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Abstract—The CRISP team will pursue research to enable 

processing to happen as close to data as possible and eliminate 
bottlenecks due to data motion. This will require innovations 
across the system stack. Ultimately, we seek to lower the effort 
barrier significantly for everyday programmers. The goal is to 
achieve highly portable, “bare-metal,” and understandable 
performance across a wide range of heterogeneous systems.  

Keywords—processor, memory, storage, operating system 

I. INTRODUCTION 

In today’s Big Data era, the volume of data is exploding, 
with data coming from a growing variety of video, sensors, and 
informatics platforms.  Users need support for both throughput-
oriented and latency-sensitive tasks on vast quantities of 
archived data—all while optimizing for energy efficiency and 
other resource costs and providing reliability and security. 
Support for ever-bigger-data computation, in turn, enables new 
real-time capabilities and new degrees of insight, enabling 
novel applications and markets. Yet today’s systems are 
increasingly bottlenecked by data movement costs. This trend 
is compounded by the fact that data in memory is generally 
stored with little or no consideration of data content, usage 
patterns, or how data are grouped into higher-level objects. 
Many algorithms also exhibit poor temporal locality (because 
they only touch data items once) and poor spatial locality 
(because they exhibit irregular access patterns across vast data 
sizes), making caches inefficient. A further source of 
inefficiency is that the raw bandwidth at the edge of the data 
arrays in all current memory and storage technologies is 1-2 
orders of magnitude greater than what can be transmitted off 
chip. 

However, traditional semiconductor technology scaling is 
stalling. The long-standing contract between applications and 
hardware, namely that clock speeds roughly double with every 
new generation of hardware, ended about a decade ago, making 
it hard for application performance to scale “effortlessly.” As a 
result, specialized hardware is becoming prevalent.  However, 

specialization efforts so far have primarily focused on 
increased processing efficiency, even though the intrinsic 
performance of today’s memory and storage architectures are 
grossly underutilized, because processing and storage are 
designed independently and deployed as separate resources. 
This means the high bandwidth of the data arrays is throttled 
by narrow interfaces and high power to move data at high 
speeds. As a result, systems are increasingly bottlenecked by 
data movement costs and are no longer able to keep up with 
this data explosion.  

 

II. RESEARCH CHALLENGES 

Solving these challenges and enabling the next generation 
of data-intensive applications requires computing to be 
embedded in and around the data, creating intelligent memory 
and storage (IMS) architectures that do as much of the 
computing as possible as close to the bits as possible. The 
closer computation is to the memory cells, the closer it comes 
to the raw bandwidth available in the storage arrays. This 
proximity will simultaneously address data and computational 
challenges. By embedding computation with the data arrays, or 
at least within the memory and storage chips, we can achieve 
massive increases in parallelism, and the resulting energy 
efficiency may allow a much higher density of computing and 
storage devices in a given form factor. However, such IMS 
capabilities will require reconstructing the entire system stack, 
with new architectural and operating-system abstractions, new 
memory semantics, and new techniques for compiling and 
optimization, and dynamic yet efficient system software. 

In addition to these architectural trends, innovation in 
device technology complicates the landscape even further. 
Emerging non-volatile technologies are already transforming 
the memory/storage landscape. Each of these upcoming 
technologies offers different trade-offs for embedding 
processing near the data, in the data arrays themselves, or even 
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dire
ctly 
in 
the bit cells. These emerging technologies complicate the 
hardware design space.  For all these reasons, programmability 
and computational efficiency must be addressed in an 
integrated fashion.    

At the same time, we want to achieve high programmer 
productivity and code portability across diverse, heterogeneous 
architectures.  Obtaining high performance and efficiency on 
data-intensive problems, or porting software to emerging 
hardware, should not require a “ninja” programmer. We must 
protect the user from this hardware and software ferment by 
providing a highly intuitive programming model that allows 
programmers to focus on what they want to do, instead of how, 
while nevertheless operating as close to the raw performance of 
the data arrays as possible.  We must also provide 
programmers and system administrators with tools to reason 
about performance and efficiency, tune their algorithms, and 
navigate the Pareto-optimal frontier of performance, energy-
efficiency, and precision.  This will democratize high-
performance, heterogeneous, data-intensive computing, to 
enhance productivity of the industrial and military workforce 
and enable an improved software ecosystem that opens new 
markets for computer systems.   

III. APPROACH 

In order to solve these challenges, the Center for Research 
on Intelligent Storage and Processing in Memory (CRISP) 
brings together a team of 20 faculty from eight leading 
research universities in a coordinated cross-stack research plan 

spanni
ng 

applic
ations and programming frameworks, system software support 
for IMS systems, and hardware.  Fig. 1 presents a summary of 
our approach, comprising three main themes. 

A. Scaling Applications and Making the Programmer’s Life 
Easy 

 CRISP is premised on application-driven innovation, 
in order to develop IMS capabilities in ways that transform 
real-world practice. Making IMS systems practical for 
everyday programmers will in turn require suitable 
programming frameworks. 

1) Application-driven innovation. We will work with 
application experts across a set of diverse, data-intensive 
applications that will be commercially and socially important 
over the next 10-20 years. These include big-data analytics, 
video analytics, medical imaging, genomics, precision 
medicine, and cognitive computing. These are all data 
intensive, but exhibit a rich diversity of computation, data 
access, and communication patterns, and a need for real-time 
processing. With major improvements in throughput and 
latency, dramatic new capabilities and markets will emerge. 
By implementing our solutions in the context of real 
applications and real data, we are able to work through the 
details of how hardware and software features are best 
leveraged by applications, and drive innovative hardware and 
software features based on deep application insights. At the 
same time, this work will advance the state of the art in these 
application domains, enabling new capabilities and benefitting 
users, patients, etc. 
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Fig. 1: Overview summarizing the CRISP research program’s application-driven development of intelligent storage and memory systems, 
incorporating effects of diverse device technologies. 



2) Programming frameworks. Intuitive programming 
requires raising the level of abstraction, with support from 
intelligent compiler and runtime environments, to achieve 
write-once, run-anywhere capability. We believe that the most 
effective approach is to provide high-level abstractions to 
operate on data sets and data streams instead of individual data 
elements. By providing common primitives, especially 
primitives that map naturally to an application domain, such as 
image analysis or genomics, programming becomes more 
intuitive. And by using declarative abstractions where 
possible, extracting what the programmer wants to do, instead 
of how, the system obtains rich information about how data 
and tasks are related, while maximizing flexibility to 
transform the software to run efficiently across widely varying 
architectures, without the need for painstaking manaul porting 
to achieve the correct functionality and to achieve high 
performance.  

A key component of our programming framework is 
recognizing that a single domain-specific language (DSL) is 
unlikely to be sufficiently “natural” across all application 
domains, and even within a single complex application, 
different parts of the application may need to speak different 
domain-specific languages to make it easier for the 
programmer to focus on the algorithmic specification. Our 
approach to support multiple DSLs intrinsically also has the 
desirable side-effect of cross-pollinating our research efforts so 
that the improvement in one DSL can broadly apply across 
multiple applications. Associated with our framework is also 
the separation of logical DSL optimization, and the mapping to 
a common directed acyclic graph of operators for all DSLs. 
This common mapping will allow us to build the run-time 
system once and use it multiple times across many DSLs and 
target architectures. 

Ultimately, even more important than the specific 
abstractions/languages we develop, is a methodology for 
deriving new abstractions and languages as needed to support 
emerging applications, while leveraging a common mapping 
and optimization framework.  This approach insulates the 
programmer from hardware details, enables a large software 

base to use IMS, and ultimately benefits heterogeneous 
systems of all types.  

B. Hardware Support for Massively Parallel Processing in 
Memory and Storage. 

“Bare-metal” performance will be achieved by allowing 
computation to happen as close to the data as possible, and to 
leverage the full bit-level parallelism of the data arrays 
wherever possible.  By “bare metal,” we mean to transmit to 
the application, with minimal loss, the full performance 
potential of the hardware. This requires novel hardware 
technologies for processing at different levels of the 
memory/storage hierarchy, and exploring what kind of 
mechanisms and abstractions this hardware should present to 
the software, with the goal of achieving performance and 
efficiency as close as possible to the inherent bit-level 
parallelism of the data arrays. 

We will develop a modular but efficient processing 
hierarchy that provides intelligence within the memory/storage 
units and their interfaces. This includes processing in the data 
arrays, at the edges of the arrays, in the controllers, etc. At the 
same time, interfaces for accelerators will allow them to access 
the intrinsic throughput of the data arrays. We also envision 
chips with several layers of memory and/or storage, layered on 
top of, or packaged with, dedicated processing layers.  These 
multi-chip IMS modules will then be combined via a scalable 
interconnect, to create nodes with high data capacity and high 
cross-section bandwidth. These, in turn, will scale from edge 
devices with a single IMS module to cloud systems with racks 
in which each node supports hundreds of terabytes of memory 
and petabytes of storage. 

Our approach to developing new hardware mechanisms for 
adding intelligence into memory and storage will provide 
immediate benefits for existing technologies (e.g., DRAM, 
Flash, and Xpoint), but our solution will also be technology-
driven, in order to leverage emerging technologies.  

We will also evaluate how appropriate tailoring of 
emerging technology properties such as write latency and 
retention time can better support application needs. We will 

Fig. 2.  Key characteristics for emerging and conventional memory devices (adapted from Refs. [1,2]).  Note that the reported write energy is specified for 
intrinsic memory cell operation and do not account for circuit level energy losses, which, e.g., are typically dominant in flash memories. 



have a focused effort on understanding both existing 
SRAM/DRAM/Flash memory and emerging NVM 
technology, e.g. those shown in Fig. 2—not just from the 
device-level understanding, but also from a utility point of 
view—that is, with an eye on the applications that might 
benefit from such technology.  Also, importantly to the 
success of our project, we must understand how to model 
these new technologies, so that we can evaluate and quantify 
the impact on the architecture and higher up the system stack.  

Effective IMS systems must also operate within acceptable 
power and thermal budgets, so these factors will be an integral 
part of the design space.  Both static and dynamic thermal and 
power management will be considered. 

By applying these principles across the system at various 
scales, and by developing solutions for diverse memory and 
storage technologies, we will create a set of building blocks for 
IMS systems, scaling from edge devices with a single IMS 
module to cloud systems with racks in which each node 
supports 100s of TB of memory and PBs of storage. 

C. System Support for Massively Parallel Heterogeneity. 

The system software sits in the middle: it is responsible for 
bridging the user-level software and the emerging 
architectures.  This requires a high level of automation, while 
still giving users performance transparency and control over 
tradeoffs among performance, energy-efficiency, etc. 

1) Performance transparency. Providing performance 
transparency addresses two key challenges in achieving “bare 
metal” performance. First, we plan to make algorithmic 
exploration easy, to identify the optimal combination of 
algorithm and mapping. Second, during such algorithm 
exploration and/or performance debugging, the application 
programmer needs help in understanding the root causes that 
may hinder performance. Such performance debugging is 
challenging today, and likely be even more challenging in the 
future with increasing complexity in the topology of storage 
and compute elements packaged in new architectural 
configurations. Thus, we plan to build introspection 
mechanisms in our run-time system, to help application 
programmers and system engineers understand why the 
application performed in a certain way. This understanding 
can then allow an application programmer to determine what 
change to make to their application logic.  

Support for these capabilities will require appropriate 
hardware probes, semantically richer and more sophisticated 
than today's simple performance counters, with hardware plus 
runtime management mechanisms appropriate for our 
intelligent memory environment. We envision a hierarchy of 
hardware probes that are highly programmable; that can collect 
a wide array of data; and that possess the ability to preprocess 
the data they collect into higher-level knowledge—even 
conduct a modest degree of inference.  The system software 
can then use these to guide automatic scheduling decisions or 
to provide reporting and diagnostic capabilities to the 
programmer. 

2) System software.  The system software is responsible 
for bringing computation and data together at the right place 
and time to achieve the user’s needs, while brokering 

resources among competing applications and requirements, 
and providing security, resilience, and performance 
transparency.  This will require new abstractions and new 
system services. 

For example, intelligent memory systems will be highly 
diverse, so the interfaces we devise for programming will need 
to represent computation and requirements in a way that is, to 
the extent possible, agnostic of the underlying hardware.  We 
have lived with a fairly simple “address” based interface to 
data, whether it be to memory words or file/disk blocks. While 
this may have sufficed so far, such interfaces, although simple 
from a programmatic viewpoint, are woefully inadequate to 
exploit the rich computational capabilities within memory.  
Instead, the basic naming scheme will be object-oriented; if a 
new type of memory, processor, coprocessor, or interconnect 
appears on the market, our system will require the developer 
to provide implementations of basic operations and 
information about the device’s behavior.  Our system will use 
that information to integrate the new device into the system so 
that its capabilities are available via our programmer-visible 
interfaces. 

Scheduling of computation and data motion become 
challenging in IMS systems, because a heterogeneous 
collection of computational elements will be embedded in 
memory system components of different nature and at 
multiple levels of the hierarchy, interconnected through a 
correspondingly heterogeneous fabric. This will result in an 
unconventionally hard-to-reconcile spectrum of computational 
capability, as well as data latency and bandwidth. Additional, 
dynamic inhomogeneity will result from transient spikes in the 
different parts of the system, and the corresponding ripple 
effects. Reliability-related inhomogeneity will also occur, 
from component failures over the lifetime of the system. 

This points to the need for a high-level description of 
compute tasks and a flexible, dynamic mechanism for 
mapping those computations onto the available network, 
compute, and memory resources. This requires an execution 
paradigm in which there is a runtime (late/dynamic) binding 
of computation. In this way, computation can be moved closer 
to data, and vice versa, or mapped to other heterogeneous 
computing resources, whenever it is deemed beneficial by the 
runtime system, and the appropriate optimized executable 
module will be available.  The runtime can also optimally 
engage just-in-time optimization where appropriate to 
incorporate details only available at runtime. 

One key idea to our vision of the runtime system is to 
think of replication as a first-class primitive, so that multiple 
copies of hot data and computation can be kept at different 
levels of the system.  Updates to data can either be lazy or 
eager, depending on the required application semantics for 
consistency. Our “execution plan” optimizer will identify 
opportunities to transform computations from the 
programmer’s specification into an execution plan that is 
specialized for the specific hardware resources at hand as well 
as the current location(s) of the data. 

Finally, users should be able to achieve their desired 
operating region on the Pareto-optimal frontier of latency, 



throughput, precision, and energy-efficiency.   For example, 
users may be willing to sacrifice some precision to achieve 
higher performance. The system software must therefore 
support interfaces that abstract heterogeneous hardware and 
runtime decisions, dynamic optimization capabilities to 
navigate the Pareto-optimal frontier and automatically select 
the best set of computational and data-motion operations to 
optimize performance, using mechanisms that minimize 
runtime intervention, so that after the initial setup, applications 
run at bare-metal speeds.   

IV. PUTTING IT ALL TOGETHER 

Having outlined the work to be done in each of the 
three research themes, we now briefly describe how they will 
work in unison to achieve the desired goals of leveraging the 
heterogeneously intelligent memory hierarchy without 
requiring extensive programmer effort. On the one hand, 
applications will use a declarative style, to express the desired 
computations on the associated data, while minimizing 
constraints on how the system achieves this. On the other 
hand, the hardware will expose abilities to place and refer to 
the data, properties that it will adhere to (integrity, security, 
consistency, etc.) for this data, in addition to mechanisms for 
placing, performing and orchestrating computations on the 
data. The job of the system software then is to provide the 
translation mechanisms from the declarative expressions in the 
application down to the new mechanisms exposed by the 
hardware. 

As a simple example, consider a Big Data application 
expressed using a relational DSL, where the goal is to filter a 
number of data items from two tables/DataFrames, which are 
then merged. A SQL-like specification for implementing this 
would call for a “Select” operation followed by a “Join” 
operation. Let us say the hardware offers multiple memory 
chips, each with comparator logic embedded with the memory 
data arrays.  In addition, the hardware may also provide vector 
processing units at the controllers interfacing to these memory 
chips. The translation process will start with the high-level 
declarations, and the associated execution plan, which would 
describe how the computations need to be performed. For 
execution on IMS units, the compiler would determine which 
functionality is the best fit for the semantics of the Select and 
Join and generate the appropriate machine code.  The 
scheduler would then map these onto the different 
compute/storage elements, starting from the coarsest level (say 

the data arrays of the memory chip as a whole), and 
recursively going down onto finer-grained elements 
(individual comparators within each array). The Select 
operator would thus be implemented using the fine-grain 
comparators very close to the data elements. The Join itself 
may be performed by the coarser-granularity vector units at 
the memory controllers, which get the subsetted and streamed 
data in a somewhat synchronized fashion, again orchestrated 
by the scheduler. 

V. CONCLUSIONS 

CRISP brings together a team of high-impact PIs with a 
track record of cross-stack research, with the goal of rethinking 
the entire system stack in order to tightly integrate processing 
and data, and ultimately operate as close as possible to the 
“computational speed of light” defined by the inherent 
dataflow of the algorithm and the raw throughput of the 
memory and storage data arrays. At the same time, these goals 
will be realized in a programming framework that is designed 
to maximize programmer productivity and software portability. 
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