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ABSTRACT

We discuss power-performance implications of running
parallel applications on chip multiprocessors (CMPs).
First, we develop an analytical model that, for the first
time, puts together parallel efficiency, granularity, and
voltage/frequency scaling, to quantify the performance
and power consumption delivered by a CMP running a
parallel code. Then, we conduct detailed simulations
of parallel applications running on a power-performance
CMP model. Our experiments confirm that our analytical
model predicts power-performance behavior reasonably
well. Both analytical and experimental models show that
parallel computing can bring significant power savings
and still meet a given performance target, by choosing
granularity and voltage/frequency levels judiciously. The
particular choice, however, is dependent on the applica-
tion’s parallel efficiency curve and the process technol-
ogy utilized, which our model captures. Likewise, ana-
lytical model and experiments show the effect of a lim-
ited power budget on the application’s scalability curve.
In particular, we show that a limited power budget can
cause a rapid performance degradation beyond a num-
ber of cores, even in the case of applications with ex-
cellent scalability properties. On the other hand, our
experiments show that power-thrifty memory-bound ap-
plications can actually enjoy better scalability than more
“nominally scalable” applications (i.e., without regard to
power) when a limited power budget is in place.

1 INTRODUCTION

Low-power computing has long been an important de-
sign objective for mobile, battery-operated devices.
More recently, however, power consumption in high-
performance microprocessors has drawn considerable at-
tention from industry and researchers as well. Tradition-
ally, power dissipation in CMOS technology has been
significantly lower than other technologies, such as TTL
or ECL. However, at current speeds and feature sizes,
CMOS power consumption has increased dramatically.
This makes microprocessor cooling increasingly difficult
and expensive [2, 14]. As a result, over the last few years,

power has become a first-priority concern to micropro-
cessor designers/manufacturers [1, 39].

In light of this mounting problem, industry and re-
searchers are eyeing chip multiprocessor architectures
(CMPs). CMPs can attain higher performance by run-
ning multiple threads in parallel. By integrating multiple
cores on a chip, designers hope to deliver performance
growth while depending less on raw circuit speed, and
thus power [1].

Earlier VLSI works have discussed the trade-offs that
sequential vs. parallel circuits present in silicon area and
power consumption [4, 32]. There is also rich litera-
ture on power/thermal-aware simultaneous multithread-
ing (SMT) and CMP designs (or similar architecture con-
figurations), most of which focuses on multiprogrammed
workloads [8, 12, 24, 28, 36, 37]. But so far, very little
work has been done on the power-performance issues in-
volving parallel applications executing on multiproces-
sors in general, and on multicore chips in particular.

In this paper, we investigate the power-performance
issues of running parallel applications on a CMP. First,
we develop an analytical model to study the effect of
the number of processors used, the parallel efficiency,
and the voltage/frequency scaling applied, on the per-
formance and power consumption delivered by a CMP.
Specifically, we look at (1) optimizing power consump-
tion given a performance target, and (2) optimizing per-
formance given a certain power budget. Then, to confirm
the insights developed from the analytical model and
assess its limitations, we conduct detailed simulations
of parallel applications running on a power-performance
model of a CMP.

2 ANALYTICAL STUDY

In this section, we develop an analytical model as a first
approximation to studying the power-performance trade-
offs specific to parallel computation on CMPs. First, we
lay out the basic power and performance equations used
in the model. Then, we study two important scenarios:
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(1) power optimization given a performance target; and
(2) performance optimization under a budget constraint.

2.1 Basic Equations

Power

Our power model is based on two well-known equations
for CMOS logic [23, 31]:

�max � �
�� � �th�

�

�
(1)

� � �D � �S � �� � � � � � �leak (2)

Eq. 1 establishes the relationship between the supply
voltage � and the maximum operating frequency �max,
where �th is the threshold voltage, and � and � are ex-
perimentally derived constants. Eq. 2 defines power con-
sumption � as the sum of dynamic and static compo-
nents, �D and �S, respectively. In the dynamic term, �
is the gate activity factor, � is the total capacitance, � is
the supply voltage, and � is the operating frequency. In
the static term, � is again the supply voltage, and �leak is
the leakage current.

Leakage current mainly consists of subthreshold and
gate-oxide leakage [23], �leak � �sub � �ox. We comment
on each one in turn.

�sub � ��	 

��th �

� � ������� ��� 

�� �

� ������� �

where �� and � are experimentally derived constants,
	 is the gate width, �th is threshold voltage, � � ����
�������	 is Boltzmann’s constant, � is the temperature
in degrees Celsius, � � �
������� is the electron unit
charge, and V is the supply voltage.

�ox � ��	 �
�

�ox

�� 
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where �� and � are experimentally derived constants,
�ox is the oxide thickness, and � is the supply voltage.

Thus, leakage current is largely exponentially depen-
dent on � and � . In our leakage current model, we ap-
proximate this dependency using a curve-fitted formula
as follows:

�leak � �leak, Vn, Tstd 

����� ���� ���� � �

� �leak, Vn, Tstd 

����� � (3)

where �leak, Vn, Tstd is the leakage current at nominal supply
voltage �n and room temperature �std (�ÆC), and ��, ��,
�� and �� are curve-fitting constants. We use ���� � � to
abbreviate the dependency of this curve-fitted formula on
supply voltage and temperature.

We validate our curve-fitted formula using HSpice
simulations on a chain of inverters. In the HSpice simu-
lations, we independently vary the supply voltage from
a minimum of ���th (to maintain enough noise mar-

gin [19]) to �n, and the operating temperature from
�ÆC to ���ÆC for two process technologies: 130nm
and 65nm. The results show that the maximum error is
within 9.5% and 7.5% for 130nm and 65nm, respectively
(0.25% and 0.05% average error, respectively).

Finally, we use the curve-fitted expression in Eq. 3 to
replace �leak in Eq. 2 as follows:

� � �� � � � � � �leak��n��std

����� � (4)

Our analytical model assumes a fixed CMP config-
uration built out of identical cores. Each core would
comprise a microprocessor, some private cache(s), and
a proportional part of the chip’s interconnect. In this
analytical model, in order to keep the discussion man-
ageable, we assume a constant activity factor across the
chip. This effectively excludes resources that have sig-
nificantly lower switching activity and may occupy a
large chip area, such as a L2 cache. In the experimen-
tal study we make no such simplifications (Section 3).

Performance

To model performance, we use the formula for execution
time proposed in [15]:

� � �� ���� ���� (5)

where �� is the dynamic instruction count, ��� is the
average number of cycles per instruction, and � is the op-
erating frequency. Applications may run sequentially on
one processor, or in parallel on � processors (up to the
maximum number of cores on the chip). When running
in parallel on � processors, we assume that all threads
exhibit identical instruction counts and average number
of clock cycles per instruction, ��� and ���� , respec-
tively. Furthermore, we assume all processors use the
same supply voltage �� and operating frequency �� .

The parallel efficiency [7] of an application running on
� processors ���� can be written as:

���� �
��

� ��
�

��� ���� �
��
�

� ��� ���� �
��
�

If �� � �� (i.e., no frequency scaling is applied), we
can rewrite the parallel efficiency as:

�n��� �
��� ����

� ��� ����
(6)

We call this nominal parallel efficiency �n���. It is
a useful characterization of the application’s parallel be-
havior on the CMP architecture, independent of power
considerations.1 On the one hand, it captures the over-

1We assume that ���� does not depend on the clock frequency. In
a system with multiple clocks (e.g., off-chip memory), this would re-
quire that any frequency scaling be applied to all clocks proportionally.
Our experimental study does not make this simplification (Section 3).



heads of a parallel configuration, such as the communi-
cation overheads between threads, which can result in
suboptimal performance gains (�n��� � ��. On the
other hand, it also captures the beneficial effects of a par-
allel setup, such as increased aggregate caching capac-
ity, which may result in superlinear performance gains
(�n��� � �).

Using these basic equations, we present models for
two important scenarios: power optimization given a
performance target (Section 2.2), and performance opti-
mization under a power budget constraint (Section 2.3).

2.2 Scenario I: Power Optimization

In this scenario, the goal is to find the configuration
that maximizes power savings while delivering a pre-
specified level of performance. In particular, we re-
quire that all configurations deliver the performance of
a sequential execution on one processor at full throttle,
�� � �� . Thus, using Eq. 5, and for any number of pro-
cessors � , we can write:

��� ���� �
��
�

� ��� ���� ���
�

Using the definition of nominal parallel efficiency
(Eq. 6), we can rewrite this equality as follows:

�� �
��

� �n���
(7)

We can also rewrite Eq. 4 for the parallel case as fol-
lows:

�� � �� � 	 �
�
�� � 	� � 
leak��n��std

����� ��� � (8)

where � � and � 
leak��std
represent the aggregate capac-

itance and standard leakage current of the � -processor
configuration, respectively. If we define the voltage scal-
ing ratio � � 	�	�, we can rewrite Eq. 8 using � and
Eq. 7 as follows:

�� � �� � ��	��
� ��
� �n���

���	��� 
leak��std
��������� �

�
��

�n���
�D�� � �� ��������� � �S����std

(9)

where �D�� and �S����std
are the dynamic and static power

consumption at � � �, nominal voltage and frequency,
and room temperature. We resort to published data from
the International Technology Roadmap for Semiconduc-
tors (ITRS) [19] to obtain 	�, 	th, ��, �D��, and �S����std

.
We contemplate two process technologies, 130nm and
65nm, and set the operating temperature of the single-
core configuration at �� � 100ÆC. We assume voltage
can scale continuously from the nominal supply volt-
age 	� down to ���	th. Frequency can scale continu-
ously from �� without a lower bound (always positive,

of course). We set � � �, � � � [31]. We can obtain
� by solving the following equality derived from Eqs. 1
and 7:

�� 	� � 	th�
�

�
�

�	� � 	th�
�

� �n���

Using a 32-way CMP baseline, we study configura-
tions running on different numbers of processor cores,
assuming that unused processor cores in each case are
shut down. In each configuration, we approximate the
operating temperature �� using the HotSpot thermal
model [38] for its default Alpha EV6 floorplan, similarly
to how we use it in our experimental study (Section 3).

We plot the normalized power consumption ���� for
each combination of process technology and operating
temperature ��, using � � ��� �� �� �	� ��� processors,
and nominal parallel efficiency ranging from �� to � in
each case.

Notice that, when �n��� � �
�

, there is no way for
the � -processor configuration to achieve the same per-
formance as the single-processor one without raising 	�
over 	�. We do not allow this in the model. Also, al-
though we do not plot regions with superlinear speedup
(�n��� � �), the results would be in line with the plots.

The curves (Fig. 1) show that, for any � , higher nom-
inal parallel efficiency �n��� allows for greater power
savings. Indeed, Eq. 7 shows that, as efficiency goes up,
a lower frequency �� is required to maintain the perfor-
mance of the single-core configuration. Generally, this
also allows a lower supply voltage 	� (Eq. 1). As a re-
sult, for a fixed � , higher efficiency results in lower dy-
namic and static power consumption (Eq. 8). Further-
more, a reduction in the dynamic activity results in lower
die temperature �� , which further reduces static power
consumption (Eq. 8). This is captured in our analysis
through the HotSpot thermal model [38].

Recall, however, that to maintain acceptable noise
margin, 	� may not decrease below ���	th. Thus, for
a given � , there is an �n��� beyond which the decrease
in frequency is not accompanied by a decrease in sup-
ply voltage. This results in diminished returns on both
dynamic and static power savings (Eq. 8). Moreover,
the returns on static power savings are also limited by
another lower bound: The die temperature can never be
lower than the ambient temperature. In the plots, this is
reflected by a change in the curvature.

In any case, for the configurations used, all curves
show power savings with respect to the single-core con-
figuration beyond a certain �n���. Moreover, in general,
the plots show that configurations with higher � require
a lower level of efficiency to reach their power break-
even points. This is in agreement with Eq. 7: a higher
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Figure 1: Normalized power consumption using 130nm (top)
and 65nm (bottom) technologies at �� � 100ÆC, varying � �
��� �� �� ��� ��� and �n��� � 	���� �
, and forcing that all
configurations yield the performance of � � � at full throttle.
The marks in each plot indicate working points for a sample
application with �n � ����� ���� ��� ���� ����.

� makes �� (and thus power consumption) drop more
rapidly as �n��� increases.

Notice that, because �� drops more rapidly with larger
� (since we maintain the same performance target), volt-
age scaling can be more aggressive. This, however, also
implies that the lower bound in supply voltage (and tem-
perature) is reached (approached) earlier in the efficiency
scale. As a result, scaling may not compensate for the
extra power consumption introduced by the additional
cores. This is reflected in the plots by the fact that high-
� curves run above low-� ones at high efficiency points.
Overall, applications that exhibit a high degree of parallel
efficiency do not necessarily save more power by choos-
ing a larger � .

In any case, recall that �n��� depends on � , and ap-
plications typically exhibit different levels of parallel ef-
ficiency with different � . (Usually, efficiency is lower
with higher � due to communication overhead.) Thus,
for a given application, it generally does not make sense
to directly compare the curves at a fixed point on the ef-
ficiency scale. To illustrate this, we mark in the plots the
operating points of an imaginary application that exhibits
�n � ����� ���� ���� ���� ���� for � � �	� 
� �� ��� �	�,

respectively. As we can see, the configuration that yields
the maximum power savings is not necessarily the one
with the highest number of processors, largely because
of the decrease in parallel efficiency. This observation
holds for both feature sizes.

Finally, it is important to note that, because absolute
performance and power consumption is different in each
of the two feature sizes, caution is advised when making
comparisons across the plots.

2.3 Scenario II: Performance
Optimization

In this scenario, the goal is to find the configuration that
maximizes performance under a constrained power bud-
get. In particular, we set the maximum power budget
to that of executing on one processor at full throttle,
�� � �� .

The performance gain or speedup � on � proces-
sors [7] can be expressed as:

� �
��

��
�

��� ���� �
��
�

��� ���� ���
�

� � �n���
���
�

���
�

Using Eq. 1 and the definition of voltage ratio � (Sec-
tion 2.2), we can rewrite the speedup as:

� � � �n���
�� 	� � 	th�

�

� �	� � 	th��
(10)

To compute �, we introduce the problem restriction
�� � �� . Using Eqs. 1, 4, and 8, we can express this
restriction as:


� 	 �
�
�
�	� � 	th�

�

	�
 	� leak��n��std

���������

� 
� � ��	��
� �

��	� � 	th�
�

�	�

��	��� leak��n��std
��������� �

By using transformations similar to those used in
Eq. 9, we obtain the equality:

�D��  ��������� �S����std

� � �
��	� � 	th�

�

�	� � 	th��
�D��  �� ��������� � �S����std

(11)

After obtaining � from Eq. 11, we can resolve speedup
� in Eq. 10.

Fig. 2 shows speedups for up to 32 cores under our
constant power budget constraint. In the plot, we assume
the application’s nominal parallel efficiency �n��� is 1
for any � . As before, we use two process technologies,
130nm and 65nm.
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Figure 2: Speedup of � -processor configurations with
�n��� � �, and power budget in all cases equal to the power
consumption of the single-processor configuration at full throt-
tle.

It is interesting to observe that, even if the applica-
tion’s nominal parallel efficiency �n��� is 1, the maxi-
mum speedup achieved across all configurations is only
a little over 4, which corresponds to the configuration
with � � �� and 130nm process technology. Indeed,
as the number of cores increases, the total power budget
ought to remain constant. As a result, voltage/frequency
scaling must be applied to the cores, which slows them
down. The result is a suboptimal speedup with respect to
the sequential execution.

Still, the speedup grows with the number of cores for
relatively small configurations. For larger � , however,
both technologies eventually show decreasing speedups.
This is the case beyond � � �� and � � �� for 130nm
and 65nm, respectively. It means that, for even a per-
fectly scalable application, obtaining the optimum per-
formance within a certain power budget may require a
number of processors lower than the maximum number
available. Indeed, due to the limited range of voltage
scaling (Section 2.2), once the supply voltage reaches
����th in our model, only frequency scaling can be ap-
plied further as the number of processors goes up. Un-
fortunately, dynamic power consumption is only linearly
dependent on � , and thus the frequency reduction needed
for each processor added is significant. This results in a
significant performance degradation, most notably in the
65nm case, where the ITRS data attributes a higher frac-
tion of the total power consumption to static power [19].

Note that, despite the speedup curve for 65nm being
below that of 130nm at all times, the absolute perfor-
mance of the 65nm case might well be above that of
130nm one. This is because each curve is relative to
the performance of its respective sequential case. Also,
note that, in this analysis, we tacitly assume that the
application runs at maximum power in the sequential
case—in other words, the power consumption by the se-
quential setup is the power budget. In reality, however,
applications may consume less than that when running
sequentially, for example, if they stall often on mem-

CMP Size 16-way
Processor Core Alpha 21264 [6]
Process Technology 65nm
Nominal Frequency 3.2GHz
Nominal �dd 1.1v [19]
�th 0.18v [19]
Ambient Temperature 45ÆC
Die Size 244.5mm2 (15.6mm� 15.6mm)
L1 I-, D-Cache 64KB, 64B line, 2-way, 2-cycle RT
Unified L2 Cache Shared on chip, 4MB, 128B line,

8-way, 12-cycle RT
Memory 75ns RT

Table 1: The CMP configuration modeled in the experiments.
In the table, RT stands for round-trip.

ory accesses. In that case, as we assign more proces-
sors to the application, it would be possible to consume
more than the power consumed by the sequential setup,
and still be within budget. This may result in an extra
performance “boost” beyond the gain predicted by the
model. Thus, depending on the application characteris-
tics, the speedups shown in the plots may be somewhat
pessimistic. We do consider this effect in the experimen-
tal study (Section 3).

3 EXPERIMENTAL SETUP

To confirm the insights developed from the analytical
model in Section 2 and assess its limitations, we conduct
detailed simulations of parallel applications running on
a detailed power-performance model of a CMP. In this
section, we discuss the architecture modeled, the appli-
cations, and the power model.

3.1 Architecture

Our study uses a detailed model of a 16-processor CMP.
CMP cores are modeled after the Alpha 21264 (EV6)
processor [6]. (While it is conceivable to consider a
heterogeneous CMP model, its applicability and perfor-
mance impact in the context of a parallel execution is un-
clear and beyond the scope of this paper.) Each proces-
sor core has private L1 instruction and data caches. All
cores share a 4MB on-chip L2 cache through a common
bus, and implement a MESI cache coherence protocol
[7]. Table 1 lists relevant cache and memory parameters.

We choose a 65nm process technology. The original
EV6 ran at 600MHz on a 350nm process technology; by
proceeding similarly to [24], we determine the clock fre-
quency of our 65nm EV6 cores to be 3.2GHz. We set
nominal supply and threshold voltages at 1.1v and 0.18v,
respectively [19], and in-box ambient air temperature at
45ÆC [29, 38]. Using CACTI [40], we obtain an esti-
mated chip area of 244.5mm� (15.6mm� 15.6mm), us-
ing a scaling method similar to [25].

For the sake of simplicity, we assume global volt-
age/frequency scaling for the entire chip. (While it is



Application Problem Size
Barnes-Hut 16K particles
Cholesky tk15.O
FFT 64K points
FMM 16K particles
LU 512 � 512 matrix, 16 � 16 blocks
Ocean 514 � 514 ocean
Radiosity room -ae 5000.0 -en 0.05 -bf 0.1
Radix 1M integers, radix 1024
Raytrace car
Volrend head
Water-Nsq 512 molecules
Water-Sp 512 molecules

Table 2: Applications from the SPLASH-2 suite used in the
experiments.

conceivable to allow each core to run at a different fre-
quency, the applicability and performance impact in the
context of a parallel execution is nontrivial and beyond
the scope of this paper.) Frequency can scale from
3.2GHz down to 200MHz, and we resort to [18] to estab-
lish the relationship between frequency and supply volt-
age. Notice that, because voltage/frequency scaling is
applied at the chip level, on-chip latencies (e.g., on-chip
cache hit time) do not vary in terms of cycles. However, a
round trip to (off-chip) memory takes the same amount of
time regardless of the voltage/frequency scaling applied
on chip, and thus the round-trip memory latency in pro-
cessor cycles goes down as we downscale voltage and/or
frequency. This is unlike the analytical model, where a
system-level voltage/frequency scaling is assumed (Sec-
tion 2).

3.2 Applications

We use all twelve applications from the SPLASH-2
suite [41]. The problem size of each application is at least
as large as the suggested size in [41], and does not change
with the number of cores. Table 2 lists the applications
and their execution parameters. For all applications, we
skip initialization and then simulate to completion.

3.3 Power Model

We use Wattch to model the switching activity and
dynamic power consumption of the on-chip functional
blocks. This is different from our analytical model (Sec-
tion 2), where we assume a constant activity factor� � �

for all on-chip circuitry (Eq. 2). As for static power con-
sumption, we model it as a fraction of the dynamic power
consumption [5, 38]. In our model, this fraction is expo-
nentially dependent on the temperature [5]. The average
operating temperature (over the chip area) in our model
ranges from in-box ambient air temperature (45ÆC) to a
maximum operating temperature of 100ÆC, in agreement
with multiple contemporary processor chip designs. We
use the HotSpot thermal model [38] for chip temperature
estimation.

Wattch is reasonably accurate in relative terms; how-
ever, the absolute power values can be off by a nontrivial
amount [24]. Because we use power values to commu-
nicate across two different tools (Wattch and HotSpot),
we ought to ensure we do so in a meaningful way. We
achieve this by renormalizing power values as follows.

We use HotSpot to determine the maximum opera-
tional power consumption (dynamic+static), which is the
one that yields the maximum operating temperature of
100ÆC. Then, using the dynamic/static ratio that corre-
sponds to that temperature [5], we derive the dynamic
component.

We now need to establish the connection with Wattch.
To do so, we use a compute-intensive microbenchmark to
recreate a quasi-maximum power consumption scenario
at nominal voltage and frequency levels in our simulation
model, and obtain Wattch’s dynamic power value. This
number is often different from the one obtained through
HotSpot using the method explained above. To over-
come this gap, we calculate the ratio between Wattch
and HotSpot’s dynamic power values, and use it through-
out the experiments to renormalize wattage obtained with
Wattch in our simulations as needed. This makes it pos-
sible for both tools to work together. While the abso-
lute power may again not be exact, the results should be
meaningful in relative terms. Using both tools, plus the
power ratio/temperature curve, we are able to connect
dynamic and static power consumption with temperature
for any voltage and frequency scaling point.

Finally, we notice that the temperature and power den-
sity of the shared L2 cache is significantly lower than
the rest of the chip across all the applications studied.
Reasons include: much less switching activity; aggres-
sive clock gating in the model [3]; and large L2 cache
dissipation area. This observation is in agreement with
published work by others [5, 8]. To obtain meaningful
figures of power density and temperature, we exclude
L2 from the calculations. However, we do include the
power consumption of L2 in the results for total power
consumption.

4 EVALUATION

In this section we evaluate two scenarios, which corre-
spond to the two scenarios discussed in the analytical
model (Section 2).

4.1 Scenario I: Power Optimization

This scenario is analogous to Scenario I of the analytical
model (Section 2.2). The goal is to find the configuration
that maximizes power savings while delivering the same
performance as the sequential execution at nominal volt-
age and frequency levels.
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Figure 3: Performance, power, and thermal characteristics of a 16-way CMP running the SPLASH-2 applica-
tions [41], according to the restrictions discussed in Scenario I (Section 4.1). Missing bars indicate that the corre-
sponding application does not run with such a number of processors.

The simulation experiment is conducted conceptually
similarly to Section 2.2: We first simulate the execution
of all twelve SPLASH-2 applications on a number of pro-
cessor cores ranging from one to sixteen, at nominal fre-
quency and voltage levels (without regard to any power
budget). Notice that some SPLASH-2 applications only
work for a number of cores power of two, and in that
case we only study configurations with one, two, four,
eight, and sixteen cores. From this, we obtain: (1) the
nominal parallel efficiency curve for each application;
and (2) the power consumption of each application on
the single-core configuration. The nominal parallel effi-
ciency is then used to calculate the target frequency of
each configuration (Eq. 7). The target voltage supply is
extrapolated from [18] in each case. Then, we recalcu-
late the simulation parameters that are sensitive to volt-
age/frequency scaling, and run simulations again to col-
lect power and performance statistics for processor cores.
Figure 3 shows the simulation results. As in Section 2,
we assume unused processor cores are turned off.

The first plot shows the nominal parallel efficiency
values that we obtain during the profiling phase. We ob-
serve wide changes in nominal parallel efficiency levels,
both within (as we change � ) and across applications.
In general, within an application, nominal parallel effi-
ciency goes down as the number of processor cores goes
up.

The second plot shows the actual speedups attained by
the applications on the different configurations studied.
That applications experience speedups seems counter-
intuitive, since the fundamental premise of this scenario
is that all configurations are tuned to yield equal per-
formance (that of the single-core configuration in each
case). This is most noticeable with Ocean and, to a lesser
extent, Cholesky and Radiosity. One reason why this is
the case is that, as the number of processors increases
and voltage/frequency scaling is applied to the chip (but
not to off-chip memory), the processor-memory speed
gap narrows, which benefits memory-bound applica-
tions. This is not captured by the analytical model in Sec-
tion 2.2, which assumes system-wide voltage/frequency
scaling.

The third plot shows, for each application, the power
consumption in configurations of various� , normalized
to the power consumption of the single-core configura-
tion in each case. Given sufficient parallel efficiency,
power consumption can be effectively reduced as the
number of participating cores increases. Poor scalability,
however, can make using more cores counter-productive.
Indeed, the plot shows that, in general, a diminishing par-
allel efficiency resulting from increasing the number of
processors eventually causes power savings to stagnate
and, if even more cores are used, to actually recede. Our



analytical model correctly predicts this behavior (Fig-
ure 1).

There are three main reasons behind this: First, the
limited voltage range constrains the potential for power
savings in relatively large configurations (Section 2).
Second, as the parallel efficiency diminishes with in-
creasing number of participating cores, the architecture
cannot afford too aggressive voltage/frequency levels if
it is to meet the baseline performance. Third, the total
static power consumption may increase as the number of
processor cores increases (Eq. 9).

Another way to examine the effect of parallelization
on power is to look at the power density. The fourth plot
shows, for each application, the average power density
for each � , normalized to the average power density for
� � � in each case. As we increase � , power den-
sity decreases rapidly as a result of aggressive voltage
scaling (and consequent temperature drop). For exam-
ple, in our experiments, we observe an across-the-board
power density reduction of around 95% at � � �. As
we approach the lower bounds of voltage and tempera-
ture, however, the reduction in power density becomes
significantly slower.

Finally, the fifth plot shows the average operating tem-
perature of the applications running on different config-
urations, including the single-core configurations. (No-
tice that, unlike the other four plots, this one is not nor-
malized.) As a result of lower power density, the av-
erage operating temperature decreases as � increases.
Larger temperature reduction is observed in applications
that consume more power at nominal operating voltage
and frequency levels (FMM and LU). This is because of
the exponential relation between temperature and static
power. Again, the temperature reduction rate, initially
very sharp, quickly slows down as � increases.

Overall, we see that parallel computing can be an ef-
fective way to reduce chip power consumption, power
density and operating temperature on CMP given a per-
formance target, although its effectiveness is very de-
pendent on factors such as parallel efficiency, range of
voltage/frequency scaling, and total leakage power, all
of which tend to worsen as the number of participating
cores goes up.

4.2 Scenario II: Performance
Optimization

This scenario is analogous to the one in Section 2.3. In
this case, we want to see the maximum speedup a � -
processor configuration can achieve within the power
budget of a single core, which we derive using mi-
crobenchmarking (Section 3.3). The simulation exper-
iment is set up with off-line profiling, similarly to Sec-
tion 4.1. In addition to obtaining profile information at
the nominal frequency (3.2GHz), we obtain the power
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Figure 4: Comparison of the nominal and actual
speedup of three SPLASH-2 applications. The power
budget is the maximum nominal power consumption of
a single core (Section 3.3).

and performance statistics with frequencies ranging from
200MHz to 3.0GHz, with a step of 200MHz. Then
we use the profile information to calculate the optimal
voltage and frequency in order to achieve the maximum
speedup under the fixed power dissipation budget for
each � -processor configuration. The configuration val-
ues that fall between any two profiled values are approx-
imated by linearly scaling between the two. Then, using
this information, we run simulations again to get the real
speedup.

We select three applications in this case study: FMM,
Cholesky, and Radix, in descending order of computa-
tional intensity and power consumption. Both the nomi-
nal and the actual speedups of the three applications are
presented in Figure 4. (The nominal speedup is derived
from the nominal parallel efficiency values calculated in
Section 4.1.)

As predicted by the analytical model (Section 2.3),
we see a performance gap between the nominal con-
figuration without considering power dissipation budget
(nominal speedup) and the configuration that abides by
the power budget constraint (actual speedup). The gap
is most significant in the compute-intensive application
(FMM), and least so for Radix, which is memory-bound.
In general, two situations help the performance scaling
of memory-bound applications: First, as we apply volt-
age/frequency scaling to the chip—but not to off-chip
memory—, the processor-memory speed gap narrows,
resulting in less memory stalls. Second, due to stalling
on memory accesses, these applications usually do not
reach the chip’s power budget when running sequentially.
Thus, as we increase � , these applications can benefit
from higher voltage/frequency levels, and still abide by
the power budget. As discussed previously, none of these
effects is captured by the analytical model (Section 2). In
fact, for up to eight processor cores, the actual speedup
of Radix does match the nominal speedup (Fig. 4). When
looking at our data for these configurations, we find that



they operate at nominal voltage and frequency levels. In-
deed, the nominal power consumption of Radix is low
enough that it allows up to eight-core configurations to
run at nominal voltage and frequency without exceeding
our power budget. However, as we continue increasing
� , a gap between actual and nominal speedup eventually
appears, as the configurations can no longer meet power
budget constraints at nominal voltage and frequency lev-
els.

Finally, notice that, for these memory-bound applica-
tions and low � , one could seek higher performance by
overclocking the chip, and still abide by the power bud-
get. However, unless the memory subsystem is also over-
clocked, the resulting increase in the processor-memory
speed gap could partially offset the potential perfor-
mance gain.

5 RELATED WORK

Earlier VLSI works have discussed the trade-offs that se-
quential vs. parallel circuits present in silicon area and
power consumption [4, 32]. But so far, very little work
has been done on the power-performance issues involv-
ing parallel applications executing on multiprocessors in
general, and on multicore chips in particular.

There is rich literature on power/thermal-aware si-
multaneous multithreading (SMT) and CMP designs (or
similar architecture configurations), most of which fo-
cuses on multiprogrammed workloads [8, 12, 24, 28, 27,
36, 37]. In contrast, our work focuses on the power-
performance issues of CMPs in the context of parallel
applications.

Huh et al. [17] conduct an in-depth exploration of the
design space of CMPs. However, they do not address
power. More recently, Ekman and Stenström [9] con-
duct a design-space study of CMPs in which they address
some power issues. Assuming a certain silicon budget,
they compare chips with different numbers of cores, and
correspondingly different core sizes. They argue that
parallel applications with limited scalability but some
instruction-level parallelism may run better on CMPs
with few, wide-issue cores. They also argue that CMPs
with few, wide-issue cores and with many, narrow-issue
cores consume roughly the same power, as cache activity
offsets savings at the cores. Our work assumes a given
chip design, and explores the issues of assigning dif-
ferent numbers of cores to a parallel application, given
certain power-performance constraints. Also, their work
uses 0.18�m process technology, and does not consider
voltage/frequency scaling, which is a fundamental com-
ponent in our work.

Grochowski et al. [13] discuss trade-offs between mi-
croprocessor processing speed vs. throughput in a power-
constrained environment. They postulate that a micro-
processor that can achieve both high scalar performance

and high throughput performance ought to be able to dy-
namically vary the amount of energy expended to pro-
cess each instruction, according to the amount of paral-
lelism available in the software. To achieve this, they
survey four techniques: dynamic voltage/frequency scal-
ing (DVFS), asymmetric cores, variable-sized cores, and
speculation control, and conclude that a combination of
DVFS and asymmetric cores is best. In our work, we
formally connect granularity of parallelism, application’s
parallel efficiency, and DVFS to work two scenarios on
a symmetric CMP: performance optimization under a
power budget constraint, and also power optimization
given a performance target.

Kaxiras et al. [22] compare the power consumption of
an SMT and a CMP digital signal processing chip for
mobile phone applications. They do not explicitly study
parallel applications in the “traditional” sense. For exam-
ple, they approximate a parallel encoder with four inde-
pendent MPEG encoder threads, each thread processing
one quarter of the original image size. A speech encoder
and a speech decoder are connected in a pipelined fash-
ion to a channel encoder and decoder, respectively. The
issues of granularity vs. parallel efficiency and DVFS
that we address cannot be easily conveyed in this con-
text.

Kadayif et al. [20] propose to shut down idle proces-
sors in order to save energy when running nested loops
on a CMP. The authors also study a pre-activation strat-
egy based on compiler analysis to reduce the wake-up
overhead of powered-off processors. Although they ad-
dress program granularity and power, they do not ex-
ploit DVFS in their solution, which is fundamental in our
work.

In a different work, Kadayif et al. [21] propose to use
DVFS to slow down lightly loaded threads, to compen-
sate for load imbalance in a program and save power
and energy. They use the compiler to estimate the load
imbalance of array-based loops on single-issue proces-
sor cores. The authors also mention the opportunity of
further energy savings by using less than the number
of available processor cores using profile information.
However, the connection of DVFS to granularity and par-
allel efficiency of the code is not fleshed out, and the pro-
cessor model is too simple for our purpose.

In the context of cache-coherent shared-memory mul-
tiprocessors, Moshovos, et al. [30] reduce energy con-
sumption by filtering snoop requests in a bus-based par-
allel system. Saldanha and Lipasti [35] observe signifi-
cant potential of energy savings by using serial snooping
for load misses. Li et al. [26] propose to save energy
wasted in barrier spin-waiting, by predicting a proces-
sor’s stall time and, if warranted, forcing it into an ap-
propriate ACPI-like low-power sleep state. This work is
complementary to ours in that it does not consider the



number of processors, and does not attack power con-
sumption during useful activity by the application.

In an environment of loosely-coupled web servers run-
ning independent workloads, several studies evaluate dif-
ferent policies to control the number of active servers
(and thus their performance level) to preserve power
while maintaining acceptable quality of service [10, 11,
33, 34].

In the context of micro-architectures, Heo and
Asanović [16] study the effectiveness of pipelining as a
power-saving tool in a uniprocessor. They examine the
relationship between the logic depth per stage and the
supply voltage in deep submicron technology under dif-
ferent conditions. This is complementary to our work,
since we study power-performance issues of using mul-
tiple cores on a CMP.

6 CONCLUDING REMARKS

In this paper, we have explored power-performance is-
sues of running parallel applications on a CMP. We
have developed an analytical model to study the effect
of combining granularity, parallel efficiency, and volt-
age/frequency scaling on the performance and power
consumption delivered by a CMP. To confirm the insights
developed from the analytical model and assess its limi-
tations, we have conducted detailed simulations of paral-
lel applications running on a power-performance model
of a CMP. The experiments confirm that the analytical
model captures the power-performance behavior reason-
ably well.

Both analytical and experimental models show that,
through judicious choice of granularity and volt-
age/frequency scaling, parallel computing can bring sig-
nificant power savings while meeting a given perfor-
mance target. The particular choice, however, is depen-
dent on the application’s parallel efficiency curve and the
process technology utilized, which our model captures.

Similarly, analytical model and experiments show the
effect of a limited power budget on the application’s scal-
ability curve. In particular, we have shown that a limited
power budget can cause a rapid performance degrada-
tion beyond a number of cores, even in the case of ap-
plications with excellent scalability properties. On the
other hand, our experiments have shown that power-
thrifty memory-bound applications can actually enjoy
better scalability than more nominally scalable applica-
tions when a limited power budget is in place.

Overall, our study concludes that, under the right cir-
cumstances, parallel computing may bring significant
power savings over a uniprocessor setup of similar per-
formance. It also illustrates the dependency on the appli-
cation’s parallel efficiency curve and process technology
when pursuing the configuration that maximizes perfor-

mance within a certain power budget, which makes the
choice nontrivial.
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