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Abstract

Since Tong et al. (1991) demonstrated the feasibility of identifying possibly nonminimum phase channels using
second-order statistics, considerable research activity, both in algorithm development and fundamental analysis, has
been seen in the area of blind identification of multiple FIR channels. Many of the recently developed approaches invoke,
either explicitly or implicitly, the algebraic structure of the data model, while some others resort to the use of cyclic
correlation/spectral fitting techniques. The objective of this paper is to establish insightful connections among these
studies and present recent developments of blind channel equalization. We also unify various representative algorithms
into a common theoretical framework.

Zusammenfassung

Seitdem Tong, Xu und Kailath (1991) die Machbarkeit der Identifizierung méglicherweise nichtminimalphasiger
Kanile unter Nutzung von “Second-Order Statistics” demonstrierten, waren erhebliche Forschungsaktivititen sowohlin
der Entwicklung von Algorithmen, als auch einer grundlegenden Analyse, auf dem Gebiet der “Blind-Identification” von
multiplen FIR-Kanilen zu beobachten. Viele der kiirzlich entwickelten Néherungen nehmen entweder explizit oder
implizit die algebraische Struktur der Daten zu Hilfe, wihrend einige andere Zuflucht bei der Anwendung von zyklischen
“Correlation/Spectral Fitting”-Techniken suchen. Die Intention dieses Beitrages ist es, einsichtige Verbindungen
zwischen diesen Untersuchungen aufzuzeigen und neuere Entwicklungen der “Blind-Channel”-Entzerrung zu prisen-
tieren. Wir vereinheitlichen ebenfalls verschiedene reprisentative Algorithmen in einem gemeinsamen theoretischen
Rahmen.

Résume

Depuis que Tong, Xu et Kailath (1991) ont démontré la faisabilité de I'identification de canaux a phase non minimum
a laide de statistiques de second ordre, une activité de recherche considérable, 4 la fois pour le développement
dalgorithmes et I'analyse fondamentale, a vu le jour dans le domaine de P'identification aveugle de canaux FIR multiples.
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Beaucoup des approches récemment développées impliquent, soit explicitement soit implicitement, la structure algé-
brique du modéle des données, alors que d’autres font appel aux techniques de corrélation cyclique/ajustement spectral.
L’objectif de cet article est d’établir des connexions pénétrantes parmi ces études et de présenter des développements
récents en égalisation aveugle de canal. Nous unifions également les algorithmes représentatifs divers dans un cadre

théorique commun.

Keywords: Blind equalization; Nonminimum phase channels; Fractionally spaced equalizers; Cyclic correlation

1. Introduction

Blind channel equalization (BCE) [38], i.e., deter-
mining and equalizing the channel response based
solely on the channel output without the use of
a training sequence, has received considerable atten-
tion recently in communications and signal process-
ing. Earlier approaches to blind identification ex-
ploit the higher-order statistics of the output; see
[5,10,52,41,20,14] and the references therein.
These methods, although reliable and robust in
some scenarios, require a large number of data sam-
ples and a large amount of computation. In fast
changing environments, such as in cellular commun-
ications, their applications may be limited. These
problems are alleviated by a method proposed by
Tong et al. [49, 51] which explored the cyclosta-
tional properties of an oversampled communication
signal to allow the blind channel estimation to be
accomplished based on second-order statistics of the
channel output. This result is believed to have in-
spired all the subsequent development in identifying
a single-input multiple-output FIR system without
using higher-order statistics.

Since it is well-known that the second-order sta-
tistics of scalar system output do not contain
enough information to identify a possibly nonmini-
mum phase system, and since the original approach
[49] employs the temporal oversampling technique
which converts a stationary communication se-
quence into a cyclostationary process,' it was, for
a while, believed that cyclostationarity was the only
key to the surprising success of the original algo-

! Although Gardner showed that the second-order statistics of
cyclostationary signals do contain phase information which can
be used in nonminimum phase system identification, the algo-
rithm proposed in [13] requires the use of training sequences.

rithm. Many early algorithms employ the cyclic
correlation/spectral fitting techniques. Although it
was later shown that blind identification can be
accomplished without the use of any statistics,
studies in that period brought to light many impor-
tant aspects of the problem, e.g., the channel identi-
fiability conditions [33, 11, 26].

Some of the early statistics-based methods, in-
cluding the original approach, suffer from the
performance degradation caused by the model mis-
match when only a limited number of observations
is available. The desire for more data-efficient algo-
rithm led to the development of a class of subspace-
based blind identification algorithms. The exploita-
tion of a certain inherent subspace structure arising
from the combination of a block-Toeplitz FIR
channel matrix and a Hankel input matrix in the
absence of noise, and allows these approaches to
provide exact channel estimation using only a finite
number of observations [ 32, 43, 30 14]. These tech-
niques significantly outperform several previously
developed statistics-based methods, especially for
short data sequences. The success of these algo-
rithms revealed an important fact: it is the intrinsic
single-input multiple-output structure that is essen-
tial to blind identification.

Despite many promising features, the perfor-
mance of these subspace-based algorithms, may be
fundamentally limited by the nature of the channel.
For example, singularity of the channel matrix can
cause divergence of the subspace, and result in
failure of the subspace approaches. This fact trig-
gered some of the latest studies on algorithm per-
formance, and saw a reemergence of correla-
tion/spectral fitting techniques. Other currently ac-
tive topics include performance analysis, channel
order detection, fast algorithm development and
implementation, and algorithm generalization to
multiple inputs systems, etc.
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The purpose of this paper is to survey various
blind equalization approaches, explore their con-
nections, and highlight several important and
somewhat surprising results. With the mushroom-
ing of studies and the proliferation of algorithms,
our main objective is not to give an encyclopedic
coverage of all the blind estimation techniques, but
rather to provide a systematic summary of recent
development in the area of blind channel equaliza-
tion.

The rest of this paper is organized as follows.
Following the problem formulation in Section 2,
we first review in Section 3 the original method
[19] that marked the beginning of a brand new
direction in blind channel identification, and then
briefly summarize several other cyclostationarity-
based algorithms. In Section 4, we highlight the
channel identifiability conditions and discuss
several important results concerning system identi-
fiability. In Section 5, we present two subspace
channel identification approaches, namely, the
least-squares (LS) approach and the channel sub-
space (CS) approach, both of which exploit the
system structure and offer superior estimation per-
formance; a signal subspace (SS) approach and
a deterministic maximum likelihood framework are
then described. Finally in Section 6, we outline
some of the latest results and trends in blind identi-
fication.

2. Data formulation

Fig. 1 depicts a discrete multichannel system
with FIR impluse responses {h,(*)} driven by the
same input s(-). The system output x;(-) is related
to s(-) and A;(-) by

x;(k) = Z h(jystk—j), i=1,..,M, (1)

where M is the number of channels, and L + 1 is
the maximum order of the M channels (M = 2 and
L > 1). The principal interest herein is estimation of
the channels {h;(-)} and the input s(-) from the
noise-corrupted outputs, without using higher-
order statistics.

Such a problem arises in a variety of applications
such as mobile communications, seismic signal
analysis, and image restoration. A paradigmatic
example concerns a wireless communication sys-
tem with multiple receivers (antenna array); the
propagation channel from the transmitter to each
individual receiver can be practically modeled as an
FIR filter.

In addition to such applications where physical
receivers are employed, a multichannel system can
also be formulated using virtual receivers. Fig. 2
illustrates a single receiver digital communication
system where the channel lasts for 3 adjacent
bauds. By temporally oversampling the channel

Blind {4}, 30)

Identification

Fig. 1. Blind estimation for multiple channels.
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Fig. 2. A special channel with L =2 and s, = + 1.

outputs at 4 times the baud rate, and collecting
the data samples within each baud period as
x(k) = [xo(k), x1(k), x3(k), x4(k)]", we obtain

xi(k) = hi(2) stk — 2) + hi(D)s(k — 1) + hi(0)s(k), (2)

where h;(k) is the ith element of A(k), k = 0,1,2 and
i=0,1,2,3. Clearly, (2) has the same form as (1)
with L = 2.

Unless otherwise stated, we make the following
assumptions regarding the channels and noise
throughout this paper.

(A1) The noise is complex normal and white with
spectral density o7.

(A2) All channels are linear time-invariant (LT1)
and are of finite duration.

(A3) There is at least one channel of length L.

As a general notational convention, matrices (in
capital letters) and vectors will be in boldface. The
symbols (), (-)T, ©® and ® stand for Hermitian,
transpose, convolution and Kronecker product, re-
spectively; a(z) = a(0) + a(l)z + --- + a(p)z® de-
notes a polynomial whose coeflicients are the ele-
ments of a vector a. Re(f), Im(0) and 0 are the real
part, the imaginary part and the estimate of the
quantity . The symbol I(0) stands for the identity
(zero) matrix or vector with a proper dimension.

Using the above notation, the channel and
its outputs can be represented in vector form:
x(k) = [x1(k) ... xp(k)]", hj=[h()) ... ha(DT".
The input-output relation in (1) can consequently
be compactly rewritten as (see [18])

L
x(k) = Y hystk —j) = Hs(k), €)

where H =[hy, ... ,ho] and sk)=[s(k—L), ...,
s(k)]". We assume only a finite number of observa-

tions and index them from L + 1 to N:x(L + 1) to
x(N); L + 1 is used here as the initial index so that
the input signals to be unraveled are s(1), ..., s(N).

For later reference, we define a Toeplitz block
transform (TBT), 7 (-) and Hankel block transform
(HBT), #(-) on a given column vector sequence
21> Z2s --- » 2y as follows:

2 2 -z 0 ... 0
0 21 %2 ... N ...
Tk ...2)=| . L. . . . s
0 ... 0 z z, - zn
N v J
K+ N—1 blocks (4)
2 22 IN-K+1
T2 23 IN-K+2
Az ... ) = .
Zk Tk+1 .- N

With the notation

Xi(K) = Tg(x(L + 1) ... xi(N));
X(K)=Tg(x(L+1)... x5))

H{(K) = Tx(h(L) ... hi(0)); )
H(K) = Fxl(hy ... ho);

S(L + K)= Hp+k(s1 ... s5),

it can be easily verified that

X(K) = H(K)S(L + K). (6)

K here is defined as the smoothing factor. The ex-
plicit dependence of X(K), H(K) and S(L + K) on
K may sometimes be dropped when there is no
possibility of confusion. Also denote by x(k) and
s(k) the kth column vectors of X(K) and S(K),
respectively. When K = 1, they reduce to the out-
put and input vectors in (3).

3. Blind identification using oversampling
techniques

Classical solutions [38, 18, 4, 20] to blind iden-
tification in digital communication systems are
based upon data sampled at the baud rate, al-
though it has been known for some time [54, 17]
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that fractionally spaced equalizers are more robust
under timing uncertainties. Since communication
channels are, in general, nonminimum phase, the
second-order statistics of baud-rate-sampled sta-
tionary signals are inadequate for channel identi-
fication. Gardner [13] was perhaps the first to
recognize that the phase information is available in
the cyclostationary sequence; early work on blind
deconvolution of cyclostationary signals with re-
strictive channels can be found in [7].

3.1. The original approach

The first blind channel estimation algorithm that
only utilizes the second-order statistics was intro-
duced by Tong et al. [49]. By employing the tem-
poral oversampling technique and assuming that
the system inputs s( ) are i.i.d., the autocorrelation
matrix of the system outputs is given by

R.(0)= E{x(k)x"(k)} = HE{s(k)s"(k)} H" = HH".
H_J

=1 (7
Here, we assume that a proper smoothing factor
K is selected such that H has more rows than
columns. Although from the subspace generated by
the columns of R,(0), we can only obtain the H up
to a unitary rotation, ie., F = HT, where T'is a uni-
tary matrix, a means for eliminating such an ambi-
guity or to find T is to introduce R (1) (see [49]):

R.(1) = E{x(k))x"(k — 1)}

= HE{s(k)s"(k — 1)} H" = HJH", ®)
;_Y___J

=J
where J is the shifting matrix with 0’s everywhere
except its second diagonal elements which are 1’s.
Since

F'&(FHF) 1 FY = TYHYH) 'HY = TH',
where F' denotes the pseudo-inverse of F, then
RAF'R (INF'H = FTHIHM (F 1)
=T" H*HJH'H'T
NP ———

= THJT. 9)

Since T is unitary, TR = TT"JT = JT. Letting
T=1[t,..,t,]% we see that (9) yields Rt; =1,,
Rt;_, =t; and Rt; = 0. From such a recursion, we
can uniquely determine T up to a scalar phase
ambiguity e/*. For the detailed algorithm and the
technique of handling the additive noise, please
refer to [49].

The algorithm enforces a Jordan structure on the
input correlation matrix and essentially recon-
structs the channel vectors in H based on the in-
formation provided by the change of rank of R, (k).
It, however, does not fully exploit the Toeplitz
structure of H. Although this algorithm is prelimi-
nary and suboptimal in retrospect, it reformulated
a traditional spectral channel identification prob-
lem into a parameter estimation framework and
eliminated the issue of the lack of phase informa-
tion in the second-order statistics [8]. More impor-
tantly, it opened up a new research direction and
led to the development of a class of data-efficient
and fast converging blind equalization techniques.

3.2. Frequency domain approaches

If we look at the above time-domain approach
more carefully, it is not difficult to see that it
works because H has more rows than columns.
Since H has MK rows and L + K columns,
MK >L+ K or K> L/(M — 1) clearly indicates
the magic of oversampling. If there is no oversamp-
ling, ie, M =1, then K — ov. Otherwise, for
M = 2, we can always find a large enough K such
that H has more rows than columns. Therefore,
oversampling is a key to the aforementioned suc-
cess. This explanation in the time domain is superfi-
cial and it turns out that much more insight can be
gained by examining the problem in a frequency
domain formulation.

For a single-input and single-output system, the
output x(k) = Y5 oh;s(k — j). If s(+) is an unknown
stationary random process, the only available
second-order statistic of x(-) is the correlation
function R,(-) in the time domain or the spectral
density function S,(-) in the frequency domain. If
we assume that s(-) is white with variance ¢Z, then

S.(joo) = |H(jo)* Sy(jo) = o |H(jo)|*. (10)
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Clearly, there is no way to determine H(jw) or H(z)
from S, (jw) since the phase information of H(jw) is
missing in (10), unless we assume that H(z) is a min-
imum-phase system. That is also why most conven-
tional blind equalization techniques rely on higher-
order statistics.

Nevertheless, if s(-) is a cyclostationary process,
so is x(). Then, the power spectral density is no
longer the only second-order statistic available;
there exist the so-called cyclic spectra of the obser-
ations [48],

I (jw) = H(ja))H*<jw —jk%) + *d(k),

k=0,1,...,M—1. (11)

When k = 0, the cyclic spectrum becomes the con-
ventional power spectral density function. How-
ever, I'*(jw) for k # 0 provides phase information
on H{jw), which can be exploited to identify the
H(jw) as shown below.

In the z-domain, (11) leads to the equation

) 1

r*z) = H(Z)H*(e”““”‘") —*) k=0,...,M—1
z

(12)

The problem of channel identification is then
equivalent to identifying H(z) using I"*(z), which
can be approached by identifying the zeros of H(z)
from those of I'*(z). The following theorem was
given in [50].

Theorem 1. The channel transfer function H(z) is
uniquely determined (identified) by {I'*(z))} up to
a multiplicative constant if and only if H(z) does not
have zeros uniformly spaced around a circle with
separation of 2nt/M radians. Moreover, if the channel
is identifible,

Z(H(z)) = () Z ('), (13)
K
where % (H(z)) denotes for the set of zeros of H(z).

Several frequency domain approaches have been
proposed that estimate the channel parameters
from the cyclic spectra.

3.2.1. Identification by poles and zeros.

In [9], Ding proposed a two-step approach for
the identification of H(z). The cyclic spectra
{r®(ei®)} are estimated first by FFT-based spec-
trum estimators. Next, the poles and zeros of the
channel transfer function are determined from the
estimated cyclic spectra.

3.2.2. Eigenstructure-based identification

A closed-form eigenstructure-based approach
was invented by Hassibi [48] and later indepen-
dently by Giannakis [14]. From (11), it is clear that
the problem of identifying H(z) from {I'*(z)} can be
formulated as one of finding the greatest common
divisor (GCD) from a set of polynomials. Although
the Euclid algorithm, often considered as one of the
oldest nontrivial algorithms, can be applied to find
the GCD, it is sensitive to the perturbation caused
of the estimation. To obtain a more robust algo-
rithm, Hassibi formulated the following optimiza-
tion approach:

f(kl](z) H* <ejkz(2n/M) i)

H(z) = argmin
H(z)

_ f(kz)(Z)H* (ejkx(ln/M) i)
V4

*

7%

2

(14)

where I'*)(z) and I'*)(z) are estimated output

spectra. The above optimization can be translated

to a quadratic optimization

h = arg min h''Qn, (15)
flall =1

whose solution can be obtained performing eigen-

decomposition of Q. Details can be found in [48].

3.2.3. New stochastic method [57]

Based on (3), define the autocorrelation matrix
R, (i) = E {x(k)x"(k — i)} and correspondingly, the
power spectral matrix Q(e!®) = Y471, | R (i)e'”.

Then Xu et al. [57] show that
L L ) %
() = ( ) hkeW“’) ( ) hkemk-l)) + o2,
k=1

k=1
(16)

In other words, Q(e'®) is a rank-one M xM
Hermitian matrix whose principal eigenvector is
c(w) = ey i hel®® D where e is an
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unknown phase. By evaluating e(w,) at different
frequency points {w,} based on the sample power
spectrum Q(e’**), the channel vectors can be deter-
mined by the following estimator:

{ﬁ;} = arg n{}}‘nz [1é(con) — é(eoy, h)||*.

Wi,
It turns out that the above optimization problem
can also be nicely solved by using SVDs [48].

4. Channel identifiability

Despite the early success of the aforementioned
statistics-based blind identification algorithms, it
was still not clear why oversampling can overcome
the lack of phase information, other than the ex-
planation that oversampling generates a cyclo-
stationary process whose frequency correlation
(cyclic spectra) reveals the phase information of the
channel. Then a legitimate question to ask is what
kind of channels can be identified using second-
order statistics only? This fundamental question
attracted the attention of many researchers, whose
investigations gradually resolved this enigma.

To clarify the discussion, one needs to accept the
following.

Definition 1. An FIR channel is identifiable if it can

be determined up to a multiplicative constant.

4.1. Hdentifiability condition

There have been a number of studies based on
Definition 1. One of the earliest and most refer-
enced results in the following [51].

Theorem 2. The channels are identifiable if and only
if the matrix H(L + 1) has full column rank.

Recall that

hy h,_, - h, 0 e 0
h h, _ h 0

H(L) = Lo Y
0 0 hy h,_, - h
— J

~
2L+1 blocks (17)

The rank condition on H(L + 1), which is a so-
called Sylvester resultant matrix, was studied by
Kung et al. as early as 1976 [25]. The Toeplitz-
block structure exhibits many interesting proper-
ties which can be used to interpret the identifiability
condition. To provide further insight, Xu et al. [ 58]
presented an alternative representation of the
multichannel system by transforming the blind
identification problem into a standard system iden-
tification framework.

Denote s(k) = [s(k — 1) stk —2) ... stk —L)]%,
u(k) = x,(k) and y(k) = [x,(k) ... xp(k)]". The
multichannel FIR system can be described by an
SIMO (single input, multiple output) state space
model:

stk+1)=
—hi(1) e =L 1)~y (L)
1
s
1 0
y
1
0
+ : u(k), (18)
0
et
b
&) h»(0)
so=| | sw+] O . (19)
CMm hy(0)
W_) N )
C d
where

¢; = (hi(i) — hi(O)h (1) ... hi(L) — hi(0)hy(L)).

The transfer matrix of the above model is

[ha(z) ... hu(z)]"
hi(2) '

h(z)=CzI—A)" b +d=
(20)
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Using standard system identification results
[23,31], it is now clear that Theorem 2 can be
restated in the following more informative format
[51,33,11,26],

Theorem 3. The channels are identifiable if and only
if{ZkL:Ohi(k)z*"} are coprime, i.e., they do not share
any common roots.

Note that in the above theorems, no requirement
regarding the inputs is specified. For most statis-
tics-based approaches, the implicit assumption is
that the inputs be white noise, or at least that the
input covariance matrix be of full rank. Such condi-
tions are, of course, plausible in most communica-
tion scenarios with sufficient data samples. How-
ever, when the data sequence is considerably short,
statistical characterization of the unknown input is
hardly useful, since the statistical estimates based
on finite samples are very poor. In these cases, it
appears natural to model the inputs as deterministic
unknown signals. This assumption means that the
input characterstics also have to be accounted for
in the identifiability studies.

For the finite-sample model in Section 2, the
following was shown in [58].

Theorem 4. The blind identification problem has

a unique solution if

- {Z,f;(,h,-(k)z”‘} are coprime, i.e., they do not share
any common roots

— s(1), ..., s(N) contain no fewer than 2L + 1 modes

The number of modes, often referred to as the
linear complexity, is a measurement of the diversity
in a finite sequence. It can be analogous to the
number of frequency components in an infinite
data sequence [23,31]. Interestingly, the above
conditions are the same as those for identifying
a rational function with denominator and numer-
ator both of order L [31]. It is true that the system
under consideration is only FIR, and can be suffi-
ciently identified with a known input s(-) that has
L + 1 modes (sometimes referred to as persistent
excitation of order L + 1 [3]). For blind identifica-
tion, the input is unknown and hence more than
2L + 1 modes are required in the input signal.

4.2. Related studies

An interesting and insightful observation was
made by Hua [32] on the relation between the
identifiability and the rank condition of Fisher
Information (FI) matrices. Previous results on
identifiability were usually algorithm-dependent,
which made a unified comparison difficult.

With s = [s(1), ..., s(N)]%, &; = [h(0), ..., k(L)]%,
and h = [h], ... ,h%]", some of the major results in
[32] can be summarized as follows. Let

Re(h)
Re(s)
Im(h)|
Im(s)

The Fisher information matrix for the parameters
inais

- ?c_f[lm(Fc) Re(F,) |

where F is a complex F1 matrix with 4 and s as its
elements. Readers are referred to the original paper
for details.

Many profound relations between nullity (F.)
and the system characteristics are revealed by the
following theorem.

Theorem 5. (a) nullity (F,) = 1.

(b) nullity (F)> 1 if {s(k), k=1,...,N} has less
than L + 2 modes, or the M channels share
a common zeros, or N < 2L + 1.

(¢) nullity(F)=1if{s(k),k=1,...,N} has2L + 1
or more modes, the M channels do not share
a common zero, or N > 4L + 1.

(d) if nullity (F.) = d, let F, be F, without d rows and
columns of F, corresponding to d nonzero para-
meters in a, then nullity (F,) = 0.

Part (a) of Theorem 5 implies that there is always
a complex degree of uncertainty in the M-channel
system, which is expected. Hence, one can define
that the M-channel system is identifiable if nullity
(F,) = 1. With this definition, Part (b) provides a
necessary channel identifiability condition, and
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Part (c) gives a sufficient ID condition. Beside the
coprimeness restriction on the channels, which has
been studied extensively in previous studies, we see
that the nature of the input sequence also plays
a decisive role in blind identification.

4.3. Characteristics of unidentifiable channels

Although the identifiability conditions, and in
particular the common zero requirement on the
channels has been investigated extensively, under-
standing the connections among these conditions
usually remains at a conceptual level. Clearly, it is
very important for practitioners to understand
physically what kinds of channel can be blindly
identified. To provide an intuitive interpretation of
these conditions, Tugnait [33] considered multi-
path channels in wireless systems, where h;(t) can
be expressed as

d
hi(t) = ), ajg(t — At)),
j=1
where g(-) is the pulse-shape function, {At;} are the
multipath delays, {«;} are the relative complex
gains of eatch path and d is the total number of
paths. Based on the above formulation, the follow-
ing classes of multipath channels are shown to have
common Zeros:
1. channels with delays that are integer multiples of
T;
2. channels with delays that are integer multiples of
T/2 for even M.
If one of the above situation occurs, the channels
become unidentifiable, regardless of the sampling
rate. These results help practitoners to understand
the limitations of the blind channel identification
approaches discussed in this paper, and to decide
what types of channel equalization methods to use.

4.4 Channel order selection

Although selection of the channel order L is not
an identifiability issue, it is undoubtedly crucial in
modeling the multichannel FIR system. Knowledge
of the model order is as critical to the blind identi-

fication algorithms as it is to most parametric es-
timation methods. Most existing approaches as-
sume the length of the channels to be known
a priori. Among the limited studies on order selec-
tion, a majority part resorts to some type of ad hoc
eigen-based detection schemes. More objective cri-
teria such as MDL [37], AIC [1] are yet to be
derived.

In [30] it was shown that Dy, in (24) will have
more than one null vector if the channel is over-
determined, i.e., L > L., there is also a one-to-one
relation between (L — L) and the number of null
vectors in Dy, Therefore, one can in principle deter-
mine the true order by checking the rank of Dy,.
Naturally, in the presence of noise, we have to
count the number of smaller singular (eigen) values
that are close to one another.

A similar detection technique was proposed in
[57] based on the use of data covariance matrix
R. = (1/N)X(K)X"(K). Ideally, E[(1/N)X(K)X"(K)]
is of rank L + K and thus has L + K nonzero
eigenvalues. Hence, by observing the distribution of
the eigenvalues of the Ry, it is possible to determine
the channel order L. This problem seems very sim-
ilar to that of estimating the number of sources in
direction finding [62, 56, 55]. However, the prob-
lems are not exactly the same since all the data
vectors in sensor array processing are mutually
uncorrelated. In the channel identification case,
neighboring data vectors have overlapping ele-
ments and hence are correlated. This correlation
can complicate the development of a statistical di-
rection method.

5. Subspace approaches

In the early studies, it was commonly believed
that knowledge of the input statistics (not the ac-
tual input) must be available for channel identifica-
tion. However, in some typical applications, such as
mobile communications, the channel may vary rap-
idly and we can obtain only a short data sequence
associated with the ‘same’ channel. In this case, the
statistics estimated from the finite channel output
may not be accurate, causing model mismatch and
leading to performance degradation of the statis-
tics-based approaches. In the search for more
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robust techniques to handle short data sequences,
Liu et al. [30, 58] developed a least squares (LS)
method that accomplishes channel identification
without requiring the input statistics. Similar tech-
niques were also proposed independently in [19, 2].

5.1. Least-squares approach

The algorithm assumes that the noise is a sta-
tionary Gaussian white random process, whereas
the signals are deterministic unknowns. It was ori-
ginally termed as the deterministic approach to
emphasize its deterministic nature. The basic obser-
vation here is that for any pair of two noise-frec
outputs x;(k) and x;(k),

hi(k) © xi(k) = hy(k) © (hi(k) © s(k))

=hi(k) © (hi(k) © s(k)) =hi(k) © x(k),
—
= x;(k) (21)

or in matrix form,

i) —xwn| ] -o 2

1

To exploit all the possible cross relations simulta-
neously, the LS method employs a transform which
was later defined as the data selection transform
(DST), Z [61]. Given the data matrices from all
channels X, (L), ... , Xy (L),

@2(X(-)(L)) = [Xz(L) —Xl(L)]’

9M(X(-)(L)) =

[ Drg-1(X(H(L)) 0 ]
—Xi(L)
—X,(L)

Xnm(L)
Xu(L)

Xy(L) | =Xy -1(L)|
(23)

With Dy %€ Z44(X. (L)), the channel estimate
problem is cast into a least-squares form:

~

h = arg min A"(D D, )A, (24)

Ay =1

where h = [h] ... hi]"

The LS method turned out to be highly data
efficient when the SNR is relatively high. Indeed,
from (22), it is clear that in the absence of noise,

Therefore, if Dy, has only one null vector, which is
true in most scenarios [30], the LS method pro-
vides exact channel estimates. This result substanti-
ates the superior performance promised by the
parametric methods. As an aside, it also implies
that the structure of the output alone contains
sufficient information to identify a single-input
multiple-output system.

5.2. Channel subspace method

The key role of channel structure in single-input,
multiple-output blind estimation was possibly dis-
closed most lucidly by the channel subspace (CS)
method proposed independently by Moulines et al.
[32] and Slock [43].

Built upon the concept of signal subspace used
by many eigen-based algorithms in the context of
array signal processing [35], especially the MUSIC
approach [40], the CS method defines the column
span of H(K), and its corresponding orthogonal
complement, as the channel signal subspace U, and
the channel orthogonal subspace U,. Evidently, both
of them can be calculated from the data matrix
(defined in (6))

X(K)=H(K)S(L + K), (25)

provided that the input matrix S(L + K) is of full
row rank. The algorithm relies on the following
observation to determine the channel vector.

Theorem 6. Assume that (i) K > L and (ii) the
matrix H(K — 1) is of full-column rank. Let H'(K)
be a filtering matrix with the same dimensions as
H(K). The column space of H'(K) is included in the
column space of H(K) if and only if the correspond-
ing vectors h and k' are proportional.

The above theorem asserts that in the absence of
noise, H(K) constructed from the true channel
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vector h = [hj,...,h{]" is the only structured
matrix that satisfies

UMK)H(K) = 0.

This indicates that the channel can be determined
uniquely from the signal subspace of the data
matrix X(K) or its corresponding orthogonal sub-
space U,. Denoting by {u}} the orthogonal vectors
in U,, with some straightforward matrix and vector
manipulation, the channel estimate can be for-
mulated as

h = arg min
Al = 1

? (26)

1Y GG

where G; = 7, (ui(1), ..., ul(K)).

In practice, or course, U, has to be estimated
from the data covariance matrix using eigen-de-
composition techniques. Simulation studies show
that the CS method performs similarly to the LS
method given a short data sequence [61] and
sometimes slightly better. A close investigation
of the connection of the LS and CS approaches
was conducted by Zeng and Tong [61]. They
showed, somewhat expectedly, that the LS and CS
approaches provide identical channel estimates
with probability one for a system with M = 2. Al-
though further analysis for M > 2 is yet to be
performed, it will not be surprising if similar results
hold.

5.3. Signal subspace method

In all the aforementioned algorithms, the focus
has been on channel estimation. In practice, the
ultimate goal is usually to recover the information
bearing inputs rather than the channels. Theorem
5 on system identifiability indicates that the inputs
are as the channels, if not more. Given a short data
sequence where the number of inputs is comparable
to the number of channel parameters, it may be
practically preferable to determine the inputs dir-
ectly from the system outputs, rather than via the
two-step approach of channel identification and
channel equalization. Such an idea turns out to be
feasible by using the following observation of Liu
and Xu [28].

Lemma 1. The input vector s can be uniquely deter-
mined, up to a scalar multiplier, from the row span of
S(r) if s contains more than r modes.

It is seen that, similar to the assertion in Theorem
6, the row span of the Hankel input matrix
S(L + K) alone contains sufficient information to
determine the input sequence. Denote by V,, and
correspondingly by V,, the input signal subspace
and the input orthogonal subspace.* Then s, up to
a scalar ambiguity, is the unique nontrivial solution
of the following overdetermined system of linear
equations,

Vs =0, 27
where
V, 0
. 0
0 ¥ : .
V(r): . O , 0= : N-—-2r+1.
) 0
0
r:L+Kvblocks (28)

V(r) is characteristically interpreted as the decon-
volution matrix. In effect, V(k),k = 1, ... ,r, allow one
to utilize the null space of S(r) to construct the null
spaces of S(r —k + 1), k =1, ... ,r, thus eventually
recover S(1) = s. The approach is similar in spirit to
the channel subspace method.

5.4. Maximum likelihood approach

When the additive noise is white Gaussian, the
maximum likelihood (ML) principle can be used for
blind identification problem. Before one can formu-
late the likelihood function for parameter estima-
tion, the input sequence needs to be characterized as
well. In many applications where the channels need
to be identified with a short data sequence, it ap-
pears natural to model the input as an unknown
deterministic sequence as we implicitly did in the

% This time, however, we are concerned with row spans instead
of column spans.
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subspace methods. Similar assumptions can be
found in array signal processing, where the determin-
istic model [33] is sometimes termed as conditional
model [46].

To obtain the ML estimator, let y = [y], ...,
vl =@+, ...,x(N)]" and H=
[HI(N = L), ... Hy(N — L)]", it is easy to show
that the maximum likelihood estimation of 4 from
yis given by [32, 21,43, 42]

h = arg maxy" Pgy, (29)
1]l = 1

where Py is the projection matrix on the columns of

H. Alternatively,

h = arg min y"Pzy, (30)
1] =1
where Py is the orthogonal complement of Pg.
Conceptually, the above nonlinear minimization
with respect to & can be carried out by using the
iterative quadratic maximum likelihood method
[6, 24]. The difficulty, however, lies in the construc-
tion of Py from each iteration. Hua [32] takes ad-
vantage of the unique structure of the system out-
puts and shows that Pj can be expressed as

Py=G'G",

where { denotes pseudo-inverse and G =
@(Hh <o 9HM)
To isolate the channel vector A for update, note

that

Consequently, (30) becomes
h= arg min A"D}(G" G)' Dyh.
Al =1
This expression suggests the following iterative two-
step estimation procedure:

1. Minimize A"(D}; D)k subject to || k|| = 1 to yield
h.

2. Minimize A"(Dy;(G" G)' Dy )k subject to [|k]| = 1
to yield A,.., where G is constructed from h.
One may have already noticed that step 1 co-

incides with the LS method. The relation between
the LS method and the ML approach here resembles

that between the Prony’s method and the ML es-
timator in the context of exponential signal process-
ing. Simulation studies show that the ML method
outperforms the LS method when the channel con-
dition is relatively poor; otherwise, it does not yield
significant improvement.

It is worth pointing out that due to the complexity
associated with the aforementioned algorithms, their
practical usefulness still has to be proven. During the
reviewing process, there emerges a promising direc-
tion in blind estimation that can be significant to
practical applications. It is shown by Slock and
Papadias [45], and also Giannakis and Halford
[16], that instead of identifying the channels as
a first step to estimating the equalizer, FIR blind
equalizers can be constructed directly from the ob-
servations. Preliminary results indicate that the di-
rect equalization schemes possess the robustness to
the estimation of channel orders and their adaptive
implementation may eventually enable blind equal-
ization techniques to make an impact to practical
systems.

6. Additional topics
6.1. Performance limitation

With the exception of the maximum-likelihood
approach, many recent blind channel estimation al-
gorithms utilize the second-order moments of the
received signal. A natural question is: what is the
best performance achievable by algorithms using the
estimated second-order moments? One may expect
that the performance of these algorithms degrades
when the channel matrix is close to singular. This is
indeed the case for all eigenstructure-based algo-
rithms described above. Surprisingly, recent work by
Zeng and Tong [61] showed that the singularity of
the channel matrix is not necessarily the funda-
mental performance limitation on the blind channel
estimation algorithms based on second-order statis-
tics. At first glance, this seems to contradict the fact
that the channel is not identifiable when the channel
matrix is singular. In such a case, there is a finite
number of solutions satisfying the constraints im-
posed by the second-order statistics of the observa-
tion. However, this does not imply that when the
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parameter space is restricted to the neighborhood of
the true channel, there may exist consistent es-
timators. Indeed, there are such estimators as shown
in [61].

To elaborate the above argument, we highlight
the results presented in [61]. For convenience, we
consider the real case in the analysis below. Given
the correlation function r;(u)£ E{x;(t)x;(t + )},
define

_ [rij(o)’ srij(L)]T, i >J7
ij = T . (31)
[rij(l)’ .- 5rij(L)] s 1 <.]’
r=[r-f1,.,.,rIM,...,r},l,...,rLM]T. (32)

The Jacobian s(k) of the correlation with respect to
the channel vector 4 is given by

s =21 (33)

The estimated correlation is given by

Ny~u

1
Fij(u) = N % Z xi()x;(t + u), (34)

where N, = N — L + 1 is the total number of out-
put vectors. We consider the performance of all
consistent estimators using {#;;(u)}. Assume, without
loss of generality, that the channel vector is nor-
malized, ie., ||k|l; =1. The asymptotically nor-
malized mean-square error (ANMSE) is defined by

ANMSE = lim NE{||R(N,) — h|)*}, (39)
N,— o
where A(N,) is the estimated channel vector using all

the output data. The signal-to-noise ratio (SNR) is
defined by

T AR,
Mo? E{izzl ;@I } (36)

The following theorem [61] gives the achievable
ANMSE among all consistent estimators and the
ANMSE of the LS/CS approach, when there are two
subchannels.

SNR =

Theorem 7. Let ANMSE* and ANMSELS/CS be the
achievable ANMSE and the ANMSE of the LS/CS
estimators, respectively. Under regularity conditions

[36],

2
h
ANMSE, = tr{(sT{h)):_ Lysih)” 1} > V*KS—I(:!RT)) ,
@37
2L+ 10_2(23 + 0,2)
ANMSE;g/cs = k; W
KA Ly 1 ()
Z YLs/cs ———SII;IE ) (38)

where X (h) is the normalized asymptotic covariance
of the estimated correlation functions, x(h) (k(s(h)))
is the condition number of b (§(h)), Agax = A1 > A2 >

- > 23141 = Amin are the singular values of h, y,
and ypg,cs are constants independent of SNR and h.

One implication of the above theorem is that
when s(h) is nonsingular, there exist consistent
estimators that achieve the lowest possible
ANMSE. It can be shown that the singularity of
s(k) implies the singularity of A. On the other hand,
the singularity of & does not imply the singularity of
s(h). In fact, s(h) is singular if and only if all the
subchannels share the same reciprocal zeros.

6.2. Optimization in subspaces

A number of existing approaches can be unified
by a new formulation given in [61]. The eigenstruc-
ture approaches to blind channel estimation opti-
mize objective functions of the type

J,(h) = W Qh. (39)

By choosing Q differently, one obtains the LS, CS
algorithms as well as the two eigenstructure-based
frequency domain approaches mentioned in Sec-
tion 3.2. The advantage of optimizing J,(4) is that it
is quadratic, and a closed-form solution is readily
available. Unfortunately, this approach fails when
the channel is close to being unidentifiable. On the
other hand, the algorithm that achieves the
ANMSE, minimizing

J.(h) = IR — R(h)Ili (40)

for some specific choice of weighting W, see
[36,15]. It is shown that [61] optimizing J, (k)
may lead to consistent estimators even when the



96 H. Liu et al. | Signal Processing 50 (1996) 83—99

channel matrix is singular provided one can restrict
the channel in the neighborhood of the true chan-
nel. Such information may be obtained from pre-
vious estimates. Unfortunately the optimization of
J . (h)1s highly nonlinear, and local minima exist. It
is also not practical because of two factors. First,
searching for the optimal channel vector A in high
dimension can be costly. Secondly, the optimal
weighting in (40) cannot be obtained easily from
data. The issue is how to combine the two optim-
ization criteria in a sensible way.

Zeng and Tong proposed the following joint
optimization criterior that unifies a number of
approaches:

minJ,(4) subject to J (k) < a, 41)

heyv

where o is a given threshold, and & is the para-
meter space. By choosing x and . differently, the
optimization of the above criteria leads to a num-
ber of algorithms including the LS, CS, eigenstruc-
ture-based frequency domain approaches, and the
asymptotically best consistent estimators. In fact,
the above criteria also apply to the ML approach
by replacing Jy(h) defined above by the likelihood
function.

6.3. Incorporation of additional information

A general rule in the model-based parameter
estimation problem is that the more information
one incorporates into the algorithm, the better es-
timation performance one can achieve. The perfor-
mance of the previously mentioned blind estima-
tion methods can be enhanced by exploiting prior
system information. For instance, in wireless com-
munications, knowledge of the transmitter pulse,
which is generally available in all commercial ap-
plications, can be utilized to substantially reduce
the amount of data and/or input SNR necessary for
channel identification, while simultaneously reduc-
ing the computational complexity. Schell et al. [39]
extended the LS approach by including knowledge
of the transmitter pulse; the resulting method out-
performs most existing blind methods in computa-
tional complexity and data efficiency. The principal

component structure of random fading channels is
exploited in [61].

Beside exploiting knowledge of the transmitter
pulse, an alternative way to enhance the estimation
performance is to take advantage of the physical
structure of the channels. For example, the FIR
channels in narrow-band wireless communications
consist of a sum of multipath rays arriving from
various directions. Under this model, instead of
FIR filter coefficients, the channel parameters are
the directions of arrival (DOAs), complex ampli-
tudes, and relative time delays of the multipath
rays. Using such a channel representation, Yang
and Swindlehurst [59] showed that channel para-
meters can be estimated by solving a least-squares
minimization problem involving the array data in
the frequency domain. Superior estimation perfor-
mance is reported over several previously men-
tioned blind identification algorithms.

6.4. Extension to multiple sources

Most of the parametric blind identification re-
search concerns only a single-input multiple-output
(SIMO) system. In the following, we outline some
preliminary results for multiple single-input mul-
tiple-output (MSIMO) system blind identification.
We shall first distinguish an MSIMO system from
a general MIMO system — the MSIMO system we
consider here simply consists of several subsystems,
each of which is an SIMO system. More specifi-
cally, different inputs are limited to their own sub-
systems. A typical example of a MSIMO system is
an antenna array wireless system with co-channel
users.

To put the blind identification problem of an
MSIMO into perspective, consider the superposi-
tion of P SIMO systems, cach of which can be
described by (6). Mathematically, the system output
matrix is given by

P
X=Y HS =[H, .. H]1[ST ... SI"
i=1

!

The goal again is to identify the channel charac-
teristics and the inputs from the system outputs
without using higher-order statistics.
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With sufficient data and proper smoothing, it is
shown in [27] that the column span of [H; H,

. H,]and the row span of [S{ ... Sp]" canstill
be computed from X. The problem, however, is
whether or not these subspaces still contain suffi-
cient information for identifying the channels and
inputs.

Recent studies by Liu and Xu [27] and Slock
[44] provide some encouraging answers to these
questions. It is shown that both the channel vectors
and the input vectors can be determined up to
a PxP (full-rank) matrix transform. In other
words, if #', s\, i=1, ..., P, are respectively the
channel vector and input vector corresponding to
the ith subsystem, one can determine

sl

(k' W* ... WPIW or W

s?

from the subspace structure of the system outputs.
Here W represents the P x P transformation ambi-
guity. Although a fundamental identifiability analy-
sis is yet to be conducted, it will not be surprising if
the same results can be derived from the FI matrix.

Without extra information, it does not seem to
be possible to remove the remaining ambiguity. In
[44], it 1s suggested to apply higher-order statistics
to isolate the channels. This approach, however,
may be forbidden due to the lack of enough data
samples. In comparison to the channels, the inputs
are generally more restricted, especially in digital
communications. In particular, most digital com-
munication signals have a finite alphabet (e.g.,
BPSK, QPSK). It was proved in [60, 47] that such
ambiguity can be easily removed given sufficient
data samples. Therefore, one can use the subspace
structure of the system to deconvolve the outputs,
and then remove W exploiting the finite alphabet
property. Preliminary studies, both theoretically
and experimentally, have demonstrated the feasibil-
ity of such a scheme [29].

6.5. Direct equalizer estimation

Recently, there emerges a promising direction in
blind channel equalization that may be more ap-

propriate for practical implementation. It was
shown by Slock and Papadias [45] and also by
Giannakis and Halford [16] that an FIR equalizer
can be estimated directly from the observations and
the step of channel estimation can be skipped. Pre-
liminary results indicated that this approach is not
50 sensitive to the channel order estimation as the
two-step algorithms and it can be implemented
adaptively, leading to much simpler realization
than aforementioned techniques. Although further
study is required to evaluate this new approach, it
does have the potential to realize blind equalization
in practical systems.

7. Conclusion

Channel equalization is traditionally perceived
as a standard linear system identification (or black-
box) problem with the training sequence as the
probing input signal. In many applications, the pro-
bing signals may not be easy to inject or they may
present an extra burden (e.g., requiring excess
bandwidth in communication systems). The emerg-
ence of blind channel equalization techniques
based on advanced signal processing algorithms
eliminates the need for a probing signal and
simplifies the requirements for channel equaliza-
tion. In particular, recent developments in blind
equalization research have led to a class of
rapidly converging and data efficient algorithms
that can effectively equalize the channel with a
surprisingly small number of data points (e.g,
50-100 symbols). In this paper, we surveyed recent
research efforts in blind equalization and showed
that the cyclostationarity and subspace concepts
are the key to the surprises we witnessed within the
last 5 years.
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