Digital scope implemented on DE1-SoC

Electrical and Computer Engineering
MEng Program Design project
Hanchen Jin (hj424@cornell.edu) Advisor: Dr. Bruce Land

Motivation
— Digital designs at home/dormitory
— Wrong output happens, but …
 Oscilloscope is unavailable!

Too Expensive to buy…
— We are engineers. So~

Just Design One!

Hardware
— 12-bit 500Ksps 8-channel ADC converter
— 85K programmable logic elements
— 4,450 Kbits embedded memory
— VGA DAC (8-bit high-speed triple DACs) with VGA-out connector
— 10 slide switches
— 4 push buttons

$175
For Academic

Digital Scope Functions

Digital Scope User Guide
(1) SW9: mode selection--"1" AC mode; "0" DC mode
(2) SW8: run_stop function--"1" stop; "0" run
(3) SW7: peak voltage cursor, available under AC mode--"1" on; "0" off
(4) SW6: enable trigger adjustment, also display the trigger voltage--"1" on; "0" off
 KEY2: increase the trigger value; KEY3: decrease the trigger value
(5) SW5: horizontal position adjustment for lower SEC/DIV--"1" on; "0" off
(6) SW4: horizontal position adjustment for higher SEC/DIV--"1" on; "0" off
 KEY2: increase the degree of regulation; KEY1: decrease the degree of regulation
(7) SW3: reset--"1" display waveform; "0" reset whole system
(8) SW2:0-- ADC converter channel selection
 default: [SW2,SW1,SW0] = 000-- channel 0
 ADC channel available on DE1 SoC: channel 0 to 7 selected by SW2:0

Tips: SW9 *0* + SW6 *1* = Display this User Guide

Digital Scope Display

Implementation
1. Input signals desired to measured

2. ADC converter: LTC2308

3. FPGA logic: Paralleled Floating Operation
 ● Frequency calculation

4. VGA output : VGA(60Hz) 640x480@25MHz
 ● Static notes
 ● Dynamic waveform
 ● Font library for
 ▶ Dynamic notes
 ▶ Dynamic numbers

5. Video DAC: ADV7123
 ● Three high speed 10-bit video DAC

6. VGA output - monitor

Acknowledgements
— MEng advisor: Bruce Land
 I really appreciate his help during this design
— Cornell ECE Department