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ABSTRACT
Though the prime target of multicore architectures is parallel and
multithreaded workloads (which favors maximum core count), exe-
cuting sequential code fast continues to remain critical (which ben-
efits from maximum core size). This poses a difficult design trade-
off. Core Fusion is a recently-proposed reconfigurable multicore
architecture that attempts to circumvent this compromise by “fus-
ing” groups of fundamentally independent cores into larger, more
aggressive processors dynamically as needed. In this way, it ac-
commodates highly parallel, partially parallel, multiprogrammed,
and sequential codes with ease. However, the sequential perfor-
mance of the original fused configuration falls quite short of an
area-equivalent, monolithic, out-of-order processor.

This paper effectively eliminates the fusion deficit for sequen-
tial codes by attacking two major sources of inefficiency: collec-
tive commit and instruction steering. We demonstrate in detail that
these modifications allow Core Fusion to essentially match the per-
formance of an area-equivalent monolithic out-of-order processor.
The implication is that the inclusion of wide-issue cores in future
multicore designs may be unnecessary.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architectural Styles—
adaptable architectures; B.7.1 [Integrated Circuits]: Types and
Design Styles—microprocessors and microcomputers

Keywords
microarchitecture, multicore, software diversity, Core Fusion, col-
lective commit, instruction steering, genetic programming

1. INTRODUCTION
Core Fusion [16] is a recently-proposed reconfigurable multi-

core architecture where four fundamentally independent two-issue
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out-of-order cores can fuse on demand into larger “supercores.”
Core Fusion supports software diversity because it may be con-
figured for fine-grain parallelism (by providing more lean cores),
coarse-grain parallelism and multiprogramming (by providing few-
er, but more powerful 4-issue supercores, up to capacity), and se-
quential execution (by executing on one 8-issue supercore). Core
Fusion scales with the number of cores on chip not by providing
ever-wider-issue supercores, but by providing the ability to instan-
tiate more supercores simultaneously.

The original paper compares Core Fusion against a multitude of
competing symmetric and asymmetric multicore configurations of
different granularities for sequential, multiprogrammed, and paral-
lel codes. In all cases, Core Fusion is either the fastest or second
fastest configuration; and all other configurations trail significantly
from Core Fusion in performance for at least one type of workload.
Moreover, for codes with significant parallel and serial sections,
Core Fusion’s dynamic reconfiguration capability compares favor-
ably against any other static design.

However, the original paper also shows that, when executing se-
quential code, Core Fusion’s performance is still noticeably lower
than that of an area-equivalent monolithic out-of-order processor.
This paper effectively eliminates Core Fusion’s sequential perfor-
mance deficit by attacking two major sources of its inefficiency—
distributed commit (through efficient ROB storage) and remote op-
erand communication (through improved instruction steering). We
generate transistor-level netlists and simulate the circuit using
HSPICE, verifying that our proposed steering mechanism operates
within a single cycle with margins in a 4 GHz implementation at
22 nm.

We show that the performance of our improved Core Fusion ar-
chitecture is within 98% of that of an area-equivalent monolithic
out-of-order processor for both SPEC2000 Int and FP applications
(vs. 88% and 82%, respectively, for the original Core Fusion pro-
posal). The implication of this result is that the inclusion of wide-
issue cores in future multicore designs may effectively be unnec-
essary, since a Core Fusion organization can now match their se-
quential performance when needed while retaining the ability to
offer fine-grain parallelism on demand.

2. BACKGROUND: CORE FUSION
Core Fusion [16] provides the capability to dynamically fuse

four two-issue out-of-order cores to form a large “supercore” with
up to four times the fetch, execute, and commit width, as well as
four times the aggregate cache and branch prediction capacity (Fig-
ure 1). In this section, we provide an abridged, non-comprehensive
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Figure 1: Conceptual depiction of an eight-core Core Fusion
chip (not an actual floorplan). At left, four independent cores
are fused to form a larger “supercore.” To the right of them,
two independent cores are fused into a smaller “supercore.”
The two rightmost cores are shown operating independently as
distinct processing elements.

summary of the behavior of Core Fusion in fused mode as proposed
originally; more details can be found in that paper.
Collective Fetch — When a four-core group transitions into fused
mode, their instruction caches are flushed and they begin fetch-
ing code in a distributed fashion: On an instruction cache miss, a
cache block of eight words is distributed across the four cores (a
two-word sub-block for each core), and the tag for the cache block
is replicated across cores. A centralized fetch management unit
(FMU) coordinates collective fetch by receiving and communicat-
ing fetch information across cores. The collective fetch mechanism
allows each core to fetch two instructions every cycle. Instruction
fetch is aligned: Core 0 is responsible for the oldest two instruc-
tions, Core 1 for the next two, and so on. On a branch or jump,
the oldest instruction in the fetch group might not be mapped to
Core 0. In such cases, to preserve fetch alignment, the appropriate
lower order cores skip fetch for that cycle. On a branch, the appro-
priate core accesses its own branch predictor, and BTB prediction
table events are communicated to all other cores along with the tar-
get program counter. When events occur that stall the front end or
require a pipeline flush (e.g. branch mispredictions, replay traps,
fetch stalls), the cores send the program counter of the instruction
causing the event to the FMU, which coordinates either the flush or
stall by sending appropriate messages to each core.
Steer & Rename — After fetch, each core pre-decodes two in-
structions and sends the source and destination register specifiers
to a common steering management unit (SMU). The SMU stage in
the pipeline is similar to the rename stage of an out-of-order su-
perscalar processor. It includes the rename map table and free lists
for register allocation. Additionally, the SMU is also responsible
for distributing instructions across cores. For this, the SMU uses
a global steering table, which keeps track of the mapping between
architectural registers and cores. The steering logic responsible for
assigning instructions to cores also resides with the SMU. No more
than two instructions are dispatched to each core every cycle. The
SMU is also responsible for generating copy instructions to trans-
fer operands to consumers that are not co-located with their pro-
ducers. The copy instruction injection bandwidth is restricted to
two per core, per cycle. The original paper identifies the overhead
associated with remote operand communication between producer-
consumer pairs steered to different cores as one important source
of performance degradation (which we improve in this paper).
Collective Execution — Once the instructions have been steered
and renamed, they are sent to their respective back ends based on
the steering decisions. The cores make use of an operand cross-
bar to support remote operand communication using the SMU-
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Figure 2: In this distributed ROB, a fetch group with four in-
serted NOPs is preparing to commit. The pair in ROB 1 is not
ready to commit, so it broadcasts a a Stall signal to the other
ROBs. Pre-commit and ROB heads are spaced to match the
communication delay; the signal arrives just in time to prevent
the other cores’ pairs from committing. When the pair in ROB
1 becomes ready, a Resume signal is broadcast as the pair ad-
vances to the ROB head. The delay matching allows all of the
ROBs to retire the entire fetch group in sync.

generated copy instructions. Additionally, the back end also in-
cludes copy-in and copy-out queues for incoming and outgoing
copy instructions, respectively.
Collective Memory Access — Memory accesses are handled by
the cores’ data caches and load-store queues in a distributed fash-
ion, using a bank-by-address approach. This allows the architecture
to keep data coherent without requiring data cache flushes after dy-
namic reconfiguration, and to elegantly support store forwarding
and speculative loads. The core issuing each load/store is deter-
mined using the effective address, and memory disambiguation is
handled mostly locally at that core. Because effective addresses are
generally not known when instructions are steered, a bank predic-
tion mechanism is employed.
Collective Commit — The four cores can synchronously commit a
fetch group of eight instructions (two per core) in one cycle. When
instruction commit is blocked in one of the cores, commit of the
fetch group in all cores must be stalled to guarantee (later) syn-
chronous commit. This is done via Stall/Resume signals. Each
ROB is equipped with a pre-commit head pointer placed ahead of
the actual ROB head. Instruction pairs that are not ready to commit
at the time they reach the pre-commit head will stall in place and
send Stall signals to the other cores. Once they are ready, they send
Resume signals to the other cores and continue moving toward the
ROB head. The number of ROB entries between the pre-commit
head and the actual ROB head is enough to cover the number of
cycles it takes for the Stall/Resume signal to reach the other cores
(2 cycles, requiring 4 entries).

In the next few sections we discuss two sources of inefficien-
cies in the Core Fusion pipeline and provide solutions to overcome
them.

3. DISTRIBUTED COMMIT
Recall that, to simplify collective commit, Core Fusion commits

one fetch group at a time (eight instructions, two per core). How-
ever, fetch groups are often not filled up to capacity, due to branch
mispredictions and PC redirections after predict-taken branches.
When this happens, Core Fusion inserts NOPs into the ROBs at
the end of the fetch stage, so that each fetch group still occupies
exactly two slots in each core’s ROB.

Figure 2 shows an example of a fetch group padded with NOPs.
The second instruction in ROB 1’s pair is the target of a branch (not
shown); thus, the ROB slots that precede this instruction are filled
with NOPs to preserve alignment. Also, the first instruction in ROB
3’s pair is a taken branch, and thus the subsequent instructions in
the fetch group (only one in this case) have been nullified.
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Figure 3: Percentage of ROB entries occupied by NOPs when
instruction fetch stalls due to a full ROB while running SPEC-
Int applications. GP stands for the steering algorithm derived
from genetic programming (see Section 4).

The main downside of this approach is that the effective size of
a core’s ROB may be significantly reduced because of NOP inser-
tions. Figure 3 shows that during fetch stalls caused by a full ROB,
on average, 60% of the ROB entries are taken up by NOPs for
SPEC-Int applications (CF-Naive shows the original Core Fusion
mechanism). The original Core Fusion proposal already identifies
NOP insertions as one important source of performance degrada-
tion [16]. In this section, we propose three new mechanisms to
achieve synchronous commit of fetch groups while reducing the
storage overhead of fetch group alignment in the ROBs. We do this
by compacting the representation of such NOPs in the ROBs.
CF-Naive — This is the mechanism in the original Core Fusion
proposal. NOPs inserted at the end of fetch for fetch group align-
ment occupy one ROB entry each, taking up to two ROB slots per
core per fetch group. The top row of Figure 4 shows possible ways
in which an instruction pair can be represented in a core’s ROB
according to this scheme.
CF-Compact — In this organization, an attempt is made to lessen
storage overhead for the NOP+NOP pair case as follows: (i) Le-
gitimate instruction pairs in each core take up two ROB slots as
usual. (ii) A NOP+instruction pair is encoded by systematically
storing the instruction in the first ROB slot, followed by the NOP.
This is true even for a misaligned fetch where, strictly speaking,
the inserted NOP should precede the instruction; notice that such
reordering does not change the program semantics in any case. (iii)
A NOP+NOP pair is encoded by a single NOP in the first ROB
slot, in which case the second ROB slot becomes the first ROB slot
for the next pair. When pre-commit and ROB heads encounter a
pair for which the first ROB slot contains a NOP, they can easily
recognize that the NOP encodes a NOP+NOP pair (case iii), and
when appropriate they move one slot forward (instead of the usual
two) in order to process the next pair. Thus, the Compact configu-
ration halves the ROB storage requirement for the NOP+NOP pair
case. The second row of Figure 4 shows possible ways in which
an instruction pair can be represented in a core’s ROB according to
CF-Compact.
CF-Extended — In this organization, each ROB slot is extended
with one NOP bit. (i) Legitimate instruction pairs in each core still
take up two ROB slots as always; their NOP bits are set to zero. (ii)
A NOP+instruction pair is encoded in a single ROB slot, by having
the instruction take up the ROB slot and setting the NOP bit. (iii)
The NOP+NOP pair is also encoded in a single ROB slot, by stor-
ing a NOP in the ROB slot proper and setting the NOP bit as well.
Thus, in the Extended configuration, pairs with one or two NOPs
(cases ii and iii) can be represented with a single ROB slot. The
third row of Figure 4 shows possible ways in which an instruction
pair can be represented in a core’s ROB using this scheme.
CF-CompactExtended — In this configuration, we attempt to re-
duce the storage overhead even further for the NOP+NOP case.
Each ROB slot is again extended with one NOP bit as follows:
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Figure 4: Possible ways to encode instruction pairs, including
any inserted NOPs at the end of the collective fetch phase, in the
original (CF-Naive) and proposed ROB management schemes.

(i) As before, legitimate instruction pairs in each core take up two
ROB slots; their NOP bits are set to zero. (ii) A NOP+instruction
pair is encoded by having the instruction take up the first ROB slot
and setting the NOP bit for the next ROB slot, which becomes the
new tail of the ROB. (iii) The NOP+NOP pair is encoded, by set-
ting the NOP bit for the current ROB slot, without advancing the
ROB tail. Thus, a NOP+NOP pair does not really occupy an ROB
slot. (In situations where there are back-to-back NOP pairs, the first
NOP pair is represented by setting the NOP bit of the ROB entry,
and the second NOP pair is represented by inserting an actual NOP
instruction in the ROB entry.) The bottom row of Figure 4 shows
possible ways in which an instruction pair can be represented in a
core’s ROB according to this scheme.

At retirement, we must distinguish between the NOP+instruction
and the NOP+NOP scenarios. While retiring instructions, the head
slot of the ROB is first checked. If it contains an instruction, and
the NOP bit is not set, we retire the instruction, move the head
pointer, and check the next slot. If the second slot also contains
an instruction and the NOP bit is not set (in the case of a legit-
imate instruction pair), we retire the instruction and advance the
head pointer by one. If, however, the NOP bit is set for the second
slot, this means that the bit was set as a result of a NOP+instruction
pair, so we simply clear the NOP bit, but do not advance the ROB
head pointer. On the other hand, while checking the first slot, if we
find the NOP bit to be set, this means that the bit was set because of
a NOP+NOP pair. In such a case, we clear the NOP bit and do not
move the head pointer to the next subsequent ROB entry. Finally,
recall that a ROB slot containing a proper NOP instruction also en-
codes a NOP+NOP case. In that case, assuming that the NOP bit
was already reset during the last cycle (corresponding to the earlier
NOP+NOP pair), the head slot is retired as a second NOP+NOP
pair.

3.1 Branch Handling
Two details need to be addressed for the space-saving configura-

tions to handle branches correctly. Notice that the number of ROB
entries across cores is no longer in sync, because cores with NOPs
will now try to encode them more efficiently. This presents a prob-
lem upon branch misprediction handling, for those cores which
do not hold the offending branch: Where is the ROB slot beyond
which everything must be squashed? Fortunately, the original Core
Fusion proposal can readily accommodate this. Recall that, to keep
the Global History Register consistent across cores, Core Fusion al-
ready uses a mechanism very similar to Alpha 21264’s Outstanding
Branch Queue (OBQ) [16, 19]. In our space-saving configurations,
we can easily extend each OBQ entry with a pointer to the appro-



priate ROB entry in each core. That way, upon notification by the
FMU of a misprediction, each core can, through the OBQ, easily
identify the location beyond which everything must be squashed.

Second, for CF-CompactExtended, in the same ROB slot, we
must be careful not to mix a pre-branch NOP bit with a post-branch
instruction in those cores which do not directly store the branch
instruction. Should we allow that, on a branch misprediction, we
would be unable to figure out whether that NOP bit pertains to code
before or after the branch. To resolve this, at the time the FMU
notifies each core of a branch, if the ROB tail points to an entry with
its NOP bit set, the core resets the NOP bit and explicitly stores a
NOP in it, unequivocally making it part of the code preceding the
branch. (Later at retirement, this special case of a NOP instruction
with NOP bit = 0 can be easily recognized and processed.)

3.2 Area Analysis
The CF-Compact organization requires minimal hardware addi-

tions over CF-Naive—mainly a means for the pre-commit and ROB
heads to recognize the NOP+NOP case. There is no additional raw
storage overhead. In the CF-Extended organization, we do increase
raw storage in each core’s ROB by one bit per ROB slot. Assuming
that each ROB entry takes on the order of 50 bits (32-bit PC, 6-
bit destination register, 6-bit recycle register, 1-bit valid field, 1-bit
exception field, 4-bit interrupt field), the ROB storage overhead of
CF-Extended is 2%. (Later, in Section 6, we compensate for this
overhead by providing CF-Naive and CF-Compact with extra ROB
slots.) We also add six bits to each OBQ entry, for a total of 72
bits per core. The CF-CompactExtended has the same additional
overhead as the CF-Extended setup.

4. INSTRUCTION STEERING
Instruction steering must strike a delicate balance between min-

imizing remote operand communication and making effective use
of all cores. Excessive operand co-location in any one core re-
duces remote operand communications at the expense of load bal-
ancing. Conversely, excessive load balancing may result in high
communication overheads. Optimal instruction steering is prov-
ably NP-complete [37]. Although several heuristics have been pro-
posed and compared against each other, there is no known way to
establish a tight upper bound to instruction steering performance.
Moreover, Core Fusion’s architecture differs in important aspects
from the clustered architectures that served as context to most of
these proposals.

Rather than engaging in (yet another) “expert” analysis of a prob-
lem of such complexity using strictly human intuition, we propose
to take an automated approach. We use genetic programs (GP) [22,
23] to search for a static, high-performance steering policy that
suits our context and whose hardware implementation is simple
enough to execute within a single processor cycle. To our knowl-
edge, this is the first paper to address instruction steering systemat-
ically in this way.

4.1 Original Steering Algorithm
The original Core Fusion steering algorithm is a modified ver-

sion of the dependence-based algorithm [27]. Each steering link
has an instruction queue, drained at a rate of two instructions per
cycle (matching the destination core’s issue width). If the instruc-
tion has one operand, it is sent to the least-loaded of the queues
whose core has a copy of the source operand or producer instruc-
tion. If the instruction has two operands, it is sent to the least-
loaded queue whose core has both; if no such core exists, it is
sent to the least-loaded queue whose core contains a copy of ei-
ther source1 or source2. This algorithm considers dependencies,
copies, and load balancing, with several levels of decisions.

Algorithm 1 Improved instruction steering policy for CF-Com-
pactExtended, derived via genetic programming.

1: for all instructions in the fetch group
2: if instruction contains both source1 and source2 operands then
3: steeredCluster ← core where source1 operand produced
4: else
5: if instruction contains a source1 operand only then
6: steeredCluster ← core where source1 operand produced
7: else
8: steeredCluster ← least-loaded core (at beginning of cycle)
9: end if

10: end if
11: end for

4.2 Steering Policy Derivation

4.2.1 Genetic Programming Setup
For the GP mechanism to explore the design space of tree-based

steering policies, we first codify a set of 28 functions (which make
decisions) and 18 terminals (which assign a particular value for the
destination core). These functions and terminals are derived from
previously-proposed steering policies. Example functions include
checking the type of an instruction (e.g., if it is a branch), determin-
ing the number of valid source operands the instruction has (0, 1, or
2), checking to see if each source operand value is ready, or evaluat-
ing if the instruction is dependent on a load. Examples of terminals
include the least-loaded core (i.e., the core with the least number of
instructions in flight), the core that produced either the first source
operand or the second one, a random core, the core with the least
copy bandwidth filled, or the least-loaded core that contains a copy
of both source operands.

We use these states and terminals to come up with an initial
random population of 100 steering policies. These are then eval-
uated on a training set of three integer and three floating-point
applications from the MinneSPEC suite [21],1 using IPC as a fit-
ness function, as measured in detailed simulation models (see Sec-
tion 5). We select parent policies for the next generation using a
fitness-proportional selection methodology called tournament se-
lection, coupled with elitist selection [23]. The parent policies are
then evolved using crossover and mutation to get the next genera-
tion [22, 23, 24]. The new generation of steering policies is again
evaluated on our training set, and so forth.

We stop the training phase after evolving 200 generations, at
which point, convergence is observed. Among the policies that
perform within 2% of the best-performing policy, we manually se-
lect one whose hardware implementation is simple enough that its
latency is less than one clock period. This then becomes our policy
of choice for our final evaluation (see Section 6). We apply this pro-
cess separately for the CF-Naive, CF-Compact, CF-Extended and
CF-CompactExtended configurations (see Section 5), yielding four
steering policies that are best optimized for each case. The rest of
this section discusses the policy for CF-CompactExtended.

In order to consider the feasibility of the hardware implementa-
tion, we correlate the tree structure to the expected hardware design
as a rough approximation—a larger number of terminal nodes will
require a larger hardware area, whereas a larger tree depth requires
not only greater area, but greater latency as well. Figure 5 shows a
scatter plot of the top ten policies, plotting their tree depth versus
IPC. Of these, we select the policy in the upper left corner, mini-

1The MinneSPEC suite features reduced versions of the full SPEC CPU
2000 [10] applications, which we use in our final evaluation (see Sec-
tion 5.2). To avoid overfitting, we ensure that (a) the number of applica-
tions used in our final evaluation is significantly larger; (b) the applications
used for training are simulated for different regions of code than in our final
evaluation; and (c) we use reduced input sets for training.
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mizing complexity with near-peak performance. As we will see in
Section 4.3, simplicity will be important to make steering imple-
mentable in an aggressive 4 GHz, 22 nm pipeline design.

4.2.2 Selected Algorithm
Algorithm 1 lists the procedure for our selected policy. For every

instruction that needs to be steered, the algorithm determines the
core where its source operands are produced. If they happen to be
produced in the same core, we steer the instruction to this common
producer core. If not, we pick the core where the first operand is
produced, and steer the instruction there. If the instruction does not
have source operands, we steer it to the least-loaded core.

The resulting algorithm has a number of interesting features:
• Consumers always follow the producer instruction, even if

an operand replica may be available elsewhere. This contra-
dicts earlier proposals for instruction steering in the context
of clustered processors [1, 8, 30]. While following replicas
may improve load balancing, we identified situations where
this practice is counter-productive. Consider, for example, an
instruction I1 that produces a value consumed by otherwise
independent instructions I2a and I2b. Instruction I3 uses the
values produced by both I2a and I2b. If I2a and I2b are
steered to different cores, I3 will be forced to receive at least
one of its operands from a remote core. If, however, both I2a

and I2b are steered to I1’s core, steering I3 to that same core
easily avoids the costly remote operand communication.
• The cores’ load is not taken into account, except when there

are no operands to follow. This also contradicts some of the
earlier proposals of instruction steering [1, 3, 8]. Notice that
the way Core Fusion does instruction steering already pro-
vides a form of load balancing, by assigning a maximum of
two instructions per core, per cycle.2 In this context, the GP
procedure did not find that monitoring a core’s load was pro-
ductive in the general case.
• Algorithm 1, as depicted, favors source1 over source2 for

two-source-operand instructions (Step 3). Experiments show
that picking either operand yields the same performance. The
GP did not generate any superior algorithms that checked
both source operands (e.g., algorithms that check the load
of each operand’s core [1]), or even algorithms that picked
a source operand randomly. Thus, we favor systematically

2If the steering algorithm assigns more than two instructions from the same
fetch group to any one core, steering for subsequent fetch groups stalls until
all instructions from the current fetch group are injected. This was intro-
duced in the original Core Fusion proposal as a means to achieve a simpler
and more feasible hardware implementation.

picking the same operand because it simplifies hardware (see
Section 4.3).
• The algorithm is simple, which leads to a hardware imple-

mentation that can meet high-speed timing constraints.

4.3 Hardware Implementation
Instruction steering is a critical mechanism that cannot be easily

pipelined, as steering decisions typically must know the decisions
for immediately-preceding instructions. As a result, it is impor-
tant to demonstrate that all instructions within a fetch group can
be processed within a single cycle. Even with as few decision tree
levels as our chosen policy (see Figure 5), we find that steering fits
into a single cycle with little slack. Therefore, simplicity is of the
essence.

Steering eight instructions using Algorithm 1 requires two op-
erations: (a) determining which cores contain the registers that
source1 of each instruction references, and (b) finding the core
with the least number of instructions pending for issue. To com-
plete successfully within the given clock period, part (a) is split
into two steps—determining the cores containing the desired regis-
ters at the beginning of the cycle (before any of the current instruc-
tions are steered), and then modifying these destinations based on
read-after-write dependencies within the fetch group.

Our implementation requires four major components:
• a producer table, mapping architectural registers to cores,
• a least-loaded core circuit, which compares issue queue oc-

cupancies amongst the four cores,
• a dependency-checking circuit that tracks read-after-write

dependencies within the fetch group, and
• a destination core circuit, for aggregating the information

from the first three components and determining which core
to send the instructions to.

All combinational logic in the steering mechanism was designed
using static CMOS logic, optimized to reduce logic depth. We im-
plemented this logic using a NAND-NAND topology. We paral-
lelize many of the basic building blocks within the steering stage;
Figure 6 shows our sequence of operations. We elaborate on the
producer table and the destination core circuit in the following sec-
tions, as they fall on the critical path of the steering circuit. An area
and delay analysis is presented in Section 4.4.

4.3.1 Producer Table
The producer table is a 32x2b SRAM structure with eight read

and eight write ports. Each entry holds the ID of the core that
produces the corresponding architectural register. Within a single



clock cycle, the steering management unit (SMU) must read from
the table and write back new values before the next read occurs.

The large number of read and write ports required for this design
would create an unreasonably large capacitance on the data-storing
nodes of a traditional SRAM cell, affecting access times as well
as write stability. The need for fast read and write latencies forces
us to abandon the 6T SRAM cell and use a modified version. An
inverter is added to each bitcell to buffer the output, isolating all of
the read ports from the data-storing nodes. Dedicated set and reset
transistors are also added to every cell to enable fast writes. In all,
these changes allow us to remove the bitlines and wordlines found
in typical SRAM structures, thus removing the latency of charging
and discharging highly-capacitive wires. Though this design is less
dense than a traditional SRAM structure, given the criticality of
latency minimization for this application and the relatively small
storage requirements (only 64 bits), this is a worthwhile trade-off.

The producer table read begins at the start of the SMU cycle.
From the pre-decode pipeline stage, each core front-end will pro-
vide two source1 register specifiers to the SMU (one for each in-
struction), which will be used to index the table. Once the address
is decoded, the core ID is fetched. To ensure that setup and hold
times are met for the registers at the end of the SMU steering stage,
transparent Earle latches (which are off the critical path) are used,
allowing the table to be re-used while the clock is low.

Data write-back technically starts with the write arbiter, which
resolves write-after-write register dependencies within the same
fetch group. The arbiter grant signals are then processed by the
write decoders, to determine which data value to send to the set/re-
set transistors for the modified rows. All this can be completed in
parallel with the critical path, as the destination register for each
instruction is known at the start of each cycle. Once the destination
core calculation has completed, a delay chain triggers the write en-
able pulse, asserting the appropriate set/reset signals on the bitcells
themselves. After a certain pulse width, the bitcell will have passed
its switching threshold, and will settle to its intended value even
if the enable signal is de-asserted before the bitcell completes its
transition. We exploit this completion stage for improved latency,
as discussed in Section 4.4.2.

4.3.2 Least-Loaded Core & Dependency-Checking
Circuits

The least-loaded core is calculated using the issue queue occu-
pancy values at the beginning of the cycle. In case of a tie, the core
with the lower ID is statically chosen (using less-than-or-equal-
to comparators). The dependency-checking circuit identifies read-
after-write dependencies within the current fetch group, comparing
source1 registers with the destination registers. This circuit con-
sists of 28 5-bit comparators. Neither circuit falls on the critical
path (see Figure 6).

4.3.3 Destination Core Circuit
For our steering algorithm, an instruction can be sent to one of

two places: (a) if the first source operand exists, to the core that
produced that value; otherwise (b) to the least-loaded core. The
producer table provides a stale value for the core containing the first
source operand of each instruction, which we will refer to as Sn,
where In is the nth instruction being steered in the current cycle.
We also know whether the instruction has a valid source1 operand
(from the pre-decode stage), which we will refer to as Vn.

For instruction I0, computing the destination core C0 simply in-
volves choosing either the least-loaded core (LLC) or S0:

C0 = (LLC ∧ ¬V0) ∨ (S0 ∧ V0) (1)

Subsequent instructions involve more complex logic, as they may
also have read-after-write dependencies on instructions steered in
the same fetch group—remember that the value of Sn is not up-

dated after each steering decision. To fit within a cycle, we choose
to “unroll” the destination core equations and use deeper Boolean
logic gates—while this does replicate some calculations, we reduce
the total number of logic levels (and thus, signal transitions) needed
to compute each core. This is conceptually similar to how outputs
are constructed in a carry-lookahead circuit. For example, the logic
to steer I1 is:

C1 = (LLC ∧¬V1)∨ (S1 ∧V0 ∧¬I1DI0)∨ (C0 ∧ I1DI0) (2)

where I1DI0 is whether the source1 operand of I1 is produced by
I0. If we substitute Equation 1 in for C0, we can flatten the gates
for C1, removing the need for serialization:

C1 =(LLC ∧ ¬V1) ∨ (S1 ∧ V0 ∧ ¬I1DI0)

∨ (LLC ∧ ¬V0 ∧ I1DI0) ∨ (S0 ∧ V0 ∧ I1DI0)
(3)

Likewise, this technique can be applied up to instruction I3.
While instructions I4 through I7 could also be calculated in this

flattened manner, the corresponding circuits would become rela-
tively large (for example, I7 would involve the sum of 256 logic
products, some of which include 9 logic terms, themselves requir-
ing four gates to compute). Instead, we compute the destination
cores for these instructions once the destination cores C0 through
C3 are computed. While this does perform a serialization step, we
find that we can significantly reduce the area while still meeting
timing constraints (I7 now contains 48 logic products). Further-
more, many of the control signals in these products can be partially
pre-computed off of the critical path.

4.4 Circuit Analysis
The entire steering mechanism has been implemented at the tran-

sistor level, and its functionality and performance have been veri-
fied using HSPICE simulations [34]. Given the tight timing con-
straints, low-Vt transistors are used for every circuit except for the
SRAM cells in the producer table and keepers on dynamic gates,
in order to minimize the latency of all the components. All simula-
tions were run using custom transistor-level netlists, with transistor
models provided by IBM for their 45 nm 12SOI process [36].

Every transistor was carefully sized in order to balance drive
strength with parasitics. Gate capacitances and diffusion capaci-
tances are accounted for in the transistor models themselves, and
accurately scale with transistor size, gate topology, and fanout. An
additional 4 fF of load capacitance is added to every gate to model
wiring parasitics. This value has been extracted from previously-
fabricated designs in this process technology.

We assume a 22 nm process technology for all of our steering cir-
cuitry. ITRS forecasts are used to used to scale delays from 45 nm
to 22 nm technology (conservatively using planar bulk transistor
models as opposed to multi-gate transistors, and using 2014 fore-
casts for 24 nm) [17]. We also use a conservative 22 nm scaling
factor from Borkar [2].

4.4.1 Area
In total, the steering mechanism uses 21,340 MOSFET transis-

tors. This represents a very tiny area overhead within a processor.
Table 1 breaks down the transistor count by each component. Many
of the larger units (e.g., dependency-checking circuit, write arbiter)
are the result of logical unrolling, where common sub-circuits have
been repeated to improve performance.

4.4.2 Delay
Figure 6 not only shows the timings of each component to scale,

but it also illustrates the data dependencies between these blocks.
The critical path travels through the producer table read, destina-
tion core computation, and producer table write. Unless otherwise
noted, all latencies in this section use the more conservative scaling



Table 1: Transistor counts for the steer-
ing circuit components.

Circuit Transistor Count
Producer Table 11872
Least-Loaded Core 914
Dependency Check 2520
Write Arbiter 2706
I0 – I3 Dest. Core 776
I4 – I7 Dest. Core 1564
I4 – I7 Precompute 412
Earle Latches 576
TOTAL 21340

Table 2: Steering circuit latencies (ps). 45 nm values are only provided for circuits
simulated using the IBM 12SOI model in HSPICE. Critical path circuits italicized.

Circuit 45 nm 32 nm 22 nm
Conservative Traditional Borkar ITRS

Producer Table Read Decode 40.50 36.99 34.90 34.09 30.08
Data Fetch 41.45 37.86 35.72 34.89 30.78

Producer Table Write
Decode 65.65 59.96 56.58 55.26 48.75
Port Select 40.00 36.53 34.47 33.67 29.70
Completion 32.07 29.29 27.64 26.99 23.82

Least-Loaded Core 67.72 61.85 58.36 57.00 50.29
Dependency Check 36.83 33.64 31.74 31.00 27.35
Write Arbiter 101.79 92.96 87.72 85.68 75.59
I0 – I3 Destination Core 74.39 67.94 64.11 62.62 55.24
I4 – I7 Destination Core 69.89 63.83 60.23 58.83 51.90
CRITICAL PATH 266.23 243.15 229.44 224.10 197.70

proposed by Borkar [2], and target a 22 nm technology. A conser-
vative FO4 ring oscillator scaling and the traditional NMOSFET
scaling, both from ITRS, are used to provide 32 nm latencies as a
reference. Table 2 summarizes these numbers, and includes laten-
cies for scaling methods in both 32 nm and 22 nm technology.

Along the critical path, a total of 224.10 ps is required for the
circuit to execute. Since the critical path includes the use of a delay
chain to trigger the producer table write (see Section 4.3.1), extra
timing margins must be left in place. Increased process variations at
smaller technologies may shift the trigger time in either direction.
To account for this, the extra time left over in the cycle (currently
25.90 ps) is partitioned equally on both sides of the table write.
Setup times for the end-of-stage registers are masked by the write,
as they only require the output of the destination core circuits.

An important aspect of our circuit timing is the overlap between
the producer table write completion and the read decode for the
next cycle, as seen in Figure 6. We note that the data inside the
table must be stable for reading only after the read ports have fin-
ished decoding, as the bitcells are not accessed up to that point.
We can take advantage of our observation in Section 4.3.1 by as-
serting write enable just long enough to cross the switching thresh-
old of the bitcell. Write completion can therefore overlap with the
read decode of the next cycle without introducing any data hazards,
since the decode latency is longer than the completion time.

5. EXPERIMENTAL METHODOLOGY

5.1 Architectural Setup
We design our experiments assuming a 22 nm process technol-

ogy. We increase the L2 cache size from 4 MB to 8 MB, and in-
crease associativity from 8 ways to 16. However, we do not change
the pipeline structure of the cores from the ones described in İpek
et al. [16] for 65 nm. This is in line with recent trends observed
in industry [13, 15, 18]: As process technology scales, frequency
has stopped scaling beyond the 4 GHz range, and the additional
slack achieved in the clock period is typically put to use not by re-
designing the pipelines, but by lowering the chip supply voltage,
thereby consuming less power per core and enabling more cores to
be simultaneously active on the chip with the smaller feature size.

All our experiments have been carried out using a highly-detailed
and heavily-customized version of the SESC simulator [29]. We
evaluate the performance of the CF-Naive, CF-Compact, CF-Ex-
tended, and CF-CompactExtended configurations, with both GP-
generated steering (+GP) and the original Core Fusion steering so-
lution (see Section 4.1). To compensate for extending each ROB
entry by one NOP bit, we allocate two additional ROB entries to
CF-Naive and CF-Compact. Table 5 shows the various configura-
tions evaluated, and Table 3 describes the microarchitecture of the
two-issue base core used in Core Fusion.

We use the performance of an area-equivalent monolithic pro-
cessor (Monolithic) as reference. It is a six-issue out-of-order pro-

cessor with three times the amount of core resources as the two-
issue base core, but four times the size of the base core’s L1 cache,
branch predictor, and BTB. We model wake-up and selection de-
lays in the base core to be one cycle each, and extrapolate such
delays for the six-issue core to 3 and 2 cycles, respectively, us-
ing trends presented in the literature [11, 12, 26]. We assume that
wake-up and select are fully pipelined for the six-issue core [33].

Across different configurations, we always maintain the same
parameters for the shared portion of the memory subsystem (system
bus and lower levels of the memory hierarchy; see Table 4). All
configurations are clocked at the same speed.

5.2 Applications
Since we focus on improving the performance of sequential ap-

plications, we evaluate our proposal using the SPEC CPU 2000
application suite for the MIPS ISA [10]. We use the ref input sets,
and simulate one billion instructions for each workload, skipping
the initialization phase. The SimPoint toolset [32] was used to en-
sure that the simulated instructions were a representative sample of
the entire application.

5.3 Core Fusion Overheads
Area — We estimate the area overhead of all original Core Fu-
sion additions pessimistically. To calculate the area overheads from
wiring, we use the wiring area estimation methodology described
by Kumar et al. [25], assuming a 22 nm technology and global
wires with a 81 nm wire pitch, as projected by ITRS [17]. The
delay of global wires with repeater links is obtained from Chen
et al. [5]. Accordingly, we calculate the area of fetch wiring (92
bits/link) to be 0.21 mm2, the area of rename wiring (250 bits/link)
to be 0.60 mm2, the area of the operand crossbar (80 bits/link) to
be 1.09 mm2, and the commit wiring overhead (20 bits/link) to be
0.02 mm2. The wiring area overhead amounts to 1.92 mm2 for a
single fusion group of four cores. Scaling from the original paper,
the extra cache tags, copy-in/copy-out queues and the bank predic-
tors to be 0.24 mm2, 0.13 mm2, 0.08 mm2 and 0.12 mm2, respec-
tively, for a fusion group of four cores. This amounts to a total of
0.57 mm2 for the group. Adding these to the wiring overheads,
we estimate an overall area overhead to be 2.49 mm2 per fusion
group for the Core Fusion architecture, including our proposed ex-
tensions.

Assuming a reticle-limited 400 mm2 die size,3 one fusion group
takes up an area of 49 mm2. For the original Core Fusion archi-
tecture, with two fusion groups, the area overhead (4.98 mm2) is
less than half that of a two-issue core (12.25 mm2)—smaller than
the overhead reported in İpek et al. [16], which targeted a (now ob-
solete) 65 nm technology node. The result is reassuring that the
overhead of our enhanced Core Fusion solution remains manage-
able.

3Some server multicore chips today, such as Intel’s Xeon or IBM’s Power7,
have a die area in excess of 500 mm2 [6, 14].



Table 3: Parameters of the base two-issue core.

Frequency 4 GHz
Fetch/issue/commit width 2/2/2

Int/FP/AGU/Br Units 1/1/1/1
Int/FP Multipliers 1/1

Int/FP issue queue size 16/16 entries
ROB (reorder buffer) entries 48

Int/FP registers 32 + 40 / 32 + 40 (Arch. + Phys.)
Ld/St queue entries 12/12

Bank predictor 2,048 entries
Max. br. pred. rate 1 taken/cycle

Max. unresolved br. 12
Br. mispred. penalty 7 cycles min., 14 cycles when fused

Br. predictor Alpha 21264 (tournament)
RAS entries 32

BTB size 512 entries, 8-way
iL1/dL1 size 16 kB

iL1/dL1 block size 32 B/32 B
iL1/dL1 round-trip latency 2/3 cycles (uncontended)

iL1/dL1 ports 1 / 2
iL1/dL1 MSHR entries 8

iL1/dL1 associativity direct-mapped/4-way
Memory Disambiguation Perfect

Coherence protocol MESI
Consistency model Release consistency

Table 4: Parameters of the shared
L2 and DRAM subsystem.

System bus transfer rate 32 GB/s
Shared L2 8 MB, 64 B block size

Shared L2 Associativity 16-way
Shared L2 banks 16

L2 MSHR entries 16/bank
L2 round-trip 32 cycles (uncontended)

Memory access latency 328 cycles (uncontended)

Table 5: Configurations evaluated.

CF-Naive 4×2-issue with (48+2)-entry ROB / core
CF-Naive+GP — + custom GP steering
CF-Compact 4×2-issue with (48+2)-entry ROB / core

CF-Compact+GP — + custom GP steering
CF-Extended 4×2-issue + 48-entry Extended ROB / core

CF-Extended+GP — + custom GP steering
CF-CompactExtended 4×2-issue + 48-entry Extended ROB / core

CF-CompactExtended+GP — + custom GP steering
Monolithic Area-equivalent monolithic core

(Section 5.1)

Delay — To calculate the wire delays we assume the worst-case
cross-core communication distance. From Friedman [9], we find
the delay of global wires with repeater links to be 31.8 ps/mm in
22 nm technology. As aforementioned, one fusion group of four
cores takes up an area of 49 mm2. We expect to floorplan the pro-
cessor such that all cross-core communicating logic will sit in the
quadrant of the core—1.75 mm on each side—closest to the center
of the chip. Therefore, the worst-case cross-core communication
distance will be 7 mm. Assuming the widest possible link, the
worst-case communication distance can be traversed in one cycle.
However, we conservatively set the communication latencies for
fetch, rename, operand transfer, and commit to be two cycles each.

6. EVALUATION
Figures 7 and 8 show the performance obtained by the various

CF configurations considered in this study, relative to Monolithic
on SPEC CPU 2000 applications. From Figure 8, we see that CF-
CompactExtended+GP is the CF configuration that performs best:
it improves performance over CF-Naive by 11.5%, and it is within
98% of Monolithic for the SPEC-Int applications. For SPEC-FP,
we improve performance over CF-Naive by 19%, and we are again
within 98% of Monolithic. In contrast, the performance of CF-
Naive is only within 88% and 82% of Monolithic for SPEC-Int and
SPEC-FP, respectively. Note that we see some speedups over the
6-issue baseline as in fused mode, Core Fusion can provide 8-wide
issue.

As Figure 8 shows, the results for SPEC-Int applications suggest
a somewhat synergistic effect between the proposed mechanisms
for distributed commit and instruction steering. (SPEC-FP appli-
cations, which typically respond very well to mechanisms that ex-
ploit instruction-level parallelism, benefit primarily from the ability
of the extended ROB to support more in-flight instructions.) These
two mechanisms attack different stages of the pipeline: The retire-
ment scheme was added to improve throughput in the fetch stage
of the pipeline, by reducing NOP insertions and thereby increasing
useful instructions being fed into the subsequent pipeline stages.
The improved instruction steering algorithm focuses on improving
throughput in the execution stage, by increasing the probability of
producers and consumers being co-located in a core. Naturally,
only freeing a bottleneck in one stage while allowing the other
to persist will not improve performance as effectively. When the
two techniques are coupled together, the opportunity to co-locate
dependent instructions increases, as does the number of useful in-
structions in the pipeline. By co-locating more dependent instruc-

tions, we reduce the wait time involved for consumers to issue
after their producers complete, thereby improving issue rate, and
hence commit rate. An increase in commit rate frees up ROB
entries faster, which in turn helps prevent fetch stalls, which in-
creases the ROB occupancy. This positive feedback leads to a
more free-flowing pipeline, due to a decrease in pipeline stalls in
both stages, resulting in better overall performance for CF-Com-
pactExtended+GP than the sum of the two effects separately (CF-
CompactExtended and CF-Naive+GP).

Next, we analyze CF-CompactExtended+GP in more detail. For
brevity, we provide analysis for SPEC-Int applications only—the
findings are consistent with the results for SPEC-FP as well.

6.1 Inside Distributed Commit
Recall that the new retirement scheme was added to the base-

line architecture (CF-Naive) to reduce unnecessary NOP insertions
in the ROB. If the number of NOPs inserted is reduced, the ROB
can be filled with more useful instructions, which may result in
more in-flight instructions (and hence higher potential for exploit-
ing instruction-level parallelism). This is particularly important for
handling long-latency load operations: With more NOPs filling up
the ROB, there are fewer in-flight loads in the pipeline, and thus the
possibility of exploiting memory-level parallelism (MLP) by over-
lapping long-latency loads is smaller. Higher MLP often results in
better overall performance [28]. Figures 3 and 9 show that the new
retirement scheme indeed increases the effective use of the ROB
with respect to CF-Naive, and in particular it improves memory-
level parallelism.

6.2 Inside Instruction Steering
In order to understand the effect of the GP-generated steering al-

gorithm, we introduce a metric called communication penalty. Ev-
ery cycle, for each core, we count the number of instructions that
are issued. For every free issue slot that is not filled, we check to
see if an instruction is not issued due to a source operand not be-
ing available. For such instructions, we check if the producer has
already completed execution in another remote core. This means
that, if the producer and consumer were co-located, the consumer
could have issued immediately after the producer; but now it has
to wait for the copy instruction to arrive at the consumer core. If
an issue slot is not filled for such a scenario, we assign a commu-
nication penalty of one. Thus, the maximum penalty a core can be
assigned each cycle is two, as each core has two issue slots it can
fill every cycle.
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Figure 7: Performance resulting from applying our proposed configurations in isolation, normalized to that of an area-equivalent
monolithic core configuration (Section 5.1), for SPEC-Int (left) and SPEC-FP (right) applications.
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Figure 8: Performance resulting from the synergy between improved commit and improved steering, normalized to that of an area-
equivalent monolithic core configuration (Section 5.1), for SPEC-Int (left) and SPEC-FP (right) applications.
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Figure 9: Increase in memory-level paral-
lelism (MLP) when running SPEC-Int ap-
plications, relative to CF-Naive.
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Figure 10: Stall time due to remote
operand communication for SPEC-Int ap-
plications, relative to CF-Naive.
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Figure 11: Increase in locally co-located
producer-consumer pairs for SPEC-Int
applications, relative to CF-Naive.

Figure 10 gives us the communication penalty observed relative
to CF-Naive. The results show that CF-CompactExtended+GP in-
curs a lesser penalty than CF-Naive for all applications; the im-
provement is rather significant in some of them. This is because
the steering algorithm in CF-CompactExtended+GP improves the
probability of co-locating producers and consumers (Figure 11).
By reducing communication delays among producers and consu-
mers in this way, we issue instructions at a faster rate, which leads
to improved performance.

7. RELATED WORK
Reconfigurable multicore architectures — TFlex [20] is a no-

vel reconfigurable architecture comprised of distributed compos-
able tiles that communicate with each other via control and operand
networks. While TFlex can use its dataflow-based ISA to track
dependent instructions, this custom ISA requires extensive binary
modifications and additional compiler support.

Federation [35] is another reconfigurable architecture along the
lines of Core Fusion that proposes fusing a pair of scalar cores
into a two-way out-of-order processor. Salverda and Zilles demon-
strate the fundamental challenges in reconfiguring in-order cores
into larger cores, on demand, even under ideal conditions, as it ne-
cessitates very complex instruction steering hardware [31].

Clustered architectures — One of the very first approaches to
clustering involved designing a microarchitecture that would sim-
plify the wakeup and selection logic by introducing multiple in-
order issue queues, and placing chains of dependent instructions in
them [27].

Another early approach extended the floating-point cluster to ex-
ecute simple integer instructions, resulting in a clustered architec-
ture [3]. The steering schemes used are a combination of reducing
workload imbalance and inter-cluster communications.

The Multicluster architecture introduced a dynamically-sched-
uled partitioned architecture which allowed the register file of one
cluster to be accessed by instructions being executed on another
cluster, by distributing an instruction to multiple clusters [7].

Canal et al. [4] have proposed various dynamic code partition-
ing mechanisms for clustered microarchitectures. The basic idea
of dynamic code partitioning is to steer instructions present in ei-
ther a LdSt slice or a Br slice within a register dependence graph to
the same cluster. They also experimented with static steering algo-
rithms, and their results indicate that dynamic steering algorithms
outperform static cluster assignments in general. Moreover, static
cluster assignment tends to be less flexible and needs compiler sup-
port as well as extensions to the ISA.

Baniasadi and Moshovos investigated various non-adaptive and
adaptive instruction steering techniques for quad-cluster dynami-
cally-scheduled superscalar processors [1]. They studied the sen-
sitivity of steering heuristics to relevant architectural parameters,
such as inter-cluster communication latency and pipeline depth,
and found that performance is much more sensitive to inter-cluster
communication.

8. CONCLUSION
In this paper, we attack two important inefficiencies of Core

Fusion—collective commit storage and cross-core operand com-



munication overheads. We introduce a new commit scheme that
reduces the storage requirement associated with NOP insertions,
thereby increasing the number of ROB entries available to useful
instructions. This in turn increases the number of in-flight load
instructions, allowing a greater possibility of overlapping long-la-
tency loads, and improving memory level parallelism in the sys-
tem. The improved performance is achieved with virtually negli-
gible area and delay overheads. We also introduce an improved
instruction steering algorithm, which reduces the communication
penalty by increasing the probability of co-locating producers and
consumer instructions. We derive this algorithm systematically us-
ing genetic programming, verify the steering circuit implementa-
tion using HSPICE, and provide a detailed area and delay analysis.
By combining these two techniques, the performance of our im-
proved Core Fusion architecture comes within 98% of that of an
area-equivalent monolithic machine for both SPEC-Int and SPEC-
FP. The implication is that Core Fusion may effectively render the
inclusion of wide-issue cores in future multicore designs unneces-
sary, since it can match their sequential performance when needed
while retaining the ability to offer fine-grain parallelism on demand
through its narrow-width base cores.
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