
Abstract

This project aims to design and develop a secure digital (SD) card
library based on PIC32 microcontroller. The main function of this
system is to read and store files from the SD card. In addition, this
system gives PIC32 developers access to large memory to store
image and files. It also serves for later projects need SD card
implementation. Thus, by using the library, the later PIC32
developers can get the information and write data to the SD card
easily. The basic functions in the SD card library are write and read
functions. The user can access the file stored in the SD card with
calling a read function in the library.

SD Card Library For PIC32
Chang Liu & Pei Xu Advisor: Dr. Bruce Land

School of Electrical and Computer Engineering, Cornell University

SD card increases
1000 times storage

of PIC32
The current situation in ECE4760 PIC32 developers is that there is
a lack of library for them to directly access the file stored in an SD
card. To enhance the feasibility and capability of the use of
PIC32, a SD card library is needed to be created. Therefore, the
developers are able to read, write or update information in the
system directly.
According to our research, including the secondary research on
the internet, we find that it is feasible and potential to enrich this
peripheral for PIC32 developers. This improvement will
contribute to the convenience for PIC32 developers in their work.
Thus, this project aims to design and develop a secure digital (SD)
card library based on PIC32 microcontroller.
The SD card library offers a place to store data, images, sound
and other information which needs of large memory space. The
main function of the library is to read and store files from the SD
card. In addition, this library provides the functionality to get the
file list from the root directory.

Without SD library, PIC32 has 512KB
memory storage
With the SD library, now it is up to 32GB!

Hierarchy Design
The SD card contains two basic semiconductor sections, a ‘memory core’ and a ‘SD card
controller’. The ‘memory core’ is the flash memory region where the actual data of the file is
saved. Formatting the SD card, a file system will be written into this region. The ‘SD card
controller’ helps to communicate the ‘memory core’ with PIC32 microcontroller.
Our team divides the project into three subsystems. They are SPI section, SD command section
and FAT32 file system section.

Figure 2. Block diagram of the system

Three subsystems
SPI: to communicate SD card easily
SD Command: to send command to the SD controller
FAT32: to store large files in a specific format

SD Command Section
The internal SD card controller can decode the commands
transmitted using SPI. Those commands are called standard
SD command which can read the registers of the SD card,
and also read/write the ‘Memory Core’.

Fuction name Description

char SD_init(void); SD card initialization

SD_sendCommand(unsigned char cmd,

unsigned long arg);
Send SD command to SD controller

SD_readSingleBlock(unsigned long startBlock); Read data from a specific block

SD_writeSingleBlock(unsigned long startBlock); Write data to a specific block

Flow chart for function SD_init

Core functions

SD card in the eye
of engineers

SD card is a common daily life erasable storage device,
because of its large storage capacity and low price, it is
widely used in digital cameras, mobile phones and other
digital products. SD card supports two bus modes: SD
mode and SPI mode. SD mode using 6-wire buses, the
use of CLK, CMD, DAT0, DAT1, DAT2, DAT3 for data
communication, which has the data transform rate at
4bits at a time. SPI mode using 4-wire buses, the use of
CS, CLK, DataIn, DataOut, these four ports for exchanging
data only has 1 bit at a time which is slower than the SD
mode, but the communication protocol is simple and
there is no need to check the CRC, which is desirable for
this project to read and write operations on the SD card.

Figure 1. SD card pinout

SPI Section
The PIC32 microcontroller communicates with SD card controller using SPI buses. The data transmitted and received
via SPI can be written and read through SPI1BUF from PIC32.

Pin Number

on SD card
Name Description

1 CS Chip select (active low)

2 MOSI(DataIn) Master out slave in

3 VSS1 Ground 6 (RB2) CS Chip select (active low)

4 VDD Voltage supply 24 (RB13) MOSI(SDO1) Master out slave in

5 CLK Clock 27 (GND) GND Ground

6 VSS2 Ground 25 (RB14) SCK1 Clock

7 MISO(DataOut) Master in slave out 22 (RB11) SDI1 Master in slave out

8 Reserved Reserved for SPI mode 3 (RA1) U2RX UART receive

9 Reserved Reserved for SPI mode 21 (RB10) U2TX UART transmit

Physical pin

Number on

PIC32

Name Description

Hardware Design

Fuction name Description

SPI_transmit(unsigned char data) Transmit the 8 bits data to the spi buffer

 SPI_receive(unsigned char data) Get the 8 bits data from the spi buffer

Core functions

Table 1. Pinout selection of SD card and PIC32

Figure 3. Hardware connection of SD card and PIC32

Table 2. Core functions in SPI section

How we test the library
A user test interface is built based on the communication from computer and PIC32 via UART. Read or
Write function selection and other basic functions can be selected from the user interface. By typing the
command via the keyboard, users can choose the mode, select the files to open, read or write data to a
specific file.

Figure 6. User interface to test the library
Acknowledgments

Special thanks to Bruce Land, advisor of this Masters of
Engineering Design Project

Fuction name Description

appendFile (void); Write data to an exsisting file

 memoryStatistics (void); Get the memory usage of the SD card

 writeFile (unsigned char *fileName);

Create a file in FAT32 format in the root

directory if given file name does not exist; if the

file already exists then append the data

 deleteFile (unsigned char *fileName); Delete the file

 findFiles (unsigned char flag, unsigned char

*fileName);

Print file/dir list of the root directory, if flag =

GET_LIST Delete the file, if flag = DELETE

readFile (unsigned char flag, unsigned char

*fileName);

 Read file from SD card if flag=READ;

Verify whether a specified file is already

existing if flag=VERIFY

FAT32 File System Section
A FAT32 file system is mapped into the flash memory. This enables the
user to directly access or modify the files.

Core functions

Flow chart for function readFile using SD_ReadSingleBlock function

Figure 5. Logic flowchart for readFile

Figure 4. Logic flowchart for SD_init

WinHex is employed to
verify the data transmitted
from PIC32 to the SD card
is identical as the user
input. Below is the
partition table shown as
FAT32. With this tool,
debugging is simpler and
user input can be tested
and verified.

Figure 7. SD card read by WinHex

Base System
Middle Layer

High
level
System

