
	 1	

NON-METALLIC HUMAN VAGUS

NERVE STIMULATOR

A Design Project Report 

Presented to the School of Electrical and Computer Engineering of Cornell University

in Partial Fulfillment of the Requirements for the Degree of 

Master of Engineering, Electrical and Computer Engineering

Submitted by 

Mengqiao Li, Sijian Yan

MEng Field Advisor: Bruce Land

MEng Outside Advisor: Adam Anderson

Degree Date: August, 2016 / May, 2016

	 2	

Abstract

Master of Engineering Program 

School of Electrical and Computer Engineering

Cornell University 

Design Project Report

Project Title: Non-Metallic Human Vagus Nerve Stimulator

Author: Mengqiao Li, Sijian Yan

Abstract:

This project aims to create a human vagus nerve stimulator by using mechanical vibration. Users

can stimulate the vagus nerve under different stimulation intensity by adjusting the frequency

through a variable resister and a 555 Timer IC. The project consists of two parts: hardware

implementation and experimental design. The hardware is basically the setup for the experiment.

Results were concluded based on the data analysis after a great number of experiment was done.

Therefore, the results have a high reliability and could be used for further development and

application.

	 3	

Individual Contribution
Sijian Yan

1. A problem to be solved

The problems need to be solved by me in this project are: Using MATLAB for data

analysis and Black Box Encapsulation. Furthermore, Mengqiao and I did the vibration

generator circuit testing and heart rate data collection together.

2. A review of possible options for solution

2.1 Analyze Data by MATLAB

• Pan-Tompkins Algorithm

• Develop my own algorithm

2.2 Black Box Encapsulation

I didn’t think of any other options besides encapsulate everything into a black box.

3. What formulates the “best” solution

At last, I chose to use Pan-Tompkins Algorithm since it is a famous and rigorous

algorithm, the results should be more reliable. Moreover, EKG signal is too complicated

to be analyzed correctly and completely. Therefore, as a starter in biomedical research, I

decided to refer Pan-Tompkins and make some revise instead of coming up with my own

algorithm.

4. Documentation of design implementation

4.1 Analyze data by Pan-Tompkins Algorithm

The data which was analyzed by Pan-Tompkins Algorithm is the data transformed by

a piece of python program which was originally recorded by BioPac device.

4.2 Black Box Encapsulation

First of all, I fixed the circuit board and the power supply unit in the bottom of the

box. Then, I drilled three holes on the lid of the box for potentiometer, switch, and

signal output respectively. Last, I attached the potentiometer and switch onto the lid,

	 4	

and led the output out of the box through a thick wire which was sorted to the ear

phone.

5. Testing of the final results with regard to the original specifications

5.1 Results of Pan-Tompkins Algorithm

The Pan-Tompkins Algorithm works well. Peak location figures were generated

correctly after the signal went through the algorithm in MATLAB

5.2 Results of Black Box Encapsulation

The Black Box works well. Users can turn on/off the ear phone’s vibration by the

switch fixed on the box. Furthermore, vibration frequency can be changed by turning

the potentiometer on the box.

	 5	

Individual Contribution
Mengqiao Li

1. Data processing

Due to the reason that there were multiple outputs from Pan-Tompkins Algorithm in

MATLAB and were not directly analyzable, Li wrote a program to extract and preprocess

the data of interest.

2. Data analysis

Li created a program that achieved the following functions:

a. generating beat the beat intervals

b. calculating mean intervals under different states and frequencies

c. calculating standard deviation of intervals

3. Result visualization

In order to make it comfortable for researchers to notice the conclusion from the results,

Li created graphs and charts to display the comparisons between different frequencies

and different states such as density distribution and standard deviation.

4. Circuit board building

Li built the circuit board with Yan.

5. Circuit board testing

Li tested the circuit board with Yan and made necessary adjustments.

6. Data collecting experiment

Li collected raw heart rate data with Yan by conducting experiments using biological

device—BioPac MP150 and software—Psychopy.

	 6	

Executive Summary

This design project is created to find a noninvasive way to stimulate human vagus nerve. The

noninvasive way is achieved by using mechanical vibration. Detailed implementation will

involve a variable frequency generator design, cardiovascular measurements, data analysis by R,

JAVA and MATLAB. The final goal aimed to fulfill is to find out some correlation between

stimulating vagus nerve by mechanical vibration attached to left ear and a more variable heart

beat rate. Furthermore, this invention can also be used for medical research since vagus nerve

stimulation is most often used to treat depression and epilepsy when other treatments haven't

worked.

The non-metallic human vagus nerve stimulator project contains of two parts: implementing

a vibration generator and doing heart rate data analysis.

The vibration generator is consisted of:

• 555 Timer IC – an integrated chip used as an electronic oscillator to generate pulse

• Potentiometer – a three-terminal resister with a rotating contact that can be used as a

voltage divider to change the frequency of 555 Timer IC

• Power supply – two AAA batteries controlled by a 2-terminal switch

• Motor – a 3VDC vibration little pancake motor

• Earphone – a plastic, in-ear earphone used to conduct the vibration generated by motor

The heart rate data analysis is consisted of:

• Pan-Tompkins algorithm – is a real-time algorithm used for QRS complexes detection

of ECG/EKG signals

• Interval distribution – a way to observe heart rate varying extent

• Standard deviation – a measure of how spread out intervals are

• Chi-square testing - a statistical hypothesis test to judge if the proposed hypothesis is true

In conclusion, the vibration generator reached all of the expected functionality; the heart rate

data analysis was done correctly by programing. However, the overall results did not match the

expectation due to too few experiment subjects. Therefore, further test is needed.

	 7	

Table	of	Contents	

1 Introduction	..	10	

2 System Design..	11	

2.1 High-Level Design	...	11	

2.2 Hardware Design	...	12	

2.2.1	555	Timer	IC	..	12	

2.2.2	Potentiometer	..	12	

2.2.3	Power	Supply	..	13	

2.2.4	BioPac	MP150	...	13	

2.3 Software Design	...	14	

2.3.1	Heart	Rate	Data	Collection	...	14	

2.3.2	Analyzable	Data	Extraction	and	Preprocessing	..	14	

2.3.3	Statistical	Analysis	...	16	

2.3.4	Data	Visualization	...	16	

2.4 Experimental Design	...	16	

2.4.1	Group	Dividing	..	16	

2.4.2	Repeated	Measurement	...	17	

3 Implementation and Experimental Results	...	18	

3.1	Implementation	..	18	

3.1.1	555	Timer	IC	Integration	...	18	

3.1.2	Black	Box	Implementation	..	18	

3.2	Experimental	Results	..	19	

3.2.1	Heart	Beat	Wave	...	19	

3.2.2	Heart	Beat	Intervals	..	20	

4 Conclusion	...	21	

4.1	Evaluation	..	21	

4.1.1	Standard	deviation	...	21	

4.1.2	Chi-square	Test	...	21	

4.2	Future	Improvement	..	22	

5	Acknowledgement	..	23	

	 8	

6	References	..	24	

7 Appendix	...	26	

7.1	Appendix	A.	Wave	..	26	

7.2	Appendix	B.	Pan-Tompkins	...	27	

7.3	Appendix	C.	Peaks	Locating	..	33	

7.4	Appendix	D.	Interval	Distribution	and	Standard	Deviation	..	34	

7.5	Appendix	E.	Interval	Distribution	Visualization	...	36	

7.6	Appendix	F.	Standard	Deviation	Visualization	...	36	

7.7	Appendix	G.	Chi-square	Test	...	37	

	

	 9	

Table	of	Figures	

Figure	1	High-level	Design	 ___	 11	
Figure	2	System	Flowchart	___	 11	
Figure	3	555	Timer	IC__	12																																																																						

Figure	4	Pin	Configuration	of	555	Timer	IC	___	 12	
Figure	5	Potentiometer	__	 13	
Figure	6	AAA	Batteries	 __	 13	
Figure	7	BioPac	MP150	__	 14	
Figure	8	QRS	Complex	___	 15	
Figure	9	555	Timer	IC	Integration	Schematic	___	 18	
Figure	10	Black	Box	___	 19	
Figure	11	Peak-location	 ___	 19	
Figure	12	Interval	Distribution	 __	 20	
Figure	13	Standard	Deviation	___	 21	
Figure	14	Chi-square	Test	__	 22	

	 10	

1 Introduction
Vagus nerve is the longest cranial nerve in human’s body, which connects to heart,

esophagus, lungs, and so on. Because of such many organs it passes by, vagus nerve has

significant impacts in a lot of ways; for example, keeping the heart rate constant and controlling

food digestion.

Nowadays, the most common ways of vagus nerve stimulation is electrical stimulation –

implanting a device under the skin on one’s chest that connects to the left vagus nerve with a

wire. When the device is activated, it sends electrical signals along the vagus nerve to certain

areas in brain which will have a positive impact on the treatment of epilepsy or depression.

However, the electrical stimulation is a kind of invasive method so it may cause extra pain for

the patient due to the surgery.

Our research project wants to test a potential hack by utilizing the fact that the Vagus

receives input from touch receptors around the ear. Both of Tragus and Cavity of concha contain

45% of vagus nerve receptors. Antihelix contains 75% and all of the receptors in Cymba

Conchac are vagus nerve receptor. These preconditions make the ear vagus nerve stimulation

become realizable. Therefore, this project will involve designing an around-the-ear device that

uses mechanical vibrations of various frequencies. This will be interfaced with existing

cardiovascular measurements to assess what frequencies of stimulation may enhance vagal

outflow. On the software side, Pan-Tomkins algorithm was revised and used in peaks locating in

MATLAB. Python, JAVA, and R are also used in statistical data analysis.

	 11	

2 System Design

2.1 High-Level Design

Figure 1 demonstrates the high-level system design concept. We inserted a 3V DC Vibration

Motor, which is triggered by 555 Timer IC and powered by the AAA power supply, into the

earphone. Then put the earphone in the tester’s left ear. By regulating the potentiometer, users

are able to change the vibration frequency which further change the tester’s heart beat frequency.

															 	
Figure	1	High-level	Design	

Figure 2 shows the flowchart of the whole system. One set of 2 AAA batteries is the power

supply of the circuit board and motor. EKG device is plugged into the 120V on the wall. The

tester’s heart beat (raw data) is recorded by EKG device while his/her vagus nerve in left or right

ear is stimulated by the motor. A piece of python grogram is used to convert the time interval

and amplitude of the heart beat from electronic signal to numerical numbers, which are further

analyzed by MATLAB, JAVA and R to get more intuitively results.

	
	 Figure	2	System	Flowchart	 		

	 12	

2.2 Hardware Design

The following subsections describe hardware design and materials selection.

2.2.1	555	Timer	IC	

555 Timer IC is an integrated chip which can be used to produce accurate time delays,

generate pulse, and oscillate. In this project, it plays as an oscillator to generate variable output

frequency. Figure 4 and Figure 5 are photo and pin configuration of the most common 555 Timer

IC.
	

																								 	
Figure	3	555	Timer	IC																																																																					Figure	4	Pin	Configuration	of	555	Timer	IC	

555	Timer	IC	specification	

Model	Number	 LM555	

Operating	Voltage	 4.5V	–	16.0V	

Threshold	Voltage	 3.33V	–	10.0V	

Physical	Dimension		 9.46mm	*	6.35mm	

Rise	/	Fall	Time	 100	ns	

Table 1 Specification of 555 Timer IC	

	

2.2.2	Potentiometer	

A potentiometer in Figure 7 is a three-terminal 15kΩ resistor with a sliding or rotating

contact that forms an adjustable voltage divider. If only two terminals are used, one end and the

wiper, it acts as a variable resistor, which is the function applied in this project. Basically, a

potentiometer consists of five parts: a resistive element, a sliding contact, the wiper, that moves

	 13	

along the element, electrical terminals at each end of the element, a mechanism that moves the

wiper from one end to the other, and a housing containing the element and wiper.

Potentiometers are commonly used to control electrical devices such as volume controls on audio

equipment. In the project, it is used for adjusting the output frequencies.

	
Figure	5	Potentiometer	

2.2.3	Power	Supply	

Besides the 120V induced from the wall, the other power supply used in the project is a set of

triple-A batteries. An AAA battery in Figure 8 is a standard size of dry cell battery commonly

used in low drain portable electronic devices, which provides 1.5V each.

	
Figure	6	AAA	Batteries	

2.2.4	BioPac	MP150	

BioPac MP150 is a 16-Channel data acquisition & analysis system which could communicate

with computer by Ethernet. It is used for acquiring heart beat signal from EDA/PPG

Transponder; then it transports the signal to laptop where the signal is digitalized by a piece of

python program for statistical analysis.

	 14	

	
Figure	7	BioPac	MP150	

2.3 Software Design

2.3.1	Heart	Rate	Data	Collection	

Given the BioPac device, software is still needed in order to get the digital data of heart rate

information. By running the python scripts provided by researchers from Human Ecology

department, the wave of heart rate can be observed and it automatically generated a .csv file

containing all the values throughout the time.

2.3.2	Analyzable	Data	Extraction	and	Preprocessing	

Holding the heart rate wave values throughout time, we first needed to find the wave-peak

positions to proceed further analysis. Pan-Tompkins algorithm perfectly meets the need and there

was existing MATLAB Pan-Tompkins toolbox online. The algorithm was applied; the positions

of all the wave peaks were extracted by using MATLAB.

Pan-Tompkins algorithm is a real-time algorithm commonly used for detecting QRS

complexes, a combination of three different graphical reflections in a EKG plot, of ECG/EKG

signals, which was came up by Jiapu Pan and Willis J. Tompkins in 1985.

	 15	

	
Figure	8	QRS	Complex

The signal goes through a low pass filter, a high pass filter, and a bandpass filter to get rid of

noise in the MATLAB program. Then the signal is differentiated to provide the QRS complex

slope information.

Low pass filter transfer function: 𝑯 𝒛 = (𝟏&𝒛'𝟔)𝟐

(𝟏&𝒛'𝟏)𝟐

High pass filter transfer function: 𝑯 𝒛 = &𝟏+𝟑𝟐𝒛'𝟏𝟔+𝒛'𝟑𝟐

𝟏+𝒛'𝟏

Derivative filter transfer function: 𝑯 𝒛 = &𝒛'𝟐&𝟐𝒛'𝟏+𝟐𝒛+𝒛𝟐

𝟖𝑻
 (T = sampling period)

After differentiation, the signal is squared point by point which makes all data points positive

and also nonlinearly enhance the dominant peaks.

Squaring function: 𝒚 𝒏𝑻 = [𝒙 𝒏𝑻]𝟐.

Next, moving-window integration is executed to obtain waveform feature information in

addition to the slope of the R wave.

Moving-window integration: 𝒚 𝒏𝑻 = 𝒙 𝒏𝑻& 𝑵&𝟏 𝑻 +𝒙 𝒏𝑻& 𝑵&𝟐 𝑻 +⋯+𝒙(𝒏𝑻)
𝑵

 (N = the number of

samples in the width of the integration window)

It is physiologically impossible for R wave to occur in less than 200ms distance; therefore, a

minimum distance of 40 samples is considered between each R wave, which can be used to

determine the fiducial mark. Finally, thresholds need to be adjusted in order to locate the peaks,

which are local maximums determined by when the signal changes direction within a predefined

time interval.

	 16	

 Finally, in order to utilize the position data in different integrated developments environment

(IDE), a Java program was created to preprocess the data generated from MATLAB to make it

analyzable.

2.3.3	Statistical	Analysis	

Firstly, a Java program was written which achieved the following functions:

• Calculate peak-to-peak intervals using the analyzable position information we got from

data preprocessing

• Compute mean heart beat intervals in different situations

• Compute standard deviations of the interval distribution

Then, Chi-square test is executed to further analyze the correlations between different tested

conditions.

Chi-square test is a kind of statistical hypothesis test in which the sampling distribution of the

test is a chi-square distribution when the proposed hypothesis is true. It is applied by computing

the square errors of the sample: (6789:;9<&9=>9?@9<)
A

9=>9?@9<
, then compare the square errors to the value

of the Chi-square distribution under different degree of freedom (DF).

2.3.4	Data	Visualization	

In order to make it easy to observe and compare, several R scripts were created to display

density distribution and standard deviation. 	

	
2.4 Experimental Design

2.4.1	Group	Dividing		

Vagus nerve is considered to be existing on the left side of human’s ear, so both sides needed

to be stimulated in order to compare. Apart from experiments on left and right ears, the heart rate

when neither side of ear is stimulated is also needed to be tested as a control group to accurately

get the results. Control group is necessary since testers might be affected even if the stimulator is

not directly touching their skin. Besides, different frequencies needed to be used to stimulate in

order to find the one that most significantly influence heart rate.

	 17	

These facts lead to two variables in this experiment: states and frequencies. Based on the

precondition, the experiment was divided into 3 groups:

• Control: with the stimulator vibrating in the face of subjects but not touching the ear

• Left ear: with the stimulator vibrating in the left ear

• Right ear: with the stimulator vibrating in the right ear

Within each group, 3 different frequencies were implemented:

• 10Hz

• 30Hz

• 60Hz

2.4.2	Repeated	Measurement		

Repeated measurement is a common way to generate reliable data. Due to the grouping

method, 9 testing groups were executed in total which are:

Groups Without stimulation Left ear stimulation Right ear stimulation

10 Hz w/o, 10 Hz left, 10 Hz right, 10 Hz

30 Hz w/o, 30 Hz left, 30 Hz right, 30 Hz

60 Hz w/o, 60 Hz left, 60 Hz right, 60 Hz

Table 2 Testing Groups

For each group, the heart rate was recorded in 1 minute and the step was repeated for 3 times.

Therefore, 27 (= 1 min * 3 times * 9 groups) groups of heart rate data were collected at last.

	 18	

3 Implementation and Experimental Results

3.1	Implementation	

3.1.1	555	Timer	IC	Integration	

In the 555 Timer IC integration circuit in Figure 9, pin 2 and pin 6 are connected together

allowing the circuit to re-trigger itself on each cycle. Every cycle allows it to operate as a free

running oscillator. During each cycle, capacitor C0 charges up through both timing resistors,

15kΩ potentiometer R1 and 1kΩ register R2, but discharges itself only through resistor R2, as

the other side of R2 is connected to the discharge terminal, pin 7.

	
Figure	9	555	Timer	IC	Integration	Schematic	

	
3.1.2	Black	Box	Implementation	

The black box is constructed by a solderable breadboard with necessary electronic

components, a potentiometer, a set of AAA batteries, and a switch. Turning the switch on

enables the ear phone to vibrate; turning the switch off stops vibration. Turning the

potentiometer towards “down” decreases the vibration frequency and intensity; on the contrary,

turning it towards “up” increases the vibration frequency and intensity.

	 19	

	
Figure	10	Black	Box	

	

3.2	Experimental	Results	

3.2.1	Heart	Beat	Wave	

	
Figure	11	Peak-location	

Figure 11 shows the heart beat amplitude (from single subject) versus time. Each X-axis

represents three minutes and the plots from top to bottom are measured under 10Hz, 30Hz, and

60Hz stimulation respectively.

Heart beat waves themselves cannot really indicate any features. Heart beat intervals were

then computed to observe more characteristics of stimulation.

	 20	

3.2.2	Heart	Beat	Intervals	

Figure 12 represents the heart beat interval distribution under different stimulation

frequencies. Normally the wider the peak is, the more variable the heart rate is considered to be.

It’s easy to notice that heart rate varies the most when using 10 Hz frequency without the

stimulator directly touching the ear. 60 Hz frequency appears to be the same among groups no

matter vagus nerve is being stimulated or not. Heart rate varies less under 10Hz frequency when

it is stimulated than when it is not stimulated. Whereas it varies more under 30Hz frequency

when it is stimulated.

	
Figure	12	Interval	Distribution

	 21	

4 Conclusion

4.1	Evaluation	

4.1.1	Standard	deviation	

Greater standard deviation of beat-to-beat intervals indicates a more varying heart rate.

Figure 13 indicates that heart rate varies the most when stimulating right ear under frequency at

60Hz. However, it violates the hypothesis that stimulating the vagus nerve in left ear would vary

the heart beat most.

	
Figure	13	Standard	Deviation

	

4.1.2	Chi-square	Test	

In order to evaluate the correlations of stimulating left ear V.S. still and stimulation right ear

V.S. still, Chi-squared test was constructed to determine whether there is a significant difference

between the expected frequencies and the observed frequencies in the experiments.

In Figure 14, the variables start with “sum” represent the summation of (B9C@&8@DBB)
A

8@DBB
 and

(:DEF@&8@DBB)A

8@DBB
, which are the square errors in each group. In the experiment, the degree of freedom

is 226 since the number of sample is 227. All of the numbers exceed the standard value in the

table above. Therefore, it is not convincing to conclude any relationship based on Chi-Square

calculation. Further test is needed.

	 22	

	

	

……	

	
Figure	14	Chi-square	Test	

4.2	Future	Improvement	

Currently this vagus nerve stimulator has achieved fundamental functions. Statistical analysis

of experimental results using this stimulator doesn’t indicate a more varying heart rate under

vagus nerve stimulating circumstances so further evaluations are needed. It is probably caused by

the limited number of testers—which is just one in these experiments.

Further work could focus on making a better shaped, more comfortable end of the device, as

well as implementing an MRI compatible capsule. It could be a 25-feet tubing with a speaker on

one end which is metallic placing outside the MRI environment and an earphone-like 3D printed

end on the other side in the MRI environment, which is inserted in tester’s ear. As for

experiments, more testing subjects are needed in order to get more reliable results.

	 	

	 23	

5	Acknowledgement	

We would like to thank our advisor Dr. Bruce Land for his advice, encouragement, and

continued support of this project.

We also need to thank to Dr. Adam Anderson and his PhD student Ross Markello for their

external help with using lab equipment and teaching biomedical knowledge.

	 	

	 24	

6	References	

[1] Wikipedia. (2016) “Vagus Nerve.” [Online]. Available:

https://en.wikipedia.org/wiki/Vagus_nerve

[2] MAYO CLINIC. (2015) “Vagus Nerve Stimulation.” [Online]. Available:

http://www.mayoclinic.org/tests-procedures/vagus-nerve-stimulation/home/ovc-20167755

[3] Fairchild Semiconductor. (2013). “LM555 Single Timer.” [Online]. Available:

https://www.fairchildsemi.com/datasheets/LM/LM555.pdf

[4] Wikipedia. (2016). “Potentiometer”. [Online]. Available:

https://en.wikipedia.org/wiki/Potentiometer

[5] BioPac. (2016). “BIOPAC MP150: THE FASTEST, EASIEST WAY TO BETTER DATA”.

[Online]. Available: http://www.biopac.com/product-category/research/systems/mp150-

starter-systems/

[6] IEEE. (1985). “A Real-Time QRS Detection Algorithm”. [Online]. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4122029

[7] MathWorks. (2014). “Complete Pan Tompkins Implementation ECG QRS Detector”

[Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/45840-

complete-pan-tompkins-implementation-ecg-qrs-detector/content/pan_tompkin.m

[8] Wikipedia. (2016). “Chi-squared test.” [Online]. Available:

https://en.wikipedia.org/wiki/Chi-squared_test

[Figure 3] Circuits Today. (2014). “555 Timer – A Complete Basic Guide.” [Online]. Available:

http://www.circuitstoday.com/555-timer

[Figure 4] Learning about Electronics. (2014). “555 Timer Pinout.” [Online]. Avaliable:

http://www.learningaboutelectronics.com/Articles/555-timer-pinout.php

[Figure 5] Digi-Key. (2016). “Honeywell-Sensing-and-Productivity-Solutions 53C11MEGZ”.

[Online]. Available: http://www.digikey.com/product-detail/en/honeywell-sensing-and-

productivity-solutions/53C11MEGZ/480-6572-ND/5037507

[Figure 6] Vetco. (2013). “Battery Powered Ardunio – AA, AAA, 9V”. [Online]. Available:

http://www.vetco.net/blog/?p=113

[Figure 8] Wikipedia. (2016). “QRS complex.” [Online]. Available:

https://en.wikipedia.org/wiki/QRS_complex

	 25	

[Figure 14] MadCalc. (2016). “Values of the Chi-squared distribution”. [Online]. Available:

https://www.medcalc.org/manual/chi-square-table.php

	 26	

7 Appendix
7.1	Appendix	A.	Wave				
#Authored by: Ross M.
#Created: 12/07/2015

IMPORTS

from __future__ import division
from psychopy import visual, event
import numpy as np
import random, os

CONSTANTS

DUMMY_RECORDING = False
WINDOW_SIZE = (800,800)
SAMPLE_RATE = 1000
LOG_FILE = 'testlog'

if not DUMMY_RECORDING:
 from libmpdev import MP150

SET UP STIM

display
win = visual.Window(size=WINDOW_SIZE,units='norm')

shape for waveform (starts at center of screen)
waveForm = visual.ShapeStim(win,closeShape=False,vertices=[[0,0],[0,0]])

text for baseline measurement
baseText = visual.TextStim(win,wrapWidth=2,text=
 "Please take five deep breaths, inhaling and exhaling "
 "completely each time. Please refrain from holding your "+
 "breath, if at all possible."
 "\n\n"+
 "Press space after you have taken five breaths.")

start communication with MP150
if not DUMMY_RECORDING:
 mp = MP150(logfile=LOG_FILE,samplerate=SAMPLE_RATE)

EXPERIMENT

if not DUMMY_RECORDING:
 #start recording measurements to log file
 mp.start_recording()

 # make a baseline measurement of at least one breath for normalization
 baseline = []

	 27	

 # instructions for baseline breath
 baseText.draw()
 win.flip()

 while len(event.getKeys(keyList='space')) == 0:
 baseline.append(mp.sample()[0])

 win.flip(clearBuffer=True)

 # normalizing function for future breathing
 normalizer = max(abs(np.max(baseline)),abs(np.min(baseline)))

now, display a constantly updating waveform on the screen
press escape to exit
while len(event.getKeys(keyList='escape')) == 0:
 # grab a sample from MP 150
 if not DUMMY_RECORDING:
 sample = mp.sample()[0]
 currPoint = (0,sample/normalizer)
 # or make a random sample
 else:
 t = random.uniform(100,1000)
 x = random.uniform(0,100)
 mod = random.sample([-1,1],1)[0]
 currPoint = (0,mod*(x/t))

 numVertices = waveForm.vertices.shape[0]

 # move the waveform along the screen until it extends to the left edge
 if numVertices < 100:
 times, points = np.split(waveForm.vertices,2,axis=1)
 times = (np.arange(-1*numVertices,1)/100).reshape(numVertices+1,1)
 points = np.vstack((points,currPoint[1]))
 waveForm.vertices = np.hstack((times,points))
 else:
 times, points = np.split(waveForm.vertices,2,axis=1)
 points = np.vstack((np.split(points,[1],axis=0)[1],currPoint[1]))
 waveForm.vertices = np.hstack((times,points))

 # draw the line to the screen and refresh!
 waveForm.draw()
 win.flip()

SHUT IT DOWN

if not DUMMY_RECORDING:
 mp.stop_recording()
 mp.close()

win.close()

7.2	Appendix	B.	Pan-Tompkins			
function [qrs_amp_raw,qrs_i_raw,delay]=pan_tompkin(ecg,fs,gr)

	 28	

%% Author : Hooman Sedghamiz
% Linkoping university

% Any direct or indirect use of this code should be referenced
% Copyright march 2014

if ~isvector(ecg)
 error('ecg must be a row or column vector');
end

if nargin < 3
 gr = 1; % on default the function always plots
end
ecg = ecg(:); % vectorize

%% Initialize
qrs_c =[]; %amplitude of R
qrs_i =[]; %index
SIG_LEV = 0;
nois_c =[];
nois_i =[];
delay = 0;
skip = 0; % becomes one when a T wave is detected
not_nois = 0; % it is not noise when not_nois = 1
selected_RR =[]; % Selected RR intervals
m_selected_RR = 0;
mean_RR = 0;
qrs_i_raw =[];
qrs_amp_raw=[];
ser_back = 0;
test_m = 0;
SIGL_buf = [];
NOISL_buf = [];
THRS_buf = [];
SIGL_buf1 = [];
NOISL_buf1 = [];
THRS_buf1 = [];

%% Noise cancelation(Filtering) % Filters (Filter in between 5-15 Hz)
if fs == 200

%% Low Pass Filter H(z) = ((1 - z^(-6))^2)/(1 - z^(-1))^2
b = [1 0 0 0 0 0 -2 0 0 0 0 0 1];
a = [1 -2 1];
h_l = filter(b,a,[1 zeros(1,12)]);
ecg_l = conv (ecg ,h_l);
ecg_l = ecg_l/ max(abs(ecg_l));
delay = 6; %based on the paper

%% High Pass filter H(z) = (-1+32z^(-16)+z^(-32))/(1+z^(-1))
b = [-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 -32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1];
a = [1 -1];
h_h = filter(b,a,[1 zeros(1,32)]);
ecg_h = conv (ecg_l ,h_h);
ecg_h = ecg_h/ max(abs(ecg_h));
delay = delay + 16; % 16 samples for highpass filtering
else

	 29	

%% bandpass filter for Noise cancelation of other sampling
frequencies(Filtering)
f1=5; %cuttoff low frequency to get rid of baseline wander
f2=15; %cuttoff frequency to discard high frequency noise
Wn=[f1 f2]*2/fs; % cutt off based on fs
N = 3; % order of 3 less processing
[a,b] = butter(N,Wn); %bandpass filtering
ecg_h = filtfilt(a,b,ecg);
ecg_h = ecg_h/ max(abs(ecg_h));
end

%% derivative filter H(z) = (1/8T)(-z^(-2) - 2z^(-1) + 2z + z^(2))
h_d = [-1 -2 0 2 1]*(1/8);%1/8*fs
ecg_d = conv (ecg_h ,h_d);
ecg_d = ecg_d/max(ecg_d);
delay = delay + 2; % delay of derivative filter 2 samples

%% Squaring nonlinearly enhance the dominant peaks
ecg_s = ecg_d.^2;

%% Moving average Y(nt) = (1/N)[x(nT-(N - 1)T)+ x(nT - (N - 2)T)+...+x(nT)]
ecg_m = conv(ecg_s ,ones(1 ,round(0.150*fs))/round(0.150*fs));
delay = delay + 15;

if gr
plot(ecg_m);axis tight;title('Heart Beat in 3 Minutes');
axis tight;
xlabel('The number of sample in 3 minutes') ;
ylabel('Peak Amplitude/V');
end

%% Fiducial Mark
% Note : a minimum distance of 40 samples is considered between each R wave
% since in physiological point of view no RR wave can occur in less than
% 200 msec distance
[pks,locs] = findpeaks(ecg_m,'MINPEAKDISTANCE',round(0.2*fs));

%% initialize the training phase (2 seconds of the signal) to determine the
THR_SIG and THR_NOISE
THR_SIG = max(ecg_m(1:2*fs))*1/3; % 0.25 of the max amplitude
THR_NOISE = mean(ecg_m(1:2*fs))*1/2; % 0.5 of the mean signal is considered
to be noise
SIG_LEV= THR_SIG;
NOISE_LEV = THR_NOISE;

%% Initialize bandpath filter threshold(2 seconds of the bandpass signal)
THR_SIG1 = max(ecg_h(1:2*fs))*1/3; % 0.25 of the max amplitude
THR_NOISE1 = mean(ecg_h(1:2*fs))*1/2; %
SIG_LEV1 = THR_SIG1; % Signal level in Bandpassed filter
NOISE_LEV1 = THR_NOISE1; % Noise level in Bandpassed filter

%% Thresholding and online desicion rule

for i = 1 : length(pks)

	 30	

 %% locate the corresponding peak in the filtered signal
 if locs(i)-round(0.150*fs)>= 1 && locs(i)<= length(ecg_h)
 [y_i x_i] = max(ecg_h(locs(i)-round(0.150*fs):locs(i)));
 else
 if i == 1
 [y_i x_i] = max(ecg_h(1:locs(i)));
 ser_back = 1;
 elseif locs(i)>= length(ecg_h)
 [y_i x_i] = max(ecg_h(locs(i)-round(0.150*fs):end));
 end

 end

 %% update the heart_rate (Two heart rate means one the moste recent and the
other selected)
 if length(qrs_c) >= 9

 diffRR = diff(qrs_i(end-8:end)); %calculate RR interval
 mean_RR = mean(diffRR); % calculate the mean of 8 previous R waves
interval
 comp =qrs_i(end)-qrs_i(end-1); %latest RR
 if comp <= 0.92*mean_RR || comp >= 1.16*mean_RR
 % lower down thresholds to detect better in MVI
 THR_SIG = 0.5*(THR_SIG);
 %THR_NOISE = 0.5*(THR_SIG);
 % lower down thresholds to detect better in Bandpass filtered
 THR_SIG1 = 0.5*(THR_SIG1);
 %THR_NOISE1 = 0.5*(THR_SIG1);

 else
 m_selected_RR = mean_RR; %the latest regular beats mean
 end

 end

 %% calculate the mean of the last 8 R waves to make sure that QRS is
not
 % missing(If no R detected , trigger a search back) 1.66*mean

 if m_selected_RR
 test_m = m_selected_RR; %if the regular RR availabe use it
 elseif mean_RR && m_selected_RR == 0
 test_m = mean_RR;
 else
 test_m = 0;
 end

 if test_m
 if (locs(i) - qrs_i(end)) >= round(1.66*test_m)% it shows a QRS is
missed
 [pks_temp,locs_temp] = max(ecg_m(qrs_i(end)+
round(0.200*fs):locs(i)-round(0.200*fs))); % search back and locate the max
in this interval
 locs_temp = qrs_i(end)+ round(0.200*fs) + locs_temp -
1; %location

	 31	

 if pks_temp > THR_NOISE
 qrs_c = [qrs_c pks_temp];
 qrs_i = [qrs_i locs_temp];

 % find the location in filtered sig
 if locs_temp <= length(ecg_h)
 [y_i_t x_i_t] = max(ecg_h(locs_temp-
round(0.150*fs):locs_temp));
 else
 [y_i_t x_i_t] = max(ecg_h(locs_temp-round(0.150*fs):end));
 end
 % take care of bandpass signal threshold
 if y_i_t > THR_NOISE1

 qrs_i_raw = [qrs_i_raw locs_temp-round(0.150*fs)+
(x_i_t - 1)];% save index of bandpass
 qrs_amp_raw =[qrs_amp_raw y_i_t]; %save amplitude of
bandpass
 SIG_LEV1 = 0.25*y_i_t + 0.75*SIG_LEV1; %when found with
the second thres
 end

 not_nois = 1;
 SIG_LEV = 0.25*pks_temp + 0.75*SIG_LEV ; %when found with the
second threshold
 end

 else
 not_nois = 0;

 end
 end

 %% find noise and QRS peaks
 if pks(i) >= THR_SIG

 % if a QRS candidate occurs within 360ms of the previous QRS
 % ,the algorithm determines if its T wave or QRS
 if length(qrs_c) >= 3
 if (locs(i)-qrs_i(end)) <= round(0.3600*fs)
 Slope1 = mean(diff(ecg_m(locs(i)-
round(0.075*fs):locs(i)))); %mean slope of the waveform at that position
 Slope2 = mean(diff(ecg_m(qrs_i(end)-
round(0.075*fs):qrs_i(end)))); %mean slope of previous R wave
 if abs(Slope1) <= abs(0.5*(Slope2)) % slope
less then 0.5 of previous R
 nois_c = [nois_c pks(i)];
 nois_i = [nois_i locs(i)];
 skip = 1; % T wave identification
 % adjust noise level in both filtered and
 % MVI
 NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1;
 NOISE_LEV = 0.125*pks(i) + 0.875*NOISE_LEV;
 else
 skip = 0;
 end

	 32	

 end
 end

 if skip == 0 % skip is 1 when a T wave is detected
 qrs_c = [qrs_c pks(i)];
 qrs_i = [qrs_i locs(i)];

 % bandpass filter check threshold
 if y_i >= THR_SIG1
 if ser_back
 qrs_i_raw = [qrs_i_raw x_i]; % save index of
bandpass
 else
 qrs_i_raw = [qrs_i_raw locs(i)-round(0.150*fs)+
(x_i - 1)];% save index of bandpass
 end
 qrs_amp_raw =[qrs_amp_raw y_i];% save amplitude of
bandpass
 SIG_LEV1 = 0.125*y_i + 0.875*SIG_LEV1;% adjust threshold for
bandpass filtered sig
 end

 % adjust Signal level
 SIG_LEV = 0.125*pks(i) + 0.875*SIG_LEV ;
 end

 elseif THR_NOISE <= pks(i) && pks(i)<THR_SIG

 %adjust Noise level in filtered sig
 NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1;
 %adjust Noise level in MVI
 NOISE_LEV = 0.125*pks(i) + 0.875*NOISE_LEV;

 elseif pks(i) < THR_NOISE
 nois_c = [nois_c pks(i)];
 nois_i = [nois_i locs(i)];

 % noise level in filtered signal
 NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1;
 %end

 %adjust Noise level in MVI
 NOISE_LEV = 0.125*pks(i) + 0.875*NOISE_LEV;

 end

 %% adjust the threshold with SNR
 if NOISE_LEV ~= 0 || SIG_LEV ~= 0
 THR_SIG = NOISE_LEV + 0.25*(abs(SIG_LEV - NOISE_LEV));
 THR_NOISE = 0.5*(THR_SIG);
 end

 % adjust the threshold with SNR for bandpassed signal
 if NOISE_LEV1 ~= 0 || SIG_LEV1 ~= 0
 THR_SIG1 = NOISE_LEV1 + 0.25*(abs(SIG_LEV1 - NOISE_LEV1));
 THR_NOISE1 = 0.5*(THR_SIG1);

	 33	

 end

% take a track of thresholds of smoothed signal
SIGL_buf = [SIGL_buf SIG_LEV];
NOISL_buf = [NOISL_buf NOISE_LEV];
THRS_buf = [THRS_buf THR_SIG];

% take a track of thresholds of filtered signal
SIGL_buf1 = [SIGL_buf1 SIG_LEV1];
NOISL_buf1 = [NOISL_buf1 NOISE_LEV1];
THRS_buf1 = [THRS_buf1 THR_SIG1];

 skip = 0; %reset parameters
 not_nois = 0; %reset parameters
 ser_back = 0; %reset bandpass param
end

if gr
hold on,scatter(qrs_i,qrs_c,'m');
 disp(qrs_i_raw);

end
end

7.3	Appendix	C.	Peaks	Locating	
 filenameA = 'left_10';
 columnA = xlsread(filenameA,'B2:B8847');
 figure(1);
 subplot(311);
 pan_tompkin(columnA, 31, 1);

 hold on;
 filenameB = 'left_30';
 columnB = xlsread(filenameB,'B2:B8752');
 subplot(312);
 pan_tompkin(columnB, 31, 1);

 hold on;
 filenameC = 'left_60';
 columnC = xlsread(filenameC,'B2:B8248');
 subplot(313);
 pan_tompkin(columnC, 60, 1);

filenameD = 'right_10';
columnD = xlsread(filenameD,'B2:B8735');
figure(2);
subplot(311);
pan_tompkin(columnD, 31, 1);

hold on;
filenameE = 'right_30';
columnE = xlsread(filenameE,'B2:B8723');
subplot(312);
pan_tompkin(columnE, 31, 1);

	 34	

hold on;
filenameF = 'right_60';
columnF = xlsread(filenameF,'B2:B8368');
subplot(313);
pan_tompkin(columnF, 60, 1);

filenameG = 'still_10';
columnG = xlsread(filenameG,'B2:B8928');
figure(3);
subplot(311);
pan_tompkin(columnG, 31, 1);

hold on;
filenameH = 'still_30';
columnH = xlsread(filenameH,'B2:B8752');
subplot(312);
pan_tompkin(columnH, 31, 1);

hold on;
filenameI = 'still_60';
columnI = xlsread(filenameI,'B2:B8644');
subplot(313);
pan_tompkin(columnI, 60, 1);
7.4	Appendix	D.	Interval	Distribution	and	Standard	Deviation	
import java.util.Arrays;

public class SdOfIntervals {

 public static void main(String[] args) {
 String s60 ;
 String s30 ;
 String s10 ;
 String r60 ;
 String r30 ;
 String r10 ;
 String l60 ;
 String l30 ;
 String l10 ;

 String[] all = {s60,s30,s10,r60,r30,r10,l60,l30,l10};
 for(String s : all) {
 int[] out = getIntervals(s);
 float[] toSecond = new float[out.length];
// System.out.println("================This is a new
state===============");
 for(int i = 0; i < out.length; i++) {
 toSecond[i] = (float)out[i]*180/8000;
// System.out.print((i == out.length -1)? toSecond[i] :
(toSecond[i] + ","));
 }
// System.out.println();
// System.out.println(sdArray(toSecond));
 System.out.println(mean(toSecond));
 }
 for(String s : all) {
 int[] out = getIntervals(s);
 float[] toSecond = new float[out.length];

	 35	

// System.out.println("================This is a new
state===============");
 for(int i = 0; i < out.length; i++) {
 toSecond[i] = (float)out[i]*180/8000;
// System.out.print((i == out.length -1)? toSecond[i] :
(toSecond[i] + ","));
 }
// System.out.println();
 System.out.print(sdArray(toSecond) + ",");
// System.out.println(mean(toSecond));
 }
 }

 /** March 22: normalize the measurements + return String version of
display method*/
 public static void gimmeString(String str) {
 int[] intervals = getIntervals(str);
 StringBuilder sb = new StringBuilder();
 for (float i : intervals) {
 i = i * 60 /3300;
 sb.append(i);
 }
 String gimme = sb.toString();
 display(gimme);
 }

 /** Take into a string and display it in a clear way
 * without the influences of all spaces */
 public static void display(String str) {
 int[] intervals = getIntervals(str);
 System.out.println();
 System.out.println(Arrays.toString(intervals));
 }

 public static int[] getIntervals(String s) {
 int[] nums = getNums(s);
 int size = nums.length-1;
 int[] intervals = new int[size];
 for(int i = 0; i < size; i++) {
 intervals[i] = nums[i+1] - nums[i];
 }
 return intervals;
 }

 public static double sdArray(float[] intervals) {
 float size = intervals.length;
 float m = mean(intervals);
 float sum = 0;
 for(int i = 0; i < size; i++) {
 sum += (intervals[i] - m) * (intervals[i] - m);
 }
 sum /= size;
 return Math.sqrt(sum);
 }

 private static int[] getNums(String s) {
 String[] sArray = s.split("\\s+");
 int[] numbers = new int[sArray.length];

	 36	

 for(int i = 0; i < sArray.length; i++) {
 numbers[i] = Integer.parseInt(sArray[i]);
 }
 //System.out.println(sArray.length);
 return numbers;
 }

 private static float mean(float[] nums) {
 float size = nums.length;
 float total = 0;
 for(int i = 0; i < size; i++) {
 total += nums[i];
 }
 return total/size;
 }
}
	
7.5	Appendix	E.	Interval	Distribution	Visualization	
dens_l10<-density(l10)
dens_l30<-density(l30)
dens_l60<-density(l60)
dens_r10<-density(r10)
dens_r30<-density(r30)
dens_r60<-density(r60)
dens_s10<-density(s10)
dens_s30<-density(s30)
dens_s60<-density(s60)

plot(dens_l10, col="red",xlim=c(0.1,2),ylim=c(0,10),lwd=2.5, main='left ear
stimulation with 3 frequencies', xlab="Interval (second)")
lines(dens_l30, col="blue",lwd=2.5)
lines(dens_l60,col="green",lwd=2.5)
legend(1.6,9.5,legend=c("10Hz","30Hz","60Hz"),lwd=2.5,col=c("red",
"blue","green"), lty=1:1, cex=0.8)

plot(dens_r10, col="red", xlim=c(0.1,2),ylim=c(0,10),lwd=2.5, main='right ear
stimulation with 3 frequencies', xlab="Interval (second)")
lines(dens_r30, col="blue",lwd=2.5)
lines(dens_r60,col="green",lwd=2.5)
legend(1.6,9.5,legend=c("10Hz","30Hz","60Hz"),lwd=2.5,col=c("red",
"blue","green"), lty=1:1, cex=0.8)

plot(dens_s30, col="blue",xlim=c(0.1,2),ylim=c(0,10),lwd=2.5, main='non-
stimulation with 3 frequencies', xlab="Interval (second)")
lines(dens_s10, col="red", lwd=2.5)
lines(dens_s60,col="green",lwd=2.5)
legend(1.6,9.5,legend=c("10Hz","30Hz","60Hz"),lwd=2.5,col=c("red",
"blue","green"), lty=1:1, cex=0.8)
	

7.6	Appendix	F.	Standard	Deviation	Visualization		
ssd<-c(0.17507343837486067,0.15471520031374503,0.15528768797925024)
rsd<-c(0.24560127482236768,0.19038364147140582,0.1051657173350168)
lsd<-c(0.19899398615750089,0.1698306650053749,0.16292568716782593)
hist(ssd)
x<-c(60,30,10)
y<-c(0.1,0.25)
plot.new()

	 37	

plot(x,ssd,pch=0,col="green",type="o",ylim=y,ylab="standard
deviation",xlab="frequency(Hz)",lwd=2.5,main='standard deviation of beat to
beat intervals')
par(new=TRUE)
plot(x,rsd,pch=1,col="red",type="o",ylim=y,ylab="",xlab="",lwd=2.5)
par(new=TRUE)
plot(x,lsd,pch=2,col="blue",type="o",ylim=y,ylab="",xlab="",lwd=2.5)
legend(45,0.145,legend=c("non-stimulation","left ear","right
ear"),lwd=2.5,col=c("green","blue","red"),pch=c(0,2,1),lty=1:1,cex=0.8)
	
7.7	Appendix	G.	Chi-square	Test	
filename_interval = 'interval';
column_still_60 = xlsread(filename_interval,'A2:A228');
column_still_30 = xlsread(filename_interval,'A230:A456');
column_still_10 = xlsread(filename_interval,'A458:A684');
column_right_60 = xlsread(filename_interval,'A686:A912');
column_right_30 = xlsread(filename_interval,'A914:A1140');
column_right_10 = xlsread(filename_interval,'A1142:A1368');
column_left_60 = xlsread(filename_interval,'A1370:A1596');
column_left_30 = xlsread(filename_interval,'A1598:A1824');
column_left_10 = xlsread(filename_interval,'A1826:A2052');

left10 = (column_left_10-column_still_10).^2;
chi_square_left10 = left10./column_still_10;
sum_left10=sum(chi_square_left10);

left30 = (column_left_30-column_still_30).^2;
chi_square_left30 = left30./column_still_30;
sum_left30=sum(chi_square_left30);

left60 = (column_left_60-column_still_60).^2;
chi_square_left60 = left60./column_still_60;
sum_left60=sum(chi_square_left60);

right10 = (column_right_10-column_still_10).^2;
chi_square_right10 = right10./column_still_10;
sum_right10=sum(chi_square_right10);

right30 = (column_right_30-column_still_30).^2;
chi_square_right30 = left30./column_still_30;
sum_right30=sum(chi_square_right30);

right60 = (column_right_60-column_still_60).^2;
chi_square_right60 = right60./column_still_60;
sum_right60=sum(chi_square_right60);

ave_left10=sum(column_left_10)/227;
ave_left30=sum(column_left_30)/227;
ave_left60=sum(column_left_60)/227;

ave_right10=sum(column_right_10)/227;
ave_right30=sum(column_right_30)/227;
ave_right60=sum(column_right_60)/227;

ave_still10=sum(column_still_10)/227;

	 38	

ave_still30=sum(column_still_30)/227;
ave_still60=sum(column_still_60)/227;

SD_left10=sqrt(sum((column_left_10-ave_left10).^2)/227);
SD_left30=sqrt(sum((column_left_30-ave_left30).^2)/227);
SD_left60=sqrt(sum((column_left_60-ave_left60).^2)/227);

SD_right10=sqrt(sum((column_right_10-ave_right10).^2)/227);
SD_right30=sqrt(sum((column_right_30-ave_right30).^2)/227);
SD_right60=sqrt(sum((column_right_60-ave_right60).^2)/227);

SD_still10=sqrt(sum((column_still_10-ave_still10).^2)/227);
SD_still30=sqrt(sum((column_still_30-ave_still30).^2)/227);
SD_still60=sqrt(sum((column_still_60-ave_still60).^2)/227);
	
	

