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A review of recent blind channel estimation algorithms is pre- put so that certain “training” signals can be transmitted. The
sented. From the (second-order) moment-based methods to thgatter is the case in many, if not most, communication sys-

maximum likelihood approaches, under both statistical and de- o g gesign. The transmission of training signals obviously
terministic signal models, we outline basic ideas behind several

new developments, the assumptions and identifiability conditions d€Créases communications throughput although, for time
required by these approaches, and the algorithm characteristics invariant channels, the loss is insignificant because only one
and their performance. This review serves as an introductory training is necessary. For time varying channels, however,
reference for this currently active research area. the loss of throughput becomes an issue. For example,
in high-frequency (HF) communications, the time used to
transmit training signals can be as much as 50% of the
overall transmission. Even the group special mobile (GSM)
system for cellular mobile communication has consider-
able overhead associated training. Yet another example,
A. What Is Blind Channel Estimation and Why? described by Godard [46] in his pioneer work in blind
There have been considerable interests from both signalegualization, is in computer networks where links between
processing and communications communities in the so- terminal and central computers need to be established in
called “blind” problem. This is evident from titles of an asynchronous way such that, in some instances, training
recent publications in both societies’ journals and annual is impossible. Another example is the potential application
conferences. The basic blind channel estimation problemof blind equalization in high-definition television (HDTV)
involves a channel model shown in Fig. 1, where only broadcasting [35]. Outside of the communications arena,

Keywords—Blind equalization, parameter estimation, system
identification.

I. INTRODUCTION

the observation signal is available for processing in
the identification and estimation of chanrl This is in
contrast to the classical input—output system identification
and estimation problem where both inpuand observation

y are used.

blind channel estimation has long been an interest in
geoscience. Some of the earlier pioneers in this field include
Robinson [99], Wiggins [133], and Donoho [24]. Recent
results can be found in [79] and [97]. Blind channel esti-
mation also has applications in image restoration problems.

The impetus behind the increased research activities inAlready, blind estimation techniques have been proposed
blind techniques is perhaps their potential applications in for image deblurring applications [40], [42].
wireless communications, which are currently experiencing At first glance, the estimation problem illustrated in
explosive growth. For example, the distortion caused by Fig. 1 may not seem tractable. How is it possible to
multipath interference affects both transmission quality distinguish the signal from the channel when neither is
and efficiency in wireless communications. Conventional known? The essence of blind channel estimation rests on the
designs of receivers that mitigate such distortions require exploitation of structures of the channel and properties of
either the knowledge of the channel or the access to the in-ipe input. A familiar case is when the input has known prob-
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Fig. 1. Schematic of blind channel estimation.
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Fig. 2. (a) Classification of blind channel estimators and (b) contents of the paper.

phase channel using only the second-order statistics, which Space limitations force us to be brief in discussing some
led to the development of many subspace-based blindalgorithms and, unfortunately, to exclude other important

channel estimation algorithms. approaches. We have excluded discussions related to the
_ “dual” problem of blind channel estimation, namely, the
B. The Goal and the Scope of this Paper blind signal estimation, where the goal is to estimate

By complementing recent surveys [72], [73], the goal of or detect the input signal without knowing the channel.
this paper is to review developments in blind channel iden- Formulated as blind signal estimation problems are some
tification and estimation within the estimation theoretical of the first applications of blind estimation (equalization)
framework. We have paid special attention to the issue of method in communications, including the celebrated work
identifiability, which is at the center of all blind channel of Godard [46], Sato [101], and Trechler and Agee [124].
estimation problems. Various existing algorithms are clas- These earlier works are based on some forms of higher
sified into the moment-based and the maximum likelihood order statistics. Under the multichannel model, direct blind
(ML) methods. We further divide these algorithms based on equalization becomes possible using only the second-order
the modeling of the input signal. If inputis assumed to  statistics, which potentially may have faster convergence
be random with prescribed statistics (or distributions), the rates. It is shown by Liu and Dong [75] that in the
corresponding blind channel estimation schemes are consid-absence of noise, a whitening filter is in fact a perfect
ered to be statistical. On the other hand, if the source doesequalizer. Direct equalization using the second-order sta-
not have a statistical description, or although the source tistics was first recognized by Slock [108], and there are
is random but the statistical properties of the source area number of new developments [16], [34], [45], [74],
not exploited, the corresponding estimation algorithms are [76], [77], [110]. Also not considered here are neural
classified as deterministic. Fig. 2 shows a map for different network-based direct blind signal estimation techniques (see
classes of algorithms and the organization of the paper. [6]).
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Fig. 3. (a) A multichannel model and (b) a multirate channel model.

In presenting moment-based methods, this paper fo-involving multiple receivers, whereas the multirate chan-
cuses on the second-order moment techniques that havanel model comes directly from communication problems
received considerable research attentio since the publica-involving linear modulations.
tion of [118]. Consequently, applications of the algorithms 1) The Multichannel Model:Considered in this paper is
surveyed in this paper are limited to certain types of chan- the identification and estimation of a discrete-time linear
nels and sources specified by the identifiability condition. single-input P-output channel model shown in Fig. 3(a).
Without elaboration, we briefly mention two alternative Denoting the vector impulse response and4tsransform
approaches. by

1) The Higher Order Statistical Approacheddany appli- ) t
cations may not have the multichannel model considered in hy, 2 |:h§€1), ! th’)] Z h(z) 1)
this paper. In such a case it may be necessary to exploit
higher order statistics. There is an extensive literature deal-
ing with blind channel estimation using higher order statis-

we have the following system equations:

tics in both time and frequency domains. See, for example, Xp = Z hisi—; Yi = Xp + 10y (2)
[12], [30], [39], [54], [90], [125], and [126] and a tutorial =0
in [81]. For the multiuser case, see [38], [115], and [116]. where x;, = [z{", -+, {")]* is the noiseless channel

2) The Bayesian Approachtn this paper, the channel output andyk is the received (noisy) Signa]_
is modeled by finite dimensional deterministic unknown |t js often convenient to consider the channel model for
parameters. In some applications, however, channels cary plock of 4 consecutive samples. Denoting
be modeled as a random vector or a random process. For

ot t t

example, Rayleigh fading channels can be modeled as a Xq(k) = [ka T X q+1]
Gaussian random process with a certain power spectrum. In ( [ Vi, v q+1] 3
such cases we have a Bayesian estimation problem. State- ( [nt . nt ]

. . . . k> k—qg+1
space model of the channel is also used in some applications 4
where the extended Kalman filter can be applied [67]. More 4+L( ) (st = Sh—r—g] (4)
recent approaches can be found in [60], [61], and [68]. [h 00 - ] (5)

3) Notations: Most notations are standard: vectors and
matrices are boldface small and capital letters, respectively;w
the matrix transpose, the complex conjugateb,[the Hergnitian, X (k) =F, (ﬁ) Sq+r(k) = Tq(é’(k))ﬁ (6)
and pseudoinverse are denoted(by, (-)*, (-)*, and(-)", - — _
respectively;@ stands for the Kronecker produd; is the Va(k) =Rq(k) + iy () Q)
p X p identity matrix; £(-) is the mathematical expectation. where thegP x (L + ¢) filtering matrix 7,(h) and the data

matrix 7,(S(k)) are defined by

e then have

Il. PROBLEM FORMULATION

o . e ho --- hy
In contrast to classical input—output channel identification 0 A ]
and estimation problems, the so-called blind channel iden- Fq(h) =
tification and estimation involves only the channel output. N ho - hy
The basic problem considered here is: given the received I+ columns
(perhaps noisy) signal, estimate the channel impulse re- Sk Shei - Sy
sponse. T (3 A Sk—1 Sk—2 - Sk—L—-1 I
A. Channel Models (k) = : S : @l
We consider two equivalent channel models shown in Sk—q4l Sk—q - Sk—q—I+1
Fig. 3. The multichannel model is natural in applications (8)
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We drop the subscripy whenever its omission does not (1)

T
cause confusion. R{D = O
2) Multirate Channel Model:An equivalent alternative 5 s
to multichannel representation is the multirate channel * ﬁa—k>
model shown in Fig. 3(b). If the input sequengeis wide )
sense statlo_nary, then is W|_de sense cyclostau_onary Wlth () k )
period P. It is the cyclostationarity of the received signal b

that makes the identification using second-order statisticsFig. 4. A multichannel with FIR inverse.
possible. See [32] for detailed discussions.

The system equations are given by if and only if subchannels are coprime. Equation (13)

TE = Z sihi_ip Uk = Tk + Nk (9) is the so-called Bezout equation. In other words, given
P the noiseless channel outpwad,, the channel inputs;

can be reconstructed using a bank of FIR filteg$>)

as shown in Fig. 4. In communication applications, filter

g(z) is often referred to as the zero-forcing receiver for it

The relation betweelﬁhkz 2k, yx } In the multirate channel
model and{r{”, (" 4"} in the multichannel model is

given by completely eliminates the channel distortion. The concept
{z1} = {$£1)7 . xgcl’)} of FIR inverse of a vector FIR channel has been exploited
in coding [80].
{un}t = {y;gl), B y,ﬁp)} (20) The coprimeness has several equivalent forms, and they
W r) are summarized below. ‘
{ha} :{hk e by, } (11) Property 1: Subchannels{A((z)} do not share com-
mon zeros:

B. Channel and Source Conditions

As in classical system identification problems, certain P1) if and only if there exists a vector polynomiglz)

conditions about the channel and the source must be sat- such that

isfied to ensure identifiability. In the multichannel blind g'(x)h(z) = 1; (14)
identification problem, two conditions are shared by many N

different approaches. P2) if and only ifF,(h) has full column rank for some

1) Channel Diversity: What makes identification of the
multichannel model different from that of the single channel
case is the channel diversity. By diversity we mean that . . "
different subchannels have different modes. When they arefor coprimeness [31], [63] (also see [29]). This condition

modeled as finite impulse response channels, this meanéDlays Sl_pgr_t:jculifr_ly [[mpor'ltant_trr?le 'S thed developmsnt (;)f
that they have different zeros, or in other words, they are many blind identilication algonthms based on second-order
coprime statistical and deterministic formulations.

The significance of coprimeness among subchannels can 2) ngar Complexity and Pe.r3|ste.r?t Excnatlgﬂ?.'lnear
complexity measures the predictability of a finite-length

be understood more clearly in the deterministic setting deterministi Persistent itati th
where no stochastic models are used to describe the in-Cc o ISHC SEqUENce. Fersistent excilation measures the
richness of the infinite-length signal in the frequency

put sequence. Consider the multichannel model shown ind . Both N | tin the determinist
Fig. 3. If the subchannels are not coprime, then there exists omain. both concepls are reievant in the deterministic
setting of blind channel identification where the source is

a common factor(z) such that not assumed to have a probabilistic model. We adopt the
RO(2) = e(2)hD(z)  i=1,---,P.  (12) following definition given in [10] and [47].
Definition 1: The linear complexity of sequends; }}_,
is defined as the smallest value ©for which there exists
{A;} such that

P1) comes from a basic property of ring (e.g., see [31,
p. 10]). P2) was shown by Sylvester (in 1840) as a test

Consequently, without further information, it is difficult to
distinguish whether(z) is part of the input signal or part
of the channel. In fact, one can replaeg) by factors

of the input sequence without affecting the observation. ‘ )

Therefore, the identification cannot be made unique (unless S =7 Z AjSimj A= C s (15)
other properties of the input sequence and the channel are 5=l

used). An infinite sequencd s} is weakly persistently exciting

Another ramification of coprimeness among subchannels of order ¢ if

is the existence of finite impulse response (FIR) inverse. N /S
y = e

When there is only one channel it is not possible to ) 1 . N
reconstruct the input sequence by using an FIR filter. This jgPLle > lim - Z (Skpe = Shgr) > o2l
not necessarily true in the multichannel case. Indeed, there M= ASkt1

exists a bank of filterg(z) such that (16)

g'(z)h(z) =1 (13) where p; > 0.
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A connection between linear complexity and persistent  Assumption 1:
excitation can be observed through the sample covariance of
the input sequence, which enters the definition of persistent
excitation directly. We define a Toeplitz matr8. by

1.1) The noiseny; is zero mean, white with known
covariances21.
1.2) The channel has known ordér

Se Se—1 " S
A | semt Scl 3(1) The assumption thak is known may not be practical.

S. = . . a7) To address this problem, there are three approaches. First,

channel order detection and parameter estimation can be

Sno Sn-l t Sn—c performed separately. There are well-known order detection

If s has linear complexity: or greater, thers. has full schemes that can be used in practice (e.g., see [5], [96],

column rank. Hence, the sample covariance of the vectorand [129]). Second, some statistical subspace methods [3]
sequences(k) = [sk, Sp_1, - > Sk_c]t has full rank. On require only the upper bound df. Third, channel order

the other hand, i§;, has linear complexity no greater than detection and parameter estimation can be performed jointly
the sample covariance ef, is rank deficient. For a quasi- [123]. Similarly, the noise variance? may not be known
stationary sequence, persistent excitation implies that thein practice, but it can be estimated in many ways. For
sample covariance matrix is full rank and its spectrum has example, the noise variance estimation and channel order

at leastL nonzero points (see [78]). detection can be performed jointly using singular values of
the estimated covariance matrix [129].
. THE SUBSPACE METHODS For deterministic methods it is necessary to impose

Many recent blind channel estimation techniques exploit condlt!ons on th_e Input s_e_zquen@g_,_whlch S|gr_1|f|cantly
. ; . complicates the identifiability condition. Xet al. in [134]

subspace structures of observation. The key idea is that . ,
L and Hua and Wax in [59] gave the necessary and suffi-

the channel (or part of the channel) vector is in a one- . - . s

. . ) . . cient conditions of identifiability. Here we present only a
dimensional subspace of either the observation statistics or_ .. . o . e
] . . sufficient condition for identifiability.

a block of noiseless observations. These methods, which are . )

: -~ Theorem 1:Under Assumption 1, the channh{z) (or
often referred to as subspace algorithms, have the attractive- can be uniauelv identified to a constant factor from
property that the channel estimates can often be obtaine ) _be uniquely identihed up

the noiseless observatiay, if

in a closed form from optimizing a quadratic cost function

X o 1) subchannels are coprime;
h = arg ?Elgh Qh (18) 2) the source sequence has linear complexity greater
than 27..
where S is a set that specifies the domain lof . L
Subspace methods can sometimes be considered part of The cond[t|on Fhat _;ubchannels are coprime 15 also nec-
the moment methods. They are attractive because of th essary for |dent|f|ab|I|ty..It was shown. in [134] that it
closed-form identification. On the other hand, as they rely IS necessary tha:t the [!near complexny of the source,
on the property that the channel lies in a unique direction characterlzgd by m_ode_s in [134], is gfeater thhn\Nhen_
(subspace), they may not be robust against modeling errors,the source is a re_:gllza_tmn Of an ergodic Process, the linear
especially when the channel matt(h) is close to being complexity condl_t|on 1S S?F“Sf'ed a_\gtomancally, and we
singular. The second disadvantage is that they are oftenhave th(_e same |dent_|f|ab|llty c_on(_jltlon as the stochastic
more computationally expensive. fo_rmulatlon. T_he per3|s.t(_ant excitation of the source, along
with the coprime condition of subchannels certainly also
L ensures the identifiability.
A Detern.urus_tm Subspace Methods 2) The Cross Relation Approachfhe cross relation (CR)
_ Deterministic subspace _method_s fjo not assume that theapproach, a termed coined by Hua [56], wisely exploits
input source has a specific statistical structure. Perhapsihe multichannel structure. This algorithm was discovered
a more striking property of deterministic subspace meth- independently and in different forms by Liet al. [71],
ods is the so-called finite sample convergence property.[134] Gurreli and Nikias [50], [51], Baccala and Roy [7],
Namely, when there is no noise, Fhe estimator produces[g], and Robinson [98]. An adaptive implementation using
the exact channel using only a finite number of samples, naoural network is presented in [22] and [23].

provided that, of course, the identifiability condition is Consider the noiseless multichannel model involving
satisfied. Therefore, these methods are most effective alchannelsi and j shown in Fig. 5. We simply have for all

high SNR and for small data sample scenarios. On one, and j

hand, deterministic methods can be applied to a much G) L@ @) )
wider range of source signals; on the other hand, not using ay oxhyt =gk = 0. (19)
the source statistics affects its asymptotic performance,In the matrix form, we have
especially when the identifiability condition is close to be B héi)
violated. h; © :

1) Assumptions and IdentifiabilityDeterministic ~ sub- X, =Xil <Hj> =0, h; = (Z) (20)
space methods assume the following conditions. hy,
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: 20 : method is that the channel ordeicannot be over estimated,
h§;> * hﬁj) in contrast to some of the statistical subspace approaches.
Sk 0 For finite samples, this algorithm may also be biased.

) 3) Noise Subspace Approacfthe (noise) subspace
L) Lk Q) method, proposed by Moulines al. [82] [83], exploits the

k k
structure of the filtering matrix,(h ) directly. The basic
Fig. 5. The cross relation between two channels. idea is to force the signal space to have the block Toeplitz
form of J—“q(ﬁ). The dual of this approach is to force the
Toeplitz structure ofZ,(s(k)) presented in [127], thus both
can be considered as forms of subspace intersection. See

where X, can be constructed from th& received data

samples ) :
) W) ) [127] for this connection.
L Trpor o Suppose thav = [vy, ---, vp,] is in the orthogonal
x(LJJ)rl x(LJ) xgj) complement of the range space Bf(h), i.e.,
Xj= SN ) o
(:) (:) (): [UI7”'71}?—’:”':1}?(1—1)1—’4—]:”'7U;’(1]
Of course, one can C0n5|der all possible pairs to obtain the hy --- hy
following identification equation - =0. (25
b, A ho --- hp
DH(X) =0 (22) L+q c?ﬁumns
hp The above can also be written as a linear equation with

whereD(-) is the data selection transform [71], [138] as respect to the channel paramelerSpecifically, we have

shown in (23), shown at the bottom of the page. It is shown Vi o Vg
in [134] that, under the identifiability condition®* (X) M. .. nH) - ﬁH]:(L+1)(V)
is column-rank deficient by one. Hence, the solution of Vi e v
(22) provides the channel identification up to a scaling N i ¢
factor. When noise presents onlﬁ/y,gz)} are available. L+q columns
The Crangér-Rao approach minimizes the following least =0. (26)
squares (LS) cost Here, v, is the kth subvector of v: v, =
2, N . t i
b= arg win DY (Y)R|[2. (24) [V(k—1)q+1, "= *» Ukg|". The above equation can be used

|IE]|=1 to identify the channel vectoh provided that (26) has
. a unique solution. Moulinest al. gave the following
Equivalently, the channel estimakecan be obtained from  theorem.
the singular vector ofD(Y)DH(Y) associated with the Theorem 2 [83]: Let A'(h) = spar{vy, ---, vq} be the
smallest singular value. It can be shown further [138] that orthogonal complement of the column spacéfgtﬁ). For
D(Y)D"(Y) can be replaced by the sample covariance anyh andh; satisfying the condition that subchannels are
of ¥(k). By subtracting the noise statistics, a mean-square coprime, A'(h) = A/(h;) if and only if b = oh;. Further,
consistent estimator can be obtained. for all 4, b satisfies the following equation:
a) Algorithm characteristics:Unlike statistical meth- = R

ods, the CR method is very effective for small data sample ]:(L+1)(Vi)h =0. (27)
applications at hlgh SNR. Under the condition that sub- Hav|ng the es“mated bas{s,—z} of the Orthogona| com-
channels are coprime and linear complexity condmons, plement of 7, (hn), identification of channel can be accom-
observations of3L + 1 samples are sufficient [59]. plished by the following optimization:
simulations, Hua [56] showed that CR method comblned N . .
with the ML approach offers performance close to the h = arg min Z W F oy (Vi) FL o (vih. (28)
Craner—Rao lower bound. The main problem of the CR i

X2 X3 XP
-X; : Xy - Xp
X, DX, Do (23)
. ) . ) ) X
-X; X, : —Xp_y
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With the above theorem, the estimation of the channel define
can now be accomplished by first estimating the orthogonal

A
complement of theF,(h). This can be achieved in a number st = [sty st
of ways. One of the frequently used approaches is the X, 2 [x(t), x(t+1), -] (31)
signal-noise space decomposition. From the multichannel ¢ A
model, we have Styw = SPANSt, Si—1, -, St—wi}
N1 X, w 2 span{xy, X¢—1, -+, Xt—wil} (32)
ol 1 -  —00 .
R, = i Z F(E)YFH (k) NZ*R wheres,; ,, andX, ,, are spaces spanned by the past input
k=0 and (noiseless) observation vectors. It can be shown that
=7, (H)R FH (H) + 020 (29) when the channel is identifiable, there exists asuch that
S q .

. . St: w = Xt: W Yw > We. (33)
The singular value decomposition B has the form

This implies that the input and observation spaces are iden-
R = Udiag{\] + ¢%, -+, A}, + 07, 0%, -, o2} UY tical. We now change the problem of identifying channel
(30) using the input subspaces.
For simplicity, consider the case fdr = 2. We have

where A; are the singular values oﬂ(ﬁ). If subchan-
nels are coprime, i.e.F,(h) is full column rank, the
orthogonal complement of the range space?-"g(ﬁ), also
referred to as the noise subspace, is given by the singular Xira = hoSeyo + hyseyr + hos:.
vectors {ui}fZIHqH of R associated with the singular
value 2. Note that when there is no nois&’(h) can
be obtained directly, using only a finite number of data

samples from the eigen-decomposition of the data matrix

X: =hos; +hys,_1 +hos, o
Xit1 =hosep1 +hysy +hos,

We define a projection spacg that satisfies the following
two conditions: 1){s:y2, St4+1, St—1, st—2} C Z and 2)

s ¢ Z. Because of the isomorphic relation between the
input and observation spaces, it can be shown that

Y = [¥(0)¥(1), ---]. Incidentally, vectors in noise space

can also be viewed as linear prediction error (or the Z=2X UXt+L, o (34)
blocking) filters. With this interpretation, Slock presented a

linear prediction-based subspace approach [108]. which is the space spanned by the past and future observa-

a) Algorithm characteristics:There is a strong connec-  tions. The smoothing erréX, ;= of X; has the following

tion between the CR and the noise subspace approaches. Afprm:
pointed out in [2], they are different only in their choices X”Z ho
of parameterizing the signal and the noise subspaces. For E2 Xz | = | by |8z = Hétlz. (35)
a special but important case whéh= 2 [138], these two <
algorithms are in fact identical. Similar to the CR method,
the noise subspace method also requires the knowledgel he channel vector can then be obtained from the projection
of the channel ordeL. Overdetermination of the channel error matrixE. A general formulation that does not require
order renders the algorithm ineffective without additional the knowledge of the channel order is given in [121] and
processing. The noise subspace method is also suitabld123].
for short data size applications. Although it is a bit more a) Algorithm characteristics:This approach has two
complex than the CR method, it appears to offer improved attractive features. First, it converts a channel estimation
performance in many simulations. Several extensions haveProblem to a linear LSS problem for which there are
been obtained. Huat al. [57] investigated the minimum  €fficient adaptive implementations [141], [142] using lattice
noise subspace for channel identification. The multiuser filters. Second, a joint order detect_ion and channel glgorithm
case is presented in [2]. [121], [123] (J-LSS) can be derlved_ t.hat determ!ngs the

4) Identification via Least Squares Smoothingithough best channel order and channel coefficients to minimize the

deterministic approaches enjoy the advantage of having fasSmoothing error. J-LSS is perhaps the only deterministic

convergence, they share some common difficulties. For approach that enables channel identification with only the

example, the determination of channel order is required knowledge of the upper bound of the channel order.

and often difficult. Second, the adaptive implementation

of these algorithms is not straightforward. Recently, Tong B. Second-Order Statistical Subspace Methods

and Zhao proposed approaches based on the least squares1) Assumptions and Identifiabilityln statistical subspace

smoothing (LSS) of the observation process [121]-[123], approaches, it is assumed that the souscés a random

[141], [142]. sequence with known second-order statistics. Although
The key idea of LSS rests on the isomorphic relation algorithms discussed here can be extended in many different

between the input and the observation spaces. Given theways, we shall assume the following assumptions in our

input sequences;, and the noiseless observation, we discussion.

Xiy21z h,
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Assumption 2: locations of the zeros can vary significantly with small
variations of the estimated autocorrelation. To circumvent
2.1) The source sequence is zero mean, white, with unitgych difficulties, a subspace approach was first proposed in

variance. . _ [117] and later independently in [41].
2.2) The noise sequenagy, uncorrelated' withsy, is We present next an approach based on the multirate
zero mean, white, with known covariancél. channel model. Although an equivalent method can be
2.3) The channel ordek is known. obtained for the multichannel model, the multirate model

Most algorithms can be extended to cases when the noise |seXp|0'ts the cyclostationary properties of the signal, which

are also used in more recent approaches [15], [104] to solve

colored but with known correlations. Some of the statistical
. blind channel estimation problems for cases that do not have

methods do not require knowledge of the channel order.

L a clear multichannel representation.
They require, instead, the upper bound of the channel order. . .
; . X . o For the multirate channel model, it can be shown

One of the most important questions is channel identifia- . . . :

S . - that the observation process, is cyclostationary, i.e.,
bility, i.e., given the second-order statisticsyqf, canh(z) A . | oo ) ]
be uniquely determined up to a constant factor? The answer’s (- %) = E(un1;, ;) is periodic inn with period P. Let
to this question is affirmative provided that the subchannels S»(%» 2) be the “instantaneous spectrum
are coprime. _ ) —k

To illuminate this issue, we present a frequency-domain Sy(n, 2) = zk: ry(n, k)27 (39)
argument given in [117], but in a slightly different form.
Instead of using the multirate channel model we consider Since S,(n, z) is periodic inn, it has a Fourier series
the multichannel model where the second-order statistics ofrepresentation{ S*)(2)} where S®*)(z) is referred to as

the noiseless received signa) are given by the kth cyclic spectrum. It is easy to show [117] that
rij(k) = E (wﬁ)(wnf_k) ) S (2) = h(2)h* {i exp <, 2%)} F(k)o?. (40)
o
A
rij(2) = Z rij(k (36) . . . .
& Sinceo? is assumed to be known (or can be estimated in

practice), we are dealing with the following identification
equation in the frequency domain

S
rij(z < ) J- 37 S () — a?6(k) = h(2)h* [% exp <;k 2%)} (41)

<

It can be verified that;;(z) is related to the channel by

We therefore have whereé(k) is the unit impulse, and the left-hand side of the

r15(2) _M (2) Vi (38) above equation is known. A line of arguments identical to
rij(z)  hy(2) multichannel case can be used to show that the channel is
identifiable if and only if the multirate channélz) does

not have uniformly2w / P-spaced zeros, which is equivalent
to the channel diversity condition, i.e., all subchannels in
the vector channel model are coprime. To obtain channel
identification, observe that, for arfyy and %-

Hence, those zeros df;(z) not shared by:;(z) can be
identified from the zeros ofy;(z)/r,;(z). Thus, all zeros
of h1(z), andh(z) itself, can be identified from the zeros
of r1;(2)/r;;(#) if all channels do not share a common
zero. Conversely, if all channels share a common zgro

then one can replacs with 1/z; without affectingr;;(2) )y nge] L 2

for all « and 5. Thus the channel is not identifiable. We Se (2 L_* exp <Jk2 P)}

then have the following necessary and sufficient condition 1 o

for channel identifiability. — Sk () L—* exp <jk1 F)} =0. (42)

Theorem 3 [117], [119]: Under Assumption 2, the
channel h(z) (or h) can be uniquely identified It is clear that the time domain equivalence of the above
up to a constant factor from the autocorrelation identification equation (from the inversetransform of the
above) leads to a set of linear equations with respect to the

function R, (k) 2 E(y,y%Z ,) of the multichannel e
n channel coefficientd

model [or, equivalently, the autocorrelation functio
ry(n, k) 2 E(ynyi_,) in the multirate channel model] if G(ky, k) =0 (43)
and only if subchannels are coprime.

2) Identification via Cyclic SpectraHaving shown that  where G(k;, k2) can be constructed from the cyclic cor-
the channel is uniquely determined from the second- relations of the received signal. The specific forms of
order statistics, the next question is how to estimate the G(k;, k») can be found in [117]. Therefordy is in the
channel. Indeed, the arguments leading to the identifiability null space of matrixG (%, k2). Combining cyclic spectra
condition already suggest that channels can be identifiedfor all &, # %, the intersection of the null spaces of all
from the zeros of the output spectra. Unfortunately, finding G(k1, k2) gives the unique one-dimensional subspace to
zeros of the estimated spectra accurately is difficult becausewhich the channel vector belongs.
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A practical estimation algorithm can be derived from the was presented in [58] and its performance analysis was
following optimization: performed in [92]. The extension to the multiuser case was

R 9x\ 1 given in [70].
Sk () |:exp <jk2 —) —*} 4) Identification via Linear Prediction:Introduced first
T)z by Slock [108]-[110], the linear prediction formulation of
2 the multichannel problem plays an important role in the
(44) development of several algorithms. We present next one
such approach by Abed-Meraist al. [3].

Consider the multichannel model given in (2). The key
idea comes from the recognition that the multichannel MA

H(z) = arg min Z

h(z) [
N 27\ 1
— Sk2) ¥ ik 22 ) —
) (e |exp (s o ) —

where the channel estimafe is given by the quadratic

optimization process is also autoregressive. Under the condition that
fL: arg min Z 1G(ky, ko )u|2 (45) subchannels are coprime there exists a cagéa) such
hall=1 ’ 2 that
01 7 ko
~ t _ _ t
where G(ky, k2) is the estimated(ky, k). g(h(z) =1 = s =gk (48)
a) Algorithm characteristics and related workthis al- Substitutings; = [g*(z)]x, above into the multichannel

gorithm exploits the complete cyclic statistics of the re- mgdel, we have

ceived and source signals, as well as the FIR structure of

the channel model. The disadvantage of this algorithm is xx = hosg +hy([g"(2)]xr—1) + - - + hr([g"(2)]xn—1r)
that it requires the convergence of source statistics, which e N

i %

means that, even when there is no noise, there is estimation ~ _; ¢ ' (49)
error for any fixed sample size, although the algorithm is

mean square consistent. Since {sx} is a white sequences, is orthogonal to all

In related work, Li and Ding [69] developed a frequency x;_; for j > 0. Sinceg(z) is causalx, is the summation
domain nonparametric approach that identifies the magni- of the optimal linear predictiok; and the innovation (the
tude and phase response separately from the cyclostationarprediction error) procesk.

statistics. Aghajanet al. [4] obtained its extension for The identification of the channel involves two steps.
multiuser scenarios. A similar approach is also presented
in [14]. 1) Identification ofhy: The prediction error covariance
3) Identification via Filtering TransformThe first second- is thus given by the covariance of the innovation
order statistical approach to blind channel estimation was process, I.e.,
proposed in [118], [119]. In this approach, the authors oy H
presented a two-step closed-form identification algorithm. Couxy — %) = hohy - (50)
The algorithm finds first the filtering matri%(h) and then Given the autocorrelation functioR,, (n) of xy, the
estimates the channel from the estimated filtering matrix. left-hand side can be computed explicitly using the
Considering the time domain channel (2), we have standard theory in linear prediction. The right-hand
A oI P side is a rank one matrix made of the vector of
Ro = E(¥(k)y"(k)) =HH" + 071 (46) the first coefficient of the channel impulse response.
R, 2 EF(k)yE (k- 1)) = HIHY (47) Therefore, we can obtaihy = hg ¢/? for some un-

. known ¢ from the eigenvector of the prediction error
where H is the filtering transformZ(h), and J is the covariance associated with the largest eigenvalue.
“shifting” matrix with the first lower off-diagonal entries 2) Identification ofhy,: Oncehy is obtained, from (49),
being one and zero elsewhere. It was then shown khat the input sequence can be constructed directly from
can be computed froniRo and R;. the innovation sequendg = x; — Xx

a) Algorithm characteristics and related workfhe im- 1
plementation of this algorithm requires the channel order S = ——h}i, = sp e’ (51)
and the noise variance, both of which, in principle, can o[
be estimated from the SVD of the estimated covariance With the estimated input, we essentially have the
matrix Ro. While it is consistent, this approach may not standard input—output channel identification problem.

perform well for two reasons. First, the algorithm fails

to take advantage of the special structure of the filtering a) Algorithm characteristics and related workthe al-
transformF(h). Second, the performance of such a two- gorithm uses all second-order statistics of the received
step procedure is often affected by the quality of the signal, and it is mean square consistent. It does not re-
estimation in the first step. On the other hand, since no quire the exact channel orddr, thus it is robust against
structure in]—"(ﬁ) is assumed, when a large number of overdetermination of the channel order. Derived from the
channels is available, this algorithm can be applie¢{o noiseless model, the linear prediction idea is no longer
[instead ofy(k)] directly, which may have computational valid in the presence of noise. However, when channel
advantages. An extension of this approach to colored sourceparameters are estimated from the autocorrelation functions,
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the effect of noise can be lessened by subtracting the termsnatching approach [102], [103]. Principle component
related to the noise correlation. The main disadvantage structure of the channel was used in [139]. Ding and Mao
of this algorithm is that it is a two-step approach whose presented a knowledge-based approach [21]. In the multiple
performance depends on the accuracy of the estimatedantenna array setting, while Gunther and Swindlehust
hy. When noise presents aity|| is small, performance  [49] developed an ESPRIT-like subspace approach by
degradation may be significant. Like all statistical moment parameterizing the channel using physical parameters such
methods, the convergence of the source statistics is alsoas relative delays of multipaths. Applications to 1S-136 are
required. reported in [143].

The linear prediction-based approaches appear to be
rooted in a somewhat surprising result by Liu and Dong |vV. OpTIMAL MOMENT METHODS PERFORMANCE
[75]. It is shown that, for the multichannel model, a aANnD MATCHING TECHNIQUES
whitening filter is in fact a perfect equalizer, which is not
true in the single channel case. Specifically, a finite order
g(z) is a whitening filter, i.e.uy, = [g'(2)]xx is a white
sequence if and only i’ (»)h(») = »¢ for somed. In
the spectral domain this result is a consequence of the
maximum modulus theorem [100, p. 212].

When the source has a statistical model, most subspace
methods are part of the moment methods. Specifically,
they all can be viewed as estimating channel parameters
from the estimated second-order momentsd the received
signal. For the class of consistent estimators, asymptotic
normalized mean square error (ANMSE) can be used as

A number of new .approach(_es.have been proposed r-a performance measure. Specifically, given the estimated
cently. Based on the linear prediction framework, Gorokhov second-order moment&(N,) from N, observations, the
et al. proposed a weighted least squares approach in [48]. _ R 2 ) _

Ding [20] proposed the outer-product decomposition algo- ANMSE of the estimatog(1(X.)) = h(X,) is defined by
rithm (OPDA) that obtains the channal directly, hence
avoiding the problem of smajlh,||. Although OPDA was

nhot der|ved_dfron_1f' the linear prediction r:/lew plqlnt, |t|has when the limit exists. By normalization we mean that both
the same identification equation as the multistep linear the channel and its estimate are normalized to unit 2-norm.

prediction approach derived by Gesbert and Duhamel [33]. Further, to obtain a meaningful MSE, we also assume that

the scaler ambiguity of the estimate has been removed.
C. Other Related Subspace Approaches ANMSE(g) measures the MSE of the consistent estimator
Space limits our exposition of many channel estimation g for a sufficiently large sample siz¥,
approaches developed recently. Here we mention two re- . ANMSE(
; " 22 9)
lated classes of approaches that can be applied to general E{||h(NS) —h|| } S
subspace methods for improved performance. s
1) Weighted Subspace ApproacheSubspace approaches Obviously, smaller ANMSE;) is desired. When
usually involve estimating the channel vector (or perhaps ANMSE(gy) — oo, it implies that the estimatorg
part of the channel vector) by optimizing a quadratic cost does not have convergence at the ratd 4¥,.

ANMSE(g) = lim NSE{HH(NS)—HH?} (54)

function In analyzing the class of blind channel estimators using
- ) - the second-order moments, we pose the following ques-
h = arg 1}_?12 |Phi|3 (52) tions.
S

whereP is obtained from the received data. The weighted 1) What is the achievable ANMSE among all consistent
subspace approaches, successfully used in the direction of estimators using consistent estimates of second-order

arrival estimation in array signal processing (see [128]), moments?
employ an additional weighting matri®’ which is chosen 2) What are fundamental limitations to the ANMSE
optimally in some ways of blind channel estimators using the second-order
N . ~ statistics?
h = arg min K’ PYWPh. (53) 3) What is the ANMSE of existing subspace estimators
hcs and what are their performance limitations?
The optimal selection of the weighting matrix is, however, = 4) How much potential improvement can be made over
nontrivial, and it is often a function of the true channel the existing subspace based moment estimators?

parameters. A practical solution is to use a consistent ] ) )
estimate of the channel to construct the optimal weighting €S guestions are addressed in part in [1], [2], [43], [44],
matrix (see [1], [13], [48], and [66]). [93], [137], [139], and [140].

2) Exploiting Signal WaveformsExploiting side infor- ]
mation proves to be an effective way of circumventing A- The Achievable ANMSE and Performance Bounds
the difficulties associated with the ill-conditioning of the The question considered here is the following: given
channel matrix. Recognizing that in many communication consistent estimateg of the second-order moments of
applications the waveforms used in the transmission is oftenthe observation, what is the minimum ANMSE that can
known, Schellet al. first proposed a subchannel response be achieved by an estimator usirig® The answer to
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this problem can be obtained by applying the asymptotic where A pax = A1 > A2 > -+ > Aopy1 = Apin are
performance analysis of general moment methods [91]. Forthe singular values of th&(n), x(H(h)) is the condition
the case involving real signals Zeng and Tong gave the number of]—“(ﬁ) and K¢g is a constant. If the source is
following theorem. The complex case can be found in [44] Gaussian, Abed-Merairat al. obtained a different bound

and [136]. [2].

Theorem 4 [140]: Let r be the vector consisting of The above bound shows that the CR and noise subspace
(nonredundant) autocorrelation coefficients. Assume that methods are limited by the condition number of the channel
S(hbf), the Jacobian of the autocorrelation vectowith matrix F(k) or the locations of channel zeros. Indeed,

respect to the channel vecth; is full column rank. Let subspace methods often suffer from the ill-conditioning
t be the estimated autocorrelation vector obtained from of the matrix from which they are derived. For example,

{y(@),t =0, -+, Ny — }} with normalized asymptotic  certain channels have closely located zeros, which causes
covariance(h) > 0. Leth = g(f) be a channel parameter the ill-conditioning of the channel matrix. This effect was
estimator such thag(r) = h. Then the ANMSE ofg(f) illustrated in Endrest al. [25].

is lower bounded by
B. Moment Matching Techniques

IR IR R —1
ANMSEE”{ (ST (h)E 1(h)S(h)) } The moment matching approach is motivated by the
. 2 existence of a moment method that achieves the minimum
S K #(S(h)) (55) ANMSE. Giannakis and Halford investigated the general
- SNR moment matching approach of the following form:

=

— _ ) . ~ Y12
whereK is a constantz(S(h)) is the condition number of h,p, = arg min [|F — r(h> llw (58)

S(h), and the SNR is defined as whereW is a Weighiing matrix. By choosing appropriate

1 W, as a function oh, the so-called asymptotic best con-
=py  (56) sistent (ABC) estimator achieving the minimum ANMSE
was proposed in [43] and [44]. The suboptimal approach

Moreover, there exists an estimatgy,(#) that achieves ~ With no weighting was investigated in [120].
the lower bound ﬁ(sT(H)E—l(H)S(H))—l}. While moment matching methods have a much more

From (55), it is clear that the performance of all moment robust performan_cg against channel order selection and
methods are limited by the condition number of the Jaco- the channel condition, they are unfortunately not easy to

bian S(k), which leads to the following question: when -

implement because of the existence of local minima in the
is S(H) singular? This question has a surprisingly simple optimization. To incorporate the subspace structure into the
condition.

moment matching approach, Zeng and Tong proposed in
Lemma 1 [140]: S(h) is singular if and only if{h;(2)}

[139] the following channel estimation criterion:
share common comugat? rej\glprocal zeros (CRZ), or equiv- 0— arg  min  ||f — F(H)H%v (59)
alently, {h)(z), h)(1/z*)}._, share common zeros. hes, |[h)|=1

The above condition shows an interesting difference from ] ) o )
the condition of identifiability (subchannels are coprime). Wheres is a linear subspace containing that used in the
Note that the violation of the identifiability condition does Subspace algorithms. The selectiondfeads to a method
not imply that no moment algorithm can achieve the that combines both subspace and moment matches.

ANMSE bound. When subchannels do have common zeros,
there are multiple but possibly finite numbers of possible V. THE ML METHODS
solutions to the identification equation. If one can restrict  One of the most popular parameter estimation algorithms
the parameter set to the neighborhood of the true chan-is the ML method. Not only can such methods be de-
nel, optimal algorithms with minimum ANMSE do exist rived in a systematic way, but perhaps more importantly,
[44]. This, of course, is not unique to the multichannel the class of maximum likelihood estimators are usually
identification. optimal for large data records as they approximate the
It is also interesting to compare the performance bound minimum variance unbiased estimators. Asymptotically,
for the CR and the noise subspace method. For the specialinder certain regularity conditions, the variance of ML
case whenP = 2, the ANMSE of both CR and the estimators approach the CramRao bound (CRB), which
noise subspace methods can be obtained easily if thejs the lower bound on variance for all unbiased estimators.
covariance matrixR, has the Wishart distribution. Under  Unfortunately, unlike subspace based approaches, the ML

r
a1 @2
SNR= 5 B ;p: |

this assumption, it can be shown that methods usually cannot be obtained in closed form. Their
2041 2002 107 2 ]—“(H)) |mplement_at_|ons are further complicated by the existence

ANMSEcg = Z k > Ken of local minima. However, ML approaches can be made
1 O SNR very effective by including the subspace and other subop-

(57) timal approaches as initialization procedures. The general
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formulation of the ML estimation can be found in many
textbooks (e.g., see [91]).

The problem at hand is to estimate the deterministic
(vector) parameteé given the probabilistic model of the
observation. Specifically, leff(y; 6) be the probability
density function of random variabl® parameterized by
# € ©. Given an observatioy’ = y, 8 is estimated by
maximizing

6 = arg max f(y; §) (60)
wheref(y; 6), when viewed as the function 6f is referred
to as the likelihood function.
The ML-based blind channel estimation can be derived

based on either the statistical or the deterministic setting D

depending on the model of the source signal.

SML Statistical ML estimation:In such a case, the

Assumption 3:

3.1) The noisei is zero mean, Gaussian, with known
covariances?L.
3.2) The channel has known ordér

We note that the noise variance can also be considered
as part of the parameters. For simplicity and consistency
with other approaches it is assumed to be known in our
discussion. Note also that the set of assumptions for DML
is almost the same as that for the deterministic subspace
methods, except that the noise in DML is assumed to be
Gaussian. Again, the channel modeimust be known for
identifiability reasons.

It is not surprising that the identifiability condition for
ML is the same as that for the deterministic second-order
moment methods. Specifically, the channel is identifiable
if subchannels are coprime and the source has linear com-

known distribution. In such a formulation, the only
unknown parameter is the channel vectér £

H). In this case, the dimension of the unknown
parameter is fixed with respect to the data size.
Deterministic ML estimationHere the input se-
guence is part of the unknown parameters, i.e.,
0 = (b, {sx}), although one may only be in-
terested in estimatingﬁ. In such a case, the
dimension of the parameters increases with the
size of the observation.

DML

These two classes of ML estimators are discussed next.

A. DML Approach

The DML approach assumes no statistical model for the
input sequence. In other words, both the channel vector
and the input source vectsiare parameters to be estimated.
In this paper, we shall only consider the estimation of the
channel.

Consider the multichannel model in (2)

¥=7((E)h+i. (61)
The DML problem can be stated as follows: givén
estimateh by

{ED]\H,’ éD]\/[L} arg max f(}_;7 E, §) (62)
where f(¥; H, §) is the density function of the observation
vectorsy parameterized by both the chanrdeland the

input sources.

When the noise is zero-mean Gaussian with covariance

721, the ML estimates can be obtained by the nonlinear
least squares optimization
= arg min ||§ — 7 (S)h][3. (63)

{hDMLa SDML}

1) Assumptions and Identifiabilitytn considering the de-
terministic model, we assume the following assumptions.

1962

noise is Gaussian, all information about the channel in the
likelihood function resides in the second-order moments of
the observations. Readers are referred to Theorem 1 for
sufficient conditions and related discussions.

2) IQML, TSML, and Other lterative Methodsthese al-
gorithms are developed by Hua [55], [56] and around the
same time by Slock [108]. The iterative quadratic maximum
likelihood (IQML) approach, proposed by Bresler and
Macovski [11] for estimating superimposed exponential
signals, transforms the DML problem into a sequence of
guadratic optimization problems for which simple solutions
can be obtained. It turns out that IQML has a related form
in blind channel estimation using DML. This connection,
first pointed out by Slock and Papadias [108], [110], has its
root in the linear prediction formulation in both problems.

The joint optimization of the likelihood function in both
the channel and the source parameter spaces is difficult.
Fortunately, the observation is linear in both the channel
and the input parameters. In other words, we have a
separable nonlinear LS problem, which allows us to reduce
the complexity considerably. The nonlinear LS optimization
can be achieved sequentially in one of the following ways:

{HDMLa éDML} {mgin Iy — T(é’)HII%} (64)

arg min
1

= arg min {Inin |l¥ — T(§)H||§} (65)
E i

Considering next the optimization in (64), we have

ﬁDl\&L = arg H%in I (I - JT(H)JTT (ﬁ)) 3_””2

~

P(5)

arg min ||77(E)37||2
h

= (66)
whereP(ﬁ) is a projection transform of into the orthog-
onal complement of the range space]é(fﬁ) or the noise
subspace of the observation.

The key of IQML type of algorithms is the parameteri-
zation of P(h). Hua in [56] obtainedP(h) directly from
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the channel vectoh. Fig. 5 provided the clue for such a algorithm [28]. The convergence of such approaches are
construction, where it is clear that the channel itself can not guaranteed in general.

be used to null the noiseless observation, a process called a) Algorithm characteristics and related workfhe fi-
“blocking” by Slock. Hua's construction oP(h) uses the  nite alphabet nature of the input makes the evaluation of the
data selection transform defined in (64) to obtain the IQML Crangr—Rao lower bound difficult. Paris argued in [86] that,

form if the input sequence is equally probable, the probability
. that the above estimag&differs from the ML estimate of
hpue = arg min HHYHQ (ﬁ) Yh (67) with knownh diminishes with the noise variance. Similarly,
h at high SNR, one can expect that the above channel estimate

h 0 be obtained v from 4Y i is close to the ML channel estimate with known input.
where Q(h) can be obtained easily frorh, an IS There are many variations in the implementation of the

a matr!x co|_r|1$tructed fr%rry. To implement “:]e [f)MLd nonlinear LS to reduce the implementation complexity.
estimation, Hua proposed a two-step approach referred togg gy yi presented “blind” trellis search techniques [106].

i‘s the twr(])-séelg maxr:méjm Iikbelihood (.T.8.N:L) ”_‘ethOd tfh?]t Reduced-state sequence estimation [26] was proposed in
%useslt € e mst 0 toho tain lan Initia e§t|n1ate(()j the 136]. The so-called iterative LS with projection (ILSP)
channel and 2) substitute the initial estimate if¥th) an proposed by Talwaret al. [111], [112] is a relaxation

opt|m|ze| (67)h recm;rswely.. , d related A technique that first ignores the finite alphabet property and
b a) fAlg?\;lltL mc ara:ccterlstlcs ‘1” rehate vl\)/or R um- q then projects the estimate to its nearest discrete value.
er of 1Q type of approaches have been proposed ppgjjet al. proposed a per-survivor processing technique

depending on the parameterization of the projectifin). in [95]. An algebraic approach was presented by Yellin and
In Slock’s “minimum null-space parameterization” [110], Porat [135]

IQML is applied to the blocking filter. A different approach
was developed by Harikumar and Bresler [53]. This IQML
type of algorithm (not surprisingly) offers more efficient
channel estimates when compared with moment methods. We consider the statistical model where the source se-
Hua demonstrated that TSML is both “high SNR” con- duénces; is random. The formulation of the problem
sistent and efficient. Similarly, Harikumar and Bresler also IS Straightforward in principle. Recalling the multichannel
showed that the CR method used in Hua’'s TSML is a coarsemogd (2) where we consider a block 8freceived vectors

B. Statistical Maximum Likelihood Approach

approximation of IQML, which ultimately supports Hua's ¥ = [Yx_1; -+ ¥6/°
TSML. The performance comparison with the CearRao . NL L
bound has also been obtained in [53], [56], and [85]. As a y=7n (h)s +n (70)

“dual” to the IQML-type of algorithms, Feder and Catipovic
[27] proposed a DML by obtaining firs§hr, by optimizing
first the inner term in (65). Since the estimation of the
input is obtained first, it suffers from the fact that the
dimension of the problem increases with the sample size, > o N\ Y

which renders this approach not practical for large data b, = arg tax f(y’ h) T Aarg max log f(y’ h)

size applications. For cases when the input sequence has . (71)

the finite alphabet property, simplifications can be obtained Where f(y; h) is the density function of the observation
(see [27]). vectorsy parameterized by.

3) DML for Finite Alphabet Input: Similar to SML with 1) Assumptions and IdentifiabilityThe SML estimation
hidden Markov model (HMM), finite alphabet properties hinges on the availability and the evaluation of the like-
can also be incorporated into DML. Because of the finite lihood function. Although SML applies to more general
alphabet property, it is difficult to apply the separation cases, we shall make the following assumptions in our
idea in IQML-type approach. Consequently, this class of discussion.
algorithms, first proposed by Seshadri [105] and Ghosh and Assumption 4:

Weber [36], iterates between estimates of the channel and
the input. At iteratiork, with an initial guess of the channel
h®| the algorithm estimates the input sequedtd and

the channeh®+1 for the next iteration by

where we have omitted the time index becaygsehas
included all observations. The SML problem can be stated
as follows: giveny, estimateh by

4.1) components of andn are jointly independent;
4.2) 1 is zero mean Gaussian with covariancd;
4.3) components o are independently, identically dis-
tributed (i.i.d.) with known probability density func-
9 = g min 7 - F(EV )5 (68) tion.
°c Identifiability remains to be an important issue in SML
approach. The identifiability condition tells when SML can
be applied. A main issue is whether the likelihood func-
where S is the (discrete) domain of. The optimization tion provides sufficignt information to disthguish difierent
in (69) is a linear least squares problem whereas the models. Specificallyh is iderltifiablelff(y; h) = f(¥; b')
optimization in (68) can be achieved by using the Viterbi (almost everywhere) implids = ¢/h’ for some. It is not

h*+D = arg min ||y — T(§(k))ﬁ||2 (69)
h
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surprising to see that the class of channels identifiable by One recognizes that the only difference between the above
SML is larger than that by moments. Obviously, parameters solution and that when the input is known is the conditional

identifiable by moments are identifiable by the likelihood
function. It can be shown further that as longsas non-

expectation.
Although the above arguments are solid heuristics, it is

Gaussian, the linear structure in (70) is uniquely determined not clear whetheh®) — hgyy. This is indeed the case

by the density functionf(y; H) [62]. Indeed, under the

provided a good initial guess of the channel is available.

non-Gaussian assumption of the source, subspace methods Thegrem 6 [19]: If Q(H(k+l)7 ﬁ(k)) > Q(ﬁ(k% ﬁ(k)),

developed by Giannakis and Mendel [39] can be used
to obtain closed-form identification based on higher order
cumulants of the observation. Whehis Gaussian, all

then f(§; B*+D) > f(§; b®).
The above theorem implies that the maximization of
the likelihood function can be achieved by a sequential

statistical information about the channel_ is cqntai_ned in the maximization the “auxiliary function”Q(ﬁ, E(k))' which
second-order moment. In such a case, identifiability can be has a closed-form solution

ensured if subchannels are coprime.

Theorem 5: Under Assumption 4, the channel parameter
h is identifiable by the likelihood function if and only if
one of the following conditions is satisfied:

1) s is non-Gaussian;
2) subchannels are coprime.

2) The EM Approach:The SML optimization in (71) is
in general difficult becausef(¥; ) is nonconvex. The
expectation-maximization (EM) algorithm [9], [19] can be
applied to transform the complicated optimization (71) to a
sequence of quadratic optimizations. We shall give an intu-
itive explanation of this idea. More rigorous development
can be found in [19]. .

If the input is known, e.g§ = &, the ML estimation oh
is a simple LS problem involving maximizing a quadratic
cost

log /(518 = & i) = ~Clly — T(OH*  (72)

whereC is a constant. Whe#g is unknown but with known

E: Compute:
Q(B E®) = E(|Iy

M: Maximization:

~ T(3)i|?y; BY).

N N -1
B = [ BT ST E)Y; BY)]
- B(TH®)31y; BV).

a) Algorithm characteristics and related workfhe per-
formance of EM algorithm depends on its initialization,
which may be facilitated by moment techniques such as
those described in Section Il (see [89]). When EM con-
verges globally, the estimate achieves asymptotically the
CRB for the case of i.i.d. sequences (which is not the case
here). See [18] for the evaluation of CRB when the input
is Gaussian.

Various algorithms are implemented either in “on-line”
or batch modes. Kaleh and Vallet [64] first applied the EM

distribution, we should consider maximizing the above algorithm to the equalization of communication channels
cost averaged over all possible input sequences. Given thewith input sequence having finite alphabet property. By
received signay, this average should be performed using using an HMM they developed a batch (off-line) procedure
the a posteriori distribution of § that includes the so-called forward and backward recursions

R o N [94]. The complexity of this algorithm increases exponen-

J(h) = E(log f(Y|S =& h)b’)- (73) tially with the channel memory. Shao and Nikias [107]
. . . proposed an approximation for calculating the elements of
Unfortunately, the computation of(h) requires the knowl-  the conditional autocorrelation matrix and correlation vector
edge of the true channel parameter. To circumvent this jnvolved in (77). Such an approximation becomes exact as
difficulty, we may consider an approximation of the above the block size approaches infinity. At high SNR, further
cost function using, at iteratioh, the current estimath*) reduction of complexity can be achieved as shown in [87].
Lo ; _ _ To relax the memory requirements and facilitate channel

) A . 212 _ ¢ 2. h(k) . . .

Q(h’ h ) = E(log f(Y|S =& h)b” h ) tracking, “on-line” sequential approaches have been pro-

R - e 2\ s posed in [113], [114], and [130] for general input, and in

—— [ 15 - TR (39 K0) d5 (75)

= -B(|ly - TEEl5: BY).

(74)

[65] for input with finite alphabet properties under an HMM
formulation. Given the appropriate regularity conditions
[113] and a good initialization guess, it can be shown
that these algorithms converge (almost surely and in the
mean-square sense) to the true channel value. To reduce
the implementation complexity associated with the HMM
formulation, suboptimal approaches have been proposed in
[131] and [132]. The complexity of the implementation
in [88], [132] increases linearly with the channel. When
SNR approaches infinity, the suboptimal implementation
achieves optimality.

(76)

It is clear that the maximization ap(h, h®)) with respect
tohisin facga quadratic optimization problem with the
new estimateh(*+1) given by
. . -1
B =[B(T7®7TE)l: 5Y)]
- B(T"(3)7]5; BW). (77)
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VI.

CONCLUSION

[12]

In this paper, we have presented some recent develop-
ments in blind identification and estimation of single input [13]

and multiple output channels. Depending on the application,

the problem of blind identification is a problem of exploit-
ing structural information of the channel and properties of [14]
its input. Because different applications utilize different

structures to specify the unknown parameters, there is

great diversity in developing new approaches. Recently, [15]
there have been several developments in semiblind channel
estimation techniques. Semiblind channel estimation stands
for cases when part of the input is accessible. This case is
significant in several ways. First, the availability of certain
input should improve the performance of any blind channel

estimators. de Carvalho and Slock evaluated the CRB for

D. Brillinger, “The identification of polynomial systems by
means of higher-order spectra]. Sound Vib.,vol. 20, pp.
301-313, 1970.

J.-F. Cardoso, P. Loubaton, and E. Moulines, “On weighted
subspace estimates in system identification,Pinc. 8th IEEE
Signal Processing Workshop Statistical and Array Signal Pro-
cessing,Corfu, Greece, June 1996, pp. 352—355.

A. Chevreuil and P. Loubaton, “On the use of conjugate
cyclo-stationarity: A blind second-order multi-user equalization
method,” in Proc. IEEE Intl. Conf. Acoustics, Speech, Signal
ProcessingAtlanta, GA, May 1996, vol. 5, pp. 2439-2442.
—, “Blind second-order identification of FIR channels:
Forced cyclo-stationarity and structured subspace method,” in
Proc. 1st IEEE Signal Processing Workshop Signal Processing
Advances in Wireless Communicati®gris, France, Apr. 1997,
vol. 1, pp. 121-124.

16] S. Choi and R. Liu, “An adaptive system for direct blind multi-

blind channel estimation for both deterministic and Gauss- [17]
ian input cases [17], [18]. Second, previously unidentifiable

channel may become identifiable. If zeros are introduced

periodically in the input data sequence, Giannakis [37] [18]

showed that any FIR channel can be identified, and a

subspace algorithm was proposed in [52]. Pal proposed a
semiblind channel estimation technique in [84].

While it is clear that these methods have potential appli-
cations in many different problems, it is still too early to
assess their impact, for most studies have been conducteézo]
either in simulation or with real data but in a controlled
manner.
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