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ABSTRACT
Long-latency loads are critical in today’s processors due to
the ever-increasing speed gap with memory. Not only do
these loads block the execution of dependent instructions,
they also prevent other instructions from moving through
the in-order reorder buffer (ROB) and retire. As a result, the
processor quickly fills up with uncommitted instructions,
and computation ultimately stalls.

To attack this problem, we propose checkpointed early
load retirement, a mechanism that combines register check-
pointing and back-end—i.e., at retirement—load-value pre-
diction. When a long-latency load hits the ROB head un-
resolved, the processor enters Clear mode by (1) taking a
Checkpoint of the architectural registers, (2) supplying a
Load-value prediction to consumers, and (3) EARly-retiring
the long-latency load. This unclogs the ROB, thereby
“clearing the way” for subsequent instructions to retire, and
also allowing instructions dependent on the long-latency
load to execute sooner. When the actual value returns from
memory, it is compared against the prediction. A mis-
prediction causes the processor to roll back to the check-
point, discarding all subsequent computation. The benefits
of executing in Clear mode come from providing early for-
ward progress on correct predictions, and from warming up
caches and other structures on wrong predictions.

Our evaluation shows that a Clear implementation with
support for four checkpoints yields an average speedup of
1.12 for both eleven integer and eight floating-point appli-
cations (1.27 and 1.19 for five integer and five floating-
point memory-bound applications, respectively), relative to
a contemporary out-of-order processor with an aggressive
hardware prefetcher.

1 INTRODUCTION
Modern out-of-order processors typically employ a reorder
buffer (ROB) to retire instructions in program order [24].
In-order retirement enables precise bookkeeping of the ar-
chitectural state, effectively making out-of-order execution
transparent to the user. When, for example, an instruction
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raises an exception, the ROB continues to retire instructions
up to the excepting one. At that point, the processor’s ar-
chitectural state reflects all the updates made by preceding
instructions, and none of the updates made by the excepting
instruction or its successors. Then, the exception handler is
invoked.

In-order retirement also means that an unresolved long-
latency instruction may remain at the ROB head for many
cycles. This is often the case for loads that miss in the cache
hierarchy, whose penalty is already severe in today’s pro-
cessors, and is bound to be worse in future systems due to
the increasing processor-memory speed gap. These long-
latency loads may hinder processor performance mainly in
two ways: First, because their results are not available for
many cycles, potentially long chains of dependent instruc-
tions may be blocked for a long time. Second, because in-
struction retirement is effectively disabled by these long-
latency memory operations, executed instructions hold on
to critical resources for many cycles. Upon running out of
resources, the processor stops fetching new instructions and
eventually stalls.

Conventional load-value prediction [3, 4, 5, 6, 16, 17,
18, 22, 28] addresses the first problem by supplying a pre-
dicted value on an unresolved load. The prediction can be
provided early in the processor pipeline. Dependent instruc-
tions may then execute using this prediction. Once the value
comes back from memory, it is compared against the pre-
dicted value. If they match, the instruction is deemed com-
plete; if they do not, a replay of dependent instructions (and,
possibly, all instructions after the load) takes place—this
time with the right value.

In practice, however, the effectiveness of conventional
load-value prediction is limited by the second problem: In-
deed, because the processor must ultimately compare the
loaded and the predicted values, unresolved long-latency
loads continue to clog the processor at retirement. As a
result, conventional load-value prediction may not be as ef-
fective with this type of loads.

Figure 1 illustrates the extent of the problem, using the
baseline processor model of our experimental setup and a
subset of SPEC2000 integer and floating-point applications
(Section 4). It shows the fraction of the total execution time
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Figure 1: Percentage of total execution time that the ROB head is blocked due to an unresolved long-latency load and (a)
the processor is still running (Blocked-Run) or (b) the processor is stalled as a result (Blocked-Stall). Results are shown
both with and without a hardware prefetcher (HWP). Note that the y-axis scales are different for integer and floating-point
applications.

that the ROB is blocked due to a long-latency L2 miss at
its head. Blocked time is measured only after the access is
known to have missed in L2, and is broken down into two
categories, depending on whether the processor can con-
tinue issuing instructions (Blocked-Run) or it stalls due to
lack of resources (Blocked-Stall). For further insight, the
experiments are conducted with and without an aggressive
hardware prefetcher (Section 4). (In the experiments with
hardware prefetcher, blocked time is measured after a load
at the ROB head is known to have missed in L2 and in the
hardware prefetcher.)

The results reveal that, for an important number of appli-
cations, blocked ROB time accounts for a very significant
fraction of the total execution time. Worse still, most of this
blocked ROB time falls under Blocked-Stall category—that
is, the processor is not able to do any work. Moreover, al-
though the addition of a hardware prefetcher helps notice-
ably in a few cases, in general the problem remains. As the
processor-memory speed gap widens, a solution to alleviate
the problem of long-latency misses is needed.

We propose checkpointed early load retirement, a micro-
architectural mechanism that combines register checkpoint-
ing and back-end—i.e., at retirement—load-value predic-
tion. When a long-latency load hits the ROB head unre-
solved, the processor enters Clear mode by (1) taking a
Checkpoint of the architectural registers, (2) supplying a
Load-value prediction to consumers, and (3) EARly-retiring
the long-latency load. This unclogs the ROB, thereby
“clearing the way” for subsequent instructions to retire, and
also allowing instructions dependent on the long-latency
load to execute sooner. In Clear mode, subsequent long-
latency loads that hit the ROB head unresolved are allowed
to retire early, similarly supplying a predicted value, and
selectively taking checkpoints of the architectural registers
based on the confidence of the prediction. Memory updates
are buffered to guarantee data integrity in case of a mis-
prediction. When the actual values return from memory,
they are compared against the predictions. A checkpoint is
released only if all its early-retired loads are correctly pre-

dicted. Otherwise, the processor rolls back to that check-
point, and all buffered memory updates are discarded.

The advantages of executing in Clear mode come in three
ways: (1) On correct predictions, faster progress is achieved
by enabling execution and retirement of long-latency loads
and subsequent instructions. (2) On wrong predictions,
later-to-be-used data and instructions are brought closer
to the processor in the memory hierarchy, doing useful
prefetching. (3) Different processor predictors are trained
regardless of the outcome.

The paper is organized as follows: Section 2 discusses
related work; Section 3 presents details of our mechanism;
in Sections 4 and 5 we evaluate our proposal using a de-
tailed simulation model and representative applications; and
finally, we conclude in Section 6.

2 RELATED WORK

This work proposes the use of back-end—i.e., at
retirement—load-value prediction and selective check-
pointing to implement early load retirement in modern out-
of-order processors. Most closely related to our work are
the studies on load-value prediction, checkpointed proces-
sor architectures, and management of long-latency opera-
tions.

In conventional load-value prediction [3, 4, 5, 6, 16, 17,
18, 22, 28], which we briefly address in Section 1, the pre-
dicted load and all the subsequent instructions in program
order remain in the processor, holding precious resources
such as physical registers or reorder buffer entries until the
load value is verified. If the load misses in all levels of the
local cache hierarchy, this frequently blocks graduation, and
ultimately the fetch unit, eventually bringing the processor
to a stall. Our proposal solves this problem by early retir-
ing predicted loads that take a long time to finish, and using
checkpointing to roll back and refetch in case of a mispre-
diction.

Zhou et al. [30] propose improving memory-level par-
allelism by speculatively pre-executing instructions with



predicted values only for prefetching purposes, but with-
out committing them—thus not requiring any validation or
recovery mechanism. Register values that are not ready
are predicted and supplied to the consumers in the front-
end. Speculatively executed instructions remain in the issue
queue for re-execution.

In the context of shared-memory multiprocessors, Chang
et al. [7] and Huh et al. [12] propose decoupled coherence,
by which a processor can speculatively read a matching but
invalid cache line in parallel to obtaining the right permis-
sions and value from the system. This enables overlapping
the coherence protocol actions on that load with the spec-
ulative execution of the load’s dependent instructions. No
speculative load retirement is done; in particular, incom-
plete long-latency loads still block the ROB head, waiting
for validation.

Bell and Lipasti [2] propose that instructions from the
first few ROB slots be allowed to retire out of program order
under certain conditions. Still, instructions are retired only
when they have completed and are guaranteed to graduate
safely.

Recently, three works explore checkpointing to over-
come scalability issues of certain processor resources.
Martı́nez et al. [19] present Cherry, which recycles phys-
ical registers and load/store queue entries aggressively, and
uses a combination of ROB and periodic checkpointing to
support precise exceptions and interrupts. Akkary et al. [1]
and Cristal et al. [9, 8] present ROB-less or quasi ROB-less
micro-architectures, based on a multicheckpointing mecha-
nism. None of these works incorporates any kind of load-
value prediction mechanism.

The work on Runahead execution is closest to our pro-
posal. The concept was first proposed by Dundas and
Mudge [10], and it was used to improve the data cache
performance of an in-order execution core. More recently,
Mutlu et al. [20] propose a Runahead architecture for out-
of-order processors. The proposed architecture “nullifies”
and retires a memory operation that misses in the L2 cache
and remains unresolved at the time it gets to the ROB head.
It also takes a checkpoint of the architectural registers, to
be used to come out of Runahead mode when the mem-
ory operation completes. The instructions that depend on
the nullified operation do not execute, but are nullified in
turn, and hence retire quickly. Moreover, any long-latency
load encountered during Runahead execution (regardless of
its position in the ROB) and its dependence chain are also
nullified. Other instructions execute normally, but with-
out overwriting data in memory. When the operation com-
pletes, the processor systematically rolls back to the check-
point and resumes conventional execution. Although exe-
cution in Runahead mode is always discarded, it effectively
warms up caches and various predictors, thereby speeding
up the overall execution. In contrast, our proposed design,
in case of a correct load-value prediction, can continue ex-
ecution without requiring a rollback. And in the case of a
rollback, it can still warm up caches and predictors—albeit

differently and possibly more slowly than Runahead, since
dependent instructions do execute.

Lebeck et al. [15] propose a waiting instruction buffer
to rid the instruction window of a long-latency load and
its dependent instructions, in order to give way to subse-
quent independent instructions. Executed instructions are
not early retired, requiring enlarged ROB and other poten-
tially critical structures. Later, when the load value returns
from memory, the instructions in the buffer are reinserted
into the issue queue. Srinivasan et al. [25] improve on that
concept by freeing both instruction window and register file
from coping with long-latency loads and their dependent
instructions. They propose a physical-to-physical register
mapping, to be used when the removed slice of instruc-
tions is re-injected into the pipeline after the long-latency
load completes. Their implementation is built on top of a
ROB-less architecture [1]. None of these two mechanisms
uses load-value prediction, and thus instructions dependent
on long-latency loads cannot execute until the value returns
from memory.

Karkhanis and Smith [13] analyze the reasons of perfor-
mance loss due to a long-latency cache miss. They demon-
strate that the structural blockage due to full ROB is a major
cause. After structural limitations are removed, data depen-
dences on the delinquent load are found to not be a sig-
nificant problem. However, they show that a mispredicted
branch that depends on the load may be a major cause of
performance loss due to late resolution, limiting the number
of useful instructions executed in the shadow of the load.

In a slightly different context, Tullsen and Brown [27]
explore the performance impact of long-latency loads in
an SMT processor. The authors find that it is benefi-
cial to squash all instructions from the thread that has an
outstanding long-latency load and stop fetching from that
thread until the load returns. This effectively frees up crit-
ical resources, thereby allowing the other threads to make
progress. In this paper, we focus on single-threaded exe-
cution, and combine (back-end) load-value prediction with
selective checkpointing to realize early load retirement.

3 CHECKPOINTED EARLY LOAD
RETIREMENT

The goal of checkpointed early load retirement is to tolerate
long-latency loads by (1) retiring them early, so as to not
block the flow of instructions through the processor, and
(2) providing their dependent instructions with a predicted
value. Our mechanism requires modest hardware and inter-
feres minimally with the normal course of operation. In the
following, we present our design in the context of a unipro-
cessor environment. Design extensions needed for multi-
processors are left for future research.

We begin by giving a high-level overview of the pro-
posed mechanism, and then delve into implementation de-
tails.



3.1 High-level Overview

A processor executing in “conventional mode” eventually
comes across a long-latency load that remains at the head
of the ROB unresolved. At this point, the processor en-
ters “Clear mode”: the load is early retired, and a predicted
value is supplied to its destination register. Also, the archi-
tectural registers are checkpointed. While in Clear mode,
if a long-latency load arrives at the ROB head unresolved,
the hardware decides whether to take a new checkpoint for
this load or to use the running one. (Notice that a realis-
tic implementation cannot afford to have more than a few
checkpoints.) To make this decision, the processor consults
the confidence on the prediction for this load. If the load
is highly predictable (i.e., confidence is above a threshold)
a new checkpoint is not allocated. On the other hand, if
the load cannot be predicted with high enough confidence,
a new checkpoint is allocated, provided all the checkpoints
are not already exhausted.

Notice that attaching too many loads to one checkpoint
increases the potential cost of a rollback, because a mispre-
dicted value from any of these loads will trigger a rollback
to that checkpoint. Thus, our mechanism also limits the
number of loads subject to a particular checkpoint, by tak-
ing a new one when the limit is exceeded.

Naturally, only a limited number of checkpoints is sup-
ported. To overcome this limitation, once the last available
checkpoint is allocated, all long-latency loads that reach
the ROB head unresolved are systematically predicted and
early retired, and all of them are assigned to the last check-
point. If many such loads are encountered, the probabil-
ity of suffering a rollback to that last checkpoint may be
high. Yet the prefetching effect of handling these long-
latency loads in Clear mode may still bring significant ben-
efits, as our evaluation shows (Section 5). Notice that this
unbounded assignment takes place only as long as there is
no available checkpoint. After one becomes available, if
the limit of the last one is already exceeded, or on a low-
confidence load, a new checkpoint is allocated. Finally, due
to structural constraints, the number of long-latency loads
that can be handled in Clear mode is necessarily limited
(Section 3.2).

As early-retired loads return, the processor validates the
predictions against the actual returned values. A checkpoint
is released when (1) it is the oldest active checkpoint, and
(2a) either all its loads have been validated, or (2b) any of
its loads’ validation fails. In the first case, if the released
checkpoint was the last one active, the processor smoothly
falls back to conventional mode. On the other hand, in
the last case, the processor discards the execution after the
checkpoint, and uses the checkpoint to restore the architec-
tural state.

Figure 2 shows an example of this checkpoint alloca-
tion policy. In the example, up to four checkpoints are
supported, and a maximum of four loads can be assigned
to a checkpoint (last checkpoint exempt). The dots on the
timeline represent long-latency loads that reach the ROB

checkpoint

early−retired load

hc hc hc hclc lc

10 9 8 147 5 3 26time

Max. loads per checkpoint

No checkpoint available

hc/lchc/lchc/lc

Clear Mode
Enter

hc/lc

Figure 2: Checkpoint allocation example. Support of up to four check-
points, and a maximum of four loads per checkpoint (last checkpoint ex-
empt) is assumed. hc and lc indicate high-confidence and low-confidence
loads, respectively.

head unresolved and retire early. On the first such load, re-
gardless of its prediction confidence, always a checkpoint is
taken, which initiates Clear mode. The second load, which
is regarded as low-confidence, prompts allocation of a sec-
ond checkpoint. The subsequent high-confidence loads are
attached to this second checkpoint, until the limit of four
loads per checkpoint is met. Then, on the fifth load from
the last allocated checkpoint, a third checkpoint is taken re-
gardless of prediction confidence. Later, on the next low-
confidence load, a fourth and last checkpoint is allocated.
Because there are no more available checkpoints, and in or-
der to not stall execution in Clear mode at this point, sub-
sequent loads, regardless of their prediction confidence, are
assigned to this last checkpoint.

3.2 Hardware Structures
Our mechanism is supported by modest hardware that can
be incorporated efficiently in the processor. In this paper,
we describe our proposed mechanism in the context of a
contemporary micro-architecture with separate register file,
ROB, and load/store queues [14, 26, 29]. Implementations
over micro-architecture variations (e.g., RUU-based proces-
sor) are also possible.

In this section, we briefly comment on our mechanism’s
hardware additions besides checkpointing support (Sec-
tion 3.3.3). These comprise a load-value predictor (LVP),
and three FIFO queues: the prediction queue (PQ), and
two other queues coupled with the processor’s load queue
(LQ)—the data queue (LDQ) and the timestamp queue
(LTQ).

3.2.1 Load-Value Predictor

The LVP is used to generate predictions for long-latency
loads at the ROB head. It is indexed by the load’s instruction
address. In conventional mode, the LVP is updated (and
thus trained) by every load that the processor retires. In
Clear mode, as a design choice, certain loads may or may
not update the LVP. In our implementation, during Clear
mode, all retired loads, including early-retired ones, update
the LVP. However, early-retired loads do so speculatively
with the predicted value. For simplicity, the hardware does
not correct wrong speculative updates.

The LVP also incorporates confidence estimation [3, 16]



that determines whether confidence on a given prediction
is beyond a certain threshold. As already discussed, this
is used in checkpoint assignment. Unlike the LVP update,
early-retired loads do not update the confidence estimator.

3.2.2 Prediction Queue

The PQ is a FIFO, content-addressable (CAM) structure.
Similarly to a small store queue, it sits on the processor bus
and is looked up by data address. The PQ is used to remem-
ber the information associated with early-retired loads. In
each entry, it stores the data address, the associated value,
and the checkpoint id. The PQ has three main functions: (1)
compare predicted and actual values; (2) forward predicted
values to load operations as needed during Clear mode; and
(3) identify the associated checkpoint on a load-value re-
turn. Entries in the PQ are allocated in order every time a
new value is predicted. The size of the PQ bounds the maxi-
mum number of early-retired loads that can be handled. PQ
entries are freed when their corresponding checkpoints are
released. Also, once the processor exits Clear mode, the
entire PQ is cleared.

3.2.3 Load Data and Timestamp Queues

The LDQ and the LTQ are two conventional FIFO RAM
(but not CAM) structures that extend the processor’s exist-
ing LQ (a FIFO CAM). Entries in the LQ, the LDQ, and
the LTQ are allocated at rename and released at commit, in
lockstep. LQ entries, as in conventional processors, store
effective addresses. The LQ is used, among other important
tasks (e.g., disambiguation), to match addresses with pend-
ing load instructions on a refill by the memory subsystem.
LDQ entries store the values loaded by uncommitted load
instructions, as returned from memory. They are used to
update the LVP in order as load instructions retire (Section
3.2.1). Finally, LTQ entries store timestamps taken at the
time loads are issued to the memory system. They are used
to help determine if a load should be early retired, at the
time it reaches the ROB head (Section 3.3.1).

3.3 Operation
We now describe in detail the different phases and mecha-
nisms of our proposal.

3.3.1 Assessment

At the time an incomplete load reaches the ROB head, the
processor decides whether to block (as in a conventional
processor) or to early retire it, by determining whether this
is a long-latency load. Of course, in order to be able to retire
early, there must be a PQ entry available.

For this, the processor must estimate the expected re-
sponse time from memory for the load. This can be ac-
complished in several ways.

One simple way is to count the number of cycles the load
stays at the ROB head, and early retire it if it remains in-
complete after a fixed number of cycles. This can be often

inaccurate, but it is very easy to implement.
A more accurate estimation is possible using our LTQ

support. In a typical processor, at the time the effective ad-
dress of a load is calculated (shortly before the cache access
is started in the processor pipeline), its LQ entry is indexed
and filled with the address. In our proposed architecture, at
that time, the corresponding LTQ entry is also accessed and
filled with a timestamp. This timestamp corresponds, more
or less, with the time at which the load issues to the memory
system.

At the time an incomplete load hits the ROB head and
becomes a candidate for early retirement, the processor in-
spects its timestamp (necessarily at the LTQ head). From
the time elapsed since the load issued, the processor may
determine, for example, that the load has just missed in L2.
In such a case, the load may be a good candidate for early
retirement. Note that, if it is determined that the load has
issued only recently, the processor can continue monitoring
the elapsed time until it enters L2 miss territory.

Naturally, the processor must be aware of the approxi-
mate latencies of the memory hierarchy. This characteriza-
tion can be easily accomplished, for example by running
a short microbenchmark [21] by the operating system at
startup.

The timestamp need only be large enough to cover a
worst-case round-trip to memory. In this way, no more
than one wrap-around can be experienced by any one load
that hits the ROB head and is still marked incomplete. Of
course, we ignore the timestamp for completed loads. In
any case, occasional inaccuracies in the mechanism would
never affect correctness.

Overall, the processor can determine inexpensively if a
particular load is eligible for early retirement.

3.3.2 Value Prediction and Speculative
Retirement

At the time an unfinished load hits the ROB head, in parallel
to assessing whether to early retire it, the processor makes a
prediction of the load instruction’s return value, by indexing
the LVP with the instruction address (normally available at
the ROB head, for example, to support restartable excep-
tions). The processor stores this prediction in a temporary
buffer, to be used if the load is ultimately early retired.

If the processor decides to early retire the load, a PQ
entry is allocated in FIFO order and filled as follows: The
effective address is supplied by the corresponding LQ entry
(necessarily at the head); the value is provided by the LVP’s
temporary buffer; and the id of appropriate checkpoint is
recorded. Figure 3 depicts this process (LVP’s temporary
buffer is not shown for brevity). Finally, the predicted value
is supplied to the destination register, and the load is retired.

3.3.3 Checkpointing

As already discussed in Section 3.1, the checkpoint alloca-
tion policy is based in part on the confidence of the load-
value predictions.
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Figure 3: Simplified diagram of a Clear-enabled processor at the
time a long-latency load is about to early retire (not drawn to scale).
Clear hardware support is shaded. cid, A, T, and V’ represent the
checkpoint id, data address, timestamp, and predicted value of the
load, respectively.

Checkpointing the architectural registers and restoring
from a checkpoint can be done in a handful of cycles, in-
significant relative to long memory latencies. A checkpoint
can be acquired in several ways. One option is to keep an
up-to-date shadow copy of the architectural registers dur-
ing normal operation. With this option, the processor takes
a checkpoint by simply freezing the shadow copy. Alter-
natively, the processor can explicitly copy the architectural
values into the shadow register file at the time of the check-
point. In either case, on a rollback, the architectural regis-
ters are restored using the shadow copy. A third option is
to simply back up the retirement register alias table. On a
rollback, the rename alias table is restored using this backup
copy. This option is probably fastest, but it pins the physical
registers that contain the checkpointed architectural values
for the lifetime of the checkpoint.

In general, the decision of which mechanism to use de-
pends on factors such as how many architectural registers
the ISA has, how many physical registers exist in the pro-
cessor, or how often checkpoints are taken. Nevertheless,
our proposed mechanism can work with any of them. Fur-
ther discussion of the details behind register checkpointing
is outside the scope of this paper.

The following information must be kept for every check-
point in order to monitor its state: (1) The number of early-
retired loads associated with the checkpoint, and the num-
ber of such loads that have been validated, for a total of
two counters. Thus, at the time a load is early retired, its
checkpoint’s first counter is incremented. In our implemen-
tation, bounded by the size of the PQ (48), six-bit counters
are enough. (2) Whether any of the checkpoint’s loads is
mispredicted (one bit). This bit is set on a misprediction on
any of its loads. When an early-retired load’s value returns
from memory, it updates the corresponding checkpoint us-
ing the checkpoint id in its PQ entry (Section 3.3.5).

In addition to the architectural registers, checkpoints of
the global branch history register and return address stack

(RAS) are also taken for performance reasons.

3.3.4 Speculative State

While the processor is operating in Clear mode, memory
updates must be held off to prevent overwriting data that
may be needed after a rollback. At the same time, these
buffered updates must be available to subsequent loads.
There has been a number of proposals to temporarily buffer
updates following a processor checkpoint [1, 8, 19]. Con-
ceptually speaking, they all work similarly. We explain the
principle using a store buffer; in an actual implementation,
any of the proposed solutions integrates well with our pro-
posal.

While in Clear mode, store buffer entries are tagged with
the ID of the checkpoint active at the time the correspond-
ing store retires. Tagged entries are not allowed to leak out
to memory. If the processor rolls back to a checkpoint—
necessarily the earliest one (Section 3.3.5)—all tagged en-
tries are gang-invalidated. If, on the other hand, the pro-
cessor releases the checkpoint successfully, the tags of the
entries belonging to that checkpoint are gang-cleared, and
the buffered updates can lazily percolate to memory.

To support this, an additional tag field is required for
each store buffer entry. Also, to hold the speculative up-
dates, the size of the store buffer needs to be larger than
usual. To have a fast but large enough buffer, a hierarchical
store buffer like the one proposed in [1] can be used.

Note that, although speculative memory updates are not
allowed to modify the memory state, prefetch requests for
store addresses can be sent down the memory system.

In the case of filling the buffer completely with updates
while in Clear mode, on a subsequent update the processor
can simply stall and wait for entries to become available, as
checkpoints are released and their associated updates leak
to memory.

3.3.5 Verification and Release of the
Checkpoints

When the memory system returns the value for an early-
retired load, the processor compares the predicted and the
actual values. To accomplish that, the PQ snoops the ad-
dress every time a memory refill comes in, much like the
LQ does.

At the time the cache controller dumps on the bus the
data address and the actual value of an early-retired load, the
PQ picks up the pair, finds the matching entry, and compares
the predicted and the actual values. Using the checkpoint id
in the PQ entry, the checkpoint’s validated load counter is
increased, and the misprediction bit is set if the prediction
is wrong.

Every time verification occurs, the checkpoints are con-
sidered for release in order, beginning from the earliest ac-
tive checkpoint in the processor. If all the loads for that
checkpoint have returned from memory, and if the mispre-
diction bit is still unset, then the checkpoint is successfully
released. That is, the checkpoint is discarded, and the tags



of the store buffer entries that match that checkpoint’s id
are gang-cleared. Then, the next active checkpoint under-
goes the same procedure. If this is the last checkpoint, the
processor returns to conventional mode.

If, on the other hand, the misprediction bit of the check-
point is set, a rollback is triggered to the checkpoint. On
a rollback, the pipeline is flushed, the architectural state is
restored using the checkpoint, all checkpoints are released,
and all tagged entries in the store buffer (regardless of id)
are gang-invalidated. Then, the processor returns to con-
ventional mode. To guarantee forward progress, the load
instruction to which the processor rolls back is marked as
not eligible for early retirement, in case that it misses again
in the cache hierarchy.

Finally, if the checkpoint considered for release does not
meet any of the above conditions, then no action is taken,
and no subsequent checkpoint is considered for release until
the next verification.

3.3.6 Multiple Loads

It is possible that there be a load issued subsequently to the
same address as a previous early-retired load. There are
two possible cases: On the one hand, there may be an in-
tervening store, in which case the store buffer can forward
the value. On the other hand, there may be no intervening
store, or there may be stores with unresolved addresses that
the second load bypasses speculatively. In these cases, the
PQ forwards the predicted value when the load issues.

Of course, if the load is issued before the earlier load
has been early retired, there is no predicted value to be for-
warded (yet). However, this load has a second chance to
receive the predicted value, at the time it reaches the ROB
head. At that point, the PQ is inspected using the address
at the LQ head, and the matching entry forwards the value.
No new PQ entry is allocated for this early-retiring load.

It is also possible that there be a load to the same cache
line as a predicted load, but to a different word. Again, there
are two possible cases: On the one hand, there may be a
buffered store, in which case the store buffer can forward
the value. On the other hand, there may be no buffered
store. In this case, should this second load reach the ROB
head incomplete, it may be eligible for early retirement. If
so, the allocation of a new PQ entry and the other actions
involved are no different from what we explain above.

When a refill comes, the PQ checks for loads not only
matching the refill address exactly (the critical word), but
also for other loads to different words of the same cache
line. On a match, the PQ “replays” the loads in this sec-
ond group, so that they can pick the actual values from the
cache, for comparison with the predicted ones.

3.4 Mispredictions, Exceptions, and
Interrupts

In general, conventional speculative execution (e.g., branch
prediction or speculative loads) is not affected by our mech-

anism, and mispredictions can be handled as in a conven-
tional processor. Notice that, because a load is at the ROB
head at the time early retirement takes place, it is not sub-
ject to such conventional speculative mechanisms. Further-
more, because the load must issue to the memory system
before being considered for handling in Clear mode, any
exception on the address calculation, address range, or page
access would be caught properly.

If the processor receives an (asynchronous) interrupt
while in Clear mode (e.g., an I/O request, or a quantum ex-
piration in a multiprogrammed environment), it can handle
it by stalling and waiting to revert to normal mode, either
successfully or by rollback. This is also the approach in the
case of operations that are irreversible or that have poten-
tial side effects, such as non-cacheable memory operations
or system calls. In the case of time-sensitive interrupts, it
is always possible to flush the pipeline and use the earliest
checkpoint as the state to save (and return to after the inter-
rupt). After servicing the interrupt, the processor may even
inhibit Clear mode for a short period of time to guarantee
progress. Of course, Clear mode could always be disabled
by the programmer in time-sensitive situations, for example
by using a library call.

4 EXPERIMENTAL SETUP

In this section, we discuss the simulation environment and
the applications used for evaluating our Clear processor
mechanism.

4.1 Simulated Architecture

We evaluate our mechanism through execution-driven sim-
ulations, using a detailed contemporary model of an out-
of-order processor and its memory subsystem. The base-
line processor is a four-issue dynamic superscalar running
at 4GHz that has two levels of on-chip caches. The archi-
tectural parameters used are shown in Table 1. The proces-
sor has separate structures for the ROB, instruction window,
and register file.

In our simulations, the latency and occupancy of the
structures in the processor pipeline, caches, bus, and mem-
ory are modeled in detail. Wrong path execution, both for
branch and LVP mispredictions, is also correctly simulated.
We assume backup shadow ISA register files, and charge six
processor cycles for taking a checkpoint of the architectural
registers.

We simulate a 128-entry store queue, along the lines of
the hierarchical store buffer proposed in [1]. For the sake
of fairness, we use the same structure in the Baseline con-
figuration. In the Clear configuration, PQ, LDQ, and LTQ
have the same sizes as the load queue (48 entries). We use
a last-value LVP, one of the simplest predictors, with 4,096
entries. The results presented in this paper use up to four
checkpoints, and the checkpoint allocation threshold is set
to seven loads (Section 3.3.3).



Processor
Frequency 4GHz
Fetch/issue/commit width 4/4/6
Inst. window entries 48 Int+Mem, 32 FP
ROB entries 128
Int/FP registers 160/160
Integer FUs 4 ALU, 2/2 Mult/Div
Floating-point FUs 4 Add/Sub, 2/2 Mul/Div
Ld/St units 2/2
Ld/St queue entries 48/128
Branch penalty 16 cycles (minimum)
Max. unresolved branches 24
Branch predictor 32K-entry hybrid of GAg + bimodal

15b global history register
RAS entries 32
HW prefetcher 16-stream stride prefetcher

Max. stride: 256B
Operates between main memory and L2

Load-value predictor Last-value predictor, 4K entries
(Clear config. only) Confidence: 3b, Threshold: 5/7

Penalty: 2, Increment: 1
PQ, LDQ, LTQ entries 48
(Clear config. only)

Memory Subsystem
MHT entries 24 L1, 24 L2
Cache sizes 32KB L1 i-cache, 32KB L1 d-cache, 512KB L2
Cache RT (uncontended) 0.75ns L1, 4.5ns L2
Cache associativity 4-way L1, 8-way L2
Line size 64 bytes
Cache replacement policy LRU
Cache ports 2 L1, 1 L2
System bus bandwidth 8GB/s
Memory RT (uncontended) 125ns

Table 1: Summary of the architecture modeled. In the table,
MHT, RAS, and RT stand for miss handling table, return address
stack, and round-trip time from the processor, respectively. Cycle
counts refer to processor cycles (0.25ns).

4.2 Applications

We evaluate our mechanism using eleven SPECINT and
eight SPECFP 2000 applications [11]. (At the time of this
writing, our simulator cannot correctly handle the rest of
SPEC applications.) We use MIPS binaries compiled at -
O3 optimization level, and ref input sets in all cases except
ammp. For most applications, we skip initialization and run
750 million correct, committed instructions. For the three
floating-point applications for which we could not deter-
mine the initialization part (applu, apsi, mgrid), we skip the
first 500 million instructions. Also, because ammp exhibits
significantly different behavior over different phases [23],
we simulate it to completion using the train input set.

5 EVALUATION

In this section we discuss our experiments and results. In
Section 5.1 we comment on the speedups achieved by our
proposed mechanism. In Section 5.2 we give a detailed
breakdown of execution time and look at the prediction ac-
curacy of early-retired loads. Finally, Section 5.3 presents a
quantitative comparison between our mechanism and Runa-
head execution [20].

5.1 Performance Results
Figure 4 compares the performance attained by using an
aggressive out-of-order processor without (Baseline) and
with Clear support. In both cases, we also analyze the im-
pact of adding a hardware prefetcher (Baseline-HWP and
Clear-HWP, respectively). The results are represented as
speedups with respect to Baseline (not shown). We also
show the speedups achieved with perfect load-value predic-
tion (Clear-PerfectLVP). In the rest of the section, unless
noted otherwise, reported average speedups are always ge-
ometric means.

The first thing to notice is that adding a hardware
prefetcher to Baseline (Baseline-HWP) attains across-the-
board speedups, with a peak 2.03 for mgrid, and aver-
ages 1.08 and 1.16 for SPECINT and SPECFP applica-
tions, respectively. These speedups indicate that the hard-
ware prefetcher we use in the model is effective. Yet Clear-
HWP achieves a significant average speedup of 1.12 over
Baseline-HWP for both integer and floating-point applica-
tions.

The gains obtained in memory-bound applications are
even more encouraging. In this paper, we consider an ap-
plication to be memory-bound if it suffers from processor
stalls due to long-latency loads for over 15% of the execu-
tion time in Baseline-HWP (Figure 1). Among the integer
applications, these are mcf, parser, perlbmk, twolf, and vpr,
for which Clear-HWP yields a 1.27 average speedup rel-
ative to Baseline-HWP. Among the floating-point applica-
tions, ammp, applu, art, swim, and wupwise are memory-
bound, and for these Clear-HWP obtains a 1.19 average
speedup over Baseline-HWP.

Furthermore, when compared against the speedups ob-
tained by Clear-PerfectLVP (100% load-value prediction
accuracy), the noticeable difference conveys that there is
still significant potential for further improvement, particu-
larly in the case of memory-bound integer applications. In-
tuitively, this is likely to be related to the predictability of
long-latency loads, which we discuss in the next section.

Overall, in light of today’s widening gap between pro-
cessor and memory speeds, our results indicate that early
retirement of long-latency loads has great potential to yield
significant performance benefits.

5.2 Breakdown of Execution Time

In this section, we analyze the sources of the performance
improvements presented in Section 5.1. We break down the
execution time into four categories: (1) Conventional exe-
cution; (2) Clear-Correct execution, which corresponds to
computation in Clear mode for which the associated check-
point was successfully released (and thus the computation
committed); (3) Clear-Squashed execution, which is com-
putation in Clear mode that is ultimately rolled back due to a
load-value misprediction; and (4) Overhead of executing in
Clear mode, mainly due to checkpoint management. Figure
5 shows this breakdown for the Clear-HWP configuration.
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Figure 4: Performance of Baseline and Clear configurations, with and without hardware prefetcher, in integer (left) and
floating-point (right) applications. An optimistic Clear configuration with perfect load-value prediction is also shown. All
performance figures are speedups relative to Baseline without a hardware prefetcher (not shown).
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Figure 5: Breakdown of the execution time for Clear-HWP configuration in integer (left) and floating-point (right) applica-
tions.

Interestingly, the figure reveals that, for integer applica-
tions, execution in Clear mode is mostly squashed. Given
the important speedups shown in Section 5.1, this implies
that the performance improvements obtained in these ap-
plications are mainly due to useful prefetching performed
while executing in Clear mode. On the other hand, floating-
point applications show a more diverse behavior. In partic-
ular, in art, mesa, and wupwise, Clear-Correct constitutes a
substantial part of the execution in Clear mode. This means
that these applications benefit more from early retirement of
(correctly predicted) long-latency loads.

To further analyze this behavior, we look at the predic-
tion accuracy of Clear-HWP’s last-value predictor (Table 1)
on early-retired loads. For comparison purposes, we also
examine the prediction accuracy using a more sophisticated
last-four-value and stride-two-delta hybrid predictor with
2,048 entries each. (Notice that the particular organiza-
tion of the load-value predictor is not fundamentally part of
our proposed mechanism.) In each case, we measure pre-
diction accuracy as actually observed in Clear-HWP execu-
tions. Because every retired load updates the predictor, this
correctly captures the effect that speculative predictor up-
dates have on subsequent predictions, including appearance
of “false” long-latency accesses. We break down predic-
tions according to the outcome (Correct/Incorrect) and the

confidence estimation at the time of the prediction (Confi-
dent/Unconfident), for a total of four categories. Figure 6
shows the results.

The results show that prediction accuracy of early-retired
loads is somewhat limited for most applications. Specifi-
cally, average accuracy is 28.2% and 41.8% for integer and
floating-point applications, respectively. This explains the
fact that execution in Clear mode is mostly squashed for
many applications, particularly integer programs. In an at-
tempt to improve this, we ran simulations using the more so-
phisticated last-four-value and stride-two-delta hybrid pre-
dictor mentioned before, but obtained no significant differ-
ences in predictability (third bar in Figure 6) or performance
gains.

Another reason why prediction accuracy is not higher
may be aliasing. Indeed, since we update the predictor with
every retired load (Section 3.3.2), there is a possibility that
early-retired loads are fed predictions constructed mainly
from outcomes of aliased loads. One way to diminish this
problem is to increase the size of the predictor. We did sim-
ulate larger predictors and found them to be similar in ac-
curacy. Moreover, a larger predictor is not easily justifiable
in terms of latency, complexity, or competitiveness against
other mechanisms of similar transistor count.

Furthermore, largely as a result of the low predictabil-
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Figure 6: Prediction accuracy in the Clear-HWP configuration for all loads (first bar) and early-retired loads (second bar)
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the prediction accuracy in Clear-HWP for early-retired loads, using a more sophisticated last-four-value and stride-two-delta
hybrid predictor.

ity, only 24.3% (integer) and 39.6% (floating-point) of pre-
dictions on early-retired loads are deemed confident. In
our mechanism, low-confidence predictions allocate new
checkpoints. Thus, these confidence levels indicate that
checkpoints are expected to be in demand. More check-
points, however, do not necessarily result in more profitable
Clear-mode execution, and in fact we tried with more than
four checkpoints and observed no difference in the speedups
obtained.

Nevertheless, as shown, speedups are significant (Fig-
ure 4). Overall, we can identify three main factors that con-
tribute to these performance gains: (1) successful specula-
tive execution resulting from correct predictions; (2) use-
ful prefetching by rolled back execution in general; and (3)
training of different predictors in any case. More specifi-
cally, in the case of a rollback, instructions that are data- and
control-independent of the mispredicted load value(s) can
accurately prefetch data, and even dependent instructions
may do useful prefetching under the right circumstances.
One particular case of useful prefetching is that of instruc-
tions dependent on correctly predicted early-retired loads
that are rolled back by a misprediction on a different load
(assigned to the same or an earlier checkpoint).

5.3 Clear vs. Runahead Execution

In this section we present a quantitative comparison be-
tween Clear and Runahead execution [20]. (For a discus-
sion of Runahead execution, see Section 2.) Figure 7 shows
speedups for Clear mode and Runahead executions, with (-
HWP) and without hardware prefetching, relative to Base-
line without hardware prefetching (not shown). Among the
integer applications, Clear-HWP outperforms Runahead-
HWP by a significant margin (which we define as 5%
speedup or higher) in mcf, parser and perlbmk. In fact, in
mcf and parser, Clear alone (without a hardware prefetcher)
outperforms Runahead-HWP by such a margin. On the

other hand, Runahead-HWP outperforms Clear-HWP in
this way only in twolf.

Among the floating-point applications, Clear-HWP out-
performs Runahead-HWP significantly in two applications,
ammp and wupwise. In the remaining applications, both
techniques perform similarly on average. Overall, in our ex-
periments, our mechanism significantly outperforms Runa-
head in five occasions, while Runahead beats Clear-mode
execution by a significant margin in only one case.

There are several properties unique to executing in Clear
mode that help outperform Runahead in some applications.
Here we list a few: (1) Rollbacks may be avoided if early-
retired loads are predicted correctly. Runahead systemati-
cally rolls back to the checkpoint after the first early-retired
load completes. (2) On a misprediction, a processor running
in Clear mode may still benefit from prefetching by exe-
cuting instruction chains dependent on early-retired loads,
particularly correctly predicted ones. Runahead generally
nullifies early-retired loads and their dependent instruction
chains. (3) A particular case of (2) is that of branches de-
pendent on early-retired loads. While both Runahead and
Clear mechanisms support branch prediction for those, only
in the latter can they resolve, using the predicted load value.
Whenever the predicted value is correct—or even if incor-
rect but sufficient to resolve the branch correctly, our mech-
anism can help redirect a mispredicted branch and resume
execution along the correct path. Interestingly, Karkhanis
and Smith [13] show that the number of branches dependent
on long-latency loads can be significant in the SPEC2000
integer applications. (4) A store whose address depends on
a mispredicted early-retired load can still successfully for-
ward its value to a subsequent load whose address depends
on that same mispredicted load, whenever both the depen-
dent store and load resolve to the same (wrong) address.

Overall, these properties help the Clear implementation
outperform Runahead in the five applications mentioned
above. On the other hand, Runahead’s best advantage over
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Figure 7: Performance of Clear and Runahead execution, with (-HWP) and without hardware prefetching, for integer (left)
and floating-point (right) applications. Speedups are relative to Baseline without hardware prefetching (not shown). Note the
different scales on the Y axis for integer and floating-point applications.

our proposed mechanism is its ability to race deeper into
the code after the checkpoint, by systematically nullifying
long-latency loads and their dependent instructions. This
becomes evident in Runahead’s success over Clear-mode
execution in twolf.

We notice that, in a few applications, Runahead obtains
speedups that are somewhat different from the numbers re-
ported in [20]. Even though our implementation of Runa-
head execution is conceptually identical to what is proposed
in [20], our base architecture (on which we build Runa-
head) is different from what is used in [20]. In particular,
our MIPS ISA-based load-store architecture offers a larger
number of logical registers compared to the x86 architec-
ture used in [20], which typically results in less spill code.
Also, in place of a trace cache, we model a conventional
instruction cache.

6 CONCLUSIONS
We have proposed checkpointed early load retirement, a
micro-architectural mechanism based on selective proces-
sor checkpointing and back-end (i.e., at retirement) load-
value prediction. When a long-latency load reaches the
ROB head unresolved, the processor (1) takes a checkpoint
of the architectural registers, (2) supplies a load-value pre-
diction to consumers, and (3) early-retires the long-latency
load. This we call Clear mode of execution. It allows in-
struction retirement to resume and dependent instructions
to execute sooner, thereby reducing processor stalls. When
the long-latency load completes, the returned value is com-
pared against the prediction. On a correct prediction, exe-
cution in Clear mode is deemed correct and the checkpoint
is released. On a misprediction, execution in Clear mode
is rolled back and the processor reverts to the checkpointed
state. Nevertheless, in that case, instructions executed in
Clear mode may have a prefetching effect on instructions
and data. Finally, regardless of the prediction outcome, the
different predictors in the processor are trained by executing
in Clear mode.

We have proposed a general solution that supports multi-

ple checkpoints and multiple early-retired loads per check-
point. Our mechanism requires modest hardware additions
on top of a conventional ROB-based processor. In particu-
lar, it does not require upsizing the ROB, the register file, or
the instruction queues.

Detailed simulations of our proposed mechanism re-
veal that, compared to a state-of-the-art baseline architec-
ture with an aggressive hardware prefetcher, our mecha-
nism achieves important speedups for a set of integer and
floating-point applications. We find that the prefetching
benefits of squashed execution in Clear mode are impor-
tant for many applications, for which predictability of early-
retired loads is limited. When compared against Mutlu
et al.’s Runahead execution [20], our proposed mechanism
significantly outperforms it (5% speedup or higher) in five
applications, vs. only one application for which Runahead
works significantly better (5% speedup or higher) than our
mechanism.

Overall, our study concludes that our proposed mecha-
nism constitutes an effective way to confront the growing
disparity of processor and memory speeds. We are extend-
ing our work in various ways, including (1) integration with
conventional (front-end) load-value prediction, and (2) inte-
gration with other checkpoint-based processor architectures
of complementary objectives, such as Cherry’s support for
more in-flight instructions through aggressive resource re-
cycling [19].
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