

Evolvable Filters in Hardware and Software E. Luckett [ECE] Advisor: Prof. Bruce Land Cornell Engineering (ejl237@cornell.edu)

Pitfalls of Conventional Filtering

Many modern applications in electronics require a large amount of digital signal processing (DSP) to maintain accuracy and efficiency. While most conventional signal filters provide fast, accurate results, they suffer from several issues:

- Requires complex algorithms
- **Relies on significant info. on signal parameters**
- **Offers little adaptability to signal changes**

Prior Research on Genetic Algorithms

Adrian Thompson at the University of Sussex conducted research on evolvable hardware as a method of assessing genetic algorithms (GAs). In particular, Thompson developed a module on a Field Programmable Gate Array (FPGA) that discriminates between signal tones without using a system clock.

These tests inspired an abundance of projects using GAs for other applications, such as operations optimization and computer-aided Design.

Others, such as Ranjit Chauhan and Sandeep Arya, have developed digital filters based on GAs in hardware, which opens more opportunities for efficient signal processing implementations.

Design of Evolvable Filter Algorithm

I have developed a software genetic algorithm that performs selective evolution on the filter coefficients featuring:

- Random filter coefficient generation
- Filter mutation that encourages genetic diversity
- Customizable filter performance evaluation modules
- Crossover module for gene sharing

- filters in several key ways: Greater adaptability to desired filter parameters
- Simpler, more intuitive implementation Multiple unique solutions across several runs of algorithm

Random Filter Generation

Evolvable Code Provides Effective Filtering

Testing with initial random coefficients shows that the evolvable filter shows promise against **conventional DSP** filter algorithms. While overall accuracy depends on the strength of the evaluation module (AKA "fitness" test), the evolved algorithm can converge from a set of random numbers to a capable filter. In addition, I am currently developing the GA on an FPGA to provide high computation **speeds** competitive to conventional filter designs.

Future Improvements on Evolution

I aim to further the evolvable algorithm's capabilities as a general-purpose digital filtering solution through:

References and Acknowledgements

- National Radio Science Conference.

Thanks to Prof. Bruce Land for his guidance throughout the design and implementation of the filter, as well as the Cornell Electrical and Computer **Engineering Department.**

Testing of of new fitness functions(e.g. phase check) Implementation on FPGA for higher speed Creation of future gene prediction (e.g. Epigenetics)

[1] Thompson, Adrian. "An evolved circuit, intrinsic in silicon, entwined with physics". 1st International Conference on Evolvable Systems. [2] Mostafa et al. "Hardware Implementation of Genetic Algorithm on FPGA". 21st

[3] Chauhan, R. and Arya, S. "An Optimal Design of FIR Digital Filter Using Genetic Algorithm". Communications in Computer and Information Science, vol. 168.