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ABSTRACT
Current high-end parallel systems achieve low-latency, high-
bandwidth network communication through the use of aggres-
sive design techniques and expensive mechanical and electrical
parts. High-speed interconnection networks, which are crucial to
achieve acceptable system performance, may account for an im-
portant fraction of the total cost of the machine. To reduce the
network cost and still maintain scalability, bristled configurations,
in which each router connects to several processing nodes, pose
an attractive alternative. Their lower bandwidth, however, may
adversely affect the efficiency of the parallel codes.

In this paper, we show how virtual channels and adaptive
routing can make bristled systems more attractive: overall
performance improves in congested scenarios while remaining
practically unaltered under light traffic conditions. Experimental
results are obtained by using execution-driven simulation of
a complete state-of-the-art CC-NUMA system, with dynamic
superscalar processors and contemporary pipelined routers. The
results show that, in bristled hypercubes with 2 processing nodes
per router, SPLASH-2 applications with significant communi-
cation run 5-15% faster if we make use of virtual channels and
adaptive routing. The resulting systems are only 1-10% slower
than systems with non-bristled hypercubes and similar routing
support, even though the former only need about half of the
network hardware components present in the latter. Additionally,
virtual channels and adaptivity are shown to be of negligible
effect in non-bristled hypercubes.

�
This work was supported in part by the National Science Founda-

tion under grants NSF Young Investigator Award MIP-9457436, ASC-
9612099 and MIP-9619351, DARPA Contract DABT63-95-C-0097,
NASA Contract NAG-1-613, NCSA Grant MIP980001N, the Bank of
Spain, and gifts from IBM and Intel.

1 INTRODUCTION
Hardware-coherent distributed shared-memory architectures are
a promising way of building scalable, easy-to-program multipro-
cessor systems. Distributed organisations rely on an interconnec-
tion network to communicate and to synchronise between pro-
cessing nodes, or PNs. Such a network can be basically described
as a set of ASIC routers, and a set of wires establishing the inter-
connection, which we call links. Routers carry the responsibility
of correctly routing and delivering messages from any source to
any destination, whereas links must ensure sufficient speed and
bandwidth, as well as reliable signal transmission.

While interconnection networks attempt to deliver messages
with low latency and high bandwidth, there are constraints in
VLSI technology, chip area, and chip pin count that limit the net-
work’s capabilities. For example, chip pin count restrictions may
limit the number of ports that a router can have. This limitation
may, in turn, limit the number of dimensions that a given network
topology may have. A case in point is the SGI Origin2000 hyper-
cube network, which is built out of six-port routers [7]. Of these
six ports, four are used to link to other routers, and the remaining
two host PNs. This hardware allows for hypercube topologies of
up to 16 routers; for larger systems, a less optimal fat-hypercube
approach is utilised [11].

Thanks to continuous advances in high-density ASIC fabrica-
tion, high pin-count packaging and clock speeds, it is possible to
increase the number of ports per router and, therefore, build larger,
lower-latency networks. It is evident, however, that such larger
networks come at the expense of a higher system cost, caused by
the greater number of routers and wires, as well as by the added
complexity. This cost increase can be critical to tight-budget cus-
tomers.

A solution that allows for a higher number of PNs without ex-
panding the interconnection network is called bristling. Bristling
consists of connecting several PNs to each router; each PN can
contain one or more processors. A network with � PNs connected
to each router is said to have a bristling factor � . A direct network
with bristling factor � comprising � network nodes or routers will
be referred to as a p-way n-node network. For example, if we want
to use a six-port router as the building block for a 16-PN system,
we can furnish it with either a 4-way 4-node network or, with one
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Figure 1: 1-,2-, and 4-way bristled networks, each allocat-
ing a 16-PN system, using a 6-port router. Black squares
indicate PNs; white squares denote unused ports.

port per router left unused, a 2-way 8-node or a 1-way 16-node
network (see Figure 1).

An obvious major advantage of bristled networks is that, for a
given number of PNs, they need only a fraction of the hardware
present in their corresponding non-bristled configuration. Conse-
quently, if cost is at a premium, bristled networks can be a use-
ful choice. It is necessary, however, that the router be symmetric,
which means that all its ports are identical. An asymmetric router,
which offers a dedicated interface for PNs at one or more ports, is
less flexible. For example, while the SGI Origin2000’s SPIDER
router is symmetric [7], the Cray T3E’s router is not [14].

An additional advantage of bristled networks is that they have
a lower average node distance, which may reduce the average la-
tency. In the example above, the 1-way 16-node hypercube has
an average distance of 2 hops, whereas the 2-way 8-node and the
4-way 4-node bristled networks have 1.5 and 1 hops, respectively.
It can be easily derived that, in an n-dimensional hypercube, the
average node distance is ����� , while the total number of links is
�������
	�� . As we decrease � , the average node distance goes down
arithmetically, whereas the total bandwidth does so geometrically.
Consequently, under light traffic, a bristled hypercube could have
an edge over its non-bristled counterpart. However, if the network
is heavily used, the lower bandwidth of the bristled network may
become a bottleneck. As a result, techniques to diminish the im-
pact of the lower bandwidth would be highly desirable to make
bristled systems more attractive.

Two such techniques are virtual channels and adaptive rout-
ing. Virtual channels (VCs) allow messages to share a common
physical link [2]. They have been typically used to improve phys-
ical link utilisation by allowing messages to overtake blocked
ones on a shared physical link, and to avoid deadlocked situa-
tions. For example, some topologies like tori, usually require two
links between every pair of nodes to ensure deadlock freedom
in most routing algorithms; these two links may be implemented
over a single physical connection by using VCs. Similarly, sys-
tems with cache-coherent, non-uniform memory accesses (CC-
NUMA) usually require disjoint networks for requests and replies
to avoid protocol deadlock. VCs may again be used for this pur-
pose.

Most existing routers perform deterministic routing, which se-
lects one, and only one outgoing path for each incoming message

in a router, regardless of traffic conditions [3]. Adaptive rout-
ing, on the other hand, takes into consideration traffic conditions
as seen locally by the router, and applies a selection function to
choose among several output path options to make the message
advance. Adaptive routing often needs multiple paths between
neighbouring routers to guarantee absence of deadlock; these can
once again be provided through VCs. It is very common for the
adaptive routing function to contain a escape subfunction, which
is usually a deterministic routing function guaranteeing a escape
route to every message if the adaptive options are not available
[5].

VCs and adaptive routing have been extensively studied in the
past [2, 6, 8, 13]. Most of the research has been based on sim-
ulations using synthetic workloads, or at most traces of real ap-
plications. In addition, adaptive routing has seen a few actual
implementations, like in the Cray T3E network [14]. Many of the
evaluations using synthetic workloads concluded that both VCs
and adaptivity were beneficial. It was frequently possible to push
the network to the limit by increasing the message injection rate
and by using very long messages. On the other hand, CC-NUMA
traffic is mainly characterised by message sizes limited to roughly
that of a cache line, and it follows largely unknown patterns, at
times bursty. In addition, past trace-driven simulations could not
make use of any feedback from the traffic and contention condi-
tions to the issue rates of the processors. All these simplifications
are likely to influence the results.

There have been only two studies that have evaluated the im-
pact of VCs and/or adaptive routing on the performance of CC-
NUMA systems through execution-driven simulation. The first
one, by Kumar and Bhuyan [10], concluded that the use of VCs
on a torus was a winning choice, whereas the other one, by Vaidya
et al [18], pointed out a lack of scalability in the experiments con-
ducted in the former work, and claimed no advantage in using
extra VCs. The authors also concluded that adaptivity was not
beneficial. We comment on these works in Section 5.

Overall, it is a common belief that VCs and adaptivity have lit-
tle impact on the performance of CC-NUMA systems. Today’s
low-latency, high-bandwidth networks are hard to put under pres-
sure in most common situations. Nevertheless, as we have pointed
out before, the fact that bristled networks trade off cheaper config-
urations for a serious reduction in bandwidth portrays a scenario
in which the above may not hold. Consequently, in this work we
revisit the concepts of VCs and adaptivity in bristled hypercubes.

Our results show that, in bristled hypercubes with 2 PNs per
router, SPLASH-2 applications with significant communication
run 5-15% faster if we make use of virtual channels and adaptive
routing. The resulting systems are only 1-10% slower than sys-
tems with non-bristled hypercubes and similar routing support,
even though the former only need about half of the network hard-
ware components present in the latter. Additionally, virtual chan-
nels and adaptivity are shown to be of negligible effect in non-
bristled hypercubes.

This work is organised as follows: Section 2 presents the
network model and routing algorithms; Section 3 describes the
simulation environment utilised to obtain our results; Section 4
presents the results; Section 5 discusses related work; finally, Sec-
tion 6 concludes.
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Figure 2: Block diagram of a two-port instance of the
router model utilised in this work. Note the input and output
latches, the VCs (two per port in this case), and the bypass
routes to the crossbar.

2 NETWORK MODEL

2.1 Router Design
Our model is a pipelined router that follows today’s design and
technology trends. Figure 2 depicts a block diagram of a 2-port
version. It represents an aggressive base design that leaves little
margin for further performance improvements.

Information is exchanged in the form of messages, which can
be cache lines, requests, or coherence primitives like invalidations
and acknowledgments. Each message is composed of a number
of flow control digits, or flits, which represent the amount of in-
formation in a message that a router can process each cycle. Such
flits are in turn composed of phits, which are the transmission unit
on the physical links connecting the routers.

Each router chip is furnished with a number of bidirectional,
clock-decoupled, wave-pipelined ports [15], operating at four
times the frequency of the chip and able to accept a new phit ev-
ery clock cycle independently of the wire length. Each phit is
16-bit wide and each router flit is composed of four phits, thus
matching link and router bandwidth while keeping the number of
pins per port relatively low. Each port connects to a de-serialising
input latch that builds one flit out of every four phits, and from
there to as many FIFO input buffers as VCs, as well as directly to
the crossbar through a single bypass route. Each buffer can store
over two of the largest possible messages in the system. Adaptive
routes cannot be selected unless there is enough space at the other
side of the link to store the message completely, so flow control in
adaptive VCs is effectively virtual cut-through. This is in compli-
ance with Duato’s premises for deadlock freedom as described in
[4]. Output ports are serialising latches that decompose each flit
back into four phits.

The input and output latches smoothen the transition between

links and router, which have different width and clock rate. A 1-
cycle arbitration and decoding process determines if the flit can
pass through the crossbar to its output port or if, instead, it must
be stored in the corresponding buffer. The former constitutes a
bypass, which can only occur when the flit is a data flit following
a winner, or when it is a header flit and there are no contenders,
much in the same way as in the SPIDER router chip [7]. If such
conditions are met, the flit will cross during the next clock cycle
to its output port; otherwise, it will be stored in the corresponding
buffer. Bypass arbitration and buffer selection are performed in
parallel. This is possible even for the header, due to the utilisa-
tion of look-ahead routing, as explained below. Overall, it takes a
minimum of three router clock cycles to perform a network hop.
If routers have a clock skew, an extra cycle should be included to
synchronise the data with the internal clock. We have not included
the effect of clock skew in our simulations.

A slower 2-cycle central arbiter is responsible for resolving the
conflicts among the candidates at the head of the buffers and fetch-
ing the winners. Messages carry no priority information, hence a
round-robin scheme is performed during arbitrations. Up to one
buffer per port can be granted permission at any given cycle. The
arbiter tries to preserve as much continuity of transmission as pos-
sible: once a message acquires an output port, it will flow with-
out interruption until it runs out of space at the next stage or it
bubbles. Enforcing continuity usually results in reduced average
latency. When a message sees its flow interrupted, its input and
output ports are released and become available to other messages.

Whenever a header flit crosses toward its output port, a table
look-up is performed in parallel to determine its output(s) at the
next router; this scheme, called look-ahead routing, saves one cy-
cle per hop with respect to conventional in-place routing. If adap-
tive routing is implemented, all routes are retrieved from the table
and annotated in the header of the message. This may pose time
and space problems in systems with fully adaptive algorithms and
a high number of dimensions, since route selection at the port
of entry may become too slow, and header and tables may lack
enough space to allocate all the options. Restricting the number
of routes in fact gets rid of this problem. In our case, we only
consider routing through at most two physical links.

The whole design resembles a hybrid of the SGI SPIDER and
T3E chips. We have mimicked SPIDER’s general pipelining
scheme, arbitration procedure, and look-ahead routing. On the
other hand, we have kept T3E’s FIFO buffers and adaptive rout-
ing scheme.

2.2 Routing Algorithms
Five minimal routing algorithms have been used in this study. We
have encoded their behaviour into names as described below. The
basic features that distinguish them are: number of VCs, adaptiv-
ity, and VC sharing.

1 � VC (baseline): Deterministic scheme with one VC for cache
coherence protocol requests and another for replies. The only port
supplied by the routing function is the one the e-cube function
would choose [3]. Such a port corresponds to the lowest dimen-
sion in which the current and the destination routers differ, or to
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Figure 3: Routing example with ShAd2 � VC for request
and reply messages. Selection order is indicated by numer-
als. The message and the VCs belonging to the reply subnet-
work are dashed. Escape routes are shaded.

the PN if we are at the end of the journey. We will call this port the
deterministic port. This base function will constitute the escape
subfunction for all the others [5].

2 � VC: Scheme like 1 � VC plus one extra VC for requests and
another one for replies, for a total of two VCs per message type.
Messages consider the extra VC before the escape route.

Sh2 � VC: Scheme like 2 � VC, except that the two extra VCs are
shared among requests and replies. The selection order of the
extra VCs for requests is the complement of the one for replies
to balance request and reply traffic. For example: if a request
message must consider extra VC � first and extra VC � next, then
a reply message ought to consider � before � . Thus, the total
number of possible paths for a message is three.

Ad2 � VC: Adaptive extension of 2 � VC that adds to the set of pos-
sible paths the two extra VCs at the port advancing in the highest
dimension yet to be traversed, for a total of up to three paths per
message. We call the port at such a dimension the adaptive port.
If only one dimension needs to be crossed, this port will coincide
with the deterministic port. In all cases, the paths through the
adaptive port will be considered first, followed by the VCs at the
deterministic port.

ShAd2 � VC: Combination of Sh2 � VC and Ad2 � VC. The output
ports considered are the ones in Ad2 � VC. However, now the ex-
tra VCs at both ports are shared between request and reply traffic,
as in Sh2 � VC, making five the possible paths per message. The
selection order for requests and replies is also complementary at
the adaptive port. Figure 3 depicts typical VC selections for in-
dividual request and reply messages under this algorithm. Notice
how all the routing algorithms described above are subfunctions
of this one.

Traffic � (Bytes/Op.) SPLASH Application
� 	�
� ����� FFT, Radix
� ��
� ��� � 	�
 Ocean, Cholesky
� � 
� ��� � ��
 LU, Water-Nsq, Water-Sp


�� ��� � � 
 Barnes, FMM, Raytrace, Radios-
ity, Volrend

Table 1: Classification of SPLASH-2 applications accord-
ing to the level of communication bandwidth required. The
codes chosen in our experiments are typed in bold face.

3 SIMULATION ENVIRONMENT
We have developed a fully parametric network simulator that
models the router and routing algorithms described above. We
have integrated this tool in a detailed simulator of a CC-NUMA
system with dynamic superscalar processors. We perform simula-
tions under a system based on MINT [19] that has been modified
to support accurate and efficient execution-driven simulations of
dynamic superscalar processors [9].

The simulated CC-NUMA system has 32 single-processor
PNs. Each processor is modelled as a 4-issue dynamic superscalar
with three pipelined integer units, two pipelined add/multiply
floating point units, one non-pipelined division unit and two
load/store units. The processor has a 128-entry instruction win-
dow and a 2048-entry, 2-bit branch prediction buffer. It can sup-
port up to 16 and 8 outstanding loads and stores, respectively.
The processor clock rate is 1GHz. We use the release memory
consistency model. Routers cycle at 250MHz, but link decou-
pling allows links to run at 1GHz. The networks simulated are
hypercubes built out of 7-port routers. We examine the follow-
ing configurations: 4-way 8-node, 2-way 16-node, and 1-way 32-
node hypercubes. We have assumed that all topologies are im-
plemented in three physical dimensions. We derived wire lengths
and delays using the formulas in [15]. However, for the system
sizes that we are analysing, the experimental values are not much
different from what we obtained using a uniform single-unit link
delay. Therefore, we are presenting results under the latter as-
sumption. An invalidation-based cache coherence protocol sim-
ilar to the one in DASH [12] is used. The protocol is able to
correctly handle out-of-order messaging.

We choose four parallel shared-memory codes from the
SPLASH-2 suite [20]: FFT, Radix, Ocean, and LU. The choice
is made to be representative of the different levels of communi-
cation bandwidth required in the suite. Table 1 summarises the
levels of communication bandwidth required by the SPLASH-2
applications for 32 processors as explained in [20], with the ones
chosen in bold face. We pick two applications from the class with
the highest bandwidth requirements, and then one from each class
for which bristling may cause a significant performance loss. Ap-
plications with bandwidth requirements at or under the level of
Water show virtually no change in the execution times, and hence
we do not include them in this study. Nevertheless, we did run
Water with all our configurations and verified that none of the op-
timisations evaluated in this paper had any effect.

To make sure that the experiments are scalable and the results
are meaningful, we conduct our simulations for the cache param-
eters recommended in the SPLASH-2 paper [20]. Specifically,



Element Delay (Cycles) Configuration

L1 Cache 2 8 Kbytes
L2 Cache 25 32 Kbytes
Local Memory 150 4-Kbyte Pages
Network 12-20 per Hop Hypercube

Table 2: Basic system characteristics used in the experi-
ments. Delays are expressed in processor cycles. Cache and
memory delays correspond to a round trip access from the
processor.

first- and second-level cache sizes are chosen so that the appli-
cations can fit their smaller working set but not the larger one.
Caches have 64-byte lines and are direct-mapped. Table 2 lists
the basic system parameters that we use in all the simulations. All
cache and memory latency values correspond to typical round-
trip requests from the processor in the absence of contention. As
a reference figure, a round trip from a processor to the memory in
another PN in an unbristled 32-node system takes an average of
310 processor cycles.

4 EXPERIMENTAL RESULTS
We run simulations for all the applications in CC-NUMA ma-
chines with 4-way 8-node, 2-way 16-node, and 1-way 32-node
hypercubes, all of them with 32 processors. A 1-way 16-node hy-
percube is also used in some experiments. We simulate all five
routing algorithms described in Section 2. We examine the ex-
ecution time and then the traffic in the network. The reported
execution times include all aspects of the architecture, not only
the network.

4.1 Execution Time and Speedup
Figure 4 compares the execution times under different network
configurations and routing algorithms, all of them normalised to
that of the 1-way 32-node system with 1 � VC. Note the differ-
ent scaling of the plots. It can be observed that all the applica-
tions increase their execution time when a bristled configuration
is adopted. When using the baseline routing algorithm (1 � VC),
Radix takes 30% more time to execute on a 2-way network and
almost 120% more on a 4-way network. Less dramatically, Ocean
and FFT’s execution times grow approximately by 15% and 55%
on a 2-way and a 4-way network, respectively. LU, on the other
hand, only suffers a 25% increase with a 4-way network. These
results show that, as bristling reduces total bandwidth in the net-
work, applications find it harder to push their messages through it.
As we increase the bristling factor, the small reduction in the av-
erage node distance is overwhelmed by the effect of lower band-
width. The same general trend is observed in the bars indicating
execution times for the other routing algorithms.

The figure also shows that, in 1-way network configurations,
neither extra VCs nor adaptivity are able to reduce the execution
time much. At most, they reduce it by 5%. This is in agreement
with results obtained by Vaidya et al [18], although it contradicts
the results of the same authors in [17] for pipelined designs. When
network ASICs and wires are fast enough, it is seldom the case
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Figure 4: Normalised execution time versus bristling factor.

that the network clogs long enough for extra VCs or the adaptive
algorithm to noticeably improve the performance.

However, if we look at the behaviour of bristled networks, one
can see how both extra VCs and adaptive routing help in hold-
ing back the execution time growth. For example, in Radix, VCs
alone (2 � VC and Sh2 � VC) reduce execution time by 8% and
20% in 2- and 4-way networks, respectively. Moreover, such per-
centages further improve to 15% and 28% respectively if we add
adaptivity. FFT and Ocean also see improvements that range from
5 to 15% for the combined effect of VCs and adaptivity in the
bristled networks. Although LU sees nearly no change with ex-
tra VCs alone, it does show a 5% improvement over the baseline
algorithm when using adaptivity in the 2-way and 4-way systems.

Sharing of VCs by request and reply messages does not bring
additional benefits. The differences between 2 � VC and Sh2 � VC,
and between Ad2 � VC and ShAd2 � VC, are usually negligible.
This holds for all the applications considered.

Another way of looking at the impact of bristling, VCs, and
adaptivity is to depart from a 1-way 16-node system and see what
speedup applications reach when the number of processors is dou-
bled. We can double the number of PNs by upgrading to an un-
bristled 1-way 32-node system or, instead, upgrading to a bris-
tled 2-way 16-node system. Although upgrading to a 4-way 8-
node system makes no practical sense, we have included the latter
to have another view of the performance degradation. Figure 5
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Figure 5: Speedups of different 32-PN systems over the 1-
way 16-node 1 � VC system.

shows the outcome of the experiment. It is organized as Figure 4.

Figure 5 shows that, under 1 � VC, bristled systems attain much
lower speedups than their unbristled counterparts. Again, mind
the different scaling of the plots. Radix, for example, achieves
a ��� ��� speedup in the non-bristled system, but only ��� � in the
2-way system. Interestingly, however, the version with VCs and
adaptivity (Ad2 � VC) is able to deliver a 1.6 speedup on the 2-way
system. This figure is quite close to the 1.75 speedup achieved in
the 1-way configuration, even though the total bandwidth and the
number of components in the network are about half. This trend
repeats in all other applications. Overall, the 2-way systems are
only 1-10% slower than the 1-way systems with 1 � VC.

In the case of 4-way bristled systems, although the extra VCs
and adaptive routing help a bit, the speedups are very limited.
Radix even experiences a slowdown when using 1 � VC. This
points out that, despite the higher link utilisation that extra VCs
and adaptivity enable, total raw bandwidth is of chief importance.

Overall, the data suggests that, among hypercube networks,
configurations with a bristling degree of 2 that use extra VCs and
adaptivity are very cost-effective. Indeed, extra VCs and adap-
tivity decrease the execution time of high-communication appli-
cations in 2-way bristled networks by 5-15%. As a result, 2-way
bristled networks are only 1-10% slower than non-bristled net-
works with baseline routing. This is in spite of the fact that the
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Figure 6: Average number of messages in transit anywhere
in the network in a given cycle. For a given bristling factor,
the bars correspond to the different routing algorithms as in
the previous figures.

former use about half of the network hardware of the latter. A
second observation is that the sharing of the extra VCs among
requests and replies does not lead to noticeably better results. Fi-
nally, the speedup of the non-bristled configurations shows that
all applications were scalable at the points considered.

4.2 Traffic and Contention Break-Down
To understand better the impact of extra VCs and adaptive rout-
ing in bristled configurations, Figures 6 and 7 show the average
traffic (number of messages in transit anywhere in the network
at any given cycle) and contention (number of cycles wasted to
contention in the network in the round trip of a message) respec-
tively. The data are broken down into the contribution at the PN
injection ports and in the network. The wider choice of routes that
extra VCs and adaptive routing offer to message headers should
help loaded input ports inject more messages per time unit, and
should also allow messages to achieve a higher mobility in a busy
network.

Figure 6 shows that, in many cases, the traffic in a given bris-
tled network stays largely constant as the routing algorithm varies.
However, as shown in Figure 7, the cycles wasted to contention
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Figure 7: Average number of processor cycles wasted to
contention in the network in the round trip of a message. For
a given bristling factor, the bars correspond to the different
routing algorithms as in the previous figures.

in a given bristled network decrease significantly as we use more
advanced routing algorithms that include extra VCs and adaptiv-
ity. Constant traffic with lower contention simply implies a higher
network throughput and, as we have shown in Figure 4, a faster
execution time.

The decrease in contention is especially high in the application
with more traffic, namely Radix. Note the scale of the figure for
Radix. The extra VCs and the use of adaptivity make more routes
available for each message, resulting in faster message transfers.
In the case of LU, the traffic is already fairly low. Consequently,
reductions in contention losses as shown in Figure 7 do not reflect
in a significantly lower execution time (Figure 4).

Figures 6 and 7 show that, in applications with moderate traffic,
most of the in-transit messages and contention cycles are in the
network body, and not at the injection ports. However, the latter
become the bottleneck as traffic becomes higher. For example,
in Radix, the contribution of the injection ports to the in-transit
messages and contention cycles is about 50%.

As a result, the decrease in contention cycles as we add extra
VCs and adaptivity shown in Figure 7 is largely due to different
reasons in different applications. In traffic-intensive applications
like Radix and, to a lesser extent, Ocean, the decrease is due to the

contribution at the injection ports. This means that messages that
used to wait in the ports are now slithering through the network.
The added features increase the injection capacity of the ports.

However, in the applications with less traffic like FFT and LU,
contention decreases after messages have been injected. This sug-
gests that messages do not encounter difficulty in getting injected
into the network. The benefits of the extra VCs and the adap-
tivity come from augmenting the mobility of the messages in the
network.

5 RELATED WORK
Although the study of the performance of interconnection net-
works in multiprocessors is a popular topic, our work has focused
on the specific issue of interconnection networks for CC-NUMA
systems. It is widely accepted that, to capture many of the patterns
of the traffic produced by real applications, execution-driven sim-
ulations are required. Under such environments, the contention
caused by traffic in the network affects the issue rate of the pro-
cessors, which in turn affects the pressure on the network. Most
of the work done in the past, however, has been done using syn-
thetic workloads, or at most trace-driven simulation. Even the
few studies that have used execution-driven simulation and real
applications have generally based their conclusions on relatively
outdated router and system models.

Aoyama and Chien [1] proposed a parametric delay model of
a router chip. Such a model takes into account the complexity
introduced by the number of ports, virtual channels, and adaptive
routing. Although it was used by researchers to time their de-
signs, it is not a suitable model for pipelined routers and links,
which enable a shorter clock cycle by decoupling the different
components of the chip. In the design of the high-performance
router utilised in our study, we have instead used a contemporary
pipelined model with reasonable timing values.

The effect of extra VCs and adaptivity in CC-NUMA systems
has been studied by several authors. Kumar and Bhuyan [10]
utilised execution-driven simulations to determine the impact of
the number and depth of VCs on the performance of parallel ap-
plications running on a CC-NUMA system. Using a torus as the
topology, they found that both factors reduced the execution time.
A later work by Vaidya et al [18] further explored the influence
of network parameters on the execution time of parallel applica-
tions. Unlike the former study, this second work found the use
of VCs and adaptivity to have a negligible effect, sometimes even
adverse. Vaidya et al attributed the disagreement to Kumar and
Bhuyan’s use of non-scalable application configurations.

Unfortunately, none of these two studies used pipelined routing
chips or decoupled links. In particular, the results of Vaidya et al
rely on Aoyama and Chien’s delay model to claim negative influ-
ence of VCs in the system performance. As Vaidya et al pointed
out in their paper, these conclusions cannot be extrapolated to a
pipelined router, which is the common case in today’s state-of-
the-art systems.

Finally, Vaidya et al later published another paper [17] in which
they explored the effect that some of the techniques utilised in
today’s pipelined routers have on message latency. They drove



their network model with synthetic patterns and gradually intro-
duced improvements such as look-ahead routing, reduced routing
tables, adaptive routing, and path-selection heuristics. Although
their study showed noticeable impact on message latency and ad-
dressed many implementation details, it did not show the effect on
actual codes. In our study, we see that the effect of extra VCs and
adaptivity on real codes is actually negligible in full hypercubes.
It is only noticeable in bristled networks, where the bandwidth is
limited.

6 CONCLUSIONS
This work has shown that virtual channels (VCs) and adaptive
routing can help improve the performance of bristled CC-NUMA
systems and make them quite attractive to the budget-minded de-
signer. Specifically, among hypercube networks, configurations
with a bristling degree of 2 that use extra VCs and adaptivity are
very cost-effective. Indeed, 2 extra VCs and adaptivity decrease
the execution time of high-communication applications in 2-way
bristled networks by 5-15%. As a result, 2-way bristled networks
are only 1-10% slower than non-bristled networks with baseline
routing. This is despite the fact that the former use only about
half of the network hardware of the latter. Furthermore, light-
traffic applications are not adversely affected by the use of extra
VCs or adaptive routing. Finally, extra VCs and adaptive routing
are of very limited advantage to non-bristled systems.

We have confirmed that the major contributions of extra VCs
and adaptive routing to the improved execution times of the appli-
cations are greater port injection capacity and message mobility
in the network.

In the future, it will be interesting to combine adaptivity and
DAMQ buffers. DAMQ buffers [16] are a feature present in the
SPIDER chip that prevents messages from blocking others re-
siding in the same VC but going to different output ports. The
combination of both features may further improve the overall per-
formance of a CC-NUMA. Note that combining adaptivity and
DAMQ buffers can be done by simply adopting a storage policy
for the incoming messages, for example to store the message in
the input buffer corresponding to its escape route.
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