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Abstract:  

This project aims to create a human vagus nerve stimulator by using mechanical vibration. Users 

can stimulate the vagus nerve under different stimulation intensity by adjusting the frequency 

through a variable resister and a 555 Timer IC. The project consists of two parts: hardware 

implementation and experimental design. The hardware is basically the setup for the experiment. 

Results were concluded based on the data analysis after a great number of experiment was done. 

Therefore, the results have a high reliability and could be used for further development and 

application.  
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Individual Contribution 
Sijian Yan 

1. A problem to be solved 

The problems need to be solved by me in this project are: Using MATLAB for data 

analysis and Black Box Encapsulation. Furthermore, Mengqiao and I did the vibration 

generator circuit testing and heart rate data collection together.  

 

2. A review of possible options for solution 

2.1 Analyze Data by MATLAB 

• Pan-Tompkins Algorithm 

• Develop my own algorithm 

2.2 Black Box Encapsulation 

I didn’t think of any other options besides encapsulate everything into a black box.  

 

3. What formulates the “best” solution 

At last, I chose to use Pan-Tompkins Algorithm since it is a famous and rigorous 

algorithm, the results should be more reliable. Moreover, EKG signal is too complicated 

to be analyzed correctly and completely. Therefore, as a starter in biomedical research, I 

decided to refer Pan-Tompkins and make some revise instead of coming up with my own 

algorithm.  

 

4. Documentation of design implementation  

4.1 Analyze data by Pan-Tompkins Algorithm 

The data which was analyzed by Pan-Tompkins Algorithm is the data transformed by 

a piece of python program which was originally recorded by BioPac device.  

4.2 Black Box Encapsulation 

First of all, I fixed the circuit board and the power supply unit in the bottom of the 

box. Then, I drilled three holes on the lid of the box for potentiometer, switch, and 

signal output respectively. Last, I attached the potentiometer and switch onto the lid, 
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and led the output out of the box through a thick wire which was sorted to the ear 

phone.  

 

5. Testing of the final results with regard to the original specifications  

5.1 Results of Pan-Tompkins Algorithm 

The Pan-Tompkins Algorithm works well. Peak location figures were generated 

correctly after the signal went through the algorithm in MATLAB 

5.2 Results of Black Box Encapsulation 

The Black Box works well. Users can turn on/off the ear phone’s vibration by the 

switch fixed on the box. Furthermore, vibration frequency can be changed by turning 

the potentiometer on the box.  
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Individual Contribution 
Mengqiao Li 

 

1. Data processing 

Due to the reason that there were multiple outputs from Pan-Tompkins Algorithm in 

MATLAB and were not directly analyzable, Li wrote a program to extract and preprocess 

the data of interest. 

 

2. Data analysis 

Li created a program that achieved the following functions: 

a.  generating beat the beat intervals 

b. calculating mean intervals under different states and frequencies 

c. calculating standard deviation of intervals 

 

3. Result visualization 

In order to make it comfortable for researchers to notice the conclusion from the results, 

Li created graphs and charts to display the comparisons between different frequencies 

and different states such as density distribution and standard deviation. 

 

4. Circuit board building 

Li built the circuit board with Yan. 

 

5. Circuit board testing 

Li tested the circuit board with Yan and made necessary adjustments. 

 

6. Data collecting experiment 

Li collected raw heart rate data with Yan by conducting experiments using biological 

device—BioPac MP150 and software—Psychopy. 
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Executive Summary 
 

This design project is created to find a noninvasive way to stimulate human vagus nerve. The 

noninvasive way is achieved by using mechanical vibration. Detailed implementation will 

involve a variable frequency generator design, cardiovascular measurements, data analysis by R, 

JAVA and MATLAB. The final goal aimed to fulfill is to find out some correlation between 

stimulating vagus nerve by mechanical vibration attached to left ear and a more variable heart 

beat rate. Furthermore, this invention can also be used for medical research since vagus nerve 

stimulation is most often used to treat depression and epilepsy when other treatments haven't 

worked.  

The non-metallic human vagus nerve stimulator project contains of two parts: implementing 

a vibration generator and doing heart rate data analysis.  

The vibration generator is consisted of: 

• 555 Timer IC – an integrated chip used as an electronic oscillator to generate pulse 

• Potentiometer – a three-terminal resister with a rotating contact that can be used as a 

voltage divider to change the frequency of 555 Timer IC 

• Power supply – two AAA batteries controlled by a 2-terminal switch  

• Motor – a 3VDC vibration little pancake motor  

• Earphone – a plastic, in-ear earphone used to conduct the vibration generated by motor 

The heart rate data analysis is consisted of: 

• Pan-Tompkins algorithm – is a real-time algorithm used for QRS complexes detection 

of ECG/EKG signals 

• Interval distribution – a way to observe heart rate varying extent 

• Standard deviation – a measure of how spread out intervals are 

• Chi-square testing - a statistical hypothesis test to judge if the proposed hypothesis is true 

 

In conclusion, the vibration generator reached all of the expected functionality; the heart rate 

data analysis was done correctly by programing. However, the overall results did not match the 

expectation due to too few experiment subjects. Therefore, further test is needed.  
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1 Introduction 
Vagus nerve is the longest cranial nerve in human’s body, which connects to heart, 

esophagus, lungs, and so on. Because of such many organs it passes by, vagus nerve has 

significant impacts in a lot of ways; for example, keeping the heart rate constant and controlling 

food digestion.  

Nowadays, the most common ways of vagus nerve stimulation is electrical stimulation – 

implanting a device under the skin on one’s chest that connects to the left vagus nerve with a 

wire. When the device is activated, it sends electrical signals along the vagus nerve to certain 

areas in brain which will have a positive impact on the treatment of epilepsy or depression. 

However, the electrical stimulation is a kind of invasive method so it may cause extra pain for 

the patient due to the surgery.  

Our research project wants to test a potential hack by utilizing the fact that the Vagus 

receives input from touch receptors around the ear. Both of Tragus and Cavity of concha contain 

45% of vagus nerve receptors. Antihelix contains 75% and all of the receptors in Cymba 

Conchac are vagus nerve receptor. These preconditions make the ear vagus nerve stimulation 

become realizable. Therefore, this project will involve designing an around-the-ear device that 

uses mechanical vibrations of various frequencies. This will be interfaced with existing 

cardiovascular measurements to assess what frequencies of stimulation may enhance vagal 

outflow. On the software side, Pan-Tomkins algorithm was revised and used in peaks locating in 

MATLAB. Python, JAVA, and R are also used in statistical data analysis.  

  



	 11	

2 System Design 

2.1 High-Level Design 

Figure 1 demonstrates the high-level system design concept. We inserted a 3V DC Vibration 

Motor, which is triggered by 555 Timer IC and powered by the AAA power supply, into the 

earphone. Then put the earphone in the tester’s left ear. By regulating the potentiometer, users 

are able to change the vibration frequency which further change the tester’s heart beat frequency.  

															 	
Figure	1	High-level	Design	

Figure 2 shows the flowchart of the whole system. One set of 2 AAA batteries is the power 

supply of the circuit board and motor. EKG device is plugged into the 120V on the wall. The 

tester’s heart beat (raw data) is recorded by EKG device while his/her vagus nerve in left or right 

ear is stimulated by the motor. A piece of python grogram is used to convert the time interval 

and amplitude of the heart beat from electronic signal to numerical numbers, which are further 

analyzed by MATLAB, JAVA and R to get more intuitively results.  

	
	 Figure	2	System	Flowchart	 		
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2.2 Hardware Design 

The following subsections describe hardware design and materials selection.  

2.2.1	555	Timer	IC	

555 Timer IC is an integrated chip which can be used to produce accurate time delays, 

generate pulse, and oscillate. In this project, it plays as an oscillator to generate variable output 

frequency. Figure 4 and Figure 5 are photo and pin configuration of the most common 555 Timer 

IC.  
	

																								 	
Figure	3	555	Timer	IC																																																																					Figure	4	Pin	Configuration	of	555	Timer	IC	

 

555	Timer	IC	specification	

Model	Number	 LM555	

Operating	Voltage	 4.5V	–	16.0V	

Threshold	Voltage	 3.33V	–	10.0V	

Physical	Dimension		 9.46mm	*	6.35mm	

Rise	/	Fall	Time	 100	ns	

Table 1 Specification of 555 Timer IC	

	

2.2.2	Potentiometer	

A potentiometer in Figure 7 is a three-terminal 15kΩ resistor with a sliding or rotating 

contact that forms an adjustable voltage divider. If only two terminals are used, one end and the 

wiper, it acts as a variable resistor, which is the function applied in this project. Basically, a 

potentiometer consists of five parts: a resistive element, a sliding contact, the wiper, that moves 
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along the element, electrical terminals at each end of the element, a mechanism that moves the 

wiper from one end to the other, and a housing containing the element and wiper. 

Potentiometers are commonly used to control electrical devices such as volume controls on audio 

equipment. In the project, it is used for adjusting the output frequencies.  

	
Figure	5	Potentiometer	

2.2.3	Power	Supply	

Besides the 120V induced from the wall, the other power supply used in the project is a set of 

triple-A batteries. An AAA battery in Figure 8 is a standard size of dry cell battery commonly 

used in low drain portable electronic devices, which provides 1.5V each.  

	
Figure	6	AAA	Batteries	

2.2.4	BioPac	MP150	

BioPac MP150 is a 16-Channel data acquisition & analysis system which could communicate 

with computer by Ethernet. It is used for acquiring heart beat signal from EDA/PPG 

Transponder; then it transports the signal to laptop where the signal is digitalized by a piece of 

python program for statistical analysis.  
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Figure	7	BioPac	MP150	

 

2.3 Software Design 

2.3.1	Heart	Rate	Data	Collection	

Given the BioPac device, software is still needed in order to get the digital data of heart rate 

information. By running the python scripts provided by researchers from Human Ecology 

department, the wave of heart rate can be observed and it automatically generated a .csv file 

containing all the values throughout the time.  

 

2.3.2	Analyzable	Data	Extraction	and	Preprocessing	

Holding the heart rate wave values throughout time, we first needed to find the wave-peak 

positions to proceed further analysis. Pan-Tompkins algorithm perfectly meets the need and there 

was existing MATLAB Pan-Tompkins toolbox online. The algorithm was applied; the positions 

of all the wave peaks were extracted by using MATLAB. 

Pan-Tompkins algorithm is a real-time algorithm commonly used for detecting QRS 

complexes, a combination of three different graphical reflections in a EKG plot, of ECG/EKG 

signals, which was came up by Jiapu Pan and Willis J. Tompkins in 1985.  
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Figure	8	QRS	Complex 

The signal goes through a low pass filter, a high pass filter, and a bandpass filter to get rid of 

noise in the MATLAB program. Then the signal is differentiated to provide the QRS complex 

slope information. 

Low pass filter transfer function: 𝑯 𝒛 = (𝟏&𝒛'𝟔)𝟐

(𝟏&𝒛'𝟏)𝟐
 

High pass filter transfer function: 𝑯 𝒛 = &𝟏+𝟑𝟐𝒛'𝟏𝟔+𝒛'𝟑𝟐

𝟏+𝒛'𝟏
 

Derivative filter transfer function: 𝑯 𝒛 = &𝒛'𝟐&𝟐𝒛'𝟏+𝟐𝒛+𝒛𝟐

𝟖𝑻
   (T = sampling period)  

After differentiation, the signal is squared point by point which makes all data points positive 

and also nonlinearly enhance the dominant peaks.  

Squaring function: 𝒚 𝒏𝑻 = [𝒙 𝒏𝑻 ]𝟐. 

Next, moving-window integration is executed to obtain waveform feature information in 

addition to the slope of the R wave. 

Moving-window integration: 𝒚 𝒏𝑻 = 𝒙 𝒏𝑻& 𝑵&𝟏 𝑻 +𝒙 𝒏𝑻& 𝑵&𝟐 𝑻 +⋯+𝒙(𝒏𝑻)
𝑵

  (N = the number of 

samples in the width of the integration window) 

It is physiologically impossible for R wave to occur in less than 200ms distance; therefore, a 

minimum distance of 40 samples is considered between each R wave, which can be used to 

determine the fiducial mark. Finally, thresholds need to be adjusted in order to locate the peaks, 

which are local maximums determined by when the signal changes direction within a predefined 

time interval.  
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 Finally, in order to utilize the position data in different integrated developments environment 

(IDE), a Java program was created to preprocess the data generated from MATLAB to make it 

analyzable. 

 

2.3.3	Statistical	Analysis	

Firstly, a Java program was written which achieved the following functions:  

• Calculate peak-to-peak intervals using the analyzable position information we got from 

data preprocessing  

• Compute mean heart beat intervals in different situations  

• Compute standard deviations of the interval distribution  

Then, Chi-square test is executed to further analyze the correlations between different tested 

conditions.  

Chi-square test is a kind of statistical hypothesis test in which the sampling distribution of the 

test is a chi-square distribution when the proposed hypothesis is true. It is applied by computing 

the square errors of the sample: (6789:;9<&9=>9?@9<)
A

9=>9?@9<
, then compare the square errors to the value 

of the Chi-square distribution under different degree of freedom (DF).  

 

2.3.4	Data	Visualization	

In order to make it easy to observe and compare, several R scripts were created to display 

density distribution and standard deviation. 	

	
2.4 Experimental Design 

2.4.1	Group	Dividing		

Vagus nerve is considered to be existing on the left side of human’s ear, so both sides needed 

to be stimulated in order to compare. Apart from experiments on left and right ears, the heart rate 

when neither side of ear is stimulated is also needed to be tested as a control group to accurately 

get the results. Control group is necessary since testers might be affected even if the stimulator is 

not directly touching their skin. Besides, different frequencies needed to be used to stimulate in 

order to find the one that most significantly influence heart rate. 
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These facts lead to two variables in this experiment: states and frequencies. Based on the 

precondition, the experiment was divided into 3 groups: 

• Control: with the stimulator vibrating in the face of subjects but not touching the ear 

• Left ear: with the stimulator vibrating in the left ear 

• Right ear: with the stimulator vibrating in the right ear 

Within each group, 3 different frequencies were implemented: 

• 10Hz 

• 30Hz 

• 60Hz 

 

2.4.2	Repeated	Measurement		

Repeated measurement is a common way to generate reliable data. Due to the grouping 

method, 9 testing groups were executed in total which are: 

Groups Without stimulation Left ear stimulation Right ear stimulation 

10 Hz w/o, 10 Hz left, 10 Hz right, 10 Hz 

30 Hz w/o, 30 Hz left, 30 Hz right, 30 Hz 

60 Hz w/o, 60 Hz left, 60 Hz right, 60 Hz 

Table 2 Testing Groups 

 

For each group, the heart rate was recorded in 1 minute and the step was repeated for 3 times. 

Therefore, 27 (= 1 min * 3 times * 9 groups) groups of heart rate data were collected at last. 
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3 Implementation and Experimental Results 

3.1	Implementation	

3.1.1	555	Timer	IC	Integration	

In the 555 Timer IC integration circuit in Figure 9, pin 2 and pin 6 are connected together 

allowing the circuit to re-trigger itself on each cycle. Every cycle allows it to operate as a free 

running oscillator. During each cycle, capacitor C0 charges up through both timing resistors, 

15kΩ potentiometer R1 and 1kΩ register R2, but discharges itself only through resistor R2, as 

the other side of R2 is connected to the discharge terminal, pin 7. 

	
Figure	9	555	Timer	IC	Integration	Schematic	

	
3.1.2	Black	Box	Implementation	

The black box is constructed by a solderable breadboard with necessary electronic 

components, a potentiometer, a set of AAA batteries, and a switch. Turning the switch on 

enables the ear phone to vibrate; turning the switch off stops vibration. Turning the 

potentiometer towards “down” decreases the vibration frequency and intensity; on the contrary, 

turning it towards “up” increases the vibration frequency and intensity.  
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Figure	10	Black	Box	

	

3.2	Experimental	Results	

3.2.1	Heart	Beat	Wave	

	
Figure	11	Peak-location	

Figure 11 shows the heart beat amplitude (from single subject) versus time.  Each X-axis 

represents three minutes and the plots from top to bottom are measured under 10Hz, 30Hz, and 

60Hz stimulation respectively.  

Heart beat waves themselves cannot really indicate any features. Heart beat intervals were 

then computed to observe more characteristics of stimulation. 
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3.2.2	Heart	Beat	Intervals	

Figure 12 represents the heart beat interval distribution under different stimulation 

frequencies. Normally the wider the peak is, the more variable the heart rate is considered to be. 

It’s easy to notice that heart rate varies the most when using 10 Hz frequency without the 

stimulator directly touching the ear. 60 Hz frequency appears to be the same among groups no 

matter vagus nerve is being stimulated or not. Heart rate varies less under 10Hz frequency when 

it is stimulated than when it is not stimulated. Whereas it varies more under 30Hz frequency 

when it is stimulated. 

 

	
Figure	12	Interval	Distribution 
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4 Conclusion 

4.1	Evaluation	

4.1.1	Standard	deviation	

Greater standard deviation of beat-to-beat intervals indicates a more varying heart rate. 

Figure 13 indicates that heart rate varies the most when stimulating right ear under frequency at 

60Hz. However, it violates the hypothesis that stimulating the vagus nerve in left ear would vary 

the heart beat most.  

	
Figure	13	Standard	Deviation 

	

4.1.2	Chi-square	Test	

In order to evaluate the correlations of stimulating left ear V.S. still and stimulation right ear 

V.S. still, Chi-squared test was constructed to determine whether there is a significant difference 

between the expected frequencies and the observed frequencies in the experiments.  

In Figure 14, the variables start with “sum” represent the summation of (B9C@&8@DBB)
A

8@DBB
 and 

(:DEF@&8@DBB)A

8@DBB
, which are the square errors in each group. In the experiment, the degree of freedom 

is 226 since the number of sample is 227. All of the numbers exceed the standard value in the 

table above. Therefore, it is not convincing to conclude any relationship based on Chi-Square 

calculation. Further test is needed. 
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……	

	
Figure	14	Chi-square	Test	

         

4.2	Future	Improvement	

Currently this vagus nerve stimulator has achieved fundamental functions. Statistical analysis 

of experimental results using this stimulator doesn’t indicate a more varying heart rate under 

vagus nerve stimulating circumstances so further evaluations are needed. It is probably caused by 

the limited number of testers—which is just one in these experiments.  

Further work could focus on making a better shaped, more comfortable end of the device, as 

well as implementing an MRI compatible capsule. It could be a 25-feet tubing with a speaker on 

one end which is metallic placing outside the MRI environment and an earphone-like 3D printed 

end on the other side in the MRI environment, which is inserted in tester’s ear. As for 

experiments, more testing subjects are needed in order to get more reliable results.  
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7 Appendix 
7.1	Appendix	A.	Wave				
#Authored by: Ross M. 
#Created: 12/07/2015 
 
# # # # # # # # 
# IMPORTS 
 
from __future__ import division 
from psychopy import visual, event 
import numpy as np 
import random, os 
 
 
# # # # # # # # 
# CONSTANTS  
 
DUMMY_RECORDING = False 
WINDOW_SIZE = (800,800) 
SAMPLE_RATE = 1000 
LOG_FILE = 'testlog' 
 
if not DUMMY_RECORDING: 
    from libmpdev import MP150 
 
 
# # # # # # # # 
# SET UP STIM 
 
# display 
win = visual.Window(size=WINDOW_SIZE,units='norm') 
 
# shape for waveform (starts at center of screen) 
waveForm = visual.ShapeStim(win,closeShape=False,vertices=[[0,0],[0,0]]) 
 
# text for baseline measurement 
baseText = visual.TextStim(win,wrapWidth=2,text= 
         "Please take five deep breaths, inhaling and exhaling " 
         "completely each time. Please refrain from holding your "+ 
         "breath, if at all possible." 
         "\n\n"+ 
         "Press space after you have taken five breaths.") 
 
# start communication with MP150 
if not DUMMY_RECORDING: 
    mp = MP150(logfile=LOG_FILE,samplerate=SAMPLE_RATE) 
 
 
# # # # # # # # 
# EXPERIMENT 
 
if not DUMMY_RECORDING: 
    #start recording measurements to log file 
    mp.start_recording() 
     
    # make a baseline measurement of at least one breath for normalization 
    baseline = [] 
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    # instructions for baseline breath 
    baseText.draw() 
    win.flip() 
     
    while len(event.getKeys(keyList='space')) == 0: 
        baseline.append(mp.sample()[0]) 
     
    win.flip(clearBuffer=True) 
     
    # normalizing function for future breathing 
    normalizer = max(abs(np.max(baseline)),abs(np.min(baseline))) 
 
# now, display a constantly updating waveform on the screen 
# press escape to exit 
while len(event.getKeys(keyList='escape')) == 0: 
    # grab a sample from MP 150 
    if not DUMMY_RECORDING: 
        sample = mp.sample()[0] 
        currPoint = (0,sample/normalizer) 
    # or make a random sample 
    else: 
        t = random.uniform(100,1000) 
        x = random.uniform(0,100) 
        mod = random.sample([-1,1],1)[0] 
        currPoint = (0,mod*(x/t)) 
     
    numVertices = waveForm.vertices.shape[0] 
     
    # move the waveform along the screen until it extends to the left edge 
    if numVertices < 100: 
        times, points = np.split(waveForm.vertices,2,axis=1) 
        times = (np.arange(-1*numVertices,1)/100).reshape(numVertices+1,1) 
        points = np.vstack((points,currPoint[1])) 
        waveForm.vertices = np.hstack((times,points)) 
    else: 
        times, points = np.split(waveForm.vertices,2,axis=1) 
        points = np.vstack((np.split(points,[1],axis=0)[1],currPoint[1])) 
        waveForm.vertices = np.hstack((times,points)) 
     
    # draw the line to the screen and refresh! 
    waveForm.draw() 
    win.flip() 
 
 
# # # # # # # # 
# SHUT IT DOWN 
 
if not DUMMY_RECORDING: 
    mp.stop_recording() 
    mp.close() 
     
win.close() 
 

7.2	Appendix	B.	Pan-Tompkins			
function [qrs_amp_raw,qrs_i_raw,delay]=pan_tompkin(ecg,fs,gr) 
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%% Author : Hooman Sedghamiz 
% Linkoping university  
 
% Any direct or indirect use of this code should be referenced  
% Copyright march 2014 
 
if ~isvector(ecg) 
  error('ecg must be a row or column vector'); 
end 
  
if nargin < 3 
    gr = 1;   % on default the function always plots 
end 
ecg = ecg(:); % vectorize 
  
%% Initialize 
qrs_c =[]; %amplitude of R 
qrs_i =[]; %index 
SIG_LEV = 0;  
nois_c =[]; 
nois_i =[]; 
delay = 0; 
skip = 0; % becomes one when a T wave is detected 
not_nois = 0; % it is not noise when not_nois = 1 
selected_RR =[]; % Selected RR intervals 
m_selected_RR = 0; 
mean_RR = 0; 
qrs_i_raw =[]; 
qrs_amp_raw=[]; 
ser_back = 0;  
test_m = 0; 
SIGL_buf = []; 
NOISL_buf = []; 
THRS_buf = []; 
SIGL_buf1 = []; 
NOISL_buf1 = []; 
THRS_buf1 = [];  
  
%% Noise cancelation(Filtering) % Filters (Filter in between 5-15 Hz) 
if fs == 200 
     
%% Low Pass Filter  H(z) = ((1 - z^(-6))^2)/(1 - z^(-1))^2 
b = [1 0 0 0 0 0 -2 0 0 0 0 0 1]; 
a = [1 -2 1]; 
h_l = filter(b,a,[1 zeros(1,12)]);  
ecg_l = conv (ecg ,h_l); 
ecg_l = ecg_l/ max( abs(ecg_l)); 
delay = 6; %based on the paper 
  
%% High Pass filter H(z) = (-1+32z^(-16)+z^(-32))/(1+z^(-1)) 
b = [-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 -32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]; 
a = [1 -1]; 
h_h = filter(b,a,[1 zeros(1,32)]);  
ecg_h = conv (ecg_l ,h_h); 
ecg_h = ecg_h/ max( abs(ecg_h)); 
delay = delay + 16; % 16 samples for highpass filtering 
else 
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%% bandpass filter for Noise cancelation of other sampling 
frequencies(Filtering) 
f1=5; %cuttoff low frequency to get rid of baseline wander 
f2=15; %cuttoff frequency to discard high frequency noise 
Wn=[f1 f2]*2/fs; % cutt off based on fs 
N = 3; % order of 3 less processing 
[a,b] = butter(N,Wn); %bandpass filtering 
ecg_h = filtfilt(a,b,ecg); 
ecg_h = ecg_h/ max( abs(ecg_h)); 
end 
  
%% derivative filter H(z) = (1/8T)(-z^(-2) - 2z^(-1) + 2z + z^(2)) 
h_d = [-1 -2 0 2 1]*(1/8);%1/8*fs 
ecg_d = conv (ecg_h ,h_d); 
ecg_d = ecg_d/max(ecg_d); 
delay = delay + 2; % delay of derivative filter 2 samples 
  
%% Squaring nonlinearly enhance the dominant peaks 
ecg_s = ecg_d.^2; 
  
%% Moving average Y(nt) = (1/N)[x(nT-(N - 1)T)+ x(nT - (N - 2)T)+...+x(nT)] 
ecg_m = conv(ecg_s ,ones(1 ,round(0.150*fs))/round(0.150*fs)); 
delay = delay + 15; 
  
if gr 
plot(ecg_m);axis tight;title('Heart Beat in 3 Minutes'); 
axis tight; 
xlabel('The number of sample in 3 minutes') ; 
ylabel('Peak Amplitude/V'); 
end 
  
%% Fiducial Mark  
% Note : a minimum distance of 40 samples is considered between each R wave 
% since in physiological point of view no RR wave can occur in less than 
% 200 msec distance 
[pks,locs] = findpeaks(ecg_m,'MINPEAKDISTANCE',round(0.2*fs)); 
  
%% initialize the training phase (2 seconds of the signal) to determine the 
THR_SIG and THR_NOISE 
THR_SIG = max(ecg_m(1:2*fs))*1/3; % 0.25 of the max amplitude  
THR_NOISE = mean(ecg_m(1:2*fs))*1/2; % 0.5 of the mean signal is considered 
to be noise 
SIG_LEV= THR_SIG; 
NOISE_LEV = THR_NOISE; 
  
%% Initialize bandpath filter threshold(2 seconds of the bandpass signal) 
THR_SIG1 = max(ecg_h(1:2*fs))*1/3; % 0.25 of the max amplitude  
THR_NOISE1 = mean(ecg_h(1:2*fs))*1/2; % 
SIG_LEV1 = THR_SIG1; % Signal level in Bandpassed filter 
NOISE_LEV1 = THR_NOISE1; % Noise level in Bandpassed filter 
  
%% Thresholding and online desicion rule 
  
for i = 1 : length(pks) 
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   %% locate the corresponding peak in the filtered signal  
    if locs(i)-round(0.150*fs)>= 1 && locs(i)<= length(ecg_h) 
          [y_i x_i] = max(ecg_h(locs(i)-round(0.150*fs):locs(i))); 
       else 
          if i == 1 
            [y_i x_i] = max(ecg_h(1:locs(i))); 
            ser_back = 1; 
          elseif locs(i)>= length(ecg_h) 
            [y_i x_i] = max(ecg_h(locs(i)-round(0.150*fs):end)); 
          end 
         
     end 
      
  %% update the heart_rate (Two heart rate means one the moste recent and the 
other selected) 
    if length(qrs_c) >= 9  
         
        diffRR = diff(qrs_i(end-8:end)); %calculate RR interval 
        mean_RR = mean(diffRR); % calculate the mean of 8 previous R waves 
interval 
        comp =qrs_i(end)-qrs_i(end-1); %latest RR 
        if comp <= 0.92*mean_RR || comp >= 1.16*mean_RR 
            % lower down thresholds to detect better in MVI 
                THR_SIG = 0.5*(THR_SIG); 
                %THR_NOISE = 0.5*(THR_SIG);   
               % lower down thresholds to detect better in Bandpass filtered  
                THR_SIG1 = 0.5*(THR_SIG1); 
                %THR_NOISE1 = 0.5*(THR_SIG1);  
                 
        else 
            m_selected_RR = mean_RR; %the latest regular beats mean 
        end  
           
    end 
     
      %% calculate the mean of the last 8 R waves to make sure that QRS is 
not 
       % missing(If no R detected , trigger a search back) 1.66*mean 
        
       if m_selected_RR 
           test_m = m_selected_RR; %if the regular RR availabe use it    
       elseif mean_RR && m_selected_RR == 0 
           test_m = mean_RR;    
       else 
           test_m = 0; 
       end 
         
    if test_m 
          if (locs(i) - qrs_i(end)) >= round(1.66*test_m)% it shows a QRS is 
missed  
              [pks_temp,locs_temp] = max(ecg_m(qrs_i(end)+ 
round(0.200*fs):locs(i)-round(0.200*fs))); % search back and locate the max 
in this interval 
              locs_temp = qrs_i(end)+ round(0.200*fs) + locs_temp -
1; %location  
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              if pks_temp > THR_NOISE 
               qrs_c = [qrs_c pks_temp]; 
               qrs_i = [qrs_i locs_temp]; 
               
               % find the location in filtered sig 
               if locs_temp <= length(ecg_h) 
                [y_i_t x_i_t] = max(ecg_h(locs_temp-
round(0.150*fs):locs_temp)); 
               else 
                [y_i_t x_i_t] = max(ecg_h(locs_temp-round(0.150*fs):end)); 
               end 
               % take care of bandpass signal threshold 
               if y_i_t > THR_NOISE1  
                         
                      qrs_i_raw = [qrs_i_raw locs_temp-round(0.150*fs)+ 
(x_i_t - 1)];% save index of bandpass  
                      qrs_amp_raw =[qrs_amp_raw y_i_t]; %save amplitude of 
bandpass  
                      SIG_LEV1 = 0.25*y_i_t + 0.75*SIG_LEV1; %when found with 
the second thres  
               end 
                
               not_nois = 1; 
               SIG_LEV = 0.25*pks_temp + 0.75*SIG_LEV ;  %when found with the 
second threshold              
             end  
               
          else 
              not_nois = 0; 
               
          end 
    end 
         
    %%  find noise and QRS peaks 
    if pks(i) >= THR_SIG 
         
                 % if a QRS candidate occurs within 360ms of the previous QRS 
                 % ,the algorithm determines if its T wave or QRS 
                 if length(qrs_c) >= 3 
                      if (locs(i)-qrs_i(end)) <= round(0.3600*fs) 
                        Slope1 = mean(diff(ecg_m(locs(i)-
round(0.075*fs):locs(i)))); %mean slope of the waveform at that position 
                        Slope2 = mean(diff(ecg_m(qrs_i(end)-
round(0.075*fs):qrs_i(end)))); %mean slope of previous R wave 
                             if abs(Slope1) <= abs(0.5*(Slope2))  % slope 
less then 0.5 of previous R 
                                 nois_c = [nois_c pks(i)]; 
                                 nois_i = [nois_i locs(i)]; 
                                 skip = 1; % T wave identification 
                                 % adjust noise level in both filtered and 
                                 % MVI 
                                 NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1; 
                                 NOISE_LEV = 0.125*pks(i) + 0.875*NOISE_LEV;  
                             else 
                                 skip = 0; 
                             end 
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                      end 
                 end 
         
        if skip == 0  % skip is 1 when a T wave is detected        
        qrs_c = [qrs_c pks(i)]; 
        qrs_i = [qrs_i locs(i)]; 
         
        % bandpass filter check threshold 
         if y_i >= THR_SIG1 
                        if ser_back  
                           qrs_i_raw = [qrs_i_raw x_i];  % save index of 
bandpass  
                        else 
                           qrs_i_raw = [qrs_i_raw locs(i)-round(0.150*fs)+ 
(x_i - 1)];% save index of bandpass  
                        end 
                           qrs_amp_raw =[qrs_amp_raw y_i];% save amplitude of 
bandpass  
          SIG_LEV1 = 0.125*y_i + 0.875*SIG_LEV1;% adjust threshold for 
bandpass filtered sig 
         end 
          
        % adjust Signal level 
        SIG_LEV = 0.125*pks(i) + 0.875*SIG_LEV ; 
        end 
         
    elseif THR_NOISE <= pks(i) && pks(i)<THR_SIG 
         
         %adjust Noise level in filtered sig 
         NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1; 
         %adjust Noise level in MVI 
         NOISE_LEV = 0.125*pks(i) + 0.875*NOISE_LEV;  
          
    elseif pks(i) < THR_NOISE 
        nois_c = [nois_c pks(i)]; 
        nois_i = [nois_i locs(i)]; 
         
        % noise level in filtered signal 
        NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1; 
        %end 
         
         %adjust Noise level in MVI 
        NOISE_LEV = 0.125*pks(i) + 0.875*NOISE_LEV;   
                  
    end 
        
    %% adjust the threshold with SNR 
    if NOISE_LEV ~= 0 || SIG_LEV ~= 0 
        THR_SIG = NOISE_LEV + 0.25*(abs(SIG_LEV - NOISE_LEV)); 
        THR_NOISE = 0.5*(THR_SIG); 
    end 
     
    % adjust the threshold with SNR for bandpassed signal 
    if NOISE_LEV1 ~= 0 || SIG_LEV1 ~= 0 
        THR_SIG1 = NOISE_LEV1 + 0.25*(abs(SIG_LEV1 - NOISE_LEV1)); 
        THR_NOISE1 = 0.5*(THR_SIG1); 
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    end 
        
% take a track of thresholds of smoothed signal 
SIGL_buf = [SIGL_buf SIG_LEV]; 
NOISL_buf = [NOISL_buf NOISE_LEV]; 
THRS_buf = [THRS_buf THR_SIG]; 
  
% take a track of thresholds of filtered signal 
SIGL_buf1 = [SIGL_buf1 SIG_LEV1]; 
NOISL_buf1 = [NOISL_buf1 NOISE_LEV1]; 
THRS_buf1 = [THRS_buf1 THR_SIG1]; 
  
 skip = 0; %reset parameters 
 not_nois = 0; %reset parameters 
 ser_back = 0;  %reset bandpass param    
end 
  
if gr 
hold on,scatter(qrs_i,qrs_c,'m'); 
    disp(qrs_i_raw); 
  
end 
end 
 
7.3	Appendix	C.	Peaks	Locating	
 filenameA = 'left_10'; 
 columnA = xlsread(filenameA,'B2:B8847'); 
 figure(1); 
 subplot(311); 
 pan_tompkin(columnA, 31, 1); 
  
 hold on; 
 filenameB = 'left_30'; 
 columnB = xlsread(filenameB,'B2:B8752'); 
 subplot(312); 
 pan_tompkin(columnB, 31, 1); 
  
 hold on; 
 filenameC = 'left_60'; 
 columnC = xlsread(filenameC,'B2:B8248'); 
 subplot(313); 
 pan_tompkin(columnC, 60, 1); 
  
filenameD = 'right_10'; 
columnD = xlsread(filenameD,'B2:B8735'); 
figure(2); 
subplot(311); 
pan_tompkin(columnD, 31, 1); 
  
hold on; 
filenameE = 'right_30'; 
columnE = xlsread(filenameE,'B2:B8723'); 
subplot(312); 
pan_tompkin(columnE, 31, 1); 
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hold on; 
filenameF = 'right_60'; 
columnF = xlsread(filenameF,'B2:B8368'); 
subplot(313); 
pan_tompkin(columnF, 60, 1); 
  
filenameG = 'still_10'; 
columnG = xlsread(filenameG,'B2:B8928'); 
figure(3); 
subplot(311); 
pan_tompkin(columnG, 31, 1); 
  
hold on; 
filenameH = 'still_30'; 
columnH = xlsread(filenameH,'B2:B8752'); 
subplot(312); 
pan_tompkin(columnH, 31, 1); 
  
hold on; 
filenameI = 'still_60'; 
columnI = xlsread(filenameI,'B2:B8644'); 
subplot(313); 
pan_tompkin(columnI, 60, 1); 
7.4	Appendix	D.	Interval	Distribution	and	Standard	Deviation	
import java.util.Arrays; 
 
public class SdOfIntervals { 
  
 public static void main(String[] args) { 
  String s60 ; 
  String s30 ; 
  String s10 ; 
  String r60 ; 
  String r30 ; 
  String r10 ; 
  String l60 ; 
  String l30 ; 
  String l10 ; 
  
  String[] all = {s60,s30,s10,r60,r30,r10,l60,l30,l10}; 
  for(String s : all) { 
   int[] out = getIntervals(s); 
   float[] toSecond = new float[out.length]; 
//   System.out.println("================This is a new 
state==============="); 
   for(int i = 0; i < out.length; i++) { 
    toSecond[i] = (float)out[i]*180/8000; 
//    System.out.print((i == out.length -1)? toSecond[i] : 
(toSecond[i] + ",")); 
   } 
//   System.out.println(); 
//   System.out.println(sdArray(toSecond)); 
   System.out.println(mean(toSecond)); 
  } 
  for(String s : all) { 
   int[] out = getIntervals(s); 
   float[] toSecond = new float[out.length]; 
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//   System.out.println("================This is a new 
state==============="); 
   for(int i = 0; i < out.length; i++) { 
    toSecond[i] = (float)out[i]*180/8000; 
//    System.out.print((i == out.length -1)? toSecond[i] : 
(toSecond[i] + ",")); 
   } 
//   System.out.println(); 
   System.out.print(sdArray(toSecond) + ","); 
//   System.out.println(mean(toSecond)); 
  } 
 } 
  
 /** March 22: normalize the measurements + return String version of 
display method*/ 
 public static void gimmeString(String str) { 
  int[] intervals = getIntervals(str); 
  StringBuilder sb = new StringBuilder(); 
  for (float i : intervals) { 
   i = i * 60 /3300; 
   sb.append(i); 
  } 
  String gimme = sb.toString(); 
  display(gimme); 
 } 
  
 /** Take into a string and display it in a clear way  
  * without the influences of all spaces */ 
 public static void display(String str) { 
  int[] intervals = getIntervals(str); 
  System.out.println(); 
  System.out.println(Arrays.toString(intervals)); 
 } 
  
 public static int[] getIntervals(String s) { 
  int[] nums = getNums(s); 
  int size = nums.length-1; 
  int[] intervals = new int[size]; 
  for(int i = 0; i < size; i++) { 
   intervals[i] = nums[i+1] - nums[i]; 
  } 
  return intervals; 
 } 
  
 public static double sdArray(float[] intervals) { 
  float size = intervals.length; 
  float m = mean(intervals); 
  float sum = 0; 
  for(int i = 0; i < size; i++) { 
   sum += (intervals[i] - m) * (intervals[i] - m); 
  } 
  sum /= size; 
  return Math.sqrt(sum); 
 } 
  
 private static int[] getNums(String s) { 
  String[] sArray = s.split("\\s+"); 
  int[] numbers = new int[sArray.length]; 
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  for(int i = 0; i < sArray.length; i++) { 
   numbers[i] = Integer.parseInt(sArray[i]); 
  } 
  //System.out.println(sArray.length); 
  return numbers; 
  } 
  
 private static float mean(float[] nums) { 
  float size = nums.length; 
  float total = 0; 
  for(int i = 0; i < size; i++) { 
   total += nums[i]; 
  } 
  return total/size; 
 } 
} 
	
7.5	Appendix	E.	Interval	Distribution	Visualization	
dens_l10<-density(l10) 
dens_l30<-density(l30) 
dens_l60<-density(l60) 
dens_r10<-density(r10) 
dens_r30<-density(r30) 
dens_r60<-density(r60) 
dens_s10<-density(s10) 
dens_s30<-density(s30) 
dens_s60<-density(s60) 
 
plot(dens_l10, col="red",xlim=c(0.1,2),ylim=c(0,10),lwd=2.5, main='left ear 
stimulation with 3 frequencies', xlab="Interval (second)") 
lines(dens_l30, col="blue",lwd=2.5) 
lines(dens_l60,col="green",lwd=2.5) 
legend(1.6,9.5,legend=c("10Hz","30Hz","60Hz"),lwd=2.5,col=c("red", 
"blue","green"), lty=1:1, cex=0.8) 
 
plot(dens_r10, col="red", xlim=c(0.1,2),ylim=c(0,10),lwd=2.5, main='right ear 
stimulation with 3 frequencies', xlab="Interval (second)") 
lines(dens_r30, col="blue",lwd=2.5) 
lines(dens_r60,col="green",lwd=2.5) 
legend(1.6,9.5,legend=c("10Hz","30Hz","60Hz"),lwd=2.5,col=c("red", 
"blue","green"), lty=1:1, cex=0.8) 
 
plot(dens_s30, col="blue",xlim=c(0.1,2),ylim=c(0,10),lwd=2.5, main='non-
stimulation with 3 frequencies', xlab="Interval (second)") 
lines(dens_s10, col="red", lwd=2.5) 
lines(dens_s60,col="green",lwd=2.5) 
legend(1.6,9.5,legend=c("10Hz","30Hz","60Hz"),lwd=2.5,col=c("red", 
"blue","green"), lty=1:1, cex=0.8) 
	

7.6	Appendix	F.	Standard	Deviation	Visualization		
ssd<-c(0.17507343837486067,0.15471520031374503,0.15528768797925024) 
rsd<-c(0.24560127482236768,0.19038364147140582,0.1051657173350168) 
lsd<-c(0.19899398615750089,0.1698306650053749,0.16292568716782593) 
hist(ssd) 
x<-c(60,30,10) 
y<-c(0.1,0.25) 
plot.new() 
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plot(x,ssd,pch=0,col="green",type="o",ylim=y,ylab="standard 
deviation",xlab="frequency(Hz)",lwd=2.5,main='standard deviation of beat to 
beat intervals') 
par(new=TRUE) 
plot(x,rsd,pch=1,col="red",type="o",ylim=y,ylab="",xlab="",lwd=2.5) 
par(new=TRUE) 
plot(x,lsd,pch=2,col="blue",type="o",ylim=y,ylab="",xlab="",lwd=2.5) 
legend(45,0.145,legend=c("non-stimulation","left ear","right 
ear"),lwd=2.5,col=c("green","blue","red"),pch=c(0,2,1),lty=1:1,cex=0.8) 
	
7.7	Appendix	G.	Chi-square	Test	
filename_interval = 'interval'; 
column_still_60 = xlsread(filename_interval,'A2:A228'); 
column_still_30 = xlsread(filename_interval,'A230:A456'); 
column_still_10 = xlsread(filename_interval,'A458:A684'); 
column_right_60 = xlsread(filename_interval,'A686:A912'); 
column_right_30 = xlsread(filename_interval,'A914:A1140'); 
column_right_10 = xlsread(filename_interval,'A1142:A1368'); 
column_left_60 = xlsread(filename_interval,'A1370:A1596'); 
column_left_30 = xlsread(filename_interval,'A1598:A1824'); 
column_left_10 = xlsread(filename_interval,'A1826:A2052'); 
  
left10 = (column_left_10-column_still_10).^2; 
chi_square_left10 = left10./column_still_10; 
sum_left10=sum(chi_square_left10); 
   
left30 = (column_left_30-column_still_30).^2; 
chi_square_left30 = left30./column_still_30; 
sum_left30=sum(chi_square_left30); 
 
left60 = (column_left_60-column_still_60).^2; 
chi_square_left60 = left60./column_still_60; 
sum_left60=sum(chi_square_left60); 
  
right10 = (column_right_10-column_still_10).^2; 
chi_square_right10 = right10./column_still_10; 
sum_right10=sum(chi_square_right10); 
  
right30 = (column_right_30-column_still_30).^2; 
chi_square_right30 = left30./column_still_30; 
sum_right30=sum(chi_square_right30); 
  
right60 = (column_right_60-column_still_60).^2; 
chi_square_right60 = right60./column_still_60; 
sum_right60=sum(chi_square_right60); 
  
ave_left10=sum(column_left_10)/227; 
ave_left30=sum(column_left_30)/227; 
ave_left60=sum(column_left_60)/227; 
  
ave_right10=sum(column_right_10)/227; 
ave_right30=sum(column_right_30)/227; 
ave_right60=sum(column_right_60)/227; 
  
ave_still10=sum(column_still_10)/227; 
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ave_still30=sum(column_still_30)/227; 
ave_still60=sum(column_still_60)/227; 
  
SD_left10=sqrt(sum((column_left_10-ave_left10).^2)/227); 
SD_left30=sqrt(sum((column_left_30-ave_left30).^2)/227); 
SD_left60=sqrt(sum((column_left_60-ave_left60).^2)/227); 
  
SD_right10=sqrt(sum((column_right_10-ave_right10).^2)/227); 
SD_right30=sqrt(sum((column_right_30-ave_right30).^2)/227); 
SD_right60=sqrt(sum((column_right_60-ave_right60).^2)/227); 
  
SD_still10=sqrt(sum((column_still_10-ave_still10).^2)/227); 
SD_still30=sqrt(sum((column_still_30-ave_still30).^2)/227); 
SD_still60=sqrt(sum((column_still_60-ave_still60).^2)/227); 
	
	


