
Multichannel Blind Identification: From
Subspace to Maximum Likelihood Methods

LANG TONG, MEMBER, IEEE, AND SYLVIE PERREAU

Invited Paper

A review of recent blind channel estimation algorithms is pre-
sented. From the (second-order) moment-based methods to the
maximum likelihood approaches, under both statistical and de-
terministic signal models, we outline basic ideas behind several
new developments, the assumptions and identifiability conditions
required by these approaches, and the algorithm characteristics
and their performance. This review serves as an introductory
reference for this currently active research area.

Keywords—Blind equalization, parameter estimation, system
identification.

I. INTRODUCTION

A. What Is Blind Channel Estimation and Why?

There have been considerable interests from both signal
processing and communications communities in the so-
called “blind” problem. This is evident from titles of
recent publications in both societies’ journals and annual
conferences. The basic blind channel estimation problem
involves a channel model shown in Fig. 1, where only
the observation signal is available for processing in
the identification and estimation of channel. This is in
contrast to the classical input–output system identification
and estimation problem where both inputand observation

are used.
The impetus behind the increased research activities in

blind techniques is perhaps their potential applications in
wireless communications, which are currently experiencing
explosive growth. For example, the distortion caused by
multipath interference affects both transmission quality
and efficiency in wireless communications. Conventional
designs of receivers that mitigate such distortions require
either the knowledge of the channel or the access to the in-
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put so that certain “training” signals can be transmitted. The
latter is the case in many, if not most, communication sys-
tems design. The transmission of training signals obviously
decreases communications throughput although, for time
invariant channels, the loss is insignificant because only one
training is necessary. For time varying channels, however,
the loss of throughput becomes an issue. For example,
in high-frequency (HF) communications, the time used to
transmit training signals can be as much as 50% of the
overall transmission. Even the group special mobile (GSM)
system for cellular mobile communication has consider-
able overhead associated training. Yet another example,
described by Godard [46] in his pioneer work in blind
equalization, is in computer networks where links between
terminal and central computers need to be established in
an asynchronous way such that, in some instances, training
is impossible. Another example is the potential application
of blind equalization in high-definition television (HDTV)
broadcasting [35]. Outside of the communications arena,
blind channel estimation has long been an interest in
geoscience. Some of the earlier pioneers in this field include
Robinson [99], Wiggins [133], and Donoho [24]. Recent
results can be found in [79] and [97]. Blind channel esti-
mation also has applications in image restoration problems.
Already, blind estimation techniques have been proposed
for image deblurring applications [40], [42].

At first glance, the estimation problem illustrated in
Fig. 1 may not seem tractable. How is it possible to
distinguish the signal from the channel when neither is
known? The essence of blind channel estimation rests on the
exploitation of structures of the channel and properties of
the input. A familiar case is when the input has known prob-
abilistic description, such as distributions and moments. In
such a case, the problem of estimating the channel using
the output statistics is related to time series analysis. In
communications applications, for example, the input signals
may have the finite alphabet property, or sometimes exhibit
cyclostationarity. This last property was exploited in [118]
to demonstrate the possibility of estimating a nonminimum
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Fig. 1. Schematic of blind channel estimation.

(a) (b)

Fig. 2. (a) Classification of blind channel estimators and (b) contents of the paper.

phase channel using only the second-order statistics, which
led to the development of many subspace-based blind
channel estimation algorithms.

B. The Goal and the Scope of this Paper

By complementing recent surveys [72], [73], the goal of
this paper is to review developments in blind channel iden-
tification and estimation within the estimation theoretical
framework. We have paid special attention to the issue of
identifiability, which is at the center of all blind channel
estimation problems. Various existing algorithms are clas-
sified into the moment-based and the maximum likelihood
(ML) methods. We further divide these algorithms based on
the modeling of the input signal. If input is assumed to
be random with prescribed statistics (or distributions), the
corresponding blind channel estimation schemes are consid-
ered to be statistical. On the other hand, if the source does
not have a statistical description, or although the source
is random but the statistical properties of the source are
not exploited, the corresponding estimation algorithms are
classified as deterministic. Fig. 2 shows a map for different
classes of algorithms and the organization of the paper.

Space limitations force us to be brief in discussing some
algorithms and, unfortunately, to exclude other important
approaches. We have excluded discussions related to the
“dual” problem of blind channel estimation, namely, the
blind signal estimation, where the goal is to estimate
or detect the input signal without knowing the channel.
Formulated as blind signal estimation problems are some
of the first applications of blind estimation (equalization)
method in communications, including the celebrated work
of Godard [46], Sato [101], and Trechler and Agee [124].
These earlier works are based on some forms of higher
order statistics. Under the multichannel model, direct blind
equalization becomes possible using only the second-order
statistics, which potentially may have faster convergence
rates. It is shown by Liu and Dong [75] that in the
absence of noise, a whitening filter is in fact a perfect
equalizer. Direct equalization using the second-order sta-
tistics was first recognized by Slock [108], and there are
a number of new developments [16], [34], [45], [74],
[76], [77], [110]. Also not considered here are neural
network-based direct blind signal estimation techniques (see
[6]).
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(a) (b)

Fig. 3. (a) A multichannel model and (b) a multirate channel model.

In presenting moment-based methods, this paper fo-
cuses on the second-order moment techniques that have
received considerable research attentio since the publica-
tion of [118]. Consequently, applications of the algorithms
surveyed in this paper are limited to certain types of chan-
nels and sources specified by the identifiability condition.
Without elaboration, we briefly mention two alternative
approaches.

1) The Higher Order Statistical Approaches:Many appli-
cations may not have the multichannel model considered in
this paper. In such a case it may be necessary to exploit
higher order statistics. There is an extensive literature deal-
ing with blind channel estimation using higher order statis-
tics in both time and frequency domains. See, for example,
[12], [30], [39], [54], [90], [125], and [126] and a tutorial
in [81]. For the multiuser case, see [38], [115], and [116].

2) The Bayesian Approach:In this paper, the channel
is modeled by finite dimensional deterministic unknown
parameters. In some applications, however, channels can
be modeled as a random vector or a random process. For
example, Rayleigh fading channels can be modeled as a
Gaussian random process with a certain power spectrum. In
such cases we have a Bayesian estimation problem. State-
space model of the channel is also used in some applications
where the extended Kalman filter can be applied [67]. More
recent approaches can be found in [60], [61], and [68].

3) Notations: Most notations are standard: vectors and
matrices are boldface small and capital letters, respectively;
the matrix transpose, the complex conjugate, the Hermitian,
and pseudoinverse are denoted by, , , and ,
respectively; stands for the Kronecker product; is the

identity matrix; is the mathematical expectation.

II. PROBLEM FORMULATION

In contrast to classical input–output channel identification
and estimation problems, the so-called blind channel iden-
tification and estimation involves only the channel output.
The basic problem considered here is: given the received
(perhaps noisy) signal, estimate the channel impulse re-
sponse.

A. Channel Models

We consider two equivalent channel models shown in
Fig. 3. The multichannel model is natural in applications

involving multiple receivers, whereas the multirate chan-
nel model comes directly from communication problems
involving linear modulations.

1) The Multichannel Model:Considered in this paper is
the identification and estimation of a discrete-time linear
single-input -output channel model shown in Fig. 3(a).
Denoting the vector impulse response and its-transform
by

(1)

we have the following system equations:

(2)

where is the noiseless channel
output and is the received (noisy) signal.

It is often convenient to consider the channel model for
a block of consecutive samples. Denoting

(3)

(4)

(5)

we then have

(6)

(7)

where the filtering matrix and the data
matrix are defined by

...
...

...
...

...

(8)
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We drop the subscript whenever its omission does not
cause confusion.

2) Multirate Channel Model:An equivalent alternative
to multichannel representation is the multirate channel
model shown in Fig. 3(b). If the input sequenceis wide
sense stationary, then is wide sense cyclostationary with
period . It is the cyclostationarity of the received signal
that makes the identification using second-order statistics
possible. See [32] for detailed discussions.

The system equations are given by

(9)

The relation between in the multirate channel
model and in the multichannel model is
given by

(10)

(11)

B. Channel and Source Conditions

As in classical system identification problems, certain
conditions about the channel and the source must be sat-
isfied to ensure identifiability. In the multichannel blind
identification problem, two conditions are shared by many
different approaches.

1) Channel Diversity:What makes identification of the
multichannel model different from that of the single channel
case is the channel diversity. By diversity we mean that
different subchannels have different modes. When they are
modeled as finite impulse response channels, this means
that they have different zeros, or in other words, they are
coprime.

The significance of coprimeness among subchannels can
be understood more clearly in the deterministic setting
where no stochastic models are used to describe the in-
put sequence. Consider the multichannel model shown in
Fig. 3. If the subchannels are not coprime, then there exists
a common factor such that

(12)

Consequently, without further information, it is difficult to
distinguish whether is part of the input signal or part
of the channel. In fact, one can replace by factors
of the input sequence without affecting the observation.
Therefore, the identification cannot be made unique (unless
other properties of the input sequence and the channel are
used).

Another ramification of coprimeness among subchannels
is the existence of finite impulse response (FIR) inverse.
When there is only one channel it is not possible to
reconstruct the input sequence by using an FIR filter. This is
not necessarily true in the multichannel case. Indeed, there
exists a bank of filters such that

(13)

Fig. 4. A multichannel with FIR inverse.

if and only if subchannels are coprime. Equation (13)
is the so-called Bezout equation. In other words, given
the noiseless channel output , the channel input
can be reconstructed using a bank of FIR filters
as shown in Fig. 4. In communication applications, filter

is often referred to as the zero-forcing receiver for it
completely eliminates the channel distortion. The concept
of FIR inverse of a vector FIR channel has been exploited
in coding [80].

The coprimeness has several equivalent forms, and they
are summarized below.

Property 1: Subchannels do not share com-
mon zeros:

P1) if and only if there exists a vector polynomial
such that

(14)

P2) if and only if has full column rank for some.

P1) comes from a basic property of ring (e.g., see [31,
p. 10]). P2) was shown by Sylvester (in 1840) as a test
for coprimeness [31], [63] (also see [29]). This condition
plays a particularly important role in the development of
many blind identification algorithms based on second-order
statistical and deterministic formulations.

2) Linear Complexity and Persistent Excitation:Linear
complexity measures the predictability of a finite-length
deterministic sequence. Persistent excitation measures the
richness of the infinite-length signal in the frequency
domain. Both concepts are relevant in the deterministic
setting of blind channel identification where the source is
not assumed to have a probabilistic model. We adopt the
following definition given in [10] and [47].

Definition 1: The linear complexity of sequence
is defined as the smallest value offor which there exists

such that

(15)

An infinite sequence is weakly persistently exciting
of order if

...

(16)

where .
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A connection between linear complexity and persistent
excitation can be observed through the sample covariance of
the input sequence, which enters the definition of persistent
excitation directly. We define a Toeplitz matrix by

...
...

...
(17)

If has linear complexity or greater, then has full
column rank. Hence, the sample covariance of the vector
sequence has full rank. On
the other hand, if has linear complexity no greater than,
the sample covariance of is rank deficient. For a quasi-
stationary sequence, persistent excitation implies that the
sample covariance matrix is full rank and its spectrum has
at least nonzero points (see [78]).

III. T HE SUBSPACE METHODS

Many recent blind channel estimation techniques exploit
subspace structures of observation. The key idea is that
the channel (or part of the channel) vector is in a one-
dimensional subspace of either the observation statistics or
a block of noiseless observations. These methods, which are
often referred to as subspace algorithms, have the attractive
property that the channel estimates can often be obtained
in a closed form from optimizing a quadratic cost function

(18)

where is a set that specifies the domain of.
Subspace methods can sometimes be considered part of

the moment methods. They are attractive because of the
closed-form identification. On the other hand, as they rely
on the property that the channel lies in a unique direction
(subspace), they may not be robust against modeling errors,
especially when the channel matrix is close to being
singular. The second disadvantage is that they are often
more computationally expensive.

A. Deterministic Subspace Methods

Deterministic subspace methods do not assume that the
input source has a specific statistical structure. Perhaps
a more striking property of deterministic subspace meth-
ods is the so-called finite sample convergence property.
Namely, when there is no noise, the estimator produces
the exact channel using only a finite number of samples,
provided that, of course, the identifiability condition is
satisfied. Therefore, these methods are most effective at
high SNR and for small data sample scenarios. On one
hand, deterministic methods can be applied to a much
wider range of source signals; on the other hand, not using
the source statistics affects its asymptotic performance,
especially when the identifiability condition is close to be
violated.

1) Assumptions and Identifiability:Deterministic sub-
space methods assume the following conditions.

Assumption 1:

1.1) The noise is zero mean, white with known
covariance .

1.2) The channel has known order.

The assumption that is known may not be practical.
To address this problem, there are three approaches. First,
channel order detection and parameter estimation can be
performed separately. There are well-known order detection
schemes that can be used in practice (e.g., see [5], [96],
and [129]). Second, some statistical subspace methods [3]
require only the upper bound of. Third, channel order
detection and parameter estimation can be performed jointly
[123]. Similarly, the noise variance may not be known
in practice, but it can be estimated in many ways. For
example, the noise variance estimation and channel order
detection can be performed jointly using singular values of
the estimated covariance matrix [129].

For deterministic methods it is necessary to impose
conditions on the input sequence, which significantly
complicates the identifiability condition. Xuet al. in [134]
and Hua and Wax in [59] gave the necessary and suffi-
cient conditions of identifiability. Here we present only a
sufficient condition for identifiability.

Theorem 1: Under Assumption 1, the channel (or
) can be uniquely identified up to a constant factor from

the noiseless observation if

1) subchannels are coprime;
2) the source sequence has linear complexity greater

than .

The condition that subchannels are coprime is also nec-
essary for identifiability. It was shown in [134] that it
is necessary that the linear complexity of the source,
characterized by “modes” in [134], is greater than. When
the source is a realization of an ergodic process, the linear
complexity condition is satisfied automatically, and we
have the same identifiability condition as the stochastic
formulation. The persistent excitation of the source, along
with the coprime condition of subchannels certainly also
ensures the identifiability.

2) The Cross Relation Approach:The cross relation (CR)
approach, a termed coined by Hua [56], wisely exploits
the multichannel structure. This algorithm was discovered
independently and in different forms by Liuet al. [71],
[134], Gürreli and Nikias [50], [51], Baccala and Roy [7],
[8], and Robinson [98]. An adaptive implementation using
neural network is presented in [22] and [23].

Consider the noiseless multichannel model involving
channels and shown in Fig. 5. We simply have for all

and

(19)

In the matrix form, we have

... (20)
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Fig. 5. The cross relation between two channels.

where can be constructed from the received data
samples

...
...

...
(21)

Of course, one can consider all possible pairs to obtain the
following identification equation

... (22)

where is the data selection transform [71], [138] as
shown in (23), shown at the bottom of the page. It is shown
in [134] that, under the identifiability conditions,
is column-rank deficient by one. Hence, the solution of
(22) provides the channel identification up to a scaling
factor. When noise presents only are available.
The Craḿer–Rao approach minimizes the following least
squares (LS) cost

(24)

Equivalently, the channel estimatecan be obtained from
the singular vector of associated with the
smallest singular value. It can be shown further [138] that

can be replaced by the sample covariance
of . By subtracting the noise statistics, a mean-square
consistent estimator can be obtained.

a) Algorithm characteristics:Unlike statistical meth-
ods, the CR method is very effective for small data sample
applications at high SNR. Under the condition that sub-
channels are coprime and linear complexity conditions,
observations of samples are sufficient [59]. In
simulations, Hua [56] showed that CR method combined
with the ML approach offers performance close to the
Craḿer–Rao lower bound. The main problem of the CR

method is that the channel ordercannot be over estimated,
in contrast to some of the statistical subspace approaches.
For finite samples, this algorithm may also be biased.

3) Noise Subspace Approach:The (noise) subspace
method, proposed by Moulineset al. [82], [83], exploits the
structure of the filtering matrix directly. The basic
idea is to force the signal space to have the block Toeplitz
form of . The dual of this approach is to force the
Toeplitz structure of presented in [127], thus both
can be considered as forms of subspace intersection. See
[127] for this connection.

Suppose that is in the orthogonal
complement of the range space of , i.e.,

...
...

. . .
. . . (25)

The above can also be written as a linear equation with
respect to the channel parameter. Specifically, we have

...
...

(26)

Here, is the th subvector of :
. The above equation can be used

to identify the channel vector provided that (26) has
a unique solution. Moulineset al. gave the following
theorem.

Theorem 2 [83]: Let span be the
orthogonal complement of the column space of . For
any and satisfying the condition that subchannels are
coprime, if and only if . Further,
for all , satisfies the following equation:

(27)

Having the estimated basis of the orthogonal com-
plement of , identification of channel can be accom-
plished by the following optimization:

(28)

...
...

...
...

...
...

...
...

...
. . .

...
. . .

...
...

...
...

...

(23)

1956 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 10, OCTOBER 1998



With the above theorem, the estimation of the channel
can now be accomplished by first estimating the orthogonal
complement of the . This can be achieved in a number
of ways. One of the frequently used approaches is the
signal–noise space decomposition. From the multichannel
model, we have

(29)

The singular value decomposition of has the form

diag

(30)

where are the singular values of . If subchan-
nels are coprime, i.e., is full column rank, the
orthogonal complement of the range space of , also
referred to as the noise subspace, is given by the singular
vectors of associated with the singular
value . Note that when there is no noise can
be obtained directly, using only a finite number of data
samples from the eigen-decomposition of the data matrix

. Incidentally, vectors in noise space
can also be viewed as linear prediction error (or the
blocking) filters. With this interpretation, Slock presented a
linear prediction-based subspace approach [108].

a) Algorithm characteristics:There is a strong connec-
tion between the CR and the noise subspace approaches. As
pointed out in [2], they are different only in their choices
of parameterizing the signal and the noise subspaces. For
a special but important case when [138], these two
algorithms are in fact identical. Similar to the CR method,
the noise subspace method also requires the knowledge
of the channel order . Overdetermination of the channel
order renders the algorithm ineffective without additional
processing. The noise subspace method is also suitable
for short data size applications. Although it is a bit more
complex than the CR method, it appears to offer improved
performance in many simulations. Several extensions have
been obtained. Huaet al. [57] investigated the minimum
noise subspace for channel identification. The multiuser
case is presented in [2].

4) Identification via Least Squares Smoothing:Although
deterministic approaches enjoy the advantage of having fast
convergence, they share some common difficulties. For
example, the determination of channel order is required
and often difficult. Second, the adaptive implementation
of these algorithms is not straightforward. Recently, Tong
and Zhao proposed approaches based on the least squares
smoothing (LSS) of the observation process [121]–[123],
[141], [142].

The key idea of LSS rests on the isomorphic relation
between the input and the observation spaces. Given the
input sequence and the noiseless observation , we

define

(31)

span

span (32)

where and are spaces spanned by the past input
and (noiseless) observation vectors. It can be shown that
when the channel is identifiable, there exists asuch that

(33)

This implies that the input and observation spaces are iden-
tical. We now change the problem of identifying channel
using the input subspaces.

For simplicity, consider the case for . We have

We define a projection space that satisfies the following
two conditions: 1) and 2)

. Because of the isomorphic relation between the
input and observation spaces, it can be shown that

(34)

which is the space spanned by the past and future observa-
tions. The smoothing error of has the following
form:

(35)

The channel vector can then be obtained from the projection
error matrix . A general formulation that does not require
the knowledge of the channel order is given in [121] and
[123].

a) Algorithm characteristics:This approach has two
attractive features. First, it converts a channel estimation
problem to a linear LSS problem for which there are
efficient adaptive implementations [141], [142] using lattice
filters. Second, a joint order detection and channel algorithm
[121], [123] (J-LSS) can be derived that determines the
best channel order and channel coefficients to minimize the
smoothing error. J-LSS is perhaps the only deterministic
approach that enables channel identification with only the
knowledge of the upper bound of the channel order.

B. Second-Order Statistical Subspace Methods

1) Assumptions and Identifiability:In statistical subspace
approaches, it is assumed that the sourceis a random
sequence with known second-order statistics. Although
algorithms discussed here can be extended in many different
ways, we shall assume the following assumptions in our
discussion.
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Assumption 2:

2.1) The source sequence is zero mean, white, with unit
variance.

2.2) The noise sequence , uncorrelated with , is
zero mean, white, with known covariance .

2.3) The channel order is known.

Most algorithms can be extended to cases when the noise is
colored but with known correlations. Some of the statistical
methods do not require knowledge of the channel order.
They require, instead, the upper bound of the channel order.

One of the most important questions is channel identifia-
bility, i.e., given the second-order statistics of, can
be uniquely determined up to a constant factor? The answer
to this question is affirmative provided that the subchannels
are coprime.

To illuminate this issue, we present a frequency-domain
argument given in [117], but in a slightly different form.
Instead of using the multirate channel model we consider
the multichannel model where the second-order statistics of
the noiseless received signal are given by

(36)

It can be verified that is related to the channel by

(37)

We therefore have

(38)

Hence, those zeros of not shared by can be
identified from the zeros of . Thus, all zeros
of , and itself, can be identified from the zeros
of if all channels do not share a common
zero. Conversely, if all channels share a common zero,
then one can replace with without affecting
for all and . Thus the channel is not identifiable. We
then have the following necessary and sufficient condition
for channel identifiability.

Theorem 3 [117], [119]: Under Assumption 2, the

channel (or ) can be uniquely identified
up to a constant factor from the autocorrelation
function of the multichannel
model [or, equivalently, the autocorrelation function

in the multirate channel model] if
and only if subchannels are coprime.

2) Identification via Cyclic Spectra:Having shown that
the channel is uniquely determined from the second-
order statistics, the next question is how to estimate the
channel. Indeed, the arguments leading to the identifiability
condition already suggest that channels can be identified
from the zeros of the output spectra. Unfortunately, finding
zeros of the estimated spectra accurately is difficult because

locations of the zeros can vary significantly with small
variations of the estimated autocorrelation. To circumvent
such difficulties, a subspace approach was first proposed in
[117] and later independently in [41].

We present next an approach based on the multirate
channel model. Although an equivalent method can be
obtained for the multichannel model, the multirate model
exploits the cyclostationary properties of the signal, which
are also used in more recent approaches [15], [104] to solve
blind channel estimation problems for cases that do not have
a clear multichannel representation.

For the multirate channel model, it can be shown
that the observation process is cyclostationary, i.e.,

is periodic in with period . Let
be the “instantaneous spectrum”

(39)

Since is periodic in , it has a Fourier series
representation where is referred to as
the th cyclic spectrum. It is easy to show [117] that

(40)

Since is assumed to be known (or can be estimated in
practice), we are dealing with the following identification
equation in the frequency domain

(41)

where is the unit impulse, and the left-hand side of the
above equation is known. A line of arguments identical to
multichannel case can be used to show that the channel is
identifiable if and only if the multirate channel does
not have uniformly -spaced zeros, which is equivalent
to the channel diversity condition, i.e., all subchannels in
the vector channel model are coprime. To obtain channel
identification, observe that, for any and

(42)

It is clear that the time domain equivalence of the above
identification equation (from the inversetransform of the
above) leads to a set of linear equations with respect to the
channel coefficients

(43)

where can be constructed from the cyclic cor-
relations of the received signal. The specific forms of

can be found in [117]. Therefore, is in the
null space of matrix . Combining cyclic spectra
for all , the intersection of the null spaces of all

gives the unique one-dimensional subspace to
which the channel vector belongs.

1958 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 10, OCTOBER 1998



A practical estimation algorithm can be derived from the
following optimization:

(44)

where the channel estimate is given by the quadratic
optimization

(45)

where is the estimated .
a) Algorithm characteristics and related work:This al-

gorithm exploits the complete cyclic statistics of the re-
ceived and source signals, as well as the FIR structure of
the channel model. The disadvantage of this algorithm is
that it requires the convergence of source statistics, which
means that, even when there is no noise, there is estimation
error for any fixed sample size, although the algorithm is
mean square consistent.

In related work, Li and Ding [69] developed a frequency
domain nonparametric approach that identifies the magni-
tude and phase response separately from the cyclostationary
statistics. Aghajanet al. [4] obtained its extension for
multiuser scenarios. A similar approach is also presented
in [14].

3) Identification via Filtering Transform:The first second-
order statistical approach to blind channel estimation was
proposed in [118], [119]. In this approach, the authors
presented a two-step closed-form identification algorithm.
The algorithm finds first the filtering matrix and then
estimates the channel from the estimated filtering matrix.

Considering the time domain channel (2), we have

(46)

(47)

where is the filtering transform , and is the
“shifting” matrix with the first lower off-diagonal entries
being one and zero elsewhere. It was then shown that
can be computed from and .

a) Algorithm characteristics and related work:The im-
plementation of this algorithm requires the channel order
and the noise variance, both of which, in principle, can
be estimated from the SVD of the estimated covariance
matrix . While it is consistent, this approach may not
perform well for two reasons. First, the algorithm fails
to take advantage of the special structure of the filtering
transform . Second, the performance of such a two-
step procedure is often affected by the quality of the
estimation in the first step. On the other hand, since no
structure in is assumed, when a large number of
channels is available, this algorithm can be applied to
[instead of ] directly, which may have computational
advantages. An extension of this approach to colored source

was presented in [58] and its performance analysis was
performed in [92]. The extension to the multiuser case was
given in [70].

4) Identification via Linear Prediction:Introduced first
by Slock [108]–[110], the linear prediction formulation of
the multichannel problem plays an important role in the
development of several algorithms. We present next one
such approach by Abed-Meraimet al. [3].

Consider the multichannel model given in (2). The key
idea comes from the recognition that the multichannel MA
process is also autoregressive. Under the condition that
subchannels are coprime there exists a causal such
that

(48)

Substituting above into the multichannel
model, we have

(49)

Since is a white sequence, is orthogonal to all
for . Since is causal, is the summation

of the optimal linear prediction and the innovation (the
prediction error) process .

The identification of the channel involves two steps.

1) Identification of : The prediction error covariance
is thus given by the covariance of the innovation
process, i.e.,

Cov (50)

Given the autocorrelation function of , the
left-hand side can be computed explicitly using the
standard theory in linear prediction. The right-hand
side is a rank one matrix made of the vector of
the first coefficient of the channel impulse response.
Therefore, we can obtain for some un-
known from the eigenvector of the prediction error
covariance associated with the largest eigenvalue.

2) Identification of : Once is obtained, from (49),
the input sequence can be constructed directly from
the innovation sequence

(51)

With the estimated input, we essentially have the
standard input–output channel identification problem.

a) Algorithm characteristics and related work:The al-
gorithm uses all second-order statistics of the received
signal, and it is mean square consistent. It does not re-
quire the exact channel order, thus it is robust against
overdetermination of the channel order. Derived from the
noiseless model, the linear prediction idea is no longer
valid in the presence of noise. However, when channel
parameters are estimated from the autocorrelation functions,
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the effect of noise can be lessened by subtracting the terms
related to the noise correlation. The main disadvantage
of this algorithm is that it is a two-step approach whose
performance depends on the accuracy of the estimated

. When noise presents and is small, performance
degradation may be significant. Like all statistical moment
methods, the convergence of the source statistics is also
required.

The linear prediction-based approaches appear to be
rooted in a somewhat surprising result by Liu and Dong
[75]. It is shown that, for the multichannel model, a
whitening filter is in fact a perfect equalizer, which is not
true in the single channel case. Specifically, a finite order

is a whitening filter, i.e., is a white
sequence if and only if for some . In
the spectral domain this result is a consequence of the
maximum modulus theorem [100, p. 212].

A number of new approaches have been proposed re-
cently. Based on the linear prediction framework, Gorokhov
et al. proposed a weighted least squares approach in [48].
Ding [20] proposed the outer-product decomposition algo-
rithm (OPDA) that obtains the channel directly, hence
avoiding the problem of small . Although OPDA was
not derived from the linear prediction view point, it has
the same identification equation as the multistep linear
prediction approach derived by Gesbert and Duhamel [33].

C. Other Related Subspace Approaches

Space limits our exposition of many channel estimation
approaches developed recently. Here we mention two re-
lated classes of approaches that can be applied to general
subspace methods for improved performance.

1) Weighted Subspace Approaches:Subspace approaches
usually involve estimating the channel vector (or perhaps
part of the channel vector) by optimizing a quadratic cost
function

(52)

where is obtained from the received data. The weighted
subspace approaches, successfully used in the direction of
arrival estimation in array signal processing (see [128]),
employ an additional weighting matrix which is chosen
optimally in some ways

(53)

The optimal selection of the weighting matrix is, however,
nontrivial, and it is often a function of the true channel
parameters. A practical solution is to use a consistent
estimate of the channel to construct the optimal weighting
matrix (see [1], [13], [48], and [66]).

2) Exploiting Signal Waveforms:Exploiting side infor-
mation proves to be an effective way of circumventing
the difficulties associated with the ill-conditioning of the
channel matrix. Recognizing that in many communication
applications the waveforms used in the transmission is often
known, Schellet al. first proposed a subchannel response

matching approach [102], [103]. Principle component
structure of the channel was used in [139]. Ding and Mao
presented a knowledge-based approach [21]. In the multiple
antenna array setting, while Gunther and Swindlehust
[49] developed an ESPRIT-like subspace approach by
parameterizing the channel using physical parameters such
as relative delays of multipaths. Applications to IS-136 are
reported in [143].

IV. OPTIMAL MOMENT METHODS: PERFORMANCE

AND MATCHING TECHNIQUES

When the source has a statistical model, most subspace
methods are part of the moment methods. Specifically,
they all can be viewed as estimating channel parameters
from the estimated second-order momentsof the received
signal. For the class of consistent estimators, asymptotic
normalized mean square error (ANMSE) can be used as
a performance measure. Specifically, given the estimated
second-order moments from observations, the

ANMSE of the estimator is defined by

ANMSE (54)

when the limit exists. By normalization we mean that both
the channel and its estimate are normalized to unit 2-norm.
Further, to obtain a meaningful MSE, we also assume that
the scaler ambiguity of the estimate has been removed.
ANMSE measures the MSE of the consistent estimator

for a sufficiently large sample size

ANMSE

Obviously, smaller ANMSE is desired. When
ANMSE , it implies that the estimator
does not have convergence at the rate of .

In analyzing the class of blind channel estimators using
the second-order moments, we pose the following ques-
tions.

1) What is the achievable ANMSE among all consistent
estimators using consistent estimates of second-order
moments?

2) What are fundamental limitations to the ANMSE
of blind channel estimators using the second-order
statistics?

3) What is the ANMSE of existing subspace estimators
and what are their performance limitations?

4) How much potential improvement can be made over
the existing subspace based moment estimators?

These questions are addressed in part in [1], [2], [43], [44],
[93], [137], [139], and [140].

A. The Achievable ANMSE and Performance Bounds

The question considered here is the following: given
consistent estimates of the second-order moments of
the observation, what is the minimum ANMSE that can
be achieved by an estimator using? The answer to
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this problem can be obtained by applying the asymptotic
performance analysis of general moment methods [91]. For
the case involving real signals Zeng and Tong gave the
following theorem. The complex case can be found in [44]
and [136].

Theorem 4 [140]: Let be the vector consisting of
(nonredundant) autocorrelation coefficients. Assume that

, the Jacobian of the autocorrelation vectorwith
respect to the channel vector, is full column rank. Let

be the estimated autocorrelation vector obtained from
with normalized asymptotic

covariance . Let be a channel parameter
estimator such that . Then the ANMSE of
is lower bounded by

ANMSE tr

SNR
(55)

where is a constant, is the condition number of
, and the SNR is defined as

SNR (56)

Moreover, there exists an estimator that achieves
the lower bound tr .

From (55), it is clear that the performance of all moment
methods are limited by the condition number of the Jaco-
bian , which leads to the following question: when
is singular? This question has a surprisingly simple
condition.

Lemma 1 [140]: is singular if and only if
share common conjugate reciprocal zeros (CRZ), or equiv-
alently, share common zeros.

The above condition shows an interesting difference from
the condition of identifiability (subchannels are coprime).
Note that the violation of the identifiability condition does
not imply that no moment algorithm can achieve the
ANMSE bound. When subchannels do have common zeros,
there are multiple but possibly finite numbers of possible
solutions to the identification equation. If one can restrict
the parameter set to the neighborhood of the true chan-
nel, optimal algorithms with minimum ANMSE do exist
[44]. This, of course, is not unique to the multichannel
identification.

It is also interesting to compare the performance bound
for the CR and the noise subspace method. For the special
case when , the ANMSE of both CR and the
noise subspace methods can be obtained easily if the
covariance matrix has the Wishart distribution. Under
this assumption, it can be shown that

ANMSE
SNR

(57)

where are
the singular values of the , is the condition
number of and is a constant. If the source is
Gaussian, Abed-Meraimet al. obtained a different bound
[2].

The above bound shows that the CR and noise subspace
methods are limited by the condition number of the channel
matrix or the locations of channel zeros. Indeed,
subspace methods often suffer from the ill-conditioning
of the matrix from which they are derived. For example,
certain channels have closely located zeros, which causes
the ill-conditioning of the channel matrix. This effect was
illustrated in Endreset al. [25].

B. Moment Matching Techniques

The moment matching approach is motivated by the
existence of a moment method that achieves the minimum
ANMSE. Giannakis and Halford investigated the general
moment matching approach of the following form:

(58)

where is a weighting matrix. By choosing appropriate
, as a function of , the so-called asymptotic best con-

sistent (ABC) estimator achieving the minimum ANMSE
was proposed in [43] and [44]. The suboptimal approach
with no weighting was investigated in [120].

While moment matching methods have a much more
robust performance against channel order selection and
the channel condition, they are unfortunately not easy to
implement because of the existence of local minima in the
optimization. To incorporate the subspace structure into the
moment matching approach, Zeng and Tong proposed in
[139] the following channel estimation criterion:

(59)

where is a linear subspace containing that used in the
subspace algorithms. The selection ofleads to a method
that combines both subspace and moment matches.

V. THE ML M ETHODS

One of the most popular parameter estimation algorithms
is the ML method. Not only can such methods be de-
rived in a systematic way, but perhaps more importantly,
the class of maximum likelihood estimators are usually
optimal for large data records as they approximate the
minimum variance unbiased estimators. Asymptotically,
under certain regularity conditions, the variance of ML
estimators approach the Cramér–Rao bound (CRB), which
is the lower bound on variance for all unbiased estimators.
Unfortunately, unlike subspace based approaches, the ML
methods usually cannot be obtained in closed form. Their
implementations are further complicated by the existence
of local minima. However, ML approaches can be made
very effective by including the subspace and other subop-
timal approaches as initialization procedures. The general
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formulation of the ML estimation can be found in many
textbooks (e.g., see [91]).

The problem at hand is to estimate the deterministic
(vector) parameter given the probabilistic model of the
observation. Specifically, let be the probability
density function of random variable parameterized by

. Given an observation , is estimated by
maximizing

(60)

where , when viewed as the function of, is referred
to as the likelihood function.

The ML-based blind channel estimation can be derived
based on either the statistical or the deterministic setting
depending on the model of the source signal.

SML Statistical ML estimation:In such a case, the
input sequence is assumed to be random with a
known distribution. In such a formulation, the only
unknown parameter is the channel vector (

). In this case, the dimension of the unknown
parameter is fixed with respect to the data size.

DML Deterministic ML estimation;Here the input se-
quence is part of the unknown parameters, i.e.,

, although one may only be in-
terested in estimating . In such a case, the
dimension of the parameters increases with the
size of the observation.

These two classes of ML estimators are discussed next.

A. DML Approach

The DML approach assumes no statistical model for the
input sequence . In other words, both the channel vector
and the input source vectorare parameters to be estimated.
In this paper, we shall only consider the estimation of the
channel.

Consider the multichannel model in (2)

(61)

The DML problem can be stated as follows: given,
estimate by

(62)

where is the density function of the observation
vectors parameterized by both the channeland the
input source .

When the noise is zero-mean Gaussian with covariance
, the ML estimates can be obtained by the nonlinear

least squares optimization

(63)

1) Assumptions and Identifiability:In considering the de-
terministic model, we assume the following assumptions.

Assumption 3:

3.1) The noise is zero mean, Gaussian, with known
covariance .

3.2) The channel has known order.

We note that the noise variance can also be considered
as part of the parameters. For simplicity and consistency
with other approaches it is assumed to be known in our
discussion. Note also that the set of assumptions for DML
is almost the same as that for the deterministic subspace
methods, except that the noise in DML is assumed to be
Gaussian. Again, the channel modelmust be known for
identifiability reasons.

It is not surprising that the identifiability condition for
DML is the same as that for the deterministic second-order
moment methods. Specifically, the channel is identifiable
if subchannels are coprime and the source has linear com-
plexity greater than . The reason is that, when the
noise is Gaussian, all information about the channel in the
likelihood function resides in the second-order moments of
the observations. Readers are referred to Theorem 1 for
sufficient conditions and related discussions.

2) IQML, TSML, and Other Iterative Methods:These al-
gorithms are developed by Hua [55], [56] and around the
same time by Slock [108]. The iterative quadratic maximum
likelihood (IQML) approach, proposed by Bresler and
Macovski [11] for estimating superimposed exponential
signals, transforms the DML problem into a sequence of
quadratic optimization problems for which simple solutions
can be obtained. It turns out that IQML has a related form
in blind channel estimation using DML. This connection,
first pointed out by Slock and Papadias [108], [110], has its
root in the linear prediction formulation in both problems.

The joint optimization of the likelihood function in both
the channel and the source parameter spaces is difficult.
Fortunately, the observation is linear in both the channel
and the input parameters. In other words, we have a
separable nonlinear LS problem, which allows us to reduce
the complexity considerably. The nonlinear LS optimization
can be achieved sequentially in one of the following ways:

(64)

(65)

Considering next the optimization in (64), we have

(66)

where is a projection transform of into the orthog-
onal complement of the range space of or the noise
subspace of the observation.

The key of IQML type of algorithms is the parameteri-
zation of . Hua in [56] obtained directly from
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the channel vector . Fig. 5 provided the clue for such a
construction, where it is clear that the channel itself can
be used to null the noiseless observation, a process called
“blocking” by Slock. Hua’s construction of uses the
data selection transform defined in (64) to obtain the IQML
form

(67)

where can be obtained easily from, and is
a matrix constructed from . To implement the DML
estimation, Hua proposed a two-step approach referred to
as the two-step maximum likelihood (TSML) method that
1) uses the CR method to obtain an initial estimate of the
channel and 2) substitute the initial estimate into and
optimize (67) recursively.

a) Algorithm characteristics and related work:A num-
ber of IQML type of approaches have been proposed
depending on the parameterization of the projection .
In Slock’s “minimum null-space parameterization” [110],
IQML is applied to the blocking filter. A different approach
was developed by Harikumar and Bresler [53]. This IQML
type of algorithm (not surprisingly) offers more efficient
channel estimates when compared with moment methods.
Hua demonstrated that TSML is both “high SNR” con-
sistent and efficient. Similarly, Harikumar and Bresler also
showed that the CR method used in Hua’s TSML is a coarse
approximation of IQML, which ultimately supports Hua’s
TSML. The performance comparison with the Cram´er–Rao
bound has also been obtained in [53], [56], and [85]. As a
“dual” to the IQML-type of algorithms, Feder and Catipovic
[27] proposed a DML by obtaining first by optimizing
first the inner term in (65). Since the estimation of the
input is obtained first, it suffers from the fact that the
dimension of the problem increases with the sample size,
which renders this approach not practical for large data
size applications. For cases when the input sequence has
the finite alphabet property, simplifications can be obtained
(see [27]).

3) DML for Finite Alphabet Input:Similar to SML with
hidden Markov model (HMM), finite alphabet properties
can also be incorporated into DML. Because of the finite
alphabet property, it is difficult to apply the separation
idea in IQML-type approach. Consequently, this class of
algorithms, first proposed by Seshadri [105] and Ghosh and
Weber [36], iterates between estimates of the channel and
the input. At iteration , with an initial guess of the channel

, the algorithm estimates the input sequence and
the channel for the next iteration by

(68)

(69)

where is the (discrete) domain of. The optimization
in (69) is a linear least squares problem whereas the
optimization in (68) can be achieved by using the Viterbi

algorithm [28]. The convergence of such approaches are
not guaranteed in general.

a) Algorithm characteristics and related work:The fi-
nite alphabet nature of the input makes the evaluation of the
Cramér–Rao lower bound difficult. Paris argued in [86] that,
if the input sequence is equally probable, the probability
that the above estimatediffers from the ML estimate of
with known diminishes with the noise variance. Similarly,
at high SNR, one can expect that the above channel estimate
is close to the ML channel estimate with known input.
There are many variations in the implementation of the
nonlinear LS to reduce the implementation complexity.
Seshadri presented “blind” trellis search techniques [106].
Reduced-state sequence estimation [26] was proposed in
[36]. The so-called iterative LS with projection (ILSP)
proposed by Talwaret al. [111], [112] is a relaxation
technique that first ignores the finite alphabet property and
then projects the estimate to its nearest discrete value.
Raheliet al. proposed a per-survivor processing technique
in [95]. An algebraic approach was presented by Yellin and
Porat [135].

B. Statistical Maximum Likelihood Approach

We consider the statistical model where the source se-
quence is random. The formulation of the problem
is straightforward in principle. Recalling the multichannel
model (2) where we consider a block of received vectors

(70)

where we have omitted the time index becausehas
included all observations. The SML problem can be stated
as follows: given , estimate by

(71)
where is the density function of the observation
vectors parameterized by .

1) Assumptions and Identifiability:The SML estimation
hinges on the availability and the evaluation of the like-
lihood function. Although SML applies to more general
cases, we shall make the following assumptions in our
discussion.

Assumption 4:

4.1) components of and are jointly independent;
4.2) is zero mean Gaussian with covariance ;
4.3) components of are independently, identically dis-

tributed (i.i.d.) with known probability density func-
tion.

Identifiability remains to be an important issue in SML
approach. The identifiability condition tells when SML can
be applied. A main issue is whether the likelihood func-
tion provides sufficient information to distinguish different
models. Specifically, is identifiable if
(almost everywhere) implies for some . It is not
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surprising to see that the class of channels identifiable by
SML is larger than that by moments. Obviously, parameters
identifiable by moments are identifiable by the likelihood
function. It can be shown further that as long asis non-
Gaussian, the linear structure in (70) is uniquely determined
by the density function [62]. Indeed, under the
non-Gaussian assumption of the source, subspace methods
developed by Giannakis and Mendel [39] can be used
to obtain closed-form identification based on higher order
cumulants of the observation. When is Gaussian, all
statistical information about the channel is contained in the
second-order moment. In such a case, identifiability can be
ensured if subchannels are coprime.

Theorem 5: Under Assumption 4, the channel parameter
is identifiable by the likelihood function if and only if

one of the following conditions is satisfied:

1) is non-Gaussian;
2) subchannels are coprime.

2) The EM Approach:The SML optimization in (71) is
in general difficult because is nonconvex. The
expectation-maximization (EM) algorithm [9], [19] can be
applied to transform the complicated optimization (71) to a
sequence of quadratic optimizations. We shall give an intu-
itive explanation of this idea. More rigorous development
can be found in [19].

If the input is known, e.g., , the ML estimation of
is a simple LS problem involving maximizing a quadratic
cost

(72)

where is a constant. When is unknown but with known
distribution, we should consider maximizing the above
cost averaged over all possible input sequences. Given the
received signal , this average should be performed using
the a posteriori distribution of

(73)

Unfortunately, the computation of requires the knowl-
edge of the true channel parameter. To circumvent this
difficulty, we may consider an approximation of the above
cost function using, at iteration, the current estimate

(74)

(75)

(76)

It is clear that the maximization of with respect
to is in fact a quadratic optimization problem with the
new estimate given by

(77)

One recognizes that the only difference between the above
solution and that when the input is known is the conditional
expectation.

Although the above arguments are solid heuristics, it is

not clear whether . This is indeed the case
provided a good initial guess of the channel is available.

Theorem 6 [19]: If ,
then .

The above theorem implies that the maximization of
the likelihood function can be achieved by a sequential
maximization the “auxiliary function” , which
has a closed-form solution

E: Compute:

M: Maximization:

a) Algorithm characteristics and related work:The per-
formance of EM algorithm depends on its initialization,
which may be facilitated by moment techniques such as
those described in Section III (see [89]). When EM con-
verges globally, the estimate achieves asymptotically the
CRB for the case of i.i.d. sequences (which is not the case
here). See [18] for the evaluation of CRB when the input
is Gaussian.

Various algorithms are implemented either in “on-line”
or batch modes. Kaleh and Vallet [64] first applied the EM
algorithm to the equalization of communication channels
with input sequence having finite alphabet property. By
using an HMM they developed a batch (off-line) procedure
that includes the so-called forward and backward recursions
[94]. The complexity of this algorithm increases exponen-
tially with the channel memory. Shao and Nikias [107]
proposed an approximation for calculating the elements of
the conditional autocorrelation matrix and correlation vector
involved in (77). Such an approximation becomes exact as
the block size approaches infinity. At high SNR, further
reduction of complexity can be achieved as shown in [87].

To relax the memory requirements and facilitate channel
tracking, “on-line” sequential approaches have been pro-
posed in [113], [114], and [130] for general input, and in
[65] for input with finite alphabet properties under an HMM
formulation. Given the appropriate regularity conditions
[113] and a good initialization guess, it can be shown
that these algorithms converge (almost surely and in the
mean-square sense) to the true channel value. To reduce
the implementation complexity associated with the HMM
formulation, suboptimal approaches have been proposed in
[131] and [132]. The complexity of the implementation
in [88], [132] increases linearly with the channel. When
SNR approaches infinity, the suboptimal implementation
achieves optimality.
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VI. CONCLUSION

In this paper, we have presented some recent develop-
ments in blind identification and estimation of single input
and multiple output channels. Depending on the application,
the problem of blind identification is a problem of exploit-
ing structural information of the channel and properties of
its input. Because different applications utilize different
structures to specify the unknown parameters, there is
great diversity in developing new approaches. Recently,
there have been several developments in semiblind channel
estimation techniques. Semiblind channel estimation stands
for cases when part of the input is accessible. This case is
significant in several ways. First, the availability of certain
input should improve the performance of any blind channel
estimators. de Carvalho and Slock evaluated the CRB for
blind channel estimation for both deterministic and Gauss-
ian input cases [17], [18]. Second, previously unidentifiable
channel may become identifiable. If zeros are introduced
periodically in the input data sequence, Giannakis [37]
showed that any FIR channel can be identified, and a
subspace algorithm was proposed in [52]. Pal proposed a
semiblind channel estimation technique in [84].

While it is clear that these methods have potential appli-
cations in many different problems, it is still too early to
assess their impact, for most studies have been conducted
either in simulation or with real data but in a controlled
manner.
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