
SWAP: Effective Fine-Grain Management of Shared
Last-Level Caches with Minimum Hardware

Support

Xiaodong Wang Shuang Chen Jeff Setter† José F. Martı́nez

Computer Systems Laboratory

Cornell University

Ithaca, NY 14853 USA

http://m3.csl.cornell.edu/

†Dept. of Electrical Engineering

Stanford University

Stanford, CA 94305 USA

Abstract—Performance isolation is an important goal in server-
class environments. Partitioning the last-level cache of a chip
multiprocessor (CMP) across co-running applications has proven
useful in this regard. Two popular approaches are (a) hardware
support for way partitioning, or (b) operating system support
for set partitioning through page coloring. Unfortunately, neither
approach by itself is scalable beyond a handful of cores without
incurring in significant performance overheads.

We propose SWAP, a scalable and fine-grained cache man-
agement technique that seamlessly combines set and way parti-
tioning. By cooperatively managing cache ways and sets, SWAP
(“Set and WAy Partitioning”) can successfully provide hundreds
of fine-grained cache partitions for the manycore era.

SWAP requires no additional hardware beyond way parti-
tioning. In fact, SWAP can be readily implemented in existing
commercial servers whose processors do support hardware way
partitioning. In this paper, we prototype SWAP on a 48-core
Cavium ThunderX platform running Linux, and we show average
speedups over no cache partitioning that are twice as large as
those attained with ThunderX’s hardware way partitioning alone.

I. INTRODUCTION

Performance isolation is an important goal in server-class

environments for a variety of reasons, including throughput,

quality of service, and even security. Partitioning last-level

caches in chip multiprocessors (CMPs) across applications is

a popular approach to reducing or eliminating interference

across applications co-running on a CMP. It is a mecha-

nism that can help (1) maximize resource utilization and

system throughput, or trade off throughput vs. fairness [42],

[43]; (2) provide quality-of-service (QoS) for latency critical

workloads [25]; (3) protect the system from timing channel

attacks, where a malicious program is able to steal the secure

information of another application, such as the encryption

key, by sharing the last-level cache [5]. A few approaches

to partitioning the cache space have been proposed.

Way partitioning allows cores in chip multiprocessors

(CMPs) to divvy up the last-level cache’s space, where each

core is allowed to insert cache lines to only a subset of the

cache ways. It is a commonly proposed approach to curbing

cache interference across applications in chip multiprocessors

(CMPs) [30]. Unfortunately, way partitioning is proving to

be not particularly scalable, as it affects cache latency and

power negatively, eventually becoming impractical. Consider

that multiple current and upcoming server chip multiprocessor

(CMP) lines already comprise twenty, thirty, or even more

cores; examples include Intel’s 22-core E5-2600 v4, IBM’s

24-core Power-9, Cavium’s 48-core ThunderX, or Qualcomm’s

64-core Hydra. Although some of these processors do include

hardware support for way partitioning, the granularity is too

coarse to allow for separate partitions for more than a handful

of applications. Cavium’s ThunderX processor, for example,

possesses 48 cores, however its last-level cache is limited to

“only” 16 ways. Similarly, Intel’s v4 CMP allows for no more

than 20 different partitions across 22 cores.

Another approach to achieving cache partitioning is to

restrict each application’s page frames to certain “colors” (the

shared bits between a physical address’ page frame ID and

cache index). In this case, page frames of each color map onto

a specific subset of the cache sets. Although this approach has

been adopted in real operating systems [22], [24], [46], it also

does not scale beyond a handful of colors.

A few architectural mechanisms for probabilistic fine-grain

cache partitioning have been proposed [26], [34], [41]. How-

ever, these implementations require extra hardware support, do

not provide true isolation, and have not yet been adopted in

any commercial CMP to our knowledge.

Contributions

We propose SWAP, a fine-grained cache partitioning mech-

anism that can be readily implemented in existing CMP sys-

tems. By cooperatively combining the cache way (hardware)

and set (OS) partitioning, SWAP is able to divide the shared

cache into literally hundreds of regions, therefore providing

sufficiently fine granularity for the upcoming manycore pro-

cessor generation.

We implement SWAP as a user-space management thread

on Cavium’s ThunderX, a server-grade 48-core processor with

ARM-v8 ISA [39]. To enable SWAP, we introduce small

changes to the Linux page allocator, and leverage ThunderX’s

native architectural support for way partitioning.

Our results show that SWAP improves system throughput

(weighted speedup) by 13.9%, 14.1%, 12.5% and 12.5% on

2017 IEEE International Symposium on High Performance Computer Architecture

2378-203X/17 $31.00 © 2017 IEEE

DOI 10.1109/HPCA.2017.65

121

average for 16-, 24-, 32- and 48- application bundles with

respect to no cache management. This is twice as much

speedup as what we can obtain by using only ThunderX’s

way partitioning mechanism.

To our knowledge, SWAP is the first proposal of a fine-

grained cache partitioning technique that requires no more

hardware than what’s already present in commercial server-

grade CMPs.

The paper is organized as follows: Section 2 provides

background and comments on related work. Section 3 de-

scribes SWAP’s mechanism and design challenges. Section 4

discusses the hardware and software implementation. Section

5 explains our evaluation framework, and Section 6 evaluates

our proposal.

II. BACKGROUND AND RELATED WORK

A. Way Partitioning

In the single core environment, Albonesi first proposes

turning off unneeded cache ways to reduce cache energy [1].

Yang et al. improve such technique by dynamically adjust the

active cache capacity to accommodate the changing working

set of an application [44], [45].

In the multicore context, Suh et al. [38] propose to distribute

L2 cache ways to minimize the overall miss rate. Qureshi and

Patt [30] improve their technique by predicting the marginal

utility of additional cache ways.

Way partitioning is a desirable approach because: (1) each

core can be assigned an independent slice of the cache

space, thereby reducing cache interference among co-running

applications; (2) adjusting allocations is relatively inexpensive

and can be accomplished lazily (i.e., cache lines in ways no

longer part of an application’s partition can still be accessed

in place, until they are evicted). As a result, chip manufac-

turers have begun to adopt such a technique into their server

processors [15].

Despite all these advantages, a well-known limitation of

way partitioning is that it cannot by itself support more than

a handful of applications at a time [33]. This is because

cache associativity cannot scale easily with number of cores,

as physical constraints result in increased latency and energy

consumption.

B. Page Coloring

Page coloring [40] has been extensively used in industry

and research community to improve the performance of the

memory hierarchy. Kessler and Hill were among the first to

use page coloring to improve the utilization of hardware cache,

by distributing the physical pages evenly to different cache

sets [19]. Such technique was later adopted by commercial

OS such as FreeBSD [12]. A number of follow-up works

further improve the cache utilization, and reduce the overhead

of page recoloring [35]. For multi-core chips, Lin et al. [22]

use page coloring to partition the shared cache among the

cores in a dual-core chip to improve system efficiency. There

are also proposals to use page coloring to partition memory

page frame number page offset

16 bits

offset LLC index
7 bits13 bits

Bank
index

32 bits

tag
28 bits

Color
bits

Fig. 1: Example of physical address mapping for page color-
ing, corresponding to Cavium’s 48-core ThunderX architecture
used in this study.

banks [23], [47], or even to manage cache and memory

contention cooperatively [24].

Instead of partitioning the cache “vertically” as in way

partitioning, page coloring partitions the cache “horizontally”

by sets. When an application requests a new page from the

system, the OS will select a free page from its memory

pool, and map the application’s virtual address to the physical

address of the page. In doing so, the OS may select a page

frame whose page frame number (PFN) is of the appropriate

“color”—the overlapping bits between the page frame number

and last-level cache’s set index (Figure 1). By constraining the

color bits of the pages belonging to an application in this way,

the OS may constrain an application’s cache use to a subset

of the cache sets.

Unfortunately, page coloring is hardly scalable, and it can

incur significant overheads if recoloring is needed. Consider,

for example, that a PFN’s default size of 64KB allows for

four color bits in Cavium’s 48-core ThunderX (Figure 1).

Sixteen colors is hardly sufficient to provide adequate isolation

across 48 cores. One might consider reducing the page size

to increase the number of colors, however this is typically

counterproductive in the server market [16].

Even if a small page size were practical, page coloring

still may not be able to provide fine granularity by itself: A

well-known limitation of page coloring is that, by imposing

page color restrictions on an application, only a portion of

the system memory is accessible to this application [48]. This

may result in an out-of-memory (OOM) error, even though the

system may be awash with pages of other colors.

Finally, re-partitioning the cache space by page coloring

is a costly process: If a page color is taken away from one

application, all the associated page frames have to be migrated

to page frames in the application’s other colors, the appropriate

TLB and cache entries flushed, etc.

C. Probabilistic Cache Partitioning

To address the scalability issue, Sanchez and Kozyrakis

propose Vantage [34], a replacement-based partitioning mech-

anism that can probabilistically guarantee the size of par-

titions across applications. Wang and Chen [41] adopt a

similar approach to maintaining a partition’s cache size, by

controlling the eviction priority of cache lines belonging to

122

different cores. Although their simulation-based evaluations

show promise, both proposals require a non-trivial amount of

additional hardware support. For that same reason, their results

cannot be validated by real implementations using commercial

processors, where significant discrepancies could arise [22].

Finally, it is unclear whether these probabilistic approaches

would be good enough for environments where strict isolation

is highly desirable (e.g., to reduce exposure to timing channel

attacks).

D. Cache Partitioning for Tile-based CMPs

In tiled-based architectures, each cache tile constitutes the

primary container for the local core, and thus a natural

partition exists. Lee et al. propose CloudCache [21], which

explores allocating partitions potentially larger than tiles by

“borrowing” cache ways from remote tiles. Beckmann and

Sanchez propose Jigsaw [4], which improves upon Cloud-

Cache by favoring neighboring tiles, so as to minimize on-chip

network latency.

However, tile-based architectures are still hard to come by,

and tile-based caches present design challenges of their own.

The fact is, most commercial CMPs with 20+ cores still imple-

ment a centralized (albeit banked) last-level cache organization

(e.g., Intel’s Xeon, IBM’s Power and Blue Gene/Q, Cavium’s

ThunderX, etc.) Moreover, as in the case of probabilistic ap-

proaches, both techniques again introduce a non-trivial amount

of hardware overhead, and they have yet to be supported in

the commercial processors. This makes validation of simulated

results very difficult.

III. MECHANISM

SWAP combines both set and way partitioning, and in

that way we can partition the shared last-level cache in a

two-dimensional manner into many tens or even hundreds of

regions, and then assign those regions to running applications.

In Cavium’s ThunderX 48-core processor, for example, the

number of cache ways and possible page colors is 16 each.

Therefore, ThunderX’s shared L2 cache can be partitioned into

256 independent regions. Note that, theoretically, assignments

may be chosen to overlap, but there is sufficient granularity

to keep them disjoint, which is generally preferable for the

reasons already stated.

A. Challenges

Although combining set and way partitioning to enable

fine-grained cache partitions may be intuitive, in practice

several important challenges needed to be addressed to make

it practical. We discuss these next.

Partition placement. Correctly allocating a partition involves

more than just picking the right size. On the one hand,

partitioning by cache ways and page colors constrains the

possible shapes and sizes of each cache partition. For example,

in the ThunderX processor, it is infeasible to create a partition

of 17 cache regions in the L2 cache with 16 ways and 16

colors. On the other hand, given a desired partition size, there

may be multiple possible combinations of sets and ways to

������
������
������

������
������
�����������

�����
�����

�����
�����
�����

P1

P3P2

Fig. 2: An example of misaligned cache partitions that, on the
one hand, leaves some cache space unassigned while, on the
other hand, it forces some assignments to overlap.

form a rectangle with that size. For example, 4 × 4, 2 × 8,

and 1 × 16 allocations all offer the same capacity. Even if

the partition size and shape of each application is feasible and

known, placement of the partitions is a challenge in its own

right.

Figure 2 shows an example of partitions that are not

successfully placed. Note how there is some wasted cache

space on the top right corner, and some overlap between

partitions of P1 and P3, resulting in cache interference between

the two. As part of our proposed solution, we describe later

how we optimize the choice of partition placement.

Memory Pressure. As discussed in Section II, page coloring

not only limits the number of cache sets an application can use,

but also the amount of physical memory that it can access. The

memory system could be awash with free physical frames of a

particular color, and yet those would not be available to other

applications that have been assigned a different color. Because

SWAP employs page coloring, it is potentially subject to this

problem. Although many colors potentially enable a fine-grain

management of cache set allocations, it constrains each appli-

cation to a small slice of the physical memory. Fortunately,

this is not a major concern for SWAP, because SWAP adopts

a coarse-grained page coloring approach, achieving fine granu-

larity by combining it with way partitioning. In the ThunderX

platform we study, for example, each page color covers 4GB of

the 64GB available main memory, and we assign at least two

page colors to each application (Section III-B). As a result,

we never observed out-of-memory exceptions in any of our

experiments.

Recoloring Overhead. Another major concern of page coloring

is the potentially heavy cost associated with dynamic recol-

oring. When a color is taken away from an application, for

example, all the pages with that color from that application

have to be remapped across the remaining assigned colors.

Page remap operations are cumbersome: they involve TLB and

cache flushes, a page copy from its old memory location to the

new one, and an update of the corresponding page table entry.

Although efforts have been made to alleviate such overhead,

for example by performing “lazy” page migration, recoloring

overheads are generally non-negligible [22]. Therefore, SWAP

needs to be carefully designed to avoid giving/taking away

colors to/from applications whenever possible.

Increased Conflict Misses in Way Partitioning. One disadvan-

tage of cache way partitioning is that it reduces the effective

cache associativity of each partition, potentially increasing the

number of conflict misses [34], [41]. Because SWAP inherits

123

this disadvantage, we investigate the relationship between

execution time and the number of cache ways in the context of

our experimental setup (Section V), by statically sampling 30

different cache way+color configurations, with {1, 2, 4, 8, 12,

16} cache ways and {2, 4, 8, 12, 16} page colors. As a result,

the effective cache capacity ranges from 128KB to 16MB. We

find that, if the cache partition is formed by only one cache

way, the number of conflict misses increases dramatically, and

therefore the application’s execution time suffers by up to 40%

increase. On the other hand, for most applications, as long as

their assigned partition has more than two cache ways, their

performance is largely determined by the size of the assigned

partition.

B. Algorithm

We propose a novel cache allocation mechanism to address

these challenges. The mechanism starts by collecting the miss-

ratio curve (MRC) of each application. The way the MRC

is collected, whether using offline data or an online profiler,

is orthogonal to the mechanism and has been addressed

elsewhere [8]–[10], [30]. It then runs the lookahead algorithm

proposed by Qureshi and Patt [30] to decide the optimal

partition size of each core (in the unit of cache regions),

so that the sum of partition size of each core is the total

cache capacity. Note also that we guarantee 2 regions of

cache space (128KB) for each core. More details will be

explained in Section V. Note that the lookahead algorithm

only determines the size of each partition given the total cache

capacity, not how these are achieved in terms of ways vs.

colors; this will be decided later by our placement algorithm,

which we describe next.

1) Cache Partition Placement: An ideal partition should

satisfy the following requirements: (1) partitions are aligned

well with each other, without any wasted or overlapping cache

regions, and (2) dynamic resizing should affect the fewest

number of partitions during phase changes.

In SWAP, cache partitions are classified into multiple

coarse-grain classes according to their size. Those in the

same class are given the same number of colors. If the

size of a partition changes within the range of its class, the

number of colors it is given remains unchanged. The hope

is that the partition may be able to keep its original page

colors, to avoid any time-consuming recoloring. The general

classification criterion for K colors (K = 16 in ThunderX)

and S cache size (16MB in ThunderX), is as follows: (1)

partitions of size larger than or equal to S/4 are afforded all

K colors; (2) partitions whose size lies within [S/8, S/4) are

allowed K/2 colors; (3) partitions that fall within [S/16, S/8)
are assigned K/4 colors; and so forth, down to a minimum

of two colors. In the case of ThunderX, this classification

comprises four classes Ci, i ∈ {16, 8, 4, 2}, where i represents

the number of colors assigned to applications in that class.

For placement (i.e., what specific colors each application

receives), partitions with more colors are placed first and

to the “left” (as represented by a rectangle of set rows by

way columns) of partitions with fewer colors. Let us use an

0
0
0
0
0
0
0
0

5
5
5
5
5
5
5
5

8
8
8
8
5
5
5
5

8
8
8
8
8
8
8
8

P1 P1 P1
P2

P3

P2

0
0
0
0
0
0
0
0

P1
P2

2
2
2
2
0
0
0
0

P1

3
3
3
3
1
1
1
1

3
3
3
3
1
1
1
1

P3’

8×6=48

P2
’

4×2=8

P1
’

4×2=8
0
0
0
0
0
0
0
0

P1
P3

P2

9
9
9
9
7
7
7
7

8
8
8
8
8
8
8
8

8
8
8
8
8
8
8
8

8 ways

8
co

lo
rs

8×5=40 4×3=12

4×3=12

P3’

P1
’P3’ P3’

P1
’

P2
’

(a1) (a2) (a3) (a4)

(b4) (b3) (b2) (b1)

(c1) (c2) (c3) (c4)

Fig. 3: A sample process of placing partitions based on their
sizes and classes. The figure assumes eight colors and eight
ways. The top row show an initial partition; center and bottom
rows show the process of dynamically repartitioning based on
changing application demands.

example (illustrated by the top row of Figure 3) to explain

how this placement policy, combined with the classification

criterion, can solve the alignment issue. In this example, P1

is an 8-color-class partition, and P2 and P3 are both 4-color-

class partitions. Because P1 has more colors, it will always be

placed to the left of P2 and P3. Thus, the right boundary of

P1 and the left boundary of P2 and P3 are aligned.

Based on these two policies, the placement algorithm works

as follows:

1. Each color maintains a “usage” counter (initialized to 0, as

is shown in step a1 of Figure 3), which measures the number

of cache ways of that color which have been already assigned.

2. The partitions are first classified into different classes

according to the criteria mentioned above. Then the number

of cache ways is trivially computed, by dividing the partition

size by the number of colors, rounded down to an integer (not

necessarily a power of 2).

3. We place cache partitions, in order from larger to smaller.

For each partition, SWAP tries to find a set of consecutive

colors with as little usage as possible. After the set of colors

is determined, the partition will update the usage counter of

its assigned colors, and the algorithm will move on to the next

partition. Step a2 to a4 of Figure 3 shows such an example

with 8 cache ways and 8 colors, where the sizes of the three

partitions, P1, P2, and P3, are 40, 12, and 12, respectively.

Because P1 is a C8 partition, it is assigned all 8 colors. The

usage counter of all 8 colors are updated to 5, since P1 receives

five ways. SWAP then arbitrarily picks (since all colors show

identical usage) the top four colors for P2 (since P2 is in class

C4), and it increases their usage counter by 3 each (the number

of ways allocated to P2). Finally, when looking to place P3 in

class C4, SWAP picks the remaining four colors, again in this

124

case updating their counter to 3 each, since that is the number

of ways allocated to P3 as well.

4. If a core is given the minimum cache space (2 regions),

SWAP assigns one way and two colors to it, which may

significantly hurt its performance due to conflict misses. As

a result, in that case we may horizontally coalesce two or

more minimum-sized partitions, using the same set of colors.

Although coalescing may introduce some interference, we

experimentally observe that it greatly reduces conflict misses

(and that this kind of applications are often cache-insensitive

anyway).

C. Reducing Recoloring Overhead
Our algorithm for recoloring strives to minimize color re-

assignments. Specifically: (1) if a partition stays within its

class, it should stick with its prior color assignment; (2) if a

partition is downgraded to a class with fewer colors, its new

colors should be a subset of its prior color set, so that only

the “orphaned” pages need to be migrated; (3) if a partition

is upgraded so that more colors are made available to it, it

should attempt to add the set of colors that have the least

“pressure” (smallest usage counter) at the time the partition is

(re)placed. We continue to use Figure 3 (middle and bottom

rows) to show this repartitioning process, where the sizes of

P1, P2, and P3 and changed from 40, 12, 12 regions, to 8, 8,

and 48 regions, respectively.

1. The partitions are pigeon-holed into different classes as

before.

2. We reset the usage counters (step b1), and then estimate

new usage for each color as follows: (1) If a partition is

upgraded to a class with more colors (P3 in the example) ,

we do not increase the usage of any color (step b2). This

is because the new partition, which will be handled earlier

in the upcoming placement sequence, will explicitly seek to

expand into the least used colors anyway. (2) If a partition

stays in the same class (P2), we increase the usage of each

color by the number of ways the partition will receive (step

b3). This is to discourage other partitions that migrate into

the same class from occupying these colors during placement.

The goal is to allow applications that stay in the same class

to keep their colors. (3) If the partition’s class is downgraded

(P1), the estimated new usage of the colors it currently maps

to is increased by the number of cache ways the partition

will receive, multiplied by the ratio of new to old number of

colors for that partition. For example, P1 previously owned all

8 colors in Figure 3, but it is now downgraded to a 4-color

class. The usage counter of colors 0-7 will be updated by the

number of ways the new partition will receive, multiplied by

0.5. The rationale here is that the new partition will subset all

former colors with equal probability, so on average each such

color will see its usage affected equally and proportionally to

the new allocation. (Recall that at this point we still do not

know which colors will be picked.)

3. We start placing the cache partitions from larger to smaller,

following the original algorithm, only that the expected us-

age is already initialized as explained above, and thus not

computed from zero, but adjusted during actual placement.

For example, in step c3 of Figure 3, we assign colors 4-7

to downgraded partition P1, because those colors show lower

estimated usage (since colors 0-3 are “reserved” by P2). On

the other hand, as a partition that remains in its same class, P2

will again pick its former colors (step c4). After placing each

partition, usage for each color is adjusted to reflect the actual

usage by that partition, by compensating with respect to the

estimated usage previously calculated and accounted for, as is

shown in step c3.

It is possible that a partition whose class is either unchanged

or downgraded may find the expected usage of its previously

assigned colors high enough that the partition may not be able

to get the number of cache ways it needs. In that case, we

allow the partition to move to a new set of colors that can

accommodate its size; specifically, the partition will seek to

move to a set with minimum calculated usage.

IV. IMPLEMENTATION

In this section we describe the existing hardware support

that we leverage to implement SWAP, the software changes

that we make to the operating system, and the interaction

between them.

The ThunderX 48-core CMP is an ARM-based processor

aimed at the server/datacenter market. It provides the ability

to allocate the shared L2 cache by cache ways, up to 16

partitions. ThunderX provides a special register per core,

which specifies the cache ways that a core can insert cache

lines into. (Cores can still access lines in any cache way.) Once

cache ways are assigned to cores (see Section III-B), SWAP

configures the per-core registers so that the assignment may

be enforced.

In order to further partition the cache by sets, we implement

page coloring [22], [24], [47] in the Linux kernel that runs

on the ThunderX system, by modifying its buddy memory

allocator to fit our needs. We color user pages only; kernel

pages are allocated using Linux’s default mechanism.

In the buddy system, free physical pages are stored in multi-

level free lists, where the kth-order free list contains pages

which is composed of 2k consecutive 64KB pages. We create

multiple bins out of each list, with each bin caching pages of

a specific color.

When a page fault occurs to a user application, the kernel

first selects a page color in a round-robin fashion among all

the allowable colors for that application. Then, it fetches a

page of that color. When a bin is running out of pages, SWAP

requests more free pages from the Linux buddy system and

uses them to refill the bins.

A potential issue with page coloring is that some of modern

processors adopt hashed indexing, where the index to the last-

level cache is XORed with bits in the physical address [23].

Fortunately, because the physical address of a free page is

readily available in the kernel, its color can be easily computed

by hashing the appropriate bits.

125

TABLE I: CMP configuration.

ThunderX CN8800 [2], [6]
Number of Cores 48

Frequency 2.0GHz
L1 ICache 78 kB,

128B cache line size
L1 DCache 32 kB,

128 cache line size
L2 Cache 16 MB, 16-way set associative,

128B cache line size
Memory Controller 64GB, 4 channels, DDR4 2133,

aggressive bank reordering

SWAP works well with the large page sizes often found in

server settings–in ThunderX’s case, 64KB. It can also work

well with smaller page sizes (e.g., standard 4KB pages), as

long as the number of bits assigned for coloring is kept small,

to skirt the issues of memory pressure and recoloring overhead

described before. SWAP as is would not be able to leverage

page coloring for very large “superpage” sizes supported in

some architectures (e.g., 512MB for ThunderX), as the page

offset would be very long, and therefore there would be

no overlap between the page number and the cache index.

Very large superpages are usually relegated to the uncommon

case of servers with terabytes of physical memory [17], and

produce undesirable side effects [11], [18], [20], [27], [29].

For example, database vendors often recommend users to turn

off large superpage support [20], [27], because many database

workloads tend to exhibit sparse rather than contiguous mem-

ory access patterns. Large superpages may also cause the

system to run out of memory [11].

We follow a lazy approach to page migration for dynamic

recoloring [22]: When a color is added to or taken away

from an application, we eagerly walk through the application’s

page table and redistribute the application’s pages across the

colors assigned to it. For each page marked for migration to a

different color, we reset the access flag (AF) in the page table

entries (PTE) of the application’s pages of that color, and set

one other unused bit in each such PTE (we call it the Pending

bit). Naturally, the corresponding TLB and data cache entries

are also flushed. However, the application’s marked pages are

not immediately migrated. Rather, as pages for that application

with AF=0 are accessed (which generates a page fault), if the

Pending is set, the page will be migrated to its new color at

that point (and the Pending bit will be reset). Then, the AF

bit will be set, and the page fault handler will complete.

V. EXPERIMENTAL SETUP

A. Hardware Platform

We evaluate SWAP on a Cavium ThunderX CN8800 rack

server. The configuration of the processor is shown in Table I.

ThunderX supports hardware cache way partitioning, as is

described in Section IV. We also develop a set of microbench-

marks similar to what Saavedra et al. [32] propose to verify the

specifications related to the memory hierarchy (cache capacity,

associativity, etc).

In addition, we check whether there is an overlap between

the color bits and the memory channel and bank bits, as page

TABLE II: Multiprogrammed workloads evaluated for simula-
tion. Combining cache-insensitive (I), cache-sensitive (S), and
thrashing (T) applications.

MP1
vpr - twolf - art - lbm S4

vpr - ammp - bzip2- libquantum S2T 2

MP2
milc - soplex - lbm - art T 4

leslie3d - bwaves - GemsFDTD - bzip2 T 2S2

MP3
vpr - twolf - milc - libquantum S4

ammp - bzip2 - bwaves - soplex T 4

MP4
mcf - milc - libquantum - leslie3d T 4

bwaves - GemsFDTD - twolf - swim T 4S2

MP5
mcf - soplex - libquantum - leslie3d T 4

bwaves - lbm - swim - art T 2S2

MP6
gamess - hmmer - milc - mcf I4

tonto - h264ref - lbm - art T 2S2

MP7
twolf - art - leslie3d - bwaves S4

bzip2 - mcf - GemsFDTD - libquantum T 4

MP8
vpr - twolf - libquantum - milc S4

ammp - art - mesa - sixtrack T 2I2

MP9
twolf - vpr - lbm - libquantum S4

bzip2 - omnetpp - mesa - gobmk T 2I2

MP10
milc - soplex - h264ref - vpr T 4

libquantum - leslie3d - perlbench - mcf S2I2

coloring may restrict a core’s accessibility to the memory

channels/banks. To do this, we run the microbenchmarks

proposed by Yun et al. [47] to detect the location of those

bits, and we find that the memory channel and bank bits reside

within the page offset, and therefore there is no overlap with

the color bits.

B. Software Platform

We prototype SWAP in the ThunderX platform running

Ubuntu Trusty Tahr 14.04 with kernel version 3.18.0. SWAP

runs as a user space management process, which includes (1)

the algorithm described in Section III-B to decide the allow-

able cache region of each application; (2) the ability to write

hardware registers to reconfigure cache way partition, and to

interact with the underlying Linux kernel for page coloring

(the implementation details are described in Section IV); and

(3) a performance tracking thread which is triggered every 2

seconds to read hardware performance counters, such as the

number of L2 cache misses.

C. Workload Construction

We use a mix of 22 applications from SPEC2000 [36]

and SPEC2006 [37] to create multiprogrammed workloads

for evaluation. Each application is compiled natively to an

ARM executable, using gcc 5.1.0 with -Ofast optimization. We

classify the 22 applications into Cache-sensitive (S), Cache-
insensitive (I), and Thrashing (T) using offline profiling, and

then create ten 8-application bundles that consist of a mix of

applications from these three categories, as shown in Table II.

When the number of active cores exceeds the number of

applications in a bundle, the bundle is replicated across the

chip. For example, 4 copies of MP1 would run in a 32-core

configuration.

SWAP needs an estimate of the application’s cache miss

rate vs. capacity curve (MRC), which is used by the looka-

head algorithm to produce the optimal size of each partition

(described in Section III-B). In server-class environments,

126

profile information can be obtained efficiently in a variety

of ways, as addressed elsewhere [8]–[10]. Alternatively, it

could be collected using additional hardware support (e.g.,

UMON [30]). In this paper, we use the applications’ miss-

per-kilo-cycle (MPKC) profile, by sampling 30 different cache

way+color configurations, with {1, 2, 4, 8, 12, 16} cache ways

and {2, 4, 8, 12, 16} page colors (the effective cache capacity

ranges from 128KB to 16MB).

Besides SPEC, we also use a latency-critical workload,

namely memcached from Cloudsuite [14], to study how SWAP

guarantees QoS. Due to the lack of 10Gbit Ethernet support,

we run the memcached server and clients on the same chip to

avoid Ethernet becoming the bottleneck. Although packets are

not physically transmitted via Ethernet, they still go through

most of the OS networking layers, and therefore the cache

behavior of the memcached server remains the same. In

addition, in order to guarantee isolation between clients and

server, we allocate 2 exclusive cache ways to all the client

threads, which we find is good enough to issue requests in a

timely manner. As recommended by Cloudsuite, we run one

instance of the memcached server with 4 threads, and the QoS

target is set such that 95% of the requests are serviced within

10ms [7]. The memcached client runs with 8 threads, and we

configure the issue rate to 190K requests per second1.

D. Performance Metrics

We use weighted speedup and L1 miss latency to eval-

uate our fine-grained cache partition, both of which can

be obtained by SWAP’s performance tracking thread de-

scribed above. Weighted speedup measures the overall system

throughput [13]. It is the arithmetic mean of the ratio between

IPC shared
i and IPC alone

i for all applications i, where IPC shared
i

is the IPC obtained while running application i in a loaded

system, and IPC alone
i is the IPC when running unmolested.

We also use L1 miss latency to show the source of per-

formance improvement. L1 miss latency directly correlates

with the number of cycles that processor pipeline is stalled

by long-latency memory operations, and it is computed as

L2 access latency + L2 miss rate × memory latency. An ef-

fective cache management technique should not only decrease

the L2 miss rate of each application, but also reduce the

overall memory contention, which further improves the L1

miss latency, and thus the IPC.

VI. EVALUATION

We evaluate our SWAP proposal against a Baseline con-

figuration, where the shared L2 cache is freely contended by

all 48 cores. We also compare SWAP with a best-effort cache

way partitioning (WAY) and page coloring technique (SET).

Our evaluation is done in four scenarios: First, we study the

case of static partitioning, where cache repartitioning is not

needed. Second, we study a scenario with real-time evolving

workloads, with applications coming and going, and where

the dynamic cache partitioning is involved to react to the

1We find that 190K is the maximum issue rate for the memcached server
to meet its QoS target even if it is given the entire cache.

changing cache demands. We also study the overhead of the

dynamic SWAP in the ThunderX platform. Third, we study

how SWAP guarantees the quality of service (QoS) of latency-

critical workloads, and improves the throughput of background

batch applications at the same time. Note that all of the above

experiments are done on a real ThunderX rack server. Finally,

we compare SWAP with recently proposed probabilistic cache

partitioning in the simulator.

A. Static Partitioning

In the static partitioning experiments, we run SWAP on

16, 24, 32 and 48 cores of a ThunderX 48-core processor,

with the applications bundles detailed in Section V-C. SWAP

first reads the MPKC profile of each application, and then

computes the size, shape, and placement of each core’s cache

partition in the shared L2, based on the algorithm discussed

in Section III-B. When an application finishes before the whole

bundle has finished, the same application is again instantiated

on the same core. It naturally inherits the cache partition of

the core, and therefore no repartition is needed. When all

the applications have finished at least once, we kill all the

processes and conclude the experiment. The purpose of this

experiment is to measure the partitioning quality of SWAP.

We first compare SWAP with Baseline (no cache partition-

ing involved), and the results are shown in Figure 4. SWAP

consistently outperforms Baseline for all the bundles in all

configurations, and the improvement does not decrease with

more active cores, showing a good scalability in large-scale

CMPs. On average, SWAP improves system throughput over

Baseline by 13.9%, 14.1%, 12.5%, and 12.5% for 16-, 24-, 32-

, and 48-core configurations, respectively. We also find that,

on average, SWAP reduces the chip’s overall L1 miss latency

by 31.3%, 30.1%, 25.7%, and 17.6%, respectively.

We also compare SWAP with utility-based way partitioning

(WAY) [30] and page coloring technique (SET) [22]. Because

there are only 16 cache ways or page colors in ThunderX,

it is impossible to give a separate cache partition to each

application in either mechanism, if the number of active cores

is larger than 16.

We design a variation of way partitioning that allows for

judicious sharing of cache ways for larger configurations as

follows: We begin by reserving a small number of cache ways

as the “dump area.” Then, we run Qureshi and Patt’s lookahead

algorithm [30] to allocate the remaining cache ways. The

lookahead algorithm iteratively finds the application that has

the highest marginal utility on cache capacity, and assigns the

cache ways to it. We run such algorithm until all the cache

ways are allocated (except for the “dump” area). Then, all

the remaining applications are assigned the “dump” area. In

addition, as discussed in Section III-A, a partition with one

cache way usually introduces an excessive number of conflict

misses, hurting the application’s performance. As a result, we

adopt an approach similar to what Liu et al. propose [24],

which coalesces the neighboring partitions if one of the them

has only 1 cache way. Such coalescing rule greatly helps

127

95 %

100 %

105 %

110 %

115 %

120 %

125 %

130 %

135 %

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 AVG
30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

110 %
W

ei
gh

te
d

S
pe

ed
up

WAY SET SWAP WAY SET SWAP

(a) 16 cores

95 %

100 %

105 %

110 %

115 %

120 %

125 %

130 %

135 %

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 AVG
30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

110 %

N
or

m
al

iz
ed

 L
1

M
is

s
La

te
nc

y

WAY SET SWAP WAY SET SWAP

(b) 24 cores

95 %

100 %

105 %

110 %

115 %

120 %

125 %

130 %

135 %

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 AVG
40 %

50 %

60 %

70 %

80 %

90 %

100 %

110 %

120 %

W
ei

gh
te

d
S

pe
ed

up

WAY SET SWAP WAY SET SWAP

(c) 32 cores

95 %

100 %

105 %

110 %

115 %

120 %

125 %

130 %

135 %

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 AVG
40 %

50 %

60 %

70 %

80 %

90 %

100 %

110 %

120 %

N
or

m
al

iz
ed

 L
1

M
is

s
La

te
nc

y

WAY SET SWAP WAY SET SWAP

(d) 48 cores

Fig. 4: Comparison of system throughput (weighted speedup) and L1 miss latency for Baseline, WAY, SET and SWAP. Both
weighted speedup and L1 miss latency are normalized to Baseline. The bars show the weighted speedup, while the lines show
the L1 miss latency normalized to baseline.

reduce conflict misses, and we find it significantly improves

the performance of WAY.

We also study the effect of varying the size of the “dump

area” from 2 to 6MB. We find that in general, the “dump

area” should be as small as possible. For 16, 24, and 32 cores,

reserving 2 ways performs the best. However, for 48 cores,

reserving 4 ways produces the most speedup because there

are more than 30 applications in such “dump area.”

Our coarse-grained page coloring scheme (SET) works

similarly to WAY. However, because constraining the page

colors also limits the amount of physical memory accessible

by the applications, more colors should be reserved to avoid an

out-of-memory error (OOM). Our study shows that reserving

2, 4, 4, and 6 colors can prevent OOM and produce the

most speedup for 16-, 24-, 32-, and 48-core configurations

respectively.

Figure 4 shows the weighted speedup of WAY, SET, and

SWAP normalized to Baseline. Although WAY and SET

perform well at small core counts, their partitioning quality

degrades as the number of active cores increases. We look

closely at a representative bundle MP10; Figure 5 shows the

normalized IPC and L1 miss latency of each application in

the bundle in 24- and 48-core configurations. In the 24-core

configuration, both SET and WAY can provide a 2MB partition

for each instance of the cache sensitive application vpr. SWAP,

on the other hand, can provide a tighter 1.5MB partition to

each instance of vpr, and the resulting savings are given to

another sensitive application, mcf (whose partition is in the

dump area under SET and WAY). Although this improves

the overall system throughput by only 2% in the 24-core

configuration, the effect is amplified at higher core counts.

Moreover, by reducing the overall L2 miss rate, SWAP greatly

alleviates memory contention in the 48-core configuration, and

thus helps even the non-sensitive applications. As a result,

SWAP leads SET and WAY by 16%. Overall, SWAP outper-

forms WAY and SET by 4.36%, 5.44%, 4.3%, and 7.14%,

respectively, for 16-, 24-, 36-, and 48-core configuration.

B. Dynamic SWAP with Changing Workloads

It is not necessary to invoke cache repartition in the static

experiments so far, because the application running on each

core is fixed for each bundle. In this section, we evaluate

SWAP in a dynamic scenario where workloads that come and

go. Again, we keep the number of active cores to be fixed (16,

32, and 48 for this experiment). Instead of running a fixed

bundle, we generate a long sequence of SPEC applications,

and we inject the applications from the top of the sequence to

the system until the number of active cores reaches the desired

number. When an application finishes, we fetch the next appli-

cation from the sequence, and schedule it to the currently idle

core. This is similar to the scenario in clusters or data centers,

where a sequence of applications is waiting in the task queue

128

60 %

80 %

100 %

120 %

140 %

160 %

180 %

200 %

220 %

mcf x1

mcf x2

milc x3

soplex x3

h264ref x3

vpr x1
vpr x2

libquantum x3

perlbench x3

leslie3d x3

0 %

20 %

40 %

60 %

80 %

100 %

120 %

140 %

160 %
IP

C

WAY
SET
SWAP

WAY
SET
SWAP

(a) 24 cores

60 %

80 %

100 %

120 %

140 %

160 %

180 %

200 %

220 %

mcf x2

mcf x4

milc x6

soplex x6

vpr x6
perlbench x2

perlbench x4

h264ref x6

libquantum x6

leslie3d x6

0 %

35 %

70 %

105 %

140 %

175 %

210 %

245 %

280 %

N
or

m
al

iz
ed

 L
1

M
is

s
La

te
nc

y

WAY
SET
SWAP

WAY
SET
SWAP

(b) 48 cores

Fig. 5: The breakdown of a sample bundle MP10 running on 24 and 48 cores in ThunderX. The bars show the IPC (normalized
to IPCalone), and the lines show the normalized L1 miss latency of each application.

Fig. 6: Real time throughput of Baseline, SET and SWAP of
Sequence 2 in the 48-core case over time (seconds).

for available cores. Because the new application may show

different cache characteristics, dynamic cache repartitioning is

desirable. For example, assume that an application with a large

cache partition completes, and that a cache-insensitive one is

introduced into the system. The unwanted cache capacity of

the new application will be re-distributed to the other cores in

the system, which triggers a system-wide repartition.

For our 16-, 32-, and 48-core configurations, we construct

a sequence of 32, 64, and 96 applications, respectively, which

contains a mix of applications in different categories (I, S, T).

All the applications in the sequence have to finish at least once,

and when all of them finish, we terminate the experiment and

report the system throughput of the entire sequence. When the

fetch reaches the end of the sequence, it will start over from

the head of the sequence, and therefore no core will be idle.

We construct two sequences, both of which include 16

distinct SPEC benchmarks (out of 22 that we use in this paper).

Table III shows the SWAP’s improvement over Baseline and

WAY in terms of weighted speedup. SWAP improves the

weighted speedup by 8% and 17% for the two sequences in the

16-core cases, and the improvements increase to 11% and 20%

for the sequences in the 32-core cases. Although WAY does

fairly well in the 16-core sequences, its partition quality drops

significantly beyond that. Besides the scalability issue of WAY

TABLE III: Comparison of system throughput (weighted
speedup normalized to Baseline) for SET, WAY, and SWAP
in the dynamic experiment.

Cores Seq WAY SET SWAP Avg. Inj interval

16
1 1.04x 1.02x 1.08x 46s
2 1.11x 1.04x 1.17x 41s

32
1 0.97x 1.04x 1.11x 31s
2 1.04x 1.02x 1.20x 25s

48
1 0.92x 0.99x 1.11x 34s
2 1.00x 1.03x 1.15x 25s

and SET discussed in the static experiment in Section VI-A,

another important reason for the poor performance is that the

application’s injection rate is much higher (shown in Table III)

with a higher core count. An application may be be frequently

moved in and out from the “dump” area, which significantly

hurts performance. Figure 6 shows the real-time throughput

(sum of IPC) of SWAP vs. Baseline and SET. It is clear that

SWAP outperforms Baseline and SET most of the time, as it

“runs ahead” of Baseline and SET.

C. SWAP Overhead

This section studies the overhead of our SWAP approach.

The overhead comes from two sources: (1) the execution time

of the SWAP algorithm, which decides the allowable cache

region of each core; and (2) the overhead of page recoloring,

which involves migrating pages of an application from its old

colors to the new ones.

1) Algorithm Overhead: As is described in Section III-B,

SWAP first runs the lookahead algorithm [30] to decide the

optimal partition size of each core, followed by our proposed

placement technique to decide the actual cache region. The

complexity of the lookahead algorithm is O(N2), where N
is the number of active cores in the chip. Our placement

technique, which involves sorting all partitions by their size,

has a complexity of O(Nlog(N)).
Figure 7 shows the distribution of the execution time of the

SWAP mechanism in 16-, 32-, and 48-core configurations. As

is shown in Figure 7a, on average, the overall SWAP algorithm

129

(a) SWAP (b) Placement

Fig. 7: Execution time distribution of the overall SWAP,
and the placement algorithm (i.e., what specific colors each
application gets) in 16-, 32-, and 48-core CMP.

consumes 2, 6, and 8 ms for 16-, 32-, and 48-core CMP (12ms

in the worst case), which is negligible compared with the

25s repartition interval. Figure 7b shows the execution time

of our placement technique (i.e., what specific colors each

application gets) across different configurations. Although it

increases linearly, it takes less than 0.15 ms even for the 48-

core configuration.

2) Recoloring Overhead: Our SWAP algorithm tries to

avoid recoloring by taking the previous color assignment into

consideration. However, recoloring is sometimes unavoidable

to produce high quality cache partitions, and therefore we

study the overhead of recoloring by micro-benchmarking. In

the micro-benchmark, we actively recolor 50% of the pages

for each SPEC application every 20s, and record the system

time of that application. We consider the system time to be

the aggregated overhead of page recoloring. 2 Table IV shows

the overhead of some sample applications. The overhead per

recoloring heavily depends on the number of pages being

migrated. For the applications with a large memory footprint

(e.g., bwaves migrates 70K pages), the overhead is about

200ms. For the applications that migrate a few thousand pages,

the overhead is negligible. In any case, the overhead is small

compared with the 25s application repartition interval in our

setup.

TABLE IV: Recoloring Overhead

app total # page overhead per
recolored repartition (ms)

bwaves 71400 213.00
leslie3d 8000 28.00
bzip2 4900 11.00

gobmk 1350 8.00
gromacs 1100 4.00

D. Providing QoS Guarantees

A number of studies have found that the utilization of

most datacenter servers are low, and a primary reason is that

the load of popular latency-critical (LC) workloads varies

significantly due to diurnal patterns and unpredictable spikes

2This is a conservative estimation, because we account all the system time
to be the overhead of recoloring.

(a) Shared cache (b) Exclusive cache

Fig. 8: Real time 95th tail latency of memcached co-running
with 16-app bundle MP1 over wall clock time (second), with
QoS as 10ms.

90 %

95 %

100 %

105 %

110 %

115 %

120 %

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 AVG
W

ei
gh

te
d

S
pe

ed
up

WAY SWAP

Fig. 9: Comparison of system throughput (weighted speedup)
of the background 16-app bundle for WAY and SWAP, when
the QoS of memcached is satisfied. Weighted speedup is
normalized with Baseline.

in user accesses [3]. A promising way to improve server

utilization is to launch batch workloads on the background

to exploit the unused hardware resources [25]. A key to this

approach is that the QoS of the LC workloads should not be

affected by the batch workloads. In this section, we propose

to use SWAP to maximize the background batch workloads,

with a prerequisite of guaranteeing the QoS of a popular LC

workload memcached.

The memcached setup is described in Section V-C. We

use the multi-programmed 16-app SPEC bundles detailed

in Table II as the batch workloads. In order to guarantee QoS

of memcached, we allocate an independent cache partition

to the memcached server to avoid interference. In addition,

the capacity of such partition has to be dynamically adjusted

to satisfy the QoS. We adopt a feedback-based mechanism

similar to the one proposed by Lo et al. [25], which reads

the tail latency every 30s. We start with two cache ways for

the memcached server, and when the QoS is not met, we

increase the size of its partition by one cache way. When

QoS is met for a period of time (10 minutes in our setup),

we decrease the partition size to explore whether the QoS can

still be met. Figure 8 shows the tail latency of memcached over

time when the server either shares cache with a sample 16-

app SPEC bundle MP1, or owns its exclusive cache partition

130

whose size is dynamically adjusted. We find that QoS (95th

tail latency at 10ms) is frequently violated in the case of

shared cache, but is satisfied most of the time in the exclusive

cache case. A few spikes exist in Figure 8b because: (1) the

background applications exert higher memory pressure due to

phase change, which increases the penalty of L2 misses that

is no longer tolerable by memcached; (2) the partition size of

memcached is reduced for exploration (discussed above). In

either case, our feedback-based mechanism reacts fast enough

to reduce the tail latency to normal.

We use SWAP and WAY to partition the remaining cache

capacity among the background SPEC applications, and com-

pare them with a Baseline where all the SPEC applications

share the cache capacity left by memcached.3 Note that the

partition of memcached server can only be adjusted by cache

ways, because the overhead of recoloring its pages is too

much to guarantee QoS. As a result, we exclude SET in this

study. Figure 9 shows the system throughput of ten 16-app

bundles managed by WAY and SWAP. Although memcached

occupies a non-trivial amount of cache space, SWAP is still

able to provide enough granularity to partition the cache space,

resulting in 8.10% improvement in system throughput on

average over Baseline. This almost doubles the improvement

of WAY, which suffers from the limited granularity.

E. SWAP vs. Probabilistic Cache Partition

Probabilistic cache partition mechanisms [34], [41] have

been proposed as a scalable cache management technique

for large CMPs. However, to the best of our knowledge, all

those proposals require non-trivial hardware changes that are

currently unavailable on real processors. Therefore, in order

to compare against probabilistic cache partition mechanisms,

we implement SWAP in architectural simulator SESC [31].

However, we run into a dilemma: on one hand, simulation is

multi-order of magnitude slower than real machine execution,

and we can only simulate 100M instructions due to the time

constraints. This is equivalent to less than 1 second of actual

execution, which is almost negligible compared with hours of

running in our real machine experiment; on the other hand,

the overhead of SWAP is at the order of milliseconds, and

we have to simulate long enough to amortize this overhead.

As a result, in SESC, we ignore the two sources of SWAP

overhead described in Section VI-C, and focus on whether

SWAP is able to provide the same quality of management

as those probabilistic cache partition mechanism. Other over-

heads, such as cache and TLB flush due to page migration, are

faithfully modelled. Note that the results of our real machine

studies include all the SWAP overheads.

We compare SWAP with traditional Unmanaged LRU pol-

icy; Futility Scaling [41], which is a recently proposed proba-

bilistic cache partition mechanism that maintains fine-grained

partition using a feedback control mechanism; and utility-

based way partitioning (UCP) [30] with a highly-associative

cache. The architectural configuration is the same as ThunderX

3SWAP recolors pages that belong only to SPEC applications.

100 %

105 %

110 %

115 %

120 %

125 %

130 %

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10 AVG

W
ei

gh
te

d
S

pe
ed

up

SWAP
UCP-64
UCP-64-Ideal

FS
FS-32

Fig. 10: Simulated results of a simplified SWAP model (Sec-
tion VI-E) vs. Futility Scaling (FS) and Utility-based Cache
(way) Partitioning (UCP) with a highly associative cache.

processor described in Section V-A, with 32 active cores. The

shared L2 cache is 16MB with 16 ways, unless specified oth-

erwise. The application bundles are the same as the previous

real machine study.

Figure 10 shows the system throughput (weighted speedup),

normalized to Unmanaged LRU policy. We first compare with

UCP, which partitions the cache by ways. To give an indepen-

dent partition to each core, we evaluate UCP with 64 cache

ways, for which Cacti [28] reports a 25% increase in access

latency compared to 16 cache ways in ThunderX. UCP-ideal

assumes the same access latency. Figure 10 shows that SWAP

outperforms UCP in 8 out of 10 bundles, which shows that

SWAP with 16 cache ways provides a finer granularity than

UCP with 64 ways. The reason why UCP slightly outperforms

SWAP on bundle MP3 and MP4 is that SWAP constrains the

shape of each partition, thus not all partition sizes are allowed

(e.g., the partition size is a multiple of its number of colors).

We then compare SWAP with Futility Scaling (FS) [41].

FS maintains a “futility” index of each cache line, and evicts

cache lines with the maximum futility among the replacement

candidates in the same set. Theoretically, FS is able to maintain

the partition size at the granularity of lines. However, we find

SWAP outperforms FS for 7 out of 10 bundles. This is because

with 16 cache ways, the number of replacement candidate (16)

is not large enough to include all the lines with large futility

indices. As a result, we evaluate FS with 32 cache ways (FS-

32), and we find that SWAP achieves comparable performance

improvement. In addition to requiring fewer cache ways,

SWAP does not require any extra hardware and is readily

available in commercial processors, without giving up any

performance improvement.

VII. CONCLUSION

We have proposed SWAP, a fine-grained cache management

technique that seamlessly combines set and way partitioning

with minimum hardware support. SWAP can successfully

provide hundreds of fine-grained cache partitions to achieve

effective cache partitioning in the manycore era. We have

prototyped SWAP on a real 48-core Cavium ThunderX-based

machine running Linux, and shown average speedups over no

131

cache partitioning that are twice as large as those attained with

way partitioning alone.

ACKNOWLEDGMENTS

The authors would like to thank Bryan Chin and Srilatha

Manne for their valuable insight, and the anonymous reviewers

for their feedback. This work was supported in part by AFOSR

Award FA9550-15-1-0311; a research contract with, and an

equipment gift from Cavium; and a gift from Qualcomm. Jeff

Setter contributed to this work as an undergraduate student at

Cornell, and he was supported in part by Cornell’s Engineering

Learning Initiatives program.

REFERENCES

[1] D. H. Albonesi. Selective cache ways: On-demand cache resource
allocation. In Intl. Symp. on Microarchitecture (MICRO), 1999.

[2] AnandTech. ARM Challenging Intel in the Server Market: An
Overview. http://www.anandtech.com/show/8776/arm-challinging-intel-
in-the-server-market-an-overview/4, 2014.

[3] L. A. Barroso and U. Hölzle. The datacenter as a computer: An
introduction to the design of warehouse-scale machines. Synthesis
lectures on computer architecture, 4(1):1–108, 2009.

[4] N. Beckmann and D. Sanchez. Jigsaw: scalable software-defined caches.
In Intl. Conf. on Parallel Architectures and Compilation Techniques
(PACT), 2013.

[5] D. J. Bernstein. Cache-timing attacks on AES, 2005.
[6] Cavium Inc. ThunderX Family of Workload Optimized Processors.

http://www.cavium.com/pdfFiles/ThunderX PB p12 Rev1.pdf, 2013.
[7] Cloudsuite. Cloudsuite.

http://cloudsuite.ch/datacaching/.
[8] C. Delimitrou and C. Kozyrakis. The Netflix challenge: Datacenter

edition. Computer Architecture Letters (CAL), 2013.
[9] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware scheduling for

heterogeneous datacenters. In Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2013.

[10] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and QoS-
aware cluster management. In Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2014.

[11] DigitalOcean. Transparent huge pages and alternative memory
allocators: A cautionary tale.
https://www.digitalocean.com/company/blog/transparent-huge-pages-
and-alternative-memory-allocators/.

[12] M. Dillon. Page coloring optimizations.
http://www.freebsd.org/doc/en US.ISO8859-1/articles/vm-design/page-
coloring-optimizations.html.

[13] S. Eyerman and L. Eeckhout. System-level performance metrics for
multiprogram workloads. IEEE MICRO, 28(3):42–53, 2008.

[14] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. Clearing the
clouds: a study of emerging scale-out workloads on modern hardware.
In Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2012.

[15] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal,
and R. Iyer. Cache QoS: from concept to reality in the Intel Xeon pro-
cessor E5-2600 v3 product family. In Intl. Symp. on High Performance
Computer Architecture (HPCA), 2016.

[16] IBM Inc. 64KB pages on Linux for Power systems.
https://www.ibm.com/developerworks/community/wikis/home?lang=
en#!/wiki/Welcome+to+High+Performance+Computing+(HPC)
+Central/page/64KB+pages+on+Linux+for+Power+systems, 2012.

[17] R. H. Inc. Huge pages and transparent huge pages.
https://access.redhat.com/documentation/en-US/Red Hat Enterprise
Linux/6/html/Performance Tuning Guide/s-memory-transhuge.html.

[18] V. Karakostas, O. S. Unsal, M. Nemirovsky, A. Cristal, and M. Swift.
Performance analysis of the memory management unit under scale-out
workloads. In IEEE Intl. Symp. on Workload Characterization (IISWC),
2014.

[19] R. E. Kessler and M. D. Hill. Page placement algorithms for large
real-indexed caches. ACM Trans. Comput. Syst., 1992.

[20] K. Kirkconnell. Often overlooked linux os tweaks.
http://blog.couchbase.com/often-overlooked-linux-os-tweaks.

[21] H. Lee, S. Cho, and B. R. Childers. Cloudcache: Expanding and
shrinking private caches. In Intl. Symp. on High Performance Computer
Architecture (HPCA), 2011.

[22] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining
insights into multicore cache partitioning: Bridging the gap between
simulation and real systems. In Intl. Symp. on High Performance
Computer Architecture (HPCA), 2008.

[23] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A software
memory partition approach for eliminating bank-level interference in
multicore systems. In Intl. Conf. on Parallel Architectures and Compi-
lation Techniques (PACT), 2012.

[24] L. Liu, Y. Li, Z. Cui, Y. Bao, M. Chen, and C. Wu. Going vertical
in memory management: Handling multiplicity by multi-policy. In Intl.
Symp. on Computer Architecture (ISCA), 2014.

[25] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis.
Heracles: Improving resource efficiency at scale. In Intl. Symp. on
Computer Architecture (ISCA), 2015.

[26] R. Manikantan, K. Rajan, and R. Govindarajan. Probabilistic shared
cache management (PriSM). In Intl. Symp. on Computer Architecture
(ISCA), 2012.

[27] MongoDB. Disable transparent huge pages (thp).
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/.

[28] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Cacti 6.0: A
tool to model large caches. HP Laboratories, 2009.

[29] B. Pham, J. Veselỳ, G. H. Loh, and A. Bhattacharjee. Large pages and
lightweight memory management in virtualized environments: can you
have it both ways? In Intl. Symp. on Microarchitecture (MICRO), 2015.

[30] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches. In Intl. Symp. on Microarchitecture (MICRO), 2006.

[31] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos. SESC simulator,
January 2005. http://sesc.sourceforge.net.

[32] R. H. Saavedra, R. S. Gaines, and M. J. Carlton. Micro benchmark
analysis of the KSR1. In ACM/IEEE Conf. on Supercomputing, 1993.

[33] D. Sanchez and C. Kozyrakis. The zcache: Decoupling ways and
associativity. In Intl. Symp. on Microarchitecture (MICRO), 2010.

[34] D. Sanchez and C. Kozyrakis. Vantage: scalable and efficient fine-grain
cache partitioning. In Intl. Symp. on Computer Architecture (ISCA),
2011.

[35] T. Sherwood, B. Calder, and J. Emer. Reducing cache misses using
hardware and software page placement. In Intl. Conf. on Supercomputing
(ICS), 1999.

[36] Standard Performance Evaluation Corporation. SPEC CPU2000.
http://www.spec.org/cpu2000/, 2000.

[37] Standard Performance Evaluation Corporation. SPEC CPU2006.
http://www.spec.org/cpu2006/, 2006.

[38] G. E. Suh, S. Devadas, and L. Rudolph. A new memory monitoring
scheme for memory-aware scheduling and partitioning. In Intl. Symp.
on High Performance Computer Architecture (HPCA), 2002.

[39] The OVH group labs. ARM Cloud.
https://www.runabove.com/armcloud.xml, 2016.

[40] D. M. Tullsen and J. A. Brown. Handling long-latency loads in a simul-
taneous multithreading processor. In Intl. Symp. on Microarchitecture
(MICRO), 2001.

[41] R. Wang and L. Chen. Futility scaling: High-associativity cache
partitioning. In Intl. Symp. on Microarchitecture (MICRO), 2014.

[42] X. Wang and J. F. Martı́nez. Xchange: A market-based approach to
scalable dynamic multi-resource allocation in multicore architectures.
In Intl. Symp. on High Performance Computer Architecture (HPCA),
2015.

[43] X. Wang and J. F. Martı́nez. ReBudget: Trading off efficiency vs. fair-
ness in market-based multicore resource allocation via runtime budget
reassignment. In Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2016.

[44] S. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. Vijaykumar. An
integrated circuit/architecture approach to reducing leakage in deep-
submicron high-performance i-caches. In Intl. Symp. on High Perfor-
mance Computer Architecture (HPCA), 2001.

[45] S.-H. Yang, M. D. Powell, B. Falsafi, and T. Vijaykumar. Exploiting
choice in resizable cache design to optimize deep-submicron processor
energy-delay. In Intl. Symp. on High Performance Computer Architecture
(HPCA), 2002.

[46] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache
partitioning system using page coloring. In Intl. Conf. on Parallel
Architectures and Compilation Techniques (PACT), 2014.

[47] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. PALLOC: Dram
bank-aware memory allocator for performance isolation on multicore
platforms. In IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, 2014.

[48] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page
coloring-based multicore cache management. In European conference
on Computer systems (EuroSys), 2009.

132

