Project: sun tracker

• Idea:
 – Use two photodiodes to detect where the sun is
 – Control a motor to turn toward the sun
 – When sun is “half-way” between PD, stop.

• Potential uses: solar cell tracking

• Components:
 – Stepper motor
 – Shift register
 – Photodiodes
 – Comparators

• Optional: build clock circuit and power with batteries to take outside
Component list

<table>
<thead>
<tr>
<th>Component name</th>
<th>Digi-key number*</th>
<th>Number needed**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread boards</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Wire (jumper) pack***</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Flexible wire</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Shift register</td>
<td>296-9183-5-ND</td>
<td>1</td>
</tr>
<tr>
<td>555-timer</td>
<td>LMC555CN-ND</td>
<td>1</td>
</tr>
<tr>
<td>741 op-amp</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Stepper motor</td>
<td>403-1013-ND</td>
<td>1</td>
</tr>
<tr>
<td>Photoresistor</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Resistor pack***</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Capacitors</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>LEDs</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Switches</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Battery packs</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Batteries</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

* What we used, many of these can be replaced with other equivalent parts
** Recommend that you buy more than listed, as parts can burn out
*** easily shared between projects
Comparator

- Built using an op-amp (a 741 will do)
- Compares its “+” and “-” inputs
 - If $V^+ > V^-$ then output = V_{High} (a digital “1”)
 - If $V^+ < V^-$ then output = V_{low} (a digital “0”)
- Useful for converting small analog voltages into big, digital signals
- To power up, attach V_{low} to -6V, V_{high} to +6V
- Test: attach output to LED in series with a 1kΩ resistor to ground
- Set V^+, V^- with SMUs, confirm that LED turns on when $V^+ > V^-$
Shift register (1)

- A shift register is a kind of digital memory
- It has 6 data inputs:
 - Parallel data D0, D1, D2, D3
 - Serial data DSR, DSL
- It has three controls:
 - Shift controls, S0, S1
 - Clock
- It has 4 outputs:
 - Q0, Q1, Q2, Q3
 - These outputs change only when the clock changes from 0 to 1

Set VCC to 5V, VSS to 0V, pin 1 to 5V
Shift register (2)

- The shift register has 4 modes, set by S0, S1, and triggered by the clock
 - When S0=1, S1 =1,
 - Q0 = D0, Q1 = D1, etc
 - When S0 = 0, S1 = 0
 - Q0,Q1,Q2,Q3 hold their value
 - When S0 = 0, S1 = 1
 - Data shifts left: Q1 = Q0 (from before clock) Q2= Q1, etc
 - Q0 = DSR
 - When S0 = 1, S1 = 0
 - Data shifts right: Q2 = Q3 (from before clock) Q1= Q2, etc
 - Q3 = DSL

- Test:
 - attach Q0-Q3 to 4 LEDs in series with 1kΩ resistors to ground
 - Set function generator to make a 5V square wave (2.5V offset) with frequency = 1Hz, attach it to the clock input
 - Short D0, D2, D3, and SDR to ground, short D1 and SDL to 5V

- Try different combinations of S0, S1.
- What happens?
 - You should see things shift left or right.
Stepper motor

- This motor has 4 inputs that are 75Ω to ground.
- Each input goes to an electromagnet:
 - current flows in one magnet at a time,
 - a fixed magnet on the rotor aligns with that magnet, rotating the motor
- So motor rotates depending on which input is set to a high voltage.
- The rotor is attached to gears so that each motor rotation only turns the output by ~3 degrees.

Test: attach ground to 0V, attach, one at a time, inputs 1-4 to 5V: does the motor rotate?

Signal sequence for rightward rotation:
LM555 Timer

- Used as an oscillator
- **Trigger:** when $< \frac{1}{3} \text{Vcc}$, the output is high (Vcc)
- **Threshold input:** when $> \frac{2}{3} \text{Vcc}$ and the trigger is $> \frac{1}{3} \text{Vcc}$, the output is low (0V). If the trigger is $< \frac{1}{3} \text{Vcc}$, it overrides the threshold input and holds the output high.
- **Reset input:** when less than about 0.7V, all other inputs are overridden and the output is low.
- **Discharge pin:** This is connected to 0V when the timer output is low and is used to discharge the timing capacitor in astable operation.
LM555 Timer as an oscillator

- Astable operation: The circuit oscillates on its own.
- With the output high, the capacitor C is charged by current flowing through R_A and R_B.
- The threshold and trigger inputs monitor the capacitor voltage and when it reaches $\frac{2}{3}V_{cc}$ (threshold), the output becomes low and the discharge pin is connected to 0V.
- The capacitor discharges with current flowing through R_B into the discharge pin. When the voltage falls to $\frac{1}{3}V_{cc}$ (trigger) the output becomes high again and the discharge pin is disconnected, allowing the capacitor to start charging again.
- Adjust duty cycle (time on : total time) by adjusting the ratio between R_A and R_B.
- Note that pin 4 (reset) is held at V_{cc} here. You will need change the connection for light sensitivity.

LM555 Timer

- Some equations for astable operation:
 The charge time (output high) is given by:
 \[t_1 = 0.693 \left(R_A + R_B \right) C \]
 And the discharge time (output low) by:
 \[t_2 = 0.693 \left(R_B \right) C \]
 Thus the total period is:
 \[T = t_1 + t_2 = 0.693 \left(R_A + 2R_B \right) C \]
 The frequency of oscillation is:
 \[f = \frac{1}{T} = \frac{1.44}{R_A + 2R_B} C \]
 And the duty cycle is:
 \[D = \frac{t_1}{t_1 + t_2} = \frac{R_A + R_B}{R_A + 2R_B} \]