset the Arduino board, and pull the handle again - you would be a winner
the first time again. The way that Arduino handles this is by using the
randomSeed() function. This function takes in a value and uses that number to alter
the random list generated by the random() function. Due to the seed varying over
time with the noise in the room, the random list created by the random() function
will also vary. These functions were chosen over many other pseudo random
number generators because for the purpose of this project they provide adequate
randomness. The key to making the random() function provide truly random
numbers is the manipulation of the random list due to the seed, and as long as the
seed that is fed into randomSeed() is of adequate randomness, random() will work
for this project. An example of how it is used with an alternate random source can
be found below. With this example, an unconnected floating analog pin is used as
the random seed.

long randNumber;

11

void setup(){
Serial.begin(9600);
randomsSeed(analogRead(0));
}

void loop(){
randNumber = random(300);
Serial.println(randNumber);

delay(50);

High Level Design of Hardware

For the embedded hardware design of the lock I chose an Arduino Uno
microcontroller. The Arduino Uno is a single-board microcontroller; the hardware
overall consists of a 16 MHz ceramic resonator, a USB connection, an open-source
hardware board based on the ATmega328, a power jack, an ICSP header, a rest
button and several LEDs. Overall due to the Arduino board being a highly developed
open source hardware board, there are several libraries that make programming on
this board ideal for beginners. Another benefit of this board is that it does not need
an additional programmer to download the code to the microcontroller,
alternatively the USB and on-board ATmega16U2, which is programmed as a USB to
serial converter, can be used along with the IDE to download the code to the
microcontroller. For this project the microcontroller is responsible for processing
the input from the microphone, and driving the Bluetooth shield that talks to the
iPhone.

For the Bluetooth hardware, the Red Bear Labs BLE Shield version 2.1 is used. The
chip used on the shield is the Nordic nRF8001. This shield can only support the
peripheral (slave) role. The nRF8001 does not behave as a pure SPI slave device as
the nRF8001 can receive new data over the air at any time or be busy processing a
connection event or new data. The chip has peak currents as low at 12.5mA and
average currents down to 9pA (for a 1s connection interval). This enables battery
lifetimes of months to years from a single coin cell running the device. This chip’s
low power consumption, ADC for battery level monitoring, low tolerance 32kHz RC
oscillator, 16MHz crystal oscillator, two voltage regulators, linear voltage regulator,
and DC/DC voltage regulator that when enabled can further cut current
consumption by up to 20% make this Bluetooth chip ideal. Even with such low
power consumption, the device can still be discoverable and connectable within 10
meters, which is sufficient for this project.

A microphone is used to collect the audio from the room that the system is in. In
order to maintain the integrity of the audio in the room the Electret Microphone
Amplifier - MAX9814 with Auto Gain Control was acquired from Adafruit. With this
board the nearby loud sounds are quieted so they don’t overwhelm and clip the

12

amplifier, and even quiet far away sounds are amplified. This makes it a great
system for when audio levels can intermittently change. This allows the audio in the
room to be captured in totality, which is essential to this project. This board is
attached to the Arduino UNO.

The TB6612 motor controller breakout board from Adafruit is attached to both the

Lockitron body and Arduino UNO. The Lockitron body completes the prototype for
the system as it can actually open and close a deadbolt.

iPhone

" Microphone

Driver

Figure 1: High-Level System Design

Arduino Software Code

By choosing the Arduino Uno and Red Bear Labs BLE Shield there were a lot of
resources available that made development much easier. After installing the
libraries that are provide by Red Bear Labs’ Github (see reference), connecting the
Arduino and application showed to be simple as the protocol to set up the
connection was outlined in all of the sample applications. With the additional
installed libraries the functions ble_connected() and ble_available() were available.
These functions when called return true if the BLE is connected and BLE is available
respectively.

13

When the ble_connected() is true the led on the board turns on to indicate that there
has been a successful connection. While the BLE connection is available the random
number is generated from reading analog pin 0 which is connected to the
microphone. This value is then used in Arduino’s randomSeed function. The
random number is then generated using Arduino’s random(). The value of
ble_read() is then used within if statements to indicate when certain blocks of code
should be executed. The value of ble_read is received from the iPhone application.
When the iPhone application sends data0 == 0x01 the random number is sent with
the support of the serial library as the Arduino treats the transmission of data via
Bluetooth as a serial data connection. When the iPhone application sends datal ==
0x01 it indicates that the user should have access to the lock so the moveMotor
function is called which then turns the motorized door lock to the open position.

High Level Design of iPhone Application

An iPhone application is the primary user interface for this project. The
development of this application was done incrementally.

1. The fist step of app development was handling the Bluetooth connection and
wireless data transmission. The Red Bear Labs examples where utilized
heavily to do this development. The connection to Bluetooth is done
automatically as the application is opened.

2. The second step was creating the initial screen that appears once the user
opens the application. On this screen the user is prompted to enter their
passcode as shown in Figure 2. If the password is correct the user is sent to
the next screen.

3. The third step was creating the screen that receives the random number
from the Arduino via BLE and contains a timer. On this screen the number
that is transmitted, the screen for you to retype the number and timer that is
counting down can be seen as shown in Figure 3. Here the numbers that are
being sent serially are concatenated into one number that is displayed to be
retyped. If the number is correctly typed prior to the timer running out,
access to the next screen that allows the user to open the lock is granted. The
final screen that allows the user to open the lock can be seen in Figure 4. If
the user does not type the number correctly or the timer runs out, the screen
shown in Figure 5 is displayed.

14

(=
()
Enter Passcode
Enter

Figure 2: App Password Screen Figure 3: App Random Number Screen

View Controller

- O ®
C_]
N O P E Open Door

Figure 4: App Door Access Screen Figure 5: App Door Access Screen

15

iPhone App Development

Writing the iPhone application showed to be the most difficult part of this project,
but with the support of the Red Bear Lab examples many difficult portions were
simplified. To explain the development of the application I will go through the
development of the three main components: Bluetooth Connection, Password
Screen, and Random Number Screen.

Bluetooth Connection

When the view controller is loaded, the connection to the BLE board is attempted.
Many of the examples used a button to indicate the actions of connecting and
disconnecting the device, but to connect the device once the application is opened
the code below is used.

self.ble = [[BLE alloc] init];
[self.ble controlSetup:17;
self.ble.delegate = self;

[self tryToConnectToBLESheild];

- (void) tryToConnectToBLEShield {

//Check core bluetooth state

if (self.ble.CM.state |= CBCentralManagerStatePoweredOn)
[self waitAndTryConnectingToBLE];

//Check if any periphrals

if (self.ble.peripherals.count == 0)

[self.ble findBLEPeripherals:2.0];

else

if (! self.ble.activePeripheral)

[self.ble connectPeripheral:[self.ble.peripherals objectAtIndex:0]];

[self waitAndTryConnectingToBLE];

}

- (void) waitAndTryConnectingToBLE {

if (self.ble.CM.state |= CBCentralManagerStatePoweredOn)

[self performSelector:@selector(tryToConnectToBLESheild) withObject:nil
afterDelay:0.25];

else

[self performSelector:@selector(tryToConnectToBLESheild) withObject:nil
afterDelay:2.0];

}

Here it can be seen that once the connection to the BLE shield is made, the
application uses connectPeripheral to get the BLE shield to connect and be ready to
accept commands. This portion of the development was simplified greatly due to
the BLE Framework provided by Red Bear Lab.

16

Password Screen

With the password screen I decided to have the correct password hardcoded into
the program. In ViewController.m when the view loads the password for the user is
set as “1234” with self.password for the simplicity of this this prototype. The
passwordTextField which is the empty box allows the user to type in their password
for the system. By using NSLog to log into the console the user’s entry into the text
field can be viewed. Once the user’s password is entered the enter button is
pressed. The enter button’s actions are done with an (IBAction) function. A Boolean
is created for the password. If the string entered into the text field is equal to the
password the application moves to the next screen. If the password is incorrect, a
notification label is output onto the console that says “Incorrect Password” in red.

Random Number Screen

When this view loads the application sends data to the Arduino. This is done as the
view loads by putting in the viewDidLoad function. The data is in the form of a two
bit buffer, and it is sent using [self.ble write:data]. The framework provided by Red
Bear Labs makes the process of transmitting data very easy in i0S. Once this is
transmitted it waits for data to be received. Red Bear Lab’s chat application helped
greatly with learning how to handle and receive the data. The data is handled in the
function bleDidReceiveData and the random number string that is surrounded by “<
>” and the length of the string are the inputs. The string that is input is then
redefined to remove the “< >”" with stringByReplacingOccurencesOfString. This
string is then saved as randomNumber and the length is kept track of. The process
of taking the random number sent from the Arduino, removing the “<>" and
concatenating the strings is done until the length of randomNumber is 10. This
manipulation of the NSString is done until the length of the string is 10. The string
data is then displayed in the text box (UITextView) with randNumTextView.text =
randomNumber.

With the display of the 10 digit random number the timer starts to count down. The
count down timer was implemented by using NSTimer
scheduledTimerWithTimelnterval. If the counter reaches zero the screen is
switched to that with a red “NOPE.” From this screen the user does not have any
option to go backwards. They have to cancel out of the application and open it again
if they want to try again to access the lock. If the user is able to retype the 10 digit
string, and press the enter button within four seconds, the contents of the text field
will be compared to randomNumber with isEqualToString. This process is similar
to that done with the user’s initial password. If the contents of the text field do not
equal randomNumber the user is sent to the “NOPE” screen. If the contents of the
text field equals to the randomNumber, the next screen with the open door button is
presented to the user. When the button is open door pressed the (IBAction)
function sends the NSData with the UInt8 buf value with [self.ble write:data]. This
action signals for the door to open.

17

Results

For this system, beyond the application functioning correctly by only allowing the
user to gain entry to the lock when all tests were passed, the analysis of the pseudo
random numbers used was necessary.

Figure 6: Picture of Final System

Application Tests

To test if the application runs correctly the actions below were done:
1. Incorrect password -> notification label “Incorrect Password”
Correct password -> advancement to next screen
Timer times out -> NOPE screen
Random number entered incorrectly -> NOPE screen
Random number entered correctly -> advancement to next screen
Open Door button pressed -> door opens
Blaring frequency into microphone -> random number differs

Nk W

Pseudo Random Number Tests

A key part to this project is creating a pseudo random number from the ambient
noise in the room that the door lock is in. In this section, the output of the

18

microphone, and the random numbers generated are explored. In Figure 7 the
output of the microphone can be seen. The values that are output are put into
randomSeed() which is responsible for initializing the pseudo-random number
generator, causing it to start at an arbitrary point in its random sequence. This
sequence is always the same. In order for the sequences of numbers that are
generated to differ with every execution of the sketch the input into randomSeed()
needs to be fairly random. With observation of Figure 7 it may appear that there is
not much randomness due to the large concentration of the values that fall between
200 and 300, but while observing the values that fall between 200 and 300 in Figure
7 the values appear to have a relatively uniform distribution.

When looking at the pseudo-random numbers generated by the system in Figure 9 it
appears to have the same degree of uniform distribution as Figure 10. Despite both
exhibiting uniform distribution, with each sketch the sequence of numbers for
Figure 8 varies, while the sequence remains the same for Figure 10. Finally, Figure
11 displays that the numbers generated by the system show uniform distribution.

[f the sample of random numbers was greater than the 1000 used, the histogram
would have likely shown less variation. Regardless, it is indisputable that there is a
nice distribution within the bins.

500 -

400

00 SAURSEN ST ¥ i et a t S
: SRR S VIR },“' ‘ LM ‘, K
o ek S et .. : - :'. & . b

200 el / é N ‘ﬁ . R AL A{\" N4 '{4. \}Q«x 1"‘(*} ,1\(\& & ””z‘

100

0 1000 2000 3000 4000 5000 6000

Figure 7: Microphone Output

19

300

270 £33 %8

> ® * oo *3s %o %
""0" ’}’ "" Eoo‘(«”‘o‘:’:‘.’ ’“” ; ":” ’ * l‘ ’ 00” ."{’:
290 . 3
o, X X * o x> p4 “
280 1% AR MRS "‘3"1’ Pixe KRS "”“’o‘%’ “'“c}’
300¢< 4 g ® o % ©
T A R A 2% ?.w'»’»\ By

* 0
*
0“0 °

250 LA Wﬁ%?‘&kw .
o W&X’M& S R AR S S
VIR S A M -

e 7 R “ o e dn
&

260

230

oo o g e M B o0 W30 ! i
o, “Qo“ g o o8 Jo¥ s,) 0‘ \ «$8o. &S Cote, ¥

5 N)
220 * * LIRAAR "’ " /vv

: > :
210 2“,"’3"’,,” ~ "’ “',\’¢ . 0 ° '0 “’ PSR { ’,",“‘0: ""z ,03"0 ‘
n % e i RTX ’030“\ %® - & A & Ldb¢ A 0"' Po
200 :., t’:}“‘.’ ¢ 0“‘; «go ;‘, 6o %o, 88 tw , .o “
0 1000 2000 3000 4000 5000 6000
Figure 8: Zoomed In Microphone Output
1000000 95+ = 7 0(‘oo' g KR W)
. :..,,z i: I RIIE B IR A
900000 "0 A ~, ’ - 000 LA os * S €, 0 A
800000 -.’ R M 4 ’la"‘.“’. .0’..“.’00 B OWSUN
700000 %;’—:&”‘?7’—0”—&4—?%—&3—3—3‘:*’—‘4&«?
...3. ’.':’0’ * :S gl’ﬂ“ ®o ‘I”’ *e I’.o’.’o’o .‘.‘fl.‘ (4
600000 -
S 73
500000 &30 %82 "’ < Sl 0:3 O &y s $ "“‘:’4‘
400000 ”o’:’, IR 0"'"&’ “ “\’o"" o2 Soa0 S e,
100000 }‘“ ’:0‘:’0 .0. ' ’0 0“3 o 3’3“‘ . “.“) e oo N, @
* "“’~’ haod ”’: ."Q:Q “”0 ’“03”’&’:0‘0 “"’3 :’000
200000
4 '0’ :* ”’ ?%. ? ;:.’.00‘3: S . .“O ‘s o L T
100000 :
”’0 1“00{0{00’:’: :’ of "3 t’ ’0’“ ”0 } &" *’ ot * ’“:
0 So—2—
0 200 400 600 800 1000 1200 1400 1600

Figure 9: Arduino random() With Seed Generated by Microphone

20

1000000
900000
800000
700000
600000
500000
400000
300000
200000
100000

0 -

IR S T TR Tt T TR SR oY
bda, ,.,‘. % et "," AR ® '!'l

e o b W S age ¥l

SEATONI P e YO STALNO X
B2 ICATOMN T i G M T

0

R X o~ ’o 2ol 'M (T N\ ’ P

Py i 0’ % e ', % 8 "

s 8% "‘f ‘é\' ’“ 5L L “o %“' "0
200 400 600 800 1000 1200 1400

Figure 10: Arduino random() Without Random Seed - Same Sequence Every Time

250

227

0 to 200000 200000 to 400000 400000 to 600000 600000 to 800000 800000 to 1000000

Figure 11: Histogram Showing Distribution of random() Values

Interference with Other Designs

The Bluetooth module used to connect to the mobile device has the potential to

interfere with other devices although it is unlikely. It would be unlikely because the

Bluetooth module conforms to the standards outlined by the Bluetooth Special
Interest Group.

21

Usability

In reality this device is supposed to be able to be used on a front door. The
prototype in its current form on the breadboard would not be stable enough to use
in this capacity. However, the Lockitron housing that contains the motor to turn the
door lock contains enough room inside of it to house a consolidated form of the
prototype system. Systems in the Adafruit Bluefruit product line could be utilized
to consolidate the current system as there are compact Arduinos with Bluetooth LE
compatibility that are available.

The concerns for the device usability come with the fact that this system is still
relatively unsecure. If a hacker wanted to breach the system they could cycle
through all of the possible codes for the first screen, and manually enter the random
number themselves. By doing this they could gain entry despite not being the
owner of the lock. Although the bar of security is still very high due to the fact that
the hacker would have to have the device of the owner of the lock. This is due to the
fact that the hacker would not have the unique application or necessary Bluetooth
ID.

Conclusion and Future Work

This lock was created as a means to explore random number generation from
ambient noise and improving the security of wireless door locks. This project was
successful and the random number generation should realistically be explored for
commercial devices. Additionally, the design of the door lock showed to be very
secure. With the restriction on the dissemination of the iPhone application, and
customization for every user’s Bluetooth ID the lock could actually be a valid option
for a door lock. With doing this project it was discovered that researchers in the
Department of Computer Engineering at the National Technical University of
Ukraine (see reference) have published research on generating true random
numbers based on environmental noise for military applications. Finding and
reading this research supported my findings in this project

Looking forward there is more work to be done to refine, and advance this project.
The first thing that can be done to advance this project is adding the capability to
allow additional users to have access to the lock, and remove them. This is a
necessary addition because it will allow more than one user to open the door, and
allow temporary accesses. To refine this project the Arduino Uno and Bluetooth Low
Energy shield can be replaced with an all in one board. Additionally the microphone
and motor driver can be consolidated. With these modifications these parts can be
housed in the Lockitron body. This would allow the lock to fit and function
independently on the door as an actual product.

22

References

Blaszczyk, Marta, and Richard A. Guinee. "A Novel Modelled True Random Binary
Number Generator for Key Stream Generation in Cryptographic
Applications." MILCOM 2008 - 2008 IEEE Military Communications
Conference (2008): n. pag. Web. <http://www.wseas.us/e-
library/conferences/2009/cambridge/ISPRA/ISPRA09.pdf>.

"BLE Shield." Red Bear Labs. N.p., n.d. Web. <http://redbearlab.com/bleshield/>.

Drozhzhin, Alex. "Internet of Crappy Things - [oT." Https://blog.kaspersky.com/internet-
of-crappy-things/7667/. Kaspersky, n.d. Web.
<https://blog.kaspersky.com/internet-of-crappy-things/7667/>.

Goodin, Dan. "Samsung Smart Home Flaws Let Hackers Make Keys to Front Door." Ars
Technica. N.p., 02 May 2016. Web. 2016.
<http://arstechnica.com/security/2016/05/samsung-smart-home-flaws-lets-hackers-
make-keys-to-front-door/>.

Goodin, Dan. "Samsung Smart Home Flaws Let Hackers Make Keys to Front Door." Ars
Technica. N.p., 02 May 2016. Web.
<http://arstechnica.com/security/2016/05/samsung-smart-home-flaws-lets-hackers-
make-keys-to-front-door/>.

"NRF8001." / Bluetooth Smart/Bluetooth Low Energy / Products / Home. Nordic
Semiconductor, n.d. Web. <http://www.nordicsemi.com/eng/Products/Bluetooth-
R-low-energy/nRF8001>.

"Open Sesame! A SMS-controlled Door Lock." Overview. Adafuit, n.d. Web.
<https://learn.adafruit.com/open-sesame-a-sms-controlled-door-lock?view=all>.

"7 Best Electronic Door Locks for Your Home." SafeWise RSS. N.p., 16 Feb. 2016. Web.
<http://www.safewise.com/blog/finding-the-perfect-electronic-door-lock-for-your-

home/>.

23

Smith, Ms. "Hacking and Attacking Automated Homes." Network World. N.p., 25 June
2013. Web. <http://www.networkworld.com/article/2224849/microsoft-
subnet/hacking-and-attacking-automated-homes.html>.

WIND. SECURITY IN THE INTERNET OF THINGS (n.d.): n. pag. Web.
<http://www.windriver.com/whitepapers/security-in-the-internet-of-

things/wr_security-in-the-internet-of-things.pdf>.

24

