
CRISP: Center for Research in Intelligent Storage
and Processing in Memory

Kevin Skadron
Dept. of Computer Science

University of Virginia
Charlottesville, VA, USA

José F. Martínez
Computer Systems Laboratory

Cornell University
Ithaca, NY, USA

Yuan Xie
Dept. of Electrical & Computer Engineering

University of California at Santa Barbara
Santa Barbara, CA, USA

Steven Swanson
Dept. of Computer Science & Engineering

University of California, San Diego
La Jolla, CA, USA

Jignesh Patel
Dept. of Computer Science

University of Wisconsin
Madison, WI, USA

Abstract—The CRISP team will pursue research to enable

processing to happen as close to data as possible and eliminate
bottlenecks due to data motion. This will require innovations
across the system stack. Ultimately, we seek to lower the effort
barrier significantly for everyday programmers. The goal is to
achieve highly portable, “bare-metal,” and understandable
performance across a wide range of heterogeneous systems.

Keywords—processor, memory, storage, operating system

I. INTRODUCTION

In today’s Big Data era, the volume of data is exploding,
with data coming from a growing variety of video, sensors, and
informatics platforms. Users need support for both throughput-
oriented and latency-sensitive tasks on vast quantities of
archived data—all while optimizing for energy efficiency and
other resource costs and providing reliability and security.
Support for ever-bigger-data computation, in turn, enables new
real-time capabilities and new degrees of insight, enabling
novel applications and markets. Yet today’s systems are
increasingly bottlenecked by data movement costs. This trend
is compounded by the fact that data in memory is generally
stored with little or no consideration of data content, usage
patterns, or how data are grouped into higher-level objects.
Many algorithms also exhibit poor temporal locality (because
they only touch data items once) and poor spatial locality
(because they exhibit irregular access patterns across vast data
sizes), making caches inefficient. A further source of
inefficiency is that the raw bandwidth at the edge of the data
arrays in all current memory and storage technologies is 1-2
orders of magnitude greater than what can be transmitted off
chip.

However, traditional semiconductor technology scaling is
stalling. The long-standing contract between applications and
hardware, namely that clock speeds roughly double with every
new generation of hardware, ended about a decade ago, making
it hard for application performance to scale “effortlessly.” As a
result, specialized hardware is becoming prevalent. However,

specialization efforts so far have primarily focused on
increased processing efficiency, even though the intrinsic
performance of today’s memory and storage architectures are
grossly underutilized, because processing and storage are
designed independently and deployed as separate resources.
This means the high bandwidth of the data arrays is throttled
by narrow interfaces and high power to move data at high
speeds. As a result, systems are increasingly bottlenecked by
data movement costs and are no longer able to keep up with
this data explosion.

II. RESEARCH CHALLENGES

Solving these challenges and enabling the next generation
of data-intensive applications requires computing to be
embedded in and around the data, creating intelligent memory
and storage (IMS) architectures that do as much of the
computing as possible as close to the bits as possible. The
closer computation is to the memory cells, the closer it comes
to the raw bandwidth available in the storage arrays. This
proximity will simultaneously address data and computational
challenges. By embedding computation with the data arrays, or
at least within the memory and storage chips, we can achieve
massive increases in parallelism, and the resulting energy
efficiency may allow a much higher density of computing and
storage devices in a given form factor. However, such IMS
capabilities will require reconstructing the entire system stack,
with new architectural and operating-system abstractions, new
memory semantics, and new techniques for compiling and
optimization, and dynamic yet efficient system software.

In addition to these architectural trends, innovation in
device technology complicates the landscape even further.
Emerging non-volatile technologies are already transforming
the memory/storage landscape. Each of these upcoming
technologies offers different trade-offs for embedding
processing near the data, in the data arrays themselves, or even

Distribution A: Approved for public release; distribution unlimited.

dire
ctly
in
the bit cells. These emerging technologies complicate the
hardware design space. For all these reasons, programmability
and computational efficiency must be addressed in an
integrated fashion.

At the same time, we want to achieve high programmer
productivity and code portability across diverse, heterogeneous
architectures. Obtaining high performance and efficiency on
data-intensive problems, or porting software to emerging
hardware, should not require a “ninja” programmer. We must
protect the user from this hardware and software ferment by
providing a highly intuitive programming model that allows
programmers to focus on what they want to do, instead of how,
while nevertheless operating as close to the raw performance of
the data arrays as possible. We must also provide
programmers and system administrators with tools to reason
about performance and efficiency, tune their algorithms, and
navigate the Pareto-optimal frontier of performance, energy-
efficiency, and precision. This will democratize high-
performance, heterogeneous, data-intensive computing, to
enhance productivity of the industrial and military workforce
and enable an improved software ecosystem that opens new
markets for computer systems.

III. APPROACH

In order to solve these challenges, the Center for Research
on Intelligent Storage and Processing in Memory (CRISP)
brings together a team of 20 faculty from eight leading
research universities in a coordinated cross-stack research plan

spanni
ng

applic
ations and programming frameworks, system software support
for IMS systems, and hardware. Fig. 1 presents a summary of
our approach, comprising three main themes.

A. Scaling Applications and Making the Programmer’s Life
Easy

 CRISP is premised on application-driven innovation,
in order to develop IMS capabilities in ways that transform
real-world practice. Making IMS systems practical for
everyday programmers will in turn require suitable
programming frameworks.

1) Application-driven innovation. We will work with
application experts across a set of diverse, data-intensive
applications that will be commercially and socially important
over the next 10-20 years. These include big-data analytics,
video analytics, medical imaging, genomics, precision
medicine, and cognitive computing. These are all data
intensive, but exhibit a rich diversity of computation, data
access, and communication patterns, and a need for real-time
processing. With major improvements in throughput and
latency, dramatic new capabilities and markets will emerge.
By implementing our solutions in the context of real
applications and real data, we are able to work through the
details of how hardware and software features are best
leveraged by applications, and drive innovative hardware and
software features based on deep application insights. At the
same time, this work will advance the state of the art in these
application domains, enabling new capabilities and benefitting
users, patients, etc.

Metric-centric engineering Modeling Hardware prototyping

Theme 1: Hardware Support For Massively Parallel, Hierarchical Processing in Memory and Storage

Example Mature and Emerging Memory Devices

3D NAND PCRAM STT-MRAM 3D X-point ReRAM FeRAM HMC

Theme 2: System Support for Massively Parallel Heterogeneity

New Software Ecosystems and Application

Video Analytics Precision Medicine Cognitive Computing

Theme 3: Scaling Applications and Making the Programmer’s Life Easy

Big Data Analytics

DRAM

Fig. 1: Overview summarizing the CRISP research program’s application-driven development of intelligent storage and memory systems,
incorporating effects of diverse device technologies.

2) Programming frameworks. Intuitive programming
requires raising the level of abstraction, with support from
intelligent compiler and runtime environments, to achieve
write-once, run-anywhere capability. We believe that the most
effective approach is to provide high-level abstractions to
operate on data sets and data streams instead of individual data
elements. By providing common primitives, especially
primitives that map naturally to an application domain, such as
image analysis or genomics, programming becomes more
intuitive. And by using declarative abstractions where
possible, extracting what the programmer wants to do, instead
of how, the system obtains rich information about how data
and tasks are related, while maximizing flexibility to
transform the software to run efficiently across widely varying
architectures, without the need for painstaking manaul porting
to achieve the correct functionality and to achieve high
performance.

A key component of our programming framework is
recognizing that a single domain-specific language (DSL) is
unlikely to be sufficiently “natural” across all application
domains, and even within a single complex application,
different parts of the application may need to speak different
domain-specific languages to make it easier for the
programmer to focus on the algorithmic specification. Our
approach to support multiple DSLs intrinsically also has the
desirable side-effect of cross-pollinating our research efforts so
that the improvement in one DSL can broadly apply across
multiple applications. Associated with our framework is also
the separation of logical DSL optimization, and the mapping to
a common directed acyclic graph of operators for all DSLs.
This common mapping will allow us to build the run-time
system once and use it multiple times across many DSLs and
target architectures.

Ultimately, even more important than the specific
abstractions/languages we develop, is a methodology for
deriving new abstractions and languages as needed to support
emerging applications, while leveraging a common mapping
and optimization framework. This approach insulates the
programmer from hardware details, enables a large software

base to use IMS, and ultimately benefits heterogeneous
systems of all types.

B. Hardware Support for Massively Parallel Processing in
Memory and Storage.

“Bare-metal” performance will be achieved by allowing
computation to happen as close to the data as possible, and to
leverage the full bit-level parallelism of the data arrays
wherever possible. By “bare metal,” we mean to transmit to
the application, with minimal loss, the full performance
potential of the hardware. This requires novel hardware
technologies for processing at different levels of the
memory/storage hierarchy, and exploring what kind of
mechanisms and abstractions this hardware should present to
the software, with the goal of achieving performance and
efficiency as close as possible to the inherent bit-level
parallelism of the data arrays.

We will develop a modular but efficient processing
hierarchy that provides intelligence within the memory/storage
units and their interfaces. This includes processing in the data
arrays, at the edges of the arrays, in the controllers, etc. At the
same time, interfaces for accelerators will allow them to access
the intrinsic throughput of the data arrays. We also envision
chips with several layers of memory and/or storage, layered on
top of, or packaged with, dedicated processing layers. These
multi-chip IMS modules will then be combined via a scalable
interconnect, to create nodes with high data capacity and high
cross-section bandwidth. These, in turn, will scale from edge
devices with a single IMS module to cloud systems with racks
in which each node supports hundreds of terabytes of memory
and petabytes of storage.

Our approach to developing new hardware mechanisms for
adding intelligence into memory and storage will provide
immediate benefits for existing technologies (e.g., DRAM,
Flash, and Xpoint), but our solution will also be technology-
driven, in order to leverage emerging technologies.

We will also evaluate how appropriate tailoring of
emerging technology properties such as write latency and
retention time can better support application needs. We will

Fig. 2. Key characteristics for emerging and conventional memory devices (adapted from Refs. [1,2]). Note that the reported write energy is specified for
intrinsic memory cell operation and do not account for circuit level energy losses, which, e.g., are typically dominant in flash memories.

have a focused effort on understanding both existing
SRAM/DRAM/Flash memory and emerging NVM
technology, e.g. those shown in Fig. 2—not just from the
device-level understanding, but also from a utility point of
view—that is, with an eye on the applications that might
benefit from such technology. Also, importantly to the
success of our project, we must understand how to model
these new technologies, so that we can evaluate and quantify
the impact on the architecture and higher up the system stack.

Effective IMS systems must also operate within acceptable
power and thermal budgets, so these factors will be an integral
part of the design space. Both static and dynamic thermal and
power management will be considered.

By applying these principles across the system at various
scales, and by developing solutions for diverse memory and
storage technologies, we will create a set of building blocks for
IMS systems, scaling from edge devices with a single IMS
module to cloud systems with racks in which each node
supports 100s of TB of memory and PBs of storage.

C. System Support for Massively Parallel Heterogeneity.

The system software sits in the middle: it is responsible for
bridging the user-level software and the emerging
architectures. This requires a high level of automation, while
still giving users performance transparency and control over
tradeoffs among performance, energy-efficiency, etc.

1) Performance transparency. Providing performance
transparency addresses two key challenges in achieving “bare
metal” performance. First, we plan to make algorithmic
exploration easy, to identify the optimal combination of
algorithm and mapping. Second, during such algorithm
exploration and/or performance debugging, the application
programmer needs help in understanding the root causes that
may hinder performance. Such performance debugging is
challenging today, and likely be even more challenging in the
future with increasing complexity in the topology of storage
and compute elements packaged in new architectural
configurations. Thus, we plan to build introspection
mechanisms in our run-time system, to help application
programmers and system engineers understand why the
application performed in a certain way. This understanding
can then allow an application programmer to determine what
change to make to their application logic.

Support for these capabilities will require appropriate
hardware probes, semantically richer and more sophisticated
than today's simple performance counters, with hardware plus
runtime management mechanisms appropriate for our
intelligent memory environment. We envision a hierarchy of
hardware probes that are highly programmable; that can collect
a wide array of data; and that possess the ability to preprocess
the data they collect into higher-level knowledge—even
conduct a modest degree of inference. The system software
can then use these to guide automatic scheduling decisions or
to provide reporting and diagnostic capabilities to the
programmer.

2) System software. The system software is responsible
for bringing computation and data together at the right place
and time to achieve the user’s needs, while brokering

resources among competing applications and requirements,
and providing security, resilience, and performance
transparency. This will require new abstractions and new
system services.

For example, intelligent memory systems will be highly
diverse, so the interfaces we devise for programming will need
to represent computation and requirements in a way that is, to
the extent possible, agnostic of the underlying hardware. We
have lived with a fairly simple “address” based interface to
data, whether it be to memory words or file/disk blocks. While
this may have sufficed so far, such interfaces, although simple
from a programmatic viewpoint, are woefully inadequate to
exploit the rich computational capabilities within memory.
Instead, the basic naming scheme will be object-oriented; if a
new type of memory, processor, coprocessor, or interconnect
appears on the market, our system will require the developer
to provide implementations of basic operations and
information about the device’s behavior. Our system will use
that information to integrate the new device into the system so
that its capabilities are available via our programmer-visible
interfaces.

Scheduling of computation and data motion become
challenging in IMS systems, because a heterogeneous
collection of computational elements will be embedded in
memory system components of different nature and at
multiple levels of the hierarchy, interconnected through a
correspondingly heterogeneous fabric. This will result in an
unconventionally hard-to-reconcile spectrum of computational
capability, as well as data latency and bandwidth. Additional,
dynamic inhomogeneity will result from transient spikes in the
different parts of the system, and the corresponding ripple
effects. Reliability-related inhomogeneity will also occur,
from component failures over the lifetime of the system.

This points to the need for a high-level description of
compute tasks and a flexible, dynamic mechanism for
mapping those computations onto the available network,
compute, and memory resources. This requires an execution
paradigm in which there is a runtime (late/dynamic) binding
of computation. In this way, computation can be moved closer
to data, and vice versa, or mapped to other heterogeneous
computing resources, whenever it is deemed beneficial by the
runtime system, and the appropriate optimized executable
module will be available. The runtime can also optimally
engage just-in-time optimization where appropriate to
incorporate details only available at runtime.

One key idea to our vision of the runtime system is to
think of replication as a first-class primitive, so that multiple
copies of hot data and computation can be kept at different
levels of the system. Updates to data can either be lazy or
eager, depending on the required application semantics for
consistency. Our “execution plan” optimizer will identify
opportunities to transform computations from the
programmer’s specification into an execution plan that is
specialized for the specific hardware resources at hand as well
as the current location(s) of the data.

Finally, users should be able to achieve their desired
operating region on the Pareto-optimal frontier of latency,

throughput, precision, and energy-efficiency. For example,
users may be willing to sacrifice some precision to achieve
higher performance. The system software must therefore
support interfaces that abstract heterogeneous hardware and
runtime decisions, dynamic optimization capabilities to
navigate the Pareto-optimal frontier and automatically select
the best set of computational and data-motion operations to
optimize performance, using mechanisms that minimize
runtime intervention, so that after the initial setup, applications
run at bare-metal speeds.

IV. PUTTING IT ALL TOGETHER

Having outlined the work to be done in each of the
three research themes, we now briefly describe how they will
work in unison to achieve the desired goals of leveraging the
heterogeneously intelligent memory hierarchy without
requiring extensive programmer effort. On the one hand,
applications will use a declarative style, to express the desired
computations on the associated data, while minimizing
constraints on how the system achieves this. On the other
hand, the hardware will expose abilities to place and refer to
the data, properties that it will adhere to (integrity, security,
consistency, etc.) for this data, in addition to mechanisms for
placing, performing and orchestrating computations on the
data. The job of the system software then is to provide the
translation mechanisms from the declarative expressions in the
application down to the new mechanisms exposed by the
hardware.

As a simple example, consider a Big Data application
expressed using a relational DSL, where the goal is to filter a
number of data items from two tables/DataFrames, which are
then merged. A SQL-like specification for implementing this
would call for a “Select” operation followed by a “Join”
operation. Let us say the hardware offers multiple memory
chips, each with comparator logic embedded with the memory
data arrays. In addition, the hardware may also provide vector
processing units at the controllers interfacing to these memory
chips. The translation process will start with the high-level
declarations, and the associated execution plan, which would
describe how the computations need to be performed. For
execution on IMS units, the compiler would determine which
functionality is the best fit for the semantics of the Select and
Join and generate the appropriate machine code. The
scheduler would then map these onto the different
compute/storage elements, starting from the coarsest level (say

the data arrays of the memory chip as a whole), and
recursively going down onto finer-grained elements
(individual comparators within each array). The Select
operator would thus be implemented using the fine-grain
comparators very close to the data elements. The Join itself
may be performed by the coarser-granularity vector units at
the memory controllers, which get the subsetted and streamed
data in a somewhat synchronized fashion, again orchestrated
by the scheduler.

V. CONCLUSIONS

CRISP brings together a team of high-impact PIs with a
track record of cross-stack research, with the goal of rethinking
the entire system stack in order to tightly integrate processing
and data, and ultimately operate as close as possible to the
“computational speed of light” defined by the inherent
dataflow of the algorithm and the raw throughput of the
memory and storage data arrays. At the same time, these goals
will be realized in a programming framework that is designed
to maximize programmer productivity and software portability.

VI. ACKNOWLEDGMENTS

We wrote this paper based substantially on our proposal
submission to DARPA/SRC’s JUMP program, to which all 20
PIs contributed: Luis Ceze (U. Washington), Jason Cong
(UCLA), Kevin Eliceiri (U. Wisconsin), Samira Khan (UVA),
Rob Knight (UCSD), Jing Li (U. Wisconsin), José Martínez
(Cornell), Vijay Narayanan (Penn State), Jignesh Patel (U.
Wisconsin), Tajana Rosing (UCSD), Anand Sivasubramaniam
(Penn State), Kevin Skadron (UVA), Mircea Stan (UVA),
Dmitri Strukov (UCSB), Steven Swanson (UCSD), Yuan Xie
(UCSB), Zhiru Zhang (Cornell), Jishen Zhao (UCSD),
Yuanyuan Zhou (UCSD), and Song-Chun Zhu (UCLA).

The center website can be found at http://www.crisp-
center.org.

REFERENCES

[1] International Technology Roadmap for Semiconductors,
2012.

[2] Yuan Xie. “Modeling, Architecture, and Applications for
Emerging Memory Technologies.” IEEE Design Test of
Computers, 28(1):44–51, Jan. 2011.

