
IR Signals for Finger Movement Detection

Sahil Gupta (skg73) Mashrur Mohiuddin (mm889)

December 19, 2015

1 Introduction

We created an armband that used infrared (IR) diodes to capture finger movements from the
the extensor digitorum communis muscle. From here, we used a machine-learning model to
classify these signals, in order to create a real-time predictor. The idea was to shine infrared
light on the user’s upper forearm. As the user moved different fingers, muscles on the upper
forearm would move, causing the IR light to diffract in differing directions. This reflection
was detected using photodiodes, digitized through an ADC, and then processed via machine
learning in order to predict exactly which finger the user was moving. Using two channels,
we were able to achieve almost perfect prediction accuracy when distinguishing between
three fingers in real time. While a third channel was built, due to time constraints we were
not able to acquire three channels of data. Given the time, we believe we would be able to
accurately predict four different finger movements, and possibly the thumb (the thumb does
not really seem to cause much muscle movement in the upper forearm).

2 Hardware

The circuit used was adopted from a similar project by Raghav Subramaniam who compared
the use of IR sensors and electromyography to detect muscle contraction.

Figure 1: Schematic of IR circuit.

1



Figure 1 shows a schematic of the circuit used. The circuit was powered by the 5V and
GND rails of an Atmega1284p microcontroller. An infrared light was biased with a 75Ω
resistor and shined on the user’s arm. The reflection of the infrared light was then picked up
by a LTR4206 photodiode. The output of this was high pass filtered with a cutoff frequency
of:

fc =
1

2π(30kΩ)(10µF )
= 0.53Hz

This was to remove any DC offset present. The signal was then sent through an LM358 for
amplification with a gain of:

G = 1 +
51kΩ

1kΩ
= 51

To reduce noise in the system, the signal was low passed filtered with a cutoff frequency of:

fc =
1

2π(51kΩ)(0.47µF )
= 6.6Hz

The output was fed through a 10kΩ trimpot before the second amplifier stage. This served as
a voltage divider so that only a fraction of the first stage would receive further amplification,
providing a variable gain control. Because discrete amplifiers introduce DC offset, our signal
was again high pass filtered at 0.53Hz and then amplified further. The second stage had a
gain of:

G = 1 +
51kΩ

330Ω
= 155

The output of this circuitry was then fed into the ADC ports of an Atmega1284p to be
digitized and processed through software.

Three channels were built and soldered as shown in Figure 2. A picture of the armband
is also shown in Figure 3. The wires from the IR light and photosensor were twisted in order
to reduce noise artifacts from moving wires. Foam was placed in between each sensor and
light pair in order to isolate each sensor so that it only picked up IR light reflecting off the
user’s arm.

2



Figure 2: Picture of IR circuit.

(a) Prototype IR band.

(b) User wearing the band.

Figure 3: Pictures of the IR armband.

3



3 Software

There were three components to our software: data acquisition, machine learning, and real-
time prediction.

3.1 Data Acquisition

To acquire the data from the signals, we fed the signals from the IR circuits into the ADC of
an Atmega1284p microcontroller. This digitized our voltages within an 8-bit range (0-255).
From here, we used a serial interface to send this data to a computer in real-time.

3.2 Machine Learning

In order to determine which signals corresponded to what, we needed to write some kind of
program that was able to gather data from the microcontroller, format it appropriately, and
feed it into a machine learning algorithm. We chose to use Python to accomplish all of these
tasks. Python is a high-level language and has many modules readily available for various
tasks. Specifically, we made use of the open-source scikit-learn machine learning module to
handle our learning.

There were three modes to the program: see, learn, and predict. In see mode, the raw
data from the microcontroller is simply shown on the screen. The data was acquired through
serial communication with the Atmega1284p. see mode was mainly used for debugging
purposes, so that we could know whether or not we were getting meaningful data or if the
ADC was working properly.

In learn mode, the program would gather finger movement data from the user. For
a given set of fingers (index, middle, ring, pinky, thumb, or any combination of the five),
the program would ask the user to move the appropriate finger within a given time window
and record data from each channel. The program would also keep track of which finger was
being moved, and would store it along with the ADC data. This process was repeated for a
specified number of readings for each finger.

Once we had the raw data, we began to prepare it for input into the machine learning
algorithm. Machine learning is most successful when it is able to see clear patterns/trends
in a data set. To improve the accuracy of the algorithm, we used several tactics. First, we
removed noise from the readings by zeroing all data points below a noise threshold. Second,
we shifted back all of the readings to the same time point. This way, all of the pulses brought
out by finger motions would be aligned, making it easier for the machine to interpret the
data. Finally, we normalized all data to be zero-mean and have a variance of one. As
different fingers induced stronger signals in different channels, normalizing made sure that
each channel was still weighted fairly.

After the data was formatted, we were finally able to input it into the machine-learning
program. Using scikit-learn, we created a support-vector classifier (SVC) within support-
vector-machine (SVM). Because we knew a priori which reading was mapped to which finger,
our work was a supervised learning task. SVMs work very well for creating models for
classification problems.

4



To verify the accuracy of our program, we used a technique called cross-validation. Cross-
validation takes a percentage of the input data as the training data, and uses the remainder
of the data as test data. The program learns the training data, and uses the model it builds
to predict the test data. As the selection is random, different seeds can be chosen to ensure
consistent results.

3.3 Prediction

The final component of our software, and mode of our program, was real-time prediction.
Ultimately, our project would be used in some kind of control system, so we needed to create
a real-time predictor. The predictor would use the SVM created after the user had already
gone through the learning mode of the program once.

Our real-time predictor would monitor the inputs coming in from the microcontroller. If
the sample was above a given threshold, it would classify it as a finger movement. In this
case, it would start recording the data, process it in the same way the learn mode does, and
input it into the predictor model. The predictor model would then tell us its prediction.

4 Front-End: Armband

The original design for the armband simply consisted of a band made of duct tape and foam
insulation to hold the sensors. While the main goal of this project was to detect different
finger movements and explore the use of machine learning, we also wanted to develop a
user-friendly and aesthetically pleasing product as this project continues. The initial design
was not adjustable, and so was not practical for a variety of users with different sized arms.
A second iteration was designed on Autodesk Inventor and 3D printed. As shown in Figure
4, the new design takes a more flexible bracelet style structure. Each casing for the sensor
and IR light pairs snaps onto the bars of the bracelet, allowing for a modular design if future
iterations require different sensor types or upgrades.

The flexibility of the armband can be assessed by modeling it as series connected springs
(with each spring being in between two bars). For a force acting along a spring’s height, the
spring constant (and thus stiffness) is given by the equation:

k =
Ewh3

4L3

By reducing the height and width of the rings on either side of the band, it could be
designed for increased flexibility if needed. Reducing the number of bars connected to each
ring would also make each series connected spring longer, and thus less stiff to forces bending
it along its height.

5



Figure 4: 3D Printed armband.

5 Results

As seen in Figure 5, strong EMG signals were captured for movement of the index, middle,
ring and pinky fingers. The frequency of these signals seemed to range from about 2-4Hz.
Even from the oscilloscope waveforms, each finger movement is noticeably different.

One-hundred readings were taken for the index, middle, and ring fingers. Using the
default SVC kernal, our average prediction accuracy was 96.2%. This number was calculated
by cross-validating our data over 100 different random seeds, and averaging the accuracy of
each result. The max accuracy obtained was 100%, while the minimum accuracy observed
was 80%. Table 1 shows a summary of these results, and other kernels for convenience. We
tried 3 different kernels and compared the results. We also applied principal component
analysis (PCA) to our data and repeated the learning comparisons. PCA attempts to take
a data set and rotate/stretch it along its principal component axes, thus increasing the

Statistic (%)

Kernel Avg Max Min

Default 96.2 100 80
Linear 94.8 100 83.3
RBF 43 60 30
Default w/ PCA 67.5 90 50
Linear w/ PCA 57.7 76.6 33.3
RBF w/ PCA 66.6 86.7 46.7

Table 1: Machine learning prediction accuracy.

6



(a) Index. (b) Middle

(c) Ring. (d) Pinky.

Figure 5: EMG signals acquired from the circuit. Channel 1 is for middle (ED3), channel 2
is for ring (ED4), and channel 3 is for index (ED2).

7



(a) Channel correlation plot.

(b) Normalized voltage v. time of all the
readings. Note: the first half of the plot (t=0
to 144) represents channel 1, while the sec-
ond half (t=145 to 289) represents the second
channel. In reality they are overlapping but
we place them side by side here to visualize
both.

Figure 6: Visualization of the machine learning data.

variance of the data set. However, as seen in Table 1, it did not seem to help our case. We
include it in this report for completeness.

Figure 6 shows us a visualization of the data. Figure6a shows the channel correlation
while Figure 6b shows the voltage v. time plots. From both these plots, we can see that there
is much overlap between each of the fingers, but there are still distinct properties between
them (ex. middle finger voltage on channel 2 takes longer to decay than the ring finger).
Because there is so much overlap between the different data sets, we need a lot of data in
order to be able to differentiate between them; otherwise the accuracy suffers.

Unfortunately, our real-time prediction mechanism did not yield results as accurate as the
cross-validation did. The real-time system could predict middle and ring fingers fairly well,
but struggled with the index finger. We believe that by rewriting our real-time predictor,
gathering more training data, and utilizing a third IR channel would help improve our real-
time performance.

6 Conclusions

6.1 Discussion

We successfully built a 2-channel circuit to detect the IR signals from different finger move-
ments. Each finger tested showed distinct voltage waveforms upon moving. Through machine
learning, we were able to accurately map three finger movements with 96% accuracy.

6.2 Improvements

In order to improve the accuracy for multiple targets, we must acquire more data. This
would allow for greater training of the machine learning software and thus a higher prediction

8



accuracy rate for greater than three targets. Additionally, we could utilize the third channel,
which would give us another dimension of data to improve our mappings.

6.3 Future Directions

This project was initially motivated by the idea of creating prosthesis with individual finger
control; however, we would like to change the scope of this project slightly. For the spring
semester, we would like to focus less on finger detection, and more on building an actual
control system that utilizes the types of signals we have successfully obtained so far. We
would first like to fully integrate our third channel into our machine learning and potentially
add an accelerometer and gyroscope to provide us information about how the user moves
his/her arm as well as hands. This will provide us with more degrees of freedom to utilize
for a control system.

References

[1] J.N.A.L. Leijnse, N. H. Campbell-Kyureghyan, D. Spektor, and P. M. Quesada As-
sessment of Individual Finger Muscle Activity in the Extensor Digitorum Communis by
Surface EMG. J Neurophysiol 100:32253235, 2008.

[2] Qiang Li, Bo Li Online Finger Gesture Recognition Using Surface Electromyography Sig-
nals. Journal of Signal and Information Processing, 2013, 4, 101-105

[3] J. Rafiee, M.A. Rafiee, F. Yavari, M.P. Schoen Feature extraction of forearm EMG signals
for prosthetics. Expert Systems with Application, 2011, 38, 40584067

[4] Sebastian Maier and Patrick van der Smagt Surface EMG suffices to classify the motion
of each finger independently. Conference: 9th International Conference on Motion and
Vibration Control

[5] Muhammad Zahak Jamal Signal Acquisition Using Surface EMG and Circuit Design
Considerations for Robotic Prosthesis. book edited by Ganesh R. Naik, ISBN 978-953-
51-0805-4, Published: October 17, 2012 under CC BY 3.0 license.

[6] O. Fukuda A Human-Assisting Manipulator Teleoperated by EMG Signals and Arm Mo-
tions. Robotics and Automation, IEEE Transactions on , vol.19, no.2, pp.210-222, Apr
2003

[7] The Rehabilitation Process: Prosthetic Devices. Ottobock. Retrieved from:
https://ottobockus.com/zb2b4ob/us01/en/USD/Upper-Limb-Amputees

[8] Targeted Muscle Reinnervation. Advanced Arm Dynamics. Retrieved from:
http://armdynamics.com/pages/tmr

9


	Introduction
	Hardware
	Software
	Data Acquisition
	Machine Learning
	Prediction

	Front-End: Armband
	Results
	Conclusions
	Discussion
	Improvements
	Future Directions


