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Analysis of Terahertz Surface Emitting
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Abstract—An analysis of surface-emitting terahertz quantum-
cascade lasers operating at wavelengths near 100 m is presented.
The devices use distributed feedback through second-order Bragg
metal gratings to generate strong emission of radiation normal
to the laser surface. The analysis is based on coupling between
the exact Floquet–Bloch eigenmodes of infinite periodic struc-
tures in finite length devices. The results show performance of
surface-emitting terahertz lasers comparable to edge-emitting
devices, with high radiative efficiencies and low threshold gains.
Using phase-shifts in the grating, high-quality single-lobe beams
in the farfield are obtained.

Index Terms—Coupling coefficients, distributed feedback (DFB)
lasers, Floquet–Bloch expansion, quantum-cascade laser, surface
emission.

I. INTRODUCTION

T ERAHERTZ quantum-cascade lasers are emerging as im-
portant sources of coherent terahertz radiation with appli-

cations such as screening for weapons, explosives, and biohaz-
ards, imaging concealed objects, medical imaging, environment
control and pollution monitoring, spectroscopy, remote sensing
and surveillance, and ultrabroad-band communications [1]–[7].
Research on terahertz quantum-cascade lasers to this point has
primarily focused on edge-emitting lasers. These devices typ-
ically use active regions capped by metal and grown on insu-
lating substrates [8]–[12], or active regions surrounded by metal
on both sides [13]–[16]. The double-metal waveguide structure
can achieve an overlap with the active region close to unity [13]
and has high reflectivity [17], resulting in low threshold gains.
However, this design confines the transverse optical mode in re-
gions with spatial dimensions up to ten times smaller than the
wavelength. This extreme confinement results in strong diffrac-
tion of the output beam and broad output beam widths.

Surface emitting quantum-cascade lasers using second-order
gratings have been realized in the mid-infrared (mid-IR) re-
gion ( 10 m wavelength) [18]–[20]. This paper shows that
surface-emitting terahertz quantum-cascade lasers ( 100 m
wavelength) can be designed to have radiative efficiencies
nearly as good as edge emitters while maintaining comparable
threshold gains. Mid-IR surface-emitting quantum-cascade
lasers reported in [19] and [20] had a double lobe farfield pattern
with a null in the center. Recently, phase-shifted second-order
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gratings have been used to obtain single lobe farfield patterns
in surface-emitting near-IR interband lasers [21]–[23]. Our
results show that phase-shifted metallic second-order gratings
can also be used in terahertz lasers to obtain single lobe farfield
beam patterns with narrow beam widths without sacrificing
performance.

The conventional coupled-mode theory for optical waveg-
uides with TE-polarized light and first-order gratings is not ap-
plicable to devices with TM-polarized light and strong second-
order metal gratings [24]. To study surface-emitting terahertz
quantum-cascade lasers, this work uses a numerical scheme that
is based on the exact Floquet–Bloch eigenmodes of infinitely
long periodic laser structures. Perfectly matched layer (PML)
boundary conditions are implemented in the numerical scheme
to compute the outgoing radiation [25]. The field in finite length
devices is then described in terms of the infinite length eigen-
modes using a novel coupled-mode theory. This approach en-
ables accurate simulation of second-order gratings with very
strong index contrast.

This paper is organized as follows. Section II describes the
basic structure of surface-emitting lasers investigated in this
paper. Section III describes the simulation technique used, in-
cluding the Floquet–Bloch analysis and the resulting coupled-
mode theory. Section IV presents the performance of surface-
emitting terahertz lasers as a function of various device param-
eters. Section V treats the farfield radiation pattern produced by
surface-emitting lasers. Section VI gives concluding remarks.

II. LASER STRUCTURE

Fig. 1 shows the basic structure of the surface-emitting lasers
considered in this paper. The structure consists of an approxi-
mately 10- m-thick quantum-cascade active region surrounded
by n contact and gold layers. The gold layers serve to tightly
confine the optical mode to the active region. This waveguide
design is similar to the one used previously for an edge emitting
device in [9]. The active region contains n-doped quantum wells
which yield an average carrier density of 4.56 10 cm
for the entire active region. Below the active region is a
200-nm-thick n contact layer doped at 2 10 cm . The
bottom gold layer is 2 m thick. The top contact layer is doped
at 5 10 cm and is 60 nm thick. The top gold layer is 1 m
thick. Both the top contact and gold layer are patterned to form
the second-order grating. Simulations included a 25- m-thick
region of air above the grating. Since the skin-depth of gold at
terahertz frequencies is less than 0.1 m, the thickness of the
bottom gold layer is sufficient for all guided and radiated modes
to decay completely. Above the air region, a PML absorbing
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Fig. 1. Laser structure under consideration. The grating has periodicity � and
duty cycle �.

boundary layer is used to accurately calculate the outgoing
radiation.

The dielectric constants of the different materials in the laser
structure were calculated using the Drude model [26], with scat-
tering times of ps and ps for the lightly doped
and heavily doped semiconductor regions, respectively. A scat-
tering time of ps was used for the gold [8], [9].

Strong interaction between the field and the grating causes
the wavelengths that are resonant in the structure to act as strong
functions of the grating duty cycle . In the analysis presented
here, the free-space wavelength of the lasing modes is kept close
to 100 m when the grating duty cycle is varied by slightly
adjusting the grating period. Specifically, the period is decreased
almost linearly from 37.6 to 28.2 m as is swept from 0 to 1.

III. SOLUTION TECHNIQUE

A. Floquet–Bloch Solutions for the Infinite Length Structure

The analysis of surface-emitting lasers uses the exact eigen-
modes of an infinite length device as the basis for expanding the
modes of a finite length device. We consider only TM-polarized
modes where the magnetic field is polarized in the y-direction
(see Fig. 1). The electric field can be polarized in either the -
or -direction. The displacement flux density is related to the
electric field as

(1)

Here, the imaginary parts of the dielectric constants include the
effects of the material loss as well as the material gain. and
differ because only the -component of the electric field experi-
ences gain. Adding gain to the structure involves a perturbation
to given by , where is the mate-
rial gain, is the index of refraction of the active region, and

is the free space wavelength of the lasing mode.
The magnetic field in the structure is governed by the wave

equation

(2)

Because of the periodic nature of the structure, the inverse com-
plex dielectric function can be expanded in a Fourier series as

(3)

A similar expansion is used for . Here, is the
grating vector. In the infinite length device, the field inside the
device must have the same periodicity as the grating, and can be
written exactly as a Floquet–Bloch expansion

(4)

In this expression, surface normal radiation is described by the
zeroth-order component . By plugging the above expansions
into (2), the Floquet–Bloch components of the magnetic field
are found to satisfy the complex eigenvalue equation

(5)
The above equation is solved by the finite difference

technique using a truncated set of field components in the
Floquet–Bloch expansion. A perfectly matched absorbing
boundary layer is used to satisfy the outgoing radiation
boundary condition [25].

Solution of (5) yields two orthogonal eigenmodes
and with field patterns that are symmetric and anti-
symmetric with respect to the grating. These modes are normal-
ized as

(6)

and obey the orthogonality condition

(7)

The symmetric and antisymmetric modes have -values and
, respectively, where the real part is the free-space propaga-

tion constant and the imaginary part corresponds to net modal
loss (or net modal gain). Fig. 2 shows the convergence of the
computed -values as function of the maximum number of
plane wave components included in the Floquet–Bloch expan-
sion. Good convergence is obtained by including more than 20
plane wave components in the Floquet–Bloch expansion.

Figs. 3 and 4 show the numerically calculated magnetic and
electric fields for the symmetric and antisymmetric eigenmodes.
In the symmetric mode, the forward- and backward-going plane
waves are in phase , while they are out of phase
for the antisymmetric mode . These phase re-
lationships are responsible for shaping the field patterns shown
in Figs. 3 and 4. In the antisymmetric mode, lobes of opposite
sign for the magnetic and -polarized electric fields appear be-
tween the grating teeth. The field interferes destructively out-
side the grating, and the radiating component is zero. The
symmetric mode is the one which radiates, and has a nonzero ra-
diating component . Consequently, the symmetric mode has
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Fig. 2. Convergence of the real and imaginary parts of the k-vectors for
the symmetric (k ) and the antisymmetric (k ) modes as a function of the
maximum number of plane wave components used in the Floquet–Bloch
expansion. The duty cycle � of the grating is 0.7.

higher threshold gain, and the antisymmetric mode is the lasing
mode for an infinite length device.

B. Coupled-Mode Theory for the Finite Length Structure

The field in a finite length laser is expressed as a linear super-
position of the two modes of an infinite length structure

(8)

where and are slowly varying mode amplitudes. This
technique is similar to the method that is used to find the
electronic band structure near the band edges in semiconductor
heterostructures [27]. Plugging the expansion in (8) in (2) and
using (5)–(7), and are found to satisfy the coupled-mode
equation

(9)

where and are given by

(10)

(11)

and the term is calculated as

(12)

Fig. 3. Magnitude of the (a) magnetic field, (b) x-polarized component, and
(c) z-polarized component of the electric field for the symmetric mode for � =
0:75.

Fig. 4. Magnitude of the (a) magnetic field, (b) x-polarized component, and
(c) z-polarized component of the electric field for the antisymmetric mode for
� = 0:75.
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Here, equals where is the free-space wavelength of
the lasing mode. Gain is included in (9) by using gain dependent
values for , , and .

The coupled-mode theory presented here is different from the
conventional coupled-mode theory where coupling takes place
between forward- and backward-propagating modes [24], [28],
[29]. Here, coupling takes place between the symmetric and
antisymmetric eigenmodes of the infinite length structure. The
connection with traditional coupled-mode theory is made in Ap-
pendix I, where it is shown that the coupling between the for-
ward- and backward-propagating modes is described by . The
splitting between and , given by , is proportional to the
second harmonic of the grating which couples forward- and
backward-going plane waves through Bragg reflection.

C. Boundary Conditions

In an infinite length device, only the antisymmetric mode
lases because it does not radiate and experiences less loss. In a
finite length device, highly reflecting metal facet coatings can be
used to eliminate the antisymmetric component at the two ends
of the device and maximize the radiating symmetric component.
This can be achieved by placing the highly reflecting facets at
locations that are multiples of (where the location
is in the center of the device and the middle of a grating tooth,
as shown in Fig. 1). At these locations, the forward- and back-
ward-going plane waves of the magnetic field for the symmetric
mode are in phase, which satisfies the boundary condition of a
metallic reflector. At the same locations, the plane waves are
out of phase for the antisymmetric mode, which forces the fol-
lowing boundary condition at the two facets

(13)

D. Solutions

The coupled equations in (9) can be solved to find the lasing
wavelength and threshold material gain for the finite length de-
vice. The solution takes the form

(14)

(15)

The boundary condition (13) will hold provided

(16)

The different values of correspond to the longitudinal modes
of the laser. For each , there are two sets of and which
satisfy (9)—one solution on either side of the gap between
and . The longitudinal mode spectrum of a typical device is
discussed in Section IV.

The lowest threshold gain occurs for with close
to . Fig. 5 shows the squared magnitudes of the calculated
symmetric and antisymmetric envelopes, and
respectively, for the lasing mode in a finite length device. The
facet boundary conditions force the antisymmetric component
to be zero at the edges. Coupling between the modes transfers
the energy from the symmetric component to the antisymmetric
component away from the edges of the device.

Fig. 5. Symmetric and antisymmetric parts, jB (z)j and jB (z)j ,
respectively, of the lasing mode for a 1.5-mm-long laser device with a grating
duty cycle of 0.6. The boundary conditions force the lasing mode to be
completely symmetric at the edges, but coupling transforms it to purely
antisymmetric in the center of the device.

Fig. 6. Square-magnitude jH (x )j of the radiating plane wave component
of the symmetric mode, normalized to the maximum square-magnitude of the
field inside the waveguide, plotted as a function of the grating duty cycle �. The
location x corresponds to a point just above the grating in free space.

IV. RESULTS AND DISCUSSION

The device performance is characterized by the radiative effi-
ciency and the threshold gain, and is determined by the grating
duty cycle , grating coupling strength, and the device length.
Below, we examine the effect of various device parameters on
device performance.

A. Radiation Field Amplitude

The radiative efficiency is proportional to the amplitude of
the radiating plane wave component in the Floquet–Bloch
expansion of the symmetric mode. Fig. 6 shows
plotted as a function of the grating duty cycle and normalized
to the maximum square-magnitude of the field inside the wave-
guide. The location corresponds to a point in free space just
above the grating. Since the magnitude of the radiating plane
wave component is proportional to the first harmonic of the
grating, Fig. 6 shows a maximum near .

B. Symmetric and Antisymmetric Parts of the Lasing Mode

Because only the symmetric mode radiates, the radiative effi-
ciency of the laser is proportional to the total energy in the sym-
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Fig. 7. � plotted as a function of the grating duty cycle �.

Fig. 8. Ratio of the energies in the symmetric and antisymmetric parts of the
lasing mode plotted as a function of the grating duty cycle in a 1.5-mm-long
device.

metric part of the lasing mode. The ratio of the energies in the
symmetric and antisymmetric parts of the lasing mode is given
by

(17)

Equation (17) shows that as the device length increases, the sym-
metric fraction will decrease. This agrees with the fact that the
antisymmetric mode is the lasing mode for an infinite length de-
vice.

For the device lengths considered in this paper mm ,
the lasing mode is dominated by the antisymmetric mode. As
a result, the value of is typically very close to that of ,
and, 2 . Therefore, from (17), the fraction of the sym-
metric component in the lasing mode is inversely proportional
to the value of . Fig. 7 shows the behavior of as a func-
tion of the grating duty cycle . As expected, has a minimum
near , where the second harmonic of the grating is min-
imized. The gold grating at terahertz frequencies is a significant
perturbation to the waveguide. As a result, reaches values
as high as 100 cm . Fig. 8 shows the ratio of the energies in
the symmetric and antisymmetric parts of the lasing mode as a
function of the grating duty cycle. Together with Fig. 7, Fig. 8

Fig. 9. Magnitude of the modal magnetic field and x and z components of
the modal electric field for the antisymmetric mode integrated along z for one
period. Fields for � = 0:2 and � = 0:8 are shown.

demonstrates the relationship between and the ratio of ener-
gies in the symmetric and antisymmetric eigenmodes.

C. Electric Field Polarization

The presence of a metal grating results in significant changes
in the relative proportions of the and components of the
modal electric field as a function of the grating duty cycle. The
field profiles for duty cycles of 0.2 and 0.8 are shown in Fig. 9.
Electric fields are computed directly from the full magnetic
fields with all plane wave components. Fig. 9 shows that for
small duty cycles, the -polarized electric field is large in
magnitude. In addition, for small duty cycles the electric field
leaks out through the grating gaps.
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Fig. 10. Average confinement factor � for the x-polarized electric field for a
1.5-mm device. The dip in the center coincides with a minimum in �.

Fig. 10 shows the confinement factor of the -component of
the modal electric field averaged along the length of the device.
The confinement factor is calculated as

(18)

In (18), the radiating component of is neglected outside the
waveguide. For a duty cycle of 1, the field is polarized almost
entirely in the direction, and the overlap is close to unity. As
the duty cycle is reduced from unity, the -component of the
electric field increases in magnitude, and the electric field leaks
out of the active region. These factors combine to reduce the
confinement factor, and result in increased threshold gain at low
duty cycles. This is discussed in greater detail in the next section.

D. Threshold Gain and Radiative Efficiency

The radiative efficiency of the laser is determined by
the ratio of power radiated from the surface to the total power
generated through stimulated emission in the active region. The
radiated power is obtained by integrating the Poynting vector of
the radiation field over the length of the device and is given by

(19)

The total power generated through stimulated emission in the
waveguide is given by

(20)

Here, is the threshold gain, and the integration in is over
the active region only.

The threshold gain of the laser and the radiative efficiency are
shown in Fig. 11 as a function of the grating duty cycle for a
1.5 mm device. Also shown is the achievable performance for a
double-metal waveguide edge emitting laser with identical laser
structure and typical facet reflectivity values between 0.6 and
0.9 [17]. For the surface emitter, both the threshold gain and the
external efficiency are characterized by a large peak near

Fig. 11. Threshold gain and outcoupling efficiency are plotted as a function of
the grating duty cycle � for a 1.5-mm-long device. The shaded region shows the
threshold gain and single-facet extraction efficiency for a 1.5-mm edge-emitting
laser with facet reflectivity ranging from 0.6 to 0.9. Much higher efficiency as
achievable with the surface-emitting design.

Fig. 12. Radiative loss and waveguide loss as a function of duty cycle for a
1.5-mm-long device.

. These peaks coincide with the grating duty cycle where
both the radiating amplitude and the fraction of the
lasing mode which is symmetric are large, as shown earlier in
Figs. 6 and 8. Fig. 12 explicitly shows the radiative loss and the
waveguide loss for a 1.5 mm long device, calculated as

and . While the waveguide
loss decreases for small duty cycles, the threshold gain actually



SCHUBERT AND RANA: ANALYSIS OF TERAHERTZ SURFACE EMITTING QUANTUM-CASCADE LASERS 263

Fig. 13. Longitudinal mode spectrum for a 1.5-mm device with � = 0:7. The
dashed lines indicate the lasing wavelengths � and � for the infinite length
eigenmodes H and H .

Fig. 14. Threshold gain and radiation outcoupling efficiency as a function of
length for devices with various duty cycles. (� =0.6, 0.62, 0.66, 0.70, 0.80).

increases. This is due to the fact that the confinement factor of
the -polarized electric field decreases for small grating duty
cycles, as seen in Fig. 10. The periodic peaks observed in the
plot of waveguide loss are the result of field resonances in the
grating region.

Fig. 13 plots the calculated threshold gain and emission wave-
length for the longitudinal mode spectrum of a 1.5-mm device
with a duty cycle of 0.7. The threshold gain for the lasing
mode is 22.3 cm , and the intermodal gain discrimination is
4.2 cm .

Fig. 14 shows the radiative efficiency and threshold gain
plotted as a function of device length for several different

Fig. 15. Amplitude B (z) of the symmetric component of the lasing mode
and the far-field intensity pattern are plotted. The device length is 1.5 mm and
� = 0:6. The antisymmetric nearfield pattern produces a null in the far-field in
the direction normal to the laser surface.

grating duty cycles. As the laser length increases, the sym-
metric fraction of the lasing mode decreases, resulting in lower
radiative efficiency. As expected, the radiative efficiency tends
toward zero as the device length increases, while the radiative
loss and threshold gain decrease. For very long device lengths,
the threshold gain is determined completely by the material
losses.

V. FAR-FIELD PERFORMANCE

The far-field radiation pattern is related to the near-field pat-
tern by the expression [30]

(21)

Fig. 15 shows the amplitude of the symmetric component
and the far-field radiation pattern for the lasing mode in a
1.5-mm-long device. has equal magnitude but opposite sign
at the two edges of the device. The radiation from each half
of the device adds destructively in the direction normal to the
laser surface resulting in a null in the center of the far-field
radiation pattern. A single-lobed far-field radiation pattern
can be obtained by adding a phase shift in the center of the
grating [21]–[23]. The phase shift is added by extending a
metal tooth in the grating by . Adding a phase shift has
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Fig. 16. Magnitude of the first and higher order magnetic field plane wave
components for the symmetric and antisymmetric modes integrated along z

underneath a grating tooth. The duty cycle � is 0.7.

the effect of propagating each plane wave in the Floquet–Bloch
expansions of the symmetric and antisymmetric modes by a
length . This produces a sign change for the odd-order
plane waves in the Floquet–Bloch expansion but has no effect
on the even-order plane waves.

In our calculations, the phase shift is included by assuming
a sign change for the slowly varying amplitudes, and

, at the location of the phase shift. Such a procedure is
strictly valid if the Floquet–Bloch expansion consists of only
the first-order plane waves (or just the odd-order plane waves).
Fig. 16 compares the energy in the first-order plane wave com-
ponents with remaining components for the symmetric and an-
tisymmetric modes underneath a metal tooth. For the antisym-
metric mode, the energy in the 1 components is much larger
than the energy in the remaining plane wave components. This
is not the case in the symmetric mode, where components other
than 1 carry a significant amount of energy. Therefore, our ap-
proximation of assuming a sign change for the slowly varying
amplitudes at the location of the phase shift is valid at the center
of the device where the lasing mode is entirely antisymmetric
(see Fig. 5).

The nearfield and far-field patterns of a device with a phase
shift are shown in Fig. 17. In the presence of the phase shift,
the symmetric component of the field has the same sign on both
ends of the device. Consequently, the radiated component is in

Fig. 17. Amplitude B (z) of the symmetric component of the lasing mode
and the far-field intensity pattern are plotted for a device with a � phase shift in
the center of the device. The device length is 1.5 mm and � = 0:6. The phase
shift produces a single-lobe far-field pattern.

phase throughout the length of the device. Radiation from both
halves of the device add constructively in the surface normal di-
rection producing a single main lobe in the far-field. The far-
field radiation pattern is characterized by a central lobe that
has a full-width at half-maximum (FWHM) less than 2.8 de-
grees wide and contains 62% of the total radiated power. The
remainder of the radiated power is distributed in the higher order
lobes. The energy in the higher order lobes is due to the null in
the radiation in the center of the nearfield pattern, and sharp ter-
mination of the radiated field at the device edges [28].

VI. CONCLUSION

We have analyzed surface-emitting quantum-cascade lasers
at m using a scheme based upon Floquet–Bloch
expansion and coupled-mode theory using PML boundary
conditions for the radiation field. Our analysis is valid for
the strong index contrast characteristic of second-order metal
gratings. Simulations show a strong dependence of device
performance upon the grating duty cycle and the laser length.
Careful design allows for radiative high efficiency and low
threshold gain. A phase shift in the center of the grating can
be used to transform the antisymmetric nearfield pattern into
one which is symmetric along the length of the device resulting
in a single-lobed far-field beam pattern.
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APPENDIX I
CONNECTION WITH THE CONVENTIONAL

COUPLED-MODE THEORY

Equation (8) can also be rewritten in a way that resembles the
conventional couple-mode theory with slowly varying ampli-
tudes for forward- and backward-propagating plane waves [29]

(22)

It must be emphasized here that the analogy with forward- and
backward-going plane waves of the conventional coupled-mode
theory is only approximate since the superpositions
and contain nonnegligible backward- and forward-
going plane wave components, respectively. Nevertheless, as
show below, the resulting coupled-mode theory looks identical
to the conventional coupled-mode theory. Plugging the expan-
sion in (22) in (2) and using (5), (6), and (7), and are
found to satisfy the coupled-mode equation

(23)

With in the center of the device, the boundary condition
for and at the two facets in this formulation becomes,.

(24)

(25)

which is equivalent to (13).
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