Project: sun tracker

• Idea:

- Use two photodiodes to detect where the sun is
- Control a motor to turn toward the sun
- When sun is "half-way" between PD, stop.
- Potential uses: solar cell tracking
- Components:
 - Stepper motor
 - Shift register
 - Photodiodes
 - Comparators
- Optional: build clock circuit and power with batteries to take outside

Component list

Component name	Digi-key number*	Number needed**
Bread boards		2
Wire (jumper) pack***		1
Flexible wire		1
Shift register	296-9183-5-ND	1
555-timer	LMC555CN-ND	1
741 op-amp		2
Stepper motor	403-1013-ND	1
Photoresistor		2
Resistor pack***		1
Capacitors		4
LEDs		7
Switches		2
Battery packs		2
Batteries		8

* What we used, many of these can be replaced with other equivalent parts

** Recommend that you buy more than listed, as parts can burn out

*** easily shared between projects

Comparator

- Built using an op-amp (a 741 will do)
- Compares it's "+" and "-"inputs
 - If V⁺ > V⁻ then output = V_{High} (a digital "1")
 - If V⁺ < V⁻ then output = V_{low}
 (a digital "0")
- Useful for converting small analog voltages into big, digital signals
- To power up, attach V_{low} to -6V, V_{high} to +6V

- Test: attach output to LED in series with a 1kΩ resistor to ground
- Set V+, V- with SMUs, confirm that LED turns on when V+ > V-

Shift register (1)

- A shift register is a kind of digital memory
- It has 6 data inputs:
 - Parallel data D0,D1,D2,D3
 - Serial data DSR, DSL
- It has three controls:
 - Shift controls, S0, S1
 - Clock
- It has 4 outputs:
 - Q0,Q1,Q2,Q3
 - These outputs change only when the clock changes from 0 to 1

Shift register (2)

- The shift register has 4 modes, set by S0, S1, and triggered by the clock
- When S0=1, S1 =1,
 Q0 = D0, Q1 = D1, etc
- When S0 = 0, S1 = 0
 _ Q0,Q1,Q2,Q3 hold their value
- When S0 = 0, S1 = 1
 - Data shifts left: Q1 = Q0 (from before clock) Q2= Q1, etc
 - Q0 = DSR
- When S0 = 1, S1 = 0
 - Data shifts right: Q2 = Q3 (from before clock) Q1= Q2, etc
 - Q3 = DSL

- Test:
 - attach Q0-Q3 to 4 LEDs in series with 1kΩ resistors to ground
 - Set function generator to make a 5V square wave (2.5V offset) with frequency
 = 1Hz, attach it to the clock input
 - Short D0, D2, D3, and SDR to ground, short D1 and SDL to 5V
- Try different combinations of S0, S1.
- What happens?
 - You should see things shift left or right.

Stepper motor

- This motor has 4 inputs that are 75Ω to ground.
- Each input goes to an electromagnet:
 - current flows in one magnet at a time,
 - a fixed magnet on the rotor aligns with that magnet, rotating the motor
- So motor rotates depending on which input is set to a high voltage.
- The rotor is attached to gears so that each motor rotation only turns the output by ~3 degrees.

Test: attach ground to 0V, attach, one at a time, inputs 1-4 to 5V: does the motor rotate?

LM555 Timer

- Used as an oscillator
- Trigger: when < ¹/₃ Vcc, the output is high (Vcc)
- Threshold input: when > 2/3 Vcc and the trigger is > 1/3 Vcc, the output is low (0V). If the trigger is < 1/3 Vcc, it overrides the threshold input and holds the output high.
- **Reset input:** when less than about 0.7V, all other inputs are overridden and the output is low.
- **Discharge pin:** This is connected to 0V when the timer output is low and is used to discharge the timing capacitor in astable operation.

LM555 Timer as an oscillator

- Astable operation: The circuit oscillates on its own.
- With the output high, the capacitor C is charged by current flowing through R_A and R_B.
- The threshold and trigger inputs monitor the capacitor voltage and when it reaches ²/₃Vcc (threshold), the output becomes low and the discharge pin is connected to 0V.
- The capacitor discharges with current flowing through R_B into the discharge pin. When the voltage falls to 1/₃Vcc (trigger) the output becomes high again and the discharge pin is disconnected, allowing the capacitor to start charging again.
- Adjust duty cycle (time on : total time) by adjusting the ratio between R_A and R_B.
- Note that pin 4 (reset) is held at Vcc here. You will need change the connection for light sensitivity.

LM555 Timer

 Some equations for astable operation: The charge time (output high) is given by: Output mgm, \sim 3 $t_1 = 0.693 (R_A + R_B) C \xrightarrow{l}{t_2}$ And the discharge time (output low) by: $t_2 = 0.693 (R_R) C$ Thus the total period is: $T = t_1 + t_2 = 0.693 (R_A + 2R_B) C$ The frequency of oscillation is: $f = 1/T = 1.44/(R_{\Delta} + 2R_{B})C$ And the duty cycle is: $D = t_1/(t_1 + t_2) = (R_A + R_B)/(R_A + 2R_B)$