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ABSTRACT
We hypothesize that performing processor-side analysis of load in-
structions, and providing this pre-digested information to mem-
ory schedulers judiciously, can increase the sophistication of mem-
ory decisions while maintaining a lean memory controller that can
take scheduling actions quickly. This is increasingly important
as DRAM frequencies continue to increase relative to processor
speed. In this paper we propose one such mechanism, pairing
up a processor-side load criticality predictor with a lean memory
controller that prioritizes load requests based on ranking informa-
tion supplied from the processor side. Using a sophisticated multi-
core simulator that includes a detailed quad-channel DDR3 DRAM
model, we demonstrate that this mechanism can improve perfor-
mance significantly on a CMP, with minimal overhead and virtu-
ally no changes to the processor itself. We show that our design
compares favorably to several state-of-the-art schedulers.

1. INTRODUCTION
While we tend to decouple memory schedulers from the proces-

sor, using processor-side information to assist the controller can be
beneficial for two reasons. First, such information can greatly im-
prove the quality of scheduling decisions, providing a form of load
instruction analysis that the memory cannot perform for lack of
data. Second, as successive generations of memory increase in fre-
quency, the amount of complexity that we can add to the memory
controller (which must make scheduling decisions within a clock
cycle) decreases greatly.

On the processor side, however, it is common to have sophis-
ticated predictors that measure program behavior over time and
eventually influence execution. Instruction criticality is one such
processor-side metric. Whereas the notion of load criticality used
in earlier memory scheduling proposals [9, 10] is typically from
the memory’s perspective and tends to be solely age-based, proper
instruction criticality can be used to determine which instructions
(in our case, which loads) contribute the most to the overall execu-
tion time of the program. Intuitively, if we target the loads that stall
the processor for the longest amount of time, we can significantly
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reduce run time. By informing the controller about which loads are
most urgent from the processor’s perspective, a simple scheduling
mechanism can afford them priority in the memory system.

Specifically, we propose to pair a priority-based memory sched-
uler with a simple processor-side mechanism to predict load in-
structions that may block a core’s reorder buffer (ROB) in a CMP,
and potentially stall the pipeline. Using very small, simple per-core
predictors, we can track such blocking loads, and bring them to the
attention of the scheduler, where they are afforded priority.

Using a sophisticated multicore simulator that includes a detailed
DDR3 DRAM model, we show that pairing this mechanism up with
a lean FR-FCFS scheduler [22] can improve performance by 9.3%,
on average, for parallel workloads on an 8-core CMP, with essen-
tially no changes in the processor core itself. We show that the
hardware overhead of the prediction logic is very small, and that
the simple design is well-suited for high-speed memory technolo-
gies. We compare the performance and design features of our pro-
posed scheduler against several state-of-the-art schedulers, using
both parallel applications and multiprogrammed workloads.

2. LOAD CRITICALITY: A PROCESSOR-
SIDE PERSPECTIVE

Prior work in the field of instruction criticality has primarily fo-
cused on detecting criticality for all instructions within the proces-
sor. The generally accepted method of determining the critical path
of program execution was proposed by Fields et al. [5]. A graph of
dynamic instructions is constructed, modeling each instruction as
three nodes: dispatch time, execution time, and commit time. Since
an instruction cannot execute until dispatched, and cannot commit
until executed, these nodes are connected together with directed
edges to model the timing constraint between stages. The nodes
of an instruction are also connected with those of other instructions
using directed edges, to account for the dependencies between them
within a processor. In this way, the critical-path model can capture
in-order dispatch and commit, a finite ROB size, branch computa-
tions, and data dependencies. From the node times, the lengths of
the dependent edges can be computed. We can then run a longest-
path algorithm between the first dispatch and the final commit to
determine the total application execution time. All edges that do
not fall on this path are expected to have their delays masked by
those that are on the path.

From the definition of criticality by Fields et al., traditional crit-
icality prediction approaches tend to favor the selection of long-
latency instructions as critical. While this can be quite useful for
optimizing instructions in general, it does not differentiate amongst
memory accesses. After some preliminary evaluation, we opted to
exclude this predictor from our study.
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Figure 1: Percentage of dynamic long-latency loads that block at the ROB head (left), and percentage of processor cycles that these
loads block the ROB head (right) when scheduled using FR-FCFS, averaged across all threads of each parallel application.

Much more relevant to our proposal is to confine the study of
criticality to load misses, which are most directly relevant to the
memory scheduler. We explore this criticality from two different
broad perspectives argued in past work.
Based on Subramaniam et al. [29]—Subramaniam et al. proposed
a load criticality predictor based on the observation that loads with
a larger number of consumer instructions are more likely to be crit-
ical to the program’s execution, and thus the number of consumers
can be used as an indicator of criticality [29]. They add counters
to the ROB to track direct dependencies only, which can be de-
termined when consumers enter the rename stage. The number of
consumers is then stored in a PC-indexed Critical Load Prediction
Table (CLPT), and if this count exceeds a certain threshold (which,
as they show, is application-dependent), they mark the instruction
as critical the next time it is issued.

From the perspective of the memory scheduler, we hypothesize
that this measure of criticality may be informative, even if only a
fraction of loads marked critical may ever be seen by the memory
scheduler (the L2 misses). Thus, we include this criterion for crit-
icality in our study. We explore two configurations: One which
simply marks L2 misses as critical or not according to the predic-
tor (CLPT-Binary), and another one where the dependency count
used by the predictor is actually supplied to the memory scheduler
(CLPT-Consumers), so that the scheduler can prioritize among the
L2 misses marked critical.
Based on Runahead and CLEAR [3, 13, 18]—Recall that in out-
of-order processors, once load instructions are issued to memory
and their entries are saved in the load queue, these instructions exit
the execution stage but remain in the ROB until the requested oper-
ation is complete and the appropriate value is supplied. This means
that while other resources of the back end have been freed up, long-
latency load instructions may reach the ROB head before they com-
plete, where they will block the commit stage, possibly for many
cycles. A long-latency block at the ROB head can lead to the ROB
filling up, and eventually prevent the processor from continuing to
fetch/dispatch new instructions. In the worst case, this may lead to
a complete stall of the processor.

Runahead and CLEAR try to attack this problem by extending
the architecture with special execution modes. In Runahead, when
a long-latency load blocks the ROB head, the architectural state is
checkpointed, allowing execution to continue, albeit “skipping” in-
structions that are in the load’s dependency chain (easily detectable
by “poisoning” the destination register) [3, 18]. After the load com-
pletes, the processor systematically rolls back to that point in the
program order. The goal is to use Runahead mode to warm up
processor and caches in the shadow of the long-latency load. In
CLEAR, a value prediction is provided to the destination register
instead of poisoning it, which allows the hardware to leverage the

(correct) execution in the shadow of that load when the prediction
is correct, or to still warm up processor and cache structures other-
wise [13]. Checkpoint support is still needed.

Targeting these loads to “unclog” the ROB could significantly
reduce the processor critical path. Figure 1 shows that while these
loads only account for 6.1% of all dynamic loads, on average, they
end up blocking the ROB head for 48.6% of the total execution
time. (See Section 4 for experimental setup.) This is consistent
with the findings of Runahead and CLEAR.

We hypothesize that this criterion for criticality may be useful
to a criticality-aware memory scheduler. Consequently, our study
includes it as well. Note that we only use Runahead/CLEAR’s con-
cept of load criticality: Our mechanism is devoid of the check-
point/rollback execution modes characteristic of those proposals.

3. SCHEDULER IMPLEMENTATION
Unlike Subramaniam et al., neither Runahead nor CLEAR di-

rectly use a criticality predictor, since their mechanisms do not ac-
tivate until the loads actually block the ROB head (i.e., they implic-
itly predict that such loads are critical). For criticality based on this
criterion, we must design a predictor that can inform the scheduler
as soon as the load issues.

We propose a new hardware table, the Commit Block Predictor
(CBP), that tracks loads which have previously blocked the ROB.
Figure 2 shows how the CBP interacts within the processor. The
CBP is simply an SRAM indexed by the PC. (As in branch predic-
tion tables, we index the finite table with an appropriate bit sub-
string of the PC, resulting in some degree of aliasing.) When a
load instruction blocks the ROB head, the predictor is accessed and
annotated accordingly. In our evaluation, we explore different an-
notations: (a) a simple saturating bit, (b) a count of the number
of times the load has blocked the ROB head, or (c) the load’s stall
time. (The stall time can only be written to the CBP once the load
commits.) The next section goes into these options in more detail.

When a load instruction with the same (PC-based) CBP index is
issued in the future, it is flagged as critical. On a last-level cache
miss, this flag is sent along with the address request to memory,
where it will be caught by the scheduler.

3.1 Ranking Degrees of Criticality
Previous implementations of criticality have typically only used

a binary metric, as an instruction is either on the critical path or not.
While useful in itself, such a binary metric fails to provide strati-
fication amongst the marked requests. On average, each DRAM
transaction queue contains more than one critical load for 30.1%
of the overall execution time (in comparison, the queue contains at
least one critical load 49.2% of the time). We can potentially im-
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prove the performance of our scheduler by distinguishing amongst
them. As a result, we choose to extend our idea of criticality fur-
ther: The more time a particular load contributes to the critical path,
the more important it may be to address that load. For example, if
we have to choose between speeding up a load that stalls the ROB
for 5 cycles and one that stalls the ROB for 250 cycles, we may
choose to speed up the 250-cycle one. (This, however, may not al-
ways be the best choice, because a long-blocking stall might simply
be masking other delays within the processor pipeline.) Based on
this hypothesis, it seems intuitive that we may benefit from ranking
critical loads in some order of importance.

As mentioned before, we choose to evaluate several different
metrics for our CBP that have the potential to capture this impor-
tance. The first, BlockCount, counts the number of times a load
blocks the ROB, regardless of the amount of time it stalls for; this
is based on the belief that if a load continues to block the ROB, ser-
vicing that particular load will be more effective than tracking and
optimizing a load that only blocks the ROB a handful of times. We
also look at LastStallTime, a short-term memory to see the most re-
cent effect a load had on the ROB, while allowing us to be agnostic
of older, potentially outdated behavior. Another metric evaluated
is MaxStallTime, which effectively captures the long-term behavior
of a critical load through the largest single observed ROB stall du-
ration. This assumes that if a load is found to be more critical than
others, it is likely to remain relatively more critical, regardless of
how subsequent scheduling may reduce the magnitude of stalling.
Finally, we measure TotalStallTime, which accumulates the total
number of cycles across the entire execution for which a load has
stalled at the head of the ROB. We use this to capture a combi-
nation of block count and dynamic instruction stall time, although
we are aware of its potential to skew towards frequently-executed
loads even if they may no longer be critical.

3.2 Incorporating Criticality into FR-FCFS
We add our concept of load criticality into the FR-FCFS memory

scheduler [22]. The basic FR-FCFS algorithm calls for CAS com-
mands to be prioritized over RAS commands, and in the case of a
tie, the oldest command is issued. We choose two arrangements in
which we add criticality to the scheduler. The first, Crit-CASRAS,
prioritizes commands in the following order: (1) critical loads to
an open row (CAS), (2) critical loads to a closed row (RAS), (3)
non-critical commands to an open row, and (4) non-critical com-
mands to a closed row, with the tiebreaker within priority groups
selecting the oldest command. The second, CASRAS-Crit, uses the
following priority: (1) critical CAS, (2) non-critical CAS, (3) crit-
ical RAS, and then (4) non-critical RAS, again breaking ties by
choosing older over younger commands.

Note that Crit-CASRAS requires an extra level of arbitration not
currently in FR-FCFS, whereas CASRAS-Crit may leverage the tie-
breaking age comparator to incorporate criticality. As we shall see
later, the performance of both schemes is identical, even if we as-
sume no extra delay for Crit-CASRAS, and thus we advocate for the
more compact CASRAS-Crit implementation.

Figure 2 shows a high-level overview of how the CBP interacts
with the ROB. Consider the criterion where criticality is measured
based on a blocking load’s ROB stall time (the other proposed cri-
teria are equally simple or simpler). When a load blocks at the head
of the ROB, we make a copy of the PC bit substring, used to index
the CBP table, and ROB sequence number. We then use a counter
to keep track of the duration of the stall as follows: Every cycle,
the sequence number of the current ROB head is compared to the
saved sequence number. (For a 128-entry ROB, this represents a
7-bit equivalence comparator.) If it is equal, then the stall counter
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Figure 2: Overview of Commit Block Predictor (CBP) oper-
ation. Solid gray lines represent the per-cycle register counter
and updates, dashed red lines illustrate a write to the CBP table
(when a stalled load commits), green dash-dot-dot lines show
the table lookup for loads to be issued, and blue dash-dot lines
depict load issue to memory.

is incremented. (We shall discuss the size of this counter in Sec-
tion 5.7.) If it is not equal, the saved PC is used to index the CBP
table, which is a small, tagless direct-mapped array. The counter
value is then written to the table, and the counter itself is reset.

The PC of each new dynamic load is used to index the CBP table
and read the predicted criticality. There are several alternatives for
implementing this lookup. The prediction can be retrieved at load
issue, either by adding the PC bit substring to each load queue en-
try, or by using the ROB sequence number (already in the entry) to
look up the PC inside the ROB. Retrieving at load issue requires a
CBP table with two read ports and one write port, as our architec-
ture assumes that up to two loads can be issued each cycle. Alter-
natively, we can perform the lookup at decode, and store the actual
prediction in each load queue entry. As the PCs will be consecutive
in this case, we can use a quad-banked CBP table to perform the
lookup. Our evaluation assumes that we retrieve at load issue and
add the PC substring to the load queue, but our storage overhead
estimations (Section 5.7) consider the cost of all three possibilities.

The criticality information read from the CBP is piggybacked
onto the memory request (the bus is expanded to accommodate
these few extra bits—see Table 5). In the case of an L2 miss, the
information is sent along with the requested address to the memory
controller, where it is saved inside the transaction queue. In the FR-
FCFS scheduler, the arbiter already contains comparators that are
used to determine which of the pending DRAM commands are the
oldest (in case of a tie after selecting CAS instructions over RAS
instructions). We can simply prepend our criticality information to
the sequence number (i.e., as upper bits). As a result, the arbiter’s
operations do not change at all, and we only need to widen the com-
parators by the number of additional bits. By placing the criticality
magnitude as the upper bits, we prioritize by criticality magnitude
first, using the sequence number only in the event of a tie. To avoid
starvation, we conservatively cap non-critical memory operations
to 6,000 DRAM cycles, after which they will be prioritized as well.
We observe in our experiments that this threshold is never reached.
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Table 1: Core parameters.
Frequency 4.27 GHz

Number of Cores 8
Fetch/Issue/Commit Width 4 / 4 / 4

Int/FP/Ld/St/Br Units 2 / 2 / 2 / 2 / 2
Int/FP Multipliers 1 / 1

Int/FP Issue Queue Size 32 / 32 entries
ROB (Reorder Buffer) Entries 128

Int/FP Registers 160 / 160
Ld/St Queue Entries 32 / 32

Max. Unresolved Branches 24
Branch Misprediction Penalty 9 cycles min.

Branch Predictor Alpha 21264 (tournament)
RAS Entries 32

BTB Size 512 entries, direct-mapped
iL1/dL1 Size 32 kB

iL1/dL1 Block Size 32 B / 32 B
iL1/dL1 Round-Trip Latency 2 / 3 cycles (uncontended)

iL1/dL1 Ports 1 / 2
iL1/dL1 MSHR Entries 16 / 16

iL1/dL1 Associativity Direct-mapped / 4-way
Memory Disambiguation Perfect

Coherence Protocol MESI
Consistency Model Release consistency

Table 2: Simulated parallel applications and their input sets.
Data Mining [19]

scalparc Decision tree 125k pts., 32 attributes
NAS OpenMP [2]

cg Conjugate gradient Class A
mg Multigrid solver Class A

SPEC OpenMP [1]
art-omp Self-organizing map MinneSPEC-Large

equake-omp Earthquake model MinneSPEC-Large
swim-omp Shallow water model MinneSPEC-Large

SPLASH-2 [32]
fft Fast Fourier transform 1M points

ocean Ocean movements 514×514 ocean
radix Integer radix sort 2M integers

Table 3: Parameters of the shared L2 cache and memory.
Shared L2 Cache Subsystem

Shared L2 Cache 4 MB, 64 B block, 8-way
L2 MSHR Entries 64

L2 Round-Trip Latency 32 cycles (uncontended)
Micron DDR3-2133 DRAM [15]

Transaction Queue 64 entries
Peak Data Rate 8.528 GB/s

DRAM Bus Frequency 1,066 MHz (DDR)
Number of Channels 4 (2 for quad-core)

DIMM Configuration Quad rank per channel
Number of Banks 8 per rank

Row Buffer Size 1 KB
Address Mapping Page interleaving

Row Policy Open page
Burst Length 8

tRCD 14 DRAM cycles
tCL 14 DRAM cycles
tWL 7 DRAM cycles

tCCD 4 DRAM cycles
tWTR 8 DRAM cycles
tWR 16 DRAM cycles
tRTP 8 DRAM cycles
tRP 14 DRAM cycles

tRRD 6 DRAM cycles
tRTRS 2 DRAM cycles
tRAS 36 DRAM cycles
tRC 50 DRAM cycles

Refresh Cycle 8,192 refresh commands every 64 ms
tRFC 118 DRAM cycles

Table 4: Multiprogrammed workloads. P, C, and M are pro-
cessor-, cache-, and memory-sensitive, respectively [2, 7].

AELV ammp - ep - lu - vpr C P C C
CMLI crafty - mesa - lu - is P P C M
GAMV mg - ammp - mesa - vpr M C P C
GDPC mg - mgrid - parser - crafty M C C P
GSMV mg - sp - mesa - vpr M C P C
RFEV art - mcf - ep - vpr C M P C
RFGI art - mcf - mg - is C M M M

RGTM art - mg - twolf - mesa C M M P

4. EXPERIMENTAL METHODOLOGY
Architectural Model—We assume an architecture that integrates
eight cores with a quad-channel, quad-ranked DDR3-2133 mem-
ory subsystem. Our memory model is based on the Micron DDR3
DRAM specification [15]. The microarchitectural features of the
baseline processor are shown in Table 1; the parameters of the L2
cache, and the DDR3 memory subsystem, are shown in Table 3.
We implement our model using a modified version of the SESC
simulator [20] to reflect this level of detail in the memory.

We explore the sensitivity of our proposal to the number of ranks,
the memory speed, and the size of the load queue in Section 5.6.
While not shown for brevity, the trends in the results reported in
this paper were also observed using a slower DDR3-1066 model.
Applications—We evaluate our proposal on a variety of parallel
and multiprogrammed workloads from the server and desktop com-
puting domains. We simulate nine memory-intensive parallel ap-
plications, running eight threads each, to completion. Our parallel
workloads represent a mix of scalable scientific programs from dif-
ferent domains, as shown in Table 2.

For our multiprogrammed workloads, we use eight four-appli-
cation bundles from the SPEC 2000 and NAS benchmark suites,
which constitute a healthy mix of CPU-, cache-, and memory-sen-
sitive applications (see Table 4). In each case, we fast-forward each
application for one billion instructions, and then execute the bundle
concurrently until all applications in the bundle have executed at
least 500 million instructions each. For each application, results are
compared using only the first 500 million instructions. Reference
input sets are used.

5. EVALUATION
In this section, we first examine performance of adding binary

criticality to FR-FCFS, observing the behavior under our two pro-
posed approaches (see Section 3.2). We then explore the impact of
ranked criticality. Afterwards, we try to gain insight as to why the
CBP-based predictors outperform the CLPT predictor proposed by
Subramaniam et al. We also examine the impact on our scheduler’s
performance of adding a state-of-the-art prefetcher. We then quan-
tify our hardware overhead. Finally, we compare our scheduler
against AHB [8], MORSE-P [9, 16], PAR-BS [17], and TCM [12].

5.1 Naive Predictor-Less Implementation
We first examine the usefulness of sending ROB stall informa-

tion only at the moment a load starts blocking the ROB. Without
any predictors, we simply detect in the ROB when a load is block-
ing at the head, and then forward this information to the memory
controller, which in all likelihood already has the memory request
in its queue. For this naive experiment only, we optimistically as-
sume that extra side channel bandwidth is added to the processor,
allowing us to transmit the data (the load ID and criticality flag)
from the ROB to the DRAM transaction queue. (We do, however,
assume realistic communication latencies.)

Using this forwarding mechanism, we achieve an average speed-
up of 3.5%, low enough that one could consider it to be within
simulation noise. This poor performance may be attributed to the
lack of a predictor: As we do not have any state that remembers the
behavior of these loads, subsequent instances of the static load will
again only inform the memory controller when the new dynamic
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Figure 3: Speedups from Binary criticality prediction (sweeping over CBP table size) within the memory scheduler, using the Crit-
CASRAS (top) and CASRAS-Crit (bottom) algorithms.

instance blocks the ROB head once more. We therefore use a pre-
dictor in our implementation (without forwarding at block time)
to prioritize these blocking loads earlier in their lifetime, with the
hope of further reducing their ROB stall time.

5.2 First Take: Binary Criticality
We study the effects of adding criticality to the FR-FCFS sched-

uler, as proposed in Section 3.2. We evaluate our CBP tables, as
well as the Critical Load Prediction Table (CLPT) mechanism pro-
posed by Subramaniam et al. [29]. As discussed in Section 2, we
believe that their method of determining criticality also has the po-
tential to inform the memory scheduler. We reproduce their pre-
dictor as described, and from an analysis of our benchmarks, we
choose a threshold of at least three consumers to mark an instruc-
tion as critical.

Figure 3 shows the performance of these two predictors. For a
64-entry Binary CBP table, both the Crit-CASRAS and CASRAS-
Crit algorithms achieve 6.5% speedup over baseline FR-FCFS. As
expected, prioritizing loads that block the head of the ROB allows
execution to resume more quickly, resulting in a tangible improve-
ment in execution time. Furthermore, loads that sit behind the in-
structions blocking the ROB head can mask part of their miss la-
tency, reducing their impact (and importance) on the critical path.
In Section 5.3, we will see that ranking the degree of criticality
allows us to achieve greater performance benefits.

Figure 3 also shows that increasing the size of the table has little
effect on the performance of the scheduler. In fact, the 64-entry Bi-
nary table gets within one percentage point of the unlimited, fully-
associative table (7.4%). We will investigate the impact of table
size in more depth in Section 5.3.1. We also note that the CLPT-
Binary predictor shows no appreciable speedup over FR-FCFS; we
discuss this further in Section 5.3.3.

From the results presented so far, the Crit-CASRAS and CASRAS-
Crit algorithms perform on par with each other, displaying the
same trends across all of our evaluations. This means that we

see roughly equal benefits from picking a critical RAS instruction
or a non-critical CAS instruction, and that overall, the cost paid
for additional precharge and activate commands is made up for by
criticality-based performance benefits. As a result, we present the
remainder of our results with only the CASRAS-Crit algorithm, be-
cause as we discussed in Section 3.2, it is simpler to implement in
hardware.

5.3 Ranking Degrees of Criticality
As we motivated in Section 3.1, we expect significant benefits

from being able to determine how much more critical an instruction
is with respect to others. We observe the impact of our four ranking
metrics on speedup in Figure 4, this time only using a 64-entry
table. We also evaluate CLPT-Consumers, a ranked implementation
of the CLPT predictor that uses the number of direct consumers to
rank the criticality of a load.

For most of the CBP-based ranked predictors, we see improve-
ments across the board over the Binary CBP. Using the Block-
Count CBP improves performance by 8.7% over FR-FCFS. A crit-
ical load within a oft-recurring execution loop will stand to reap
more benefits over a critical load that is only executed a handful of
times, since servicing the more common load every time results in
a greater accumulation of time savings in the long run. Using Last-
StallTime does not provide any tangible benefit over binary critical-
ity. One reason could be a ping-ponging effect: if an unmarked load
blocks at the head of the ROB for a long time and is subsequently
flagged as quite critical, prioritizing the load could significantly re-
duce its block time, reducing the perceived degree of criticality.
When the load reappears, its lower priority means that it is serviced
behind other, more critical loads, and again blocks for a long time
at the ROB head.

We can avoid this issue by measuring the maximum stall time of
a load. At the risk of being oblivious to outlier behavior, we use
the maximum stall time as a more stable gauge of how critical a
load might be, under the assumption that if it stalled for this long at
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some point in time, it is likely to stall for a similar amount in a sub-
sequent iteration. MaxStallTime does quite well, with an average
speedup of 9.3%. While TotalStallTime does perform the best of
all of our metrics, the meager increase over MaxStallTime does not
provide the large synergistic boost hoped for from combining block
count and stall time. Ultimately, TotalStallTime falls short because
it relies too much on history, and tilts in favor of recurrent loads (as
their latencies will accumulate more rapidly). Finally, even with
ranking, the CLPT-Consumers predictor fails to produce speedups.

Using these benchmarks, we can take the worst-case values for
each of our predictors and determine an upper bound for the num-
ber of bits needed to store each. These are quantified in Table 5.
Note that the width of the total stall time predictor will depend on
two factors: (a) the length of program execution, and (b) whether
the counters are reset at set intervals to account for program phase
behavior (which becomes important on hashing collisions). For the
purposes of our study, we take the maximum observed value to
give an idea of how large the counter can be. One could also imple-
ment saturation for values that exceed the bit width, or probabilistic
counters for value accumulation [21], but we do not explore these.

5.3.1 Prediction Table Size
We test three CBP table sizes (64 entries, 256 entries, and 1,024

entries) and compare them against a fully-associative table with
an unlimited number of entries, which provides unaliased predic-
tion, to see how table size restriction affects performance. Figure 3
shows the effect on performance for our binary criticality predictor,
and Figure 5 shows performance for our MaxStallTime predictor.
We omit results for the other prediction metrics for brevity, but we
see near-identical trends in relative performance.

We effectively see no performance drop when we go from an
unlimited number of entries down to a 64-entry predictor. Despite
there being anywhere from 105 to 107 critical dynamic loads per
thread, these only stem from a few hundred static instructions, for
the most part. Since we index our table by the PC of the instruction,
we have a much smaller number of loads to track due to program
loops. The one exception is ocean, which has approximately 1,700
critical static instructions per core. Interestingly, we do not see
a notable drop in its performance, possibly because critical loads
only make up 2.4% of the total number of dynamic loads. Since our
predictor can also effectively pick which loads to defer (we discuss
this duality more in Section 5.4), we can still in essence prioritize
critical loads, despite the fact that 32.4% of the non-critical loads
in ocean are incorrectly predicted as critical.

There are a couple of applications, fft and art, where the smaller
tables actually outperform the unlimited entry table. The behav-
ior of art is a particular anomaly, as it outperforms the unlim-
ited table by a large margin. Upon further inspection, we find
that this is due to its large memory footprint, by far the largest of
the SPEC-OMP applications. This is exacerbated by the program
structure, which implements large neural nets using two levels of
dynamically-allocated pointers. With the large footprint, these dou-
ble pointers often generate back-to-back load misses with a serial
dependency, which are highly sensitive to any sort of memory re-
ordering.

Due to the different ordering, for example, going from an un-
limited table to a 64-entry table for our MaxStallTime predictor in-
creases the L2 hit rate by 3.3%, whereas no other benchmark shows
a tangible change in L2 hit rate. This effect is compounded by the
fact that our small predictor is quite accurate for art, with only 4.8%
of non-critical loads incorrectly predicted as critical. This is be-
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Figure 7: Speedups for FR-FCFS and our proposed criticality predictors with an L2 stream prefetcher, normalized to FR-FCFS
without prefetching.

cause art has one of the smallest number of static critical loads out
of our benchmarks, averaging 156 static critical loads per thread.

5.3.2 Table Saturation
The small table sizes that we use leave our predictor vulnerable

to aliasing. We study these effects by comparing the restricted ta-
bles versus the content of the unlimited entry table. Of concern is
the fact that, on average, 25.4% of our dynamic non-critical loads
are being incorrectly marked as critical by the scheduler for our fi-
nite table size configurations. Much of this effect is due to table
saturation—over time, a larger portion of the table will be marked
as critical, eliminating any distinction between the loads. One way
to avoid this is to perform a periodic reset on the table contents.
Ideally, this not only limits the age of the predictor entries, but it
also allows us to adapt better to phase behavior in the applications.

We explore several interval lengths for the table reset (5K, 10K,
50K, 100K, 500K, and 1M cycles). We use our three fastest-exe-
cuting applications (fft, mg, and radix) as a training set, to deter-
mine which of these periods is best suited for our predictor with-
out overfitting to our benchmark suite. For our 64-entry table, the
training set performs best on the 100K-cycle interval, for both Bi-
nary CBP and MaxStallTime CBP. We use the remaining six ap-
plications as our test set. Without reset, a 64-entry Binary table
obtained a speedup of 7.5% on the test set (data not shown). Us-
ing the 100K-cycle reset, we can improve this to 9.0%, equaling
the performance of the unlimited-entry table. The performance dif-
ferences for MaxStallTime are negligible (as we saw previously in
Figure 5, the 64-entry table already performs almost identically to
the unlimited-size configuration).

We also test table reset intervals on the unlimited-entry table.
This allows us to determine whether the effects of resetting are due
to a reduction in aliasing alone, or if the staleness of the data also

contributes to lesser performance. In all cases, though, resetting the
unlimited-entry table does not affect performance, suggesting that
criticality information is useful in the long term.

5.3.3 Understanding CLPT Performance
Subramaniam et al.’s CLPT predictor has not shown any notable

speedups in either binary or ranked magnitude capacity. Recall that
CLPT uses the number of direct consumers to determine load criti-
cality. Our simulations show that roughly 85% of all dynamic load
instructions only have a single direct consumer, indicating that we
do not have enough diversity amongst loads to exploit speedups
in the memory scheduler. To see what happens if we increase the
number of critical loads, we re-execute the CLPT-Binary predictor
using a criticality threshold of 2 (i.e., any load that has more than
one direct consumer will be marked critical). Again, the speedups
are quite minimal. We believe that the types of loads the CLPT pre-
dictor targets are largely complementary to the ones that the CBP
chooses to optimize, and that CLPT is likely better suited for the
cache-oriented optimizations proposed by Subramaniam et al. [29].

5.4 Effect on Load Latency
To gain some additional insight on where the speedups of the

criticality scheduler come from, we examine the difference in L2
cache miss latency between critical and non-critical loads, as shown
in Figure 6. As expected, for all of our benchmarks, we see a drop
in the latency for critical loads. A number of these benchmarks
show significant decreases, such as ocean and fft, which correspond
to high speedups using our predictors. It is, however, important
to note that several benchmarks only show more moderate drops.
These moderate drops still translate into speedups because load in-
structions do not spend their entire lifetime blocking the head of
the ROB. In fact, it will take many cycles after these instructions
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Table 5: Criticality counter widths.
Criticality Metric Max Obs. Value Width
Binary 1 1 b
BlockCount 1,975,691 21 b
LastStallTime 13,475 14 b
MaxStallTime 13,475 14 b
TotalStallTime 112,753,587 27 b

Table 6: State attributes used by Crit-RL self-optimizing memory scheduler.
1 Binary Criticality (prediction sent by processor core from 64-entry table)
2 Number of Reads to the Same Rank
3 Number of Reads in Queue
4 Number of Writes to the Same Row
5 ROB Position Relative to Other Commands from Same Core
6 Number of Writes in Queue that Reference Open Rows
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Figure 8: Sweep over number of ranks per channel, for DDR3-1600 (left) and DDR3-2133 (right) memory. Speedups are relative to
a single-rank memory subsystem with an FR-FCFS scheduler.

have been issued until they even reach the ROB head, so a signifi-
cant part of the L2 miss latency is masked by the latency of other
preceding instructions. Of the portion of the latency that does con-
tribute to ROB commit stalls, the decrease becomes a much larger
proportional drop, hence providing non-trivial speedups.

Interestingly, looking at the non-critical load latencies, we see
that for a few applications, these latencies are actually increasing.
What this tells us is that our scheduler is exploiting the slack in
these non-critical loads, delaying their completion significantly (in
deference to critical loads) without affecting execution time, as they
do not fall on the critical path.

Again, art proves to be an interesting outlier, experiencing a
large drop in both latencies. As discussed in Section 5.3.1, the
program structure of art renders it extremely sensitive to memory
reordering. In the case of the Binary CBP, we see that, like other
benchmarks, art sees a drop in the percentage of execution time
spent stalling on the ROB. However, unique to art, the amount of
execution time for which the load queue is full decreases by 17.8%,
freeing up queue space to exploit greater memory-level parallelism.

5.5 Effect of Prefetching
Memory prefetchers attempt to alleviate load miss serialization

by exploiting some form of locality and predicting that, on a miss,
a nearby cache line will also be read by an application in the near
future. This has the potential to overlap with some of the latency-
reducing benefits of criticality-aware memory scheduling, as it may
reduce the number of loads that block the head of the ROB. To in-
vestigate this behavior, we implement a stream prefetcher inside the
L2 cache [26]. We use an aggressive configuration of 64 streams, a
prefetch distance of 64, and a prefetch degree of 4. Just adding the
prefetch mechanism to baseline FR-FCFS yields a 8.4% speedup.
Though this seems low compared to published results for sequen-
tial applications, prior work has shown that prefetching does not
perform well as the number of threads of a parallel application in-
creases [25]. The prefetcher fails as similar address streams gener-
ated by each parallel thread confuse the training agent.

Figure 7 shows the speedups observed if a 64-entry CBP is added
to this FR-FCFS-Prefetch memory system. While the speedups are
somewhat diminished, we still obtain notable improvements for our
criticality prediction over FR-FCFS with prefetching (from 4.9%
for Binary CBP up to 7.4% for TotalStallTime). We also increased
the number of streams to 128 and 256 to make sure that this was
not a limiting factor in performance. For the two sizes, we found

the performance, both with and without the CBP, to be similar to
that of the 64-stream prefetcher.

Notice that prefetchers only observe a global context, which may
not assist all of the threads, depending on the application design.
Criticality-aware FR-FCFS only adds prioritization metrics to data
loads, and flags requests for each thread, providing us with greater
potential to speed up all of the application threads.

5.6 Sensitivity to Architectural Model
To explore how our predictors work over several types of devices

available on the market today, we sweep over the number of ranks
for both a DDR3-1600 and a DDR3-2133 memory subsystem. Fig-
ure 8 shows these results, relative to an FR-FCFS scheduler with a
single rank for each respective subsystem. With fewer ranks, there
is greater contention in the memory controller, as the memory pro-
vides fewer opportunities for parallelization. In these scenarios, we
observe that our predictor-based prioritization sees greater perfor-
mance benefits. For example, a single-rank DDR-2133 memory
can see speedups of 14.6% with our 64-entry MaxStallTime predic-
tor.

We also explore the impact of the load queue size on our results.
With our existing 32-entry load queue, the queue is full for 19.3%
of the execution time. Our predictors lower this somewhat, but
capacity stalls still remain. Figure 9 shows the effects of increasing
the load queue size. With 48 entries, we see most of load queue
capacity stalls go away. Even then, we still experience speedups of
6.4% for our Binary CBP and 8.3% for MaxStallTime. Increasing
the queue further to 64 entries has a minimal change from the 48-
entry results, since we had already eliminated most of the capacity
stalls at 48 entries.
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Figure 9: Sweep over load queue sizes. Speedups are relative to
a 32-entry load queue with an FR-FCFS scheduler.
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Figure 10: Performance of two state-of-the-art schedulers compared to our
proposal. Crit-RL adds criticality to a self-optimizing memory controller, using
the features listed in Table 6.
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be considered in a single DRAM cycle.

5.7 Storage Overhead
We now quantify the storage overhead required for the CASRAS-

Crit algorithm described in Section 3.2. We start with the Binary
predictor. Inside each processor, we need a 7-bit register for the
sequence number and a 6-bit register for the PC-based table index,
as well as a 7-bit equivalency comparator. For the CBP table, we
require a 64 x 1 b table (recall that the CBP table is tagless). As dis-
cussed earlier, we may need to expand the load queue depending on
the table lookup implementation: For lookup-at-decode, each load
queue entry must be expanded by 1 bit, while storing the PC bit
substring in the load queue requires 6 bits. The total storage over-
head within each core therefore ranges between 77 and 269 bits.
We assume that this data can be sent to the memory controller by
adding a bit to the address bus on-chip (between the processors,
caches, and the memory controller), in conjunction with the initial
load request. Inside the controller, each transaction queue entry
requires an extra bit, resulting in another 64 bits of overhead per
channel. The comparators of the arbiter must also grow by one
bit each. In terms of SRAM overhead (ignoring the enlarged com-
parators), for our 8-core quad-channel system, the binary criticality
implementation yields 6.5% speedup at a cost of between 109 and
301 bytes. Adding hardware to reset the tables at 100K-cycle inter-
vals can boost this speedup to 7.3%.

The MaxStallTime predictor requires 14 bits per entry (Table 5).
While the sequence number and PC registers remain unchanged,
the CBP table must now be 64 x 14 b, and the load queue entries
must also be expanded for lookup-at-dispatch, resulting in a total
overhead ranging from 909 to 1,357 bits per core. We also need an
additional read port on the CBP table, and a 14-bit comparator, to
see if the new stall time is greater than the currently-stored maxi-
mum. Additionally, the storage overhead within the DRAM trans-
action queue is now 896 bits, and the arbiter comparators must ex-
pand by 14 bits each. For our 8-core processor, this costs between
1,357 and 1,805 bytes of SRAM to obtain a 9.3% speedup.

Using the same methodology, we find that the largest of the can-
didate predictors, TotalStallTime, adds from 2,605 to 3,469 bytes
of SRAM, widening comparators by 27 bits.

5.8 Comparison to Other Schedulers
We compare our criticality-based scheduler to three state-of-the-

art memory schedulers: the adaptive history-based (AHB) sched-
uler proposed by Hur and Lin [8], the fairness-oriented thread clus-
ter memory (TCM) scheduler [12], and MORSE-P, a self-optimi-
zing scheduler that targets parallel application performance [9, 16].
Table 7 summarizes the main differences between these schedulers.
They are described in more detail in Section 6.2.

AHB and TCM have simple hardware designs, but unfortunately
our results will show that they do not perform as well, as their sim-

plicity does not adapt well to different memory patterns and en-
vironments. MORSE-P, on the other hand, is very sophisticated,
using processor-side information to adapt for optimal performance.
However, as we will show, the original controller design is complex
enough that it likely cannot make competitive decisions within a
DRAM cycle for faster memory technologies. Our CBP-based pre-
dictors combine the best of both worlds, using processor-side infor-
mation to provide speedups in several scenarios while maintaining
a lean controller design.

5.8.1 Parallel Applications
Figure 10 shows the performance of our schedulers against AHB

and MORSE-P. We see that AHB, which was designed to target
a much slower DDR2 system, does not show high speedups in a
more modern high-speed DRAM environment. On the other hand,
MORSE still does quite well, achieving an 11.2% speedup. (For
now, we optimistically assume that MORSE can evaluate 24 com-
mands within a single DRAM cycle–the same as the original paper.
As we will see, with high-speed DRAM interfaces, this is unlikely
unless significant additional silicon is allocated to the scheduler.)

To study its potential impact, we added our binary and ranked
criticality predictions to the MORSE reinforcement learning algo-
rithm as features, using 64-entry prediction tables. We ran multi-
factor feature selection [16] from a total of 35 features, including
all of the original MORSE-P features, on our training set (fft, mg,
and radix). Table 6 shows a list of the selected features, in the or-
der they were chosen. One property of feature selection is that for
a given branch of features, the feature picked first tends to have the
most impact on improved performance. Promisingly, feature selec-
tion chose binary criticality first. However, the resulting controller,
Crit-RL, only matches the performance of MORSE (see Figure 10).
The lack of improvement implies that MORSE has features which
implicitly capture the notion of criticality.

One major disadvantage of MORSE is the long latency required
to evaluate which command should be issued. While the origi-
nal design worked in the context of a DDR3-1066 memory sys-
tem [16], faster memory clock speeds make this design infeasible.
For DDR3-1066, the controller, running at the processor frequency,
could be clocked eight times every DRAM cycle; we can now only
clock it four times in a DDR3-2133 system (937 ps). As the original
design incorporated a five-stage pipeline (1.17 ns latency), we can
no longer compute even a single command. Even assuming zero
wire delay and removing all pipelining, the CMAC array access
latency (180.1 ps, modeled using CACTI [30] at a 32 nm technol-
ogy) and the latency of the 32-adder tree and the 6-way comparator
(approximately 700 ps [16]) leave less than 60 ps to perform the
command selection logic. As a result, we believe it is difficult to
implement MORSE for high-speed memory.
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Table 7: Comparison of various state-of-the-art memory schedulers with our proposed CBP-based schedulers.
Scheduler AHB (Hur/Lin) [8] TCM [12] MORSE-P [9, 16] Binary CBP MaxStallTime CBP
Avg. Parallel Application Speedups 1.6% 0.6% 11.2% 6.5% 9.3%(relative to FR-FCFS)
Avg. Multiprogrammed Workload Weighted 3.1% 1.9% 11.3% 5.2% 6.0%Speedups (relative to PAR-BS)
Storage Overhead 31 B 4816 B DDR3-1066: 128 kB 109–301 B 1,357–1,805 B(for 8 cores, 4 memory controllers) DDR3-2133: ≤ 512 kB†

Uses Processor-Side Information No No Yes Yes Yes
Scales to High-Speed Memory Yes Yes No Yes Yes
Works for Low Contention Yes No Yes Yes Yes

†320 kB to match MaxStallTime CBP performance.
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Figure 12: Weighted speedups for multiprogrammed work-
loads from adding ranked criticality. CBP table is 64 entries,
and PAR-BS’s marking cap is set to 5 [17].

Let us assume, optimistically, that the latency of evaluating one
command in MORSE does indeed fit within one cycle. Without
modifying the hardware design, we can now only examine six ready
commands per cycle using the original two-way design, with tri-
ported CMAC arrays in each way. Additional commands can only
be examined by adding more ways, but this comes at the cost of
replicating the CMAC arrays (as adding read ports would further
increase access latency, which is already too long) and increasing
the depth of the comparator tree. Figure 11 shows the performance
obtained sweeping over different numbers of commands. In each
case, when more ready commands exist than can be evaluated, we
examine commands by age, oldest first. Achieving the full 24-
command potential of MORSE now requires eight ways, resulting
in an SRAM overhead of 128 kB per controller. In order to match
the performance of our MaxStallTime predictor (with 9.3% speedup
using at most 1,805 B), MORSE must process 15 commands, re-
quiring 80 kB of overhead (with five ways) per controller.

5.8.2 Multiprogrammed Workloads
We now study the impact of our criticality-based scheduler on

multiprogrammed workloads. In this section, we provide our re-
sults relative to PAR-BS [17]. We also show results for the more
recent TCM proposal [12]. Our multiprogrammed workloads are
four-application bundles (see Section 4). Consequently, in our ar-
chitecture, we reduce the number of DRAM channels from four to
two, to maintain the 2:1 ratio of processor cores to channels used
so far. We also cut the number of L2 MSHR entries in half.

We use weighted speedup [24] to quantify the schedulers’ ef-
fects on throughput. To calculate weighted speedup, the IPC for
each application is normalized to the IPC of the same application
executing alone in the baseline PAR-BS configuration, as has been
done in prior work [14], and then the normalized IPCs are summed
together. Compared to PAR-BS, our criticality-based scheduler has
a weighted speedup of 5.2% for a 64-entry Binary CBP. The best-
performing criticality ranking, MaxStallTime, yields a weighted

speedup of 6.0% (Figure 12). We see similar speedups for our other
ranking criticality predictors (not plotted here).

As a comparison, we have also implemented TCM [12], which
attempts to balance system throughput (weighted speedup) with
fairness (maximum slowdown). Figure 12 shows that TCM obtains
only a 1.9% weighted speedup over PAR-BS for multiprogrammed
workloads.1 Not only does our predictor outperform TCM in terms
of throughput, but it also improves on maximum slowdown, de-
creasing it by 11.6%.

The apparent discrepancy from previous TCM results [12] arises
from differing workloads and target memory architectures. While
the workloads reported for TCM tend to have several memory-
intensive programs, our workloads contain a mix of CPU-, cache-,
and memory-sensitive applications. Through experimental verifi-
cation, we observe that our interference amongst programs is much
lower than the TCM workloads. We also use a more aggressively
parallel memory system, which allows for more concurrent requests
and relieves significant memory pressure (see Table 3). We show
results for our CBP-based predictors under less aggressive systems
in Section 5.6.

TCM does not perform well for our simulated memory archi-
tecture, mainly because the clustering is largely ineffective without
large amounts of contention. Since it is clear that clustering could
be beneficial in a contentious environment, and that our criticality-
based predictor performs well in low contention, we propose com-
bining the two to achieve synergy. This combined scheduler, which
we call TCM+MaxStallTime, still uses the thread rank from TCM
as the main request priority. In case of a tie, whereas TCM would
perform FR-FCFS, we instead replace this with criticality-aware
FR-FCFS.

Figure 12 shows that, even with thread prioritization, we do not
exceed the performance of our criticality-based scheduler. Part
of this is the result of the latency-sensitive cluster. For our four-
application workloads, that cluster will likely only consist of a sin-
gle thread, which will be the most CPU-bound of the bundle. By
definition, latency-sensitive threads are threads that stall waiting on
infrequent loads to be serviced, which is very similar to our notion
of load criticality. The majority of their memory requests will likely
be treated as more critical than those of other threads, which is ex-
actly what the maximum stall time ranking is trying to differentiate.
As a result, this redundancy removes much of the expected addi-
tional speedup. For the remaining threads, since our environment
is less contentious, fairness does not matter much, and as a result,
TCM is effectively performing CASRAS-Crit scheduling, which is
why the TCM and TCM+MaxStallTime results look quite similar.

We expect that, in a high-contention memory design, we would
see TCM+MaxStallTime performing at least as well as TCM (since

1Unsurprisingly, as both PAR-BS and TCM were designed to target
thread heterogeneity, they do not show improvements when applied
to our parallel workloads—in fact, PAR-BS experiences an average
parallel workload slowdown of 6.4% when compared to FR-FCFS.
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that is the first-level prioritization). As a result, we believe that
combining the two schedulers can provide us with best-of-both-
worlds performance.

6. RELATED WORK

6.1 Instruction Criticality
Fields et al. proposed a method for statically determining the

critical path of an application using directed graphs, and proposed
a token-based hardware mechanism to approximate this in hard-
ware [5]. Runahead [3, 18] and CLEAR [13] both propose mech-
anisms to alleviate the effect of blocking the head of the ROB at
commit. Subramaniam et al. use the number of direct consumers
to gauge the criticality of a load instruction [29]. These works are
described in greater detail in Section 2.

One of the first works that examined criticality was by Srinivasan
and Lebeck [28]. They studied the amount of time that each load
could be delayed, as well as the loads that must be serviced within a
single cycle, to maintain ideal issue/commit rates. In doing so, they
identify loads which are on the critical path, and show that guaran-
teeing that these loads hit in the L1 cache increases performance by
an average of 40% [27]. For an online implementation, they mark
loads as critical if their value is consumed by a mispredicted branch
or by a subsequent load that misses in the L1 cache, or if the issue
rate after the load is issued falls below a fixed threshold. However,
there is significant overhead for their table structure, as it maintains
an array of bits, the size of the LSQ, for each ROB entry.

Fisk and Bahar use criticality to filter out non-critical loads into a
small buffer akin to the victim cache [6]. Criticality is tracked sim-
ilarly to Srinivasan and Lebeck, where a low issue rate is used to
determine criticality. Fisk and Bahar also use the number of depen-
dencies as a second measure of criticality. Unlike other predictor-
based models of criticality, they determine the status of a load based
on what occurs as the load is being serviced, since the criticality
need only be determined at cache line allocation time. While this
eliminates prediction table overhead, they must send this depen-
dence information to the MSHRs every cycle, which, for a large
number of outstanding loads, can be costly in terms of bandwidth.

Tune et al. use a number of statistics to determine whether an
instruction is critical [31], based on a series of profiling observa-
tions. They flag an instruction as a candidate for being critical if:
(a) it is the oldest instruction in the issue queue, (b) the instruction
produces a value that is consumed by the oldest instruction in the
issue queue, (c) it is the oldest instruction in the ROB, (d) the in-
struction has the most number of consumers in the issue queue, or
(e) its execution allows at least three instructions in the issue queue
to be marked as ready. If the number of times an instruction has
been marked as a candidate exceeds a fixed threshold, the instruc-
tion is considered to be critical. They evaluate each of these five
criticality metrics for value prediction, finding that criterion (a) is
the most effective. While criterion (c) is similar to our idea of track-
ing ROB blocks by long-latency loads, Tune’s implementation also
tracks non-load instructions, as well as instructions at the head of
the ROB that do not stall. As with other dependency-based predic-
tors, the ability to capture criteria (b), (d), and (e) can be costly in
hardware. Like Fields, they use their predictors in the context of
value prediction and clustered architectures.

Salverda and Zilles provide some level of stratification for criti-
cality by ranking instructions on their likelihood of criticality, based
on their prior critical frequency [23]. They hypothesize that a larger
number of critical occurrences correlates to a higher need for op-
timizing a particular instruction. This work is extended upon by
using probabilistic criticality likelihood counters to both greatly re-

duce the storage overhead of the Fields et al. token-based mecha-
nism and increase its effectiveness [21].

6.2 Memory Scheduling
MORSE is a state-of-the-art self-optimizing memory scheduler

extending on the original proposal by İpek et al. [9, 16]. The rein-
forcement learning algorithm uses a small set of features to learn
the long-term behavior of the memory requests. At each point in
time, the DRAM command with the best expected long-term im-
pact on performance is selected. The authors use feature selection
to derive the best attributes to capture the state of the memory sys-
tem. It is important to note that criticality, as defined by İpek et al.,
only considers the age of the load request, and does not take into
account that the oldest outstanding load may not in fact fall on the
critical path of processor execution, as we have shown happens.

The adaptive-history-based (AHB) memory scheduler by Hur
and Lin uses previous memory request history to predict the amount
of delay a new request will incur, using this to prioritize scheduling
decisions that are expected to have the shortest latency [8].

The most relevant to our work are those that focus on schedul-
ing critical threads. Thread cluster memory (TCM) scheduling [12]
classifies threads into either a latency-sensitive or bandwidth-sen-
sitive cluster. Latency-sensitive threads are prioritized over band-
width-sensitive threads, while inside the bandwidth-sensitive clus-
ter, threads are prioritized to maximize fairness. The Minimalist
Open-page scheduler also ranks threads based on the importance
of the request [10]. Threads with low memory-level parallelism
(MLP) are ranked higher than those with high MLP, which are
themselves ranked higher than prefetch requests. Though the au-
thors refer to this memory-based ranking as criticality, it is differ-
ent than our concept of criticality, which is based on instruction
behavior inside the processor.

Other work in the area of memory scheduling has targeted a va-
riety of applications. Ebrahimi et al. demonstrate a memory sched-
uler for parallel applications [4]. Using a combination of hardware
and software, the thread holding the critical section lock is inferred
by the processor, and its memory requests are prioritized. In the
event of a barrier, thread priorities are shuffled to decrease the time
needed for all threads to reach the barrier. Fairness-oriented sched-
ulers (e.g., PAR-BS [17], ATLAS [11]) target reducing memory
latency strictly in the context of multiprogrammed workloads.

7. CONCLUSION
We have shown that processor-side load criticality information

may be used profitably by memory schedulers to deliver higher
performance. With very small and simple predictors per core in
a CMP, we can track loads that block the ROB head, and flag them
for the benefit of the memory scheduler, which affords them pri-
ority. We quantitatively show that pairing this mechanism with a
novel criticality-aware scheduler, based on FR-FCFS [22], can im-
prove performance by 9.3%, on average, for parallel workloads on
an 8-core CMP, with minimal hardware overhead, and essentially
no changes in the processor core itself. In the face of increasing
DRAM frequencies, we believe that such lean memory controllers,
which integrate pre-digested processor-side information, provide
an essential balance between improved scheduling decisions and
implementability.
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