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Quantum Noise of Actively Mode-Locked Lasers
With Dispersion and Amplitude/Phase Modulation

Farhan Rana, Rajeev J. Ram, and Hermann A. Haus

Abstract—A quantum theory for the noise of optical pulses in
actively mode-locked lasers is presented. In the presence of phase
modulation and/or group velocity dispersion, the linear operator
that governs the time evolution of the pulse fluctuations inside
the laser cavity is not Hermitian (or normal) and the eigenmodes
of this operator are not orthogonal. As a result, the eigenmodes
have excess noise and the noise in different eigenmodes is highly
correlated. We construct quantum operators for the pulse
photon number, phase, timing, and frequency fluctuations. The
nonorthogonality of the eigenmodes results in excess noise in the
pulse photon number, phase, timing, and frequency. The excess
noise depends on the frequency chirp of the pulse and is present
only at low frequencies in the spectral densities of the pulse noise
operators.

Index Terms—Laser noise, optical pulses, quantum optics, ultra-
fast optics.

I. INTRODUCTION

THE noise of an optical pulse in a mode-locked laser
can be determined by a perturbative expansion in terms

of the eigenmodes of the linear operator that governs the
slow time evolution of the pulse fluctuations [1]–[3]. In most
mode-locked lasers,this operator is not Hermitian (i.e., not
self-adjoint) or even normal (i.e., does not commute with its
adjoint). This operator can be non-Hermitian in the presence of
a number of different factors, such as group velocity dispersion,
active phase modulation, dynamic gain or loss saturation,
dynamic self-phase modulation, or detuning of the cavity
round-rip frequency from the active modulation frequency.
The eigenmodes of a nonnormal operator are not mutually
orthogonal [4]. It is well known that the nonorthogonality of
the eigenmodes significantly affects the noise in non-Hermi-
tian (and nonnormal) optical systems [5]–[8]. The increased
sensitivity to noise in phase-modulated lasers below threshold
was pointed out in [9] and in detuned mode-locked lasers in
[10]. In this paper, we present a quantum theory for the noise of
optical pulses in mode-locked lasers in the presence of active
phase/amplitude modulation and/or group velocity dispersion.
Since the eigenmodes in this case are not orthogonal, the noise
in eigenmodes is found by projections using the eigenmodes
of the adjoint operator. As a result of the nonorthogonality
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of the eigenmodes, each eigenmode has large excess noise
and the noise in different eigenmodes is highly correlated. We
construct quantum mechanical operators for the pulse photon
number, phase, timing, and frequency noise and show that
these operators have noise contributions from eigenmodes of
all order. The nonorthogonality of the eigenmodes also results
in excess noise in the pulse photon number, phase, timing, and
frequency. This excess noise has the same origin as the excess
noise described by the Petermann’s K-factor in non-Hermitian
optical systems [5]–[8], and its magnitude depends on the
degree of nonorthogonality of the eigenmodes. In the presence
of active phase modulation and/or dispersion, the magnitude of
the frequency chirp of the steady-state pulse is a good measure
of the degree of nonorthogonality of the eigenmodes, and the
excess noise in the pulse can be related to the pulse chirp. The
spectral densities of the pulse photon number, phase, timing,
and frequency noise exhibit excess noise only at frequencies
lower than the smallest (in magnitude) nonzero eigenvalue
of the operator that governs the time evolution of the pulse
fluctuations.

Previous works on the noise in actively mode-locked lasers
have either not taken into account group velocity dispersion
and/or active phase modulation [2], [11], [12] or ignored the
resulting non-Hermiticity [13]. The work presented in this
paper is useful for understanding the noise of chirped optical
pulses in mode-locked lasers and is especially relevant to
semiconductor mode-locked lasers. Optical pulses in semicon-
ductor mode-locked lasers can be highly chirped because of
the large material dispersion and because phase modulation
accompanies active amplitude modulation as a result of the
carrier-density-dependent refractive index in semiconductors
[14].

II. THEORETICAL MODEL

A. Master Equation for Actively Mode-Locked Lasers

We start from the time-domain perturbation theory for op-
tical pulses developed in [1]–[3] and [15]. The model discussed
in this paper is linear. Nonlinear effects, such as dynamic gain
saturation and self-phase modulation, have not been included
for simplicity. The quantum field operator for the optical pulse
inside the laser cavity is , where de-
scribes the slowly varying envelope of the optical pulse and
is the pulse center frequency. The additional time variable
describes the evolution of the pulse over time scales larger than
the cavity round-trip time . The operator is normal-
ized such that equals the photon number flux
(units: number/s). The angled brackets stand for averaging
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with respect to the quantum mechanical density operator that
describes the steady state of the optical pulse. obeys the
quantum mechanical commutation relation [3]

(1)

The Heisenberg–Langevin equation (known also as the master
equation in the mode-locking literature) that describes the slow
time evolution of the optical pulse inside the laser cavity is
[1]–[3]

(2)

where the operator is

(3)

where is the pulse (amplitude) gain (units: 1/s), describes
the photon loss from the laser cavity, describes the effect of
the finite filter bandwidth (units: s), is the cavity group ve-
locity dispersion (units: s). and are the strengths (units:
1/s) of amplitude and phase modulation, respectively, is the
frequency of the active modulation and it is assumed to be equal
to , is a phase shift accumulated by the pulse in one
round trip, and and are Langevin noise opera-
tors that describe the noise associated with gain and photon loss
(or vacuum fluctuations), respectively, and have the following
correlation functions:

(4)

(5)

(6)

(7)

where is the spontaneous emission factor that takes into
account incomplete inversion of the gain medium [20], is
the thermal occupation number for photons at frequency and
is close to zero since the photon energy is usually much
greater than the thermal energy at room temperature. The noise
operators obey the quantum mechanical commutation relations

(8)

(9)

Carrier number fluctuations in the gain medium will be included
in the master equation later in this paper. It should be noted that
the master equation (2) describes the pulse only over time scales
longer than the cavity round-trip time, and the master equation
is valid provided the pulse does not change significantly as it
travels in the laser cavity.

B. Steady-State Solution

The steady-state solution is much simpler if the term
in (3) is approximated as [1]. The

eigenfunctions of the operator are then complex
Hermite–Gaussians

(10)

where is the th Hermite polynomial. The corresponding
complex eigenvalues are . equals , where

(11)

The master equation (2) is valid only if . In most
mode-locked semiconductor and fiber lasers, is usually
two or three orders of magnitude smaller than [15],
[17]–[19]. The eigenfunctions are normalized such
that . The steady-state pulse is given by the
eigenfunction of the smallest (in magnitude) eigenvalue

, where

(12)

The pulse chirp parameter and the pulse width are given by
the relations

(13)

(14)

The steady-state average value of the photon flux operator
is assumed to be

(15)

where is the number of photons in the steady-state pulse. For
steady-state pulse operation, the real and imaginary parts of the
eigenvalue satisfy

(16)

(17)

The total photon loss rate in the cavity is , given as

(18)

Above laser threshold, . The gain is assumed to be a
decreasing function of the number of photons in the optical
pulse as a result of gain saturation. The details of the relationship
between and are not important for the purposes of this
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Fig. 1. Squared magnitudes of the first six eigenfunctions A (t) are shown.
� is 0 for the plots in the left column and 1 for the plots in the right column.

paper. However, it should be noted that (16) fixes the number
of photons in the steady-state pulse. The interested reader is
referred to [2] for details.

C. Nonorthogonal Eigenfunctions

The operator , in the presence of dispersion and/or
phase modulation, is not Hermitian (or not self-adjoint) and
not normal (i.e., it does not commute with its adjoint). Con-
sequently, the eigenfunctions are not orthogonal [4],
i.e., . However, are orthogonal
to the eigenfunctions of the adjoint operator . The eigen-
functions of the operator are complex conjugates of the
corresponding eigenfunctions of the operator as

(19)

The orthogonality relation is then . We
define the cross-product matrix as

(20)

In Appendix I, it is shown that depends only on the mag-
nitude of the pulse chirp . When , the eigenfunctions
are orthogonal and . The degree of nonorthogonality
of the eigenfunctions increases with the increase in the magni-
tude of the pulse chirp. The first six eigenfunctions for values
of equal to 0 and 1 are shown in Fig. 1. When is
nonzero if and have the same parity (i.e., if and

are both even or both odd). Properties of the complex Her-
mite–Gaussian functions and expressions for the elements of the
matrix are given in Appendix I. The eigenfunctions
form a complete basis set and satisfy the completeness relation

(21)

III. SOLUTION IN THE PRESENCE OF NOISE

A. Eigenfunction Expansion

In the presence of noise the field operator can be
written as a sum of a classical field, which describes the steady-
state pulse, and a quantum operator that describes the noise and
also preserves the field commutation relations [3], [16]

(22)

where

(23)

The operator can be expanded in terms of the eigenfunc-
tions of the operator as

(24)

where is a quantum mechanical annihilation operator.
The operators obey the commutation relations

(25)

If the eigenfunctions were orthogonal, then the terms inside the
square bracket in (25) would equal . The operator an-
nihilates a photon in the mode . However, the operator

creates a photon in the mode and not in the mode
. This can be shown as follows. The temporal wave-func-

tion of the photon created by the operator can be obtained
by looking at the probability amplitude when the state is de-
stroyed by as follows:

(26)

B. Noise Dynamics and Excess Noise

The dynamical equation for the operator can be found
by substituting the eigenfunction expansion in (24) in the master
equation (2), and using the eigenfunction of the adjoint
operator to project out the equation for as

(27)

The commutation relations given in (8) and (9) for the noise
sources and preserve the commutation rela-
tions for the operators during time evolution. The equa-
tion for the operator in (27) is not damped. Carrier number
fluctuations (or gain fluctuations) must be included in the model
to damp the fluctuations in , and this will be done in Sec-
tion V. For , (27) can be integrated directly to yield the
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expectation values for the operators , and, for we
obtain

(28)

(29)

(30)

The term in the numerator in (29) and (30) can be
ignored if . Since is usually of the order of
in most mode-locked lasers, the condition is also
satisfied if . Since the master equation (2) is valid
only if , these terms will be ignored in this paper.

The expectation values and are
proportional to which is always greater than
or equal to unity (this follows from the Schwartz’s inequality).

is the excess noise factor. The excess noise
would have been absent if the eigenfunctions were orthogonal.
The excess noise factor is similar to the Petermann’s K-factor
which describes the excess noise in optical amplifiers and os-
cillators with nonorthogonal optical modes [5]–[8]. The excess
noise factors depend on the magnitude of the pulse chirp (see
Appendix I) as follows:

(31)

where is the th Legendre polynomial, ,
and . The excess noise depends on the degree of
nonorthogonality of the eigenfunctions (or on the degree of
nonnormality of the operator ). The larger the magnitude
of the pulse chirp, the more nonorthogonal the eigenfunctions,
and the larger the excess noise. Also, (29) and (30) show that as
a result of the nonorthogonality of the eigenfunctions the noise
in different eigenfunctions is correlated.

C. Pulse Fluctuation Operators

In many cases the quantities of interest are usually the pulse
photon number, phase, timing, and frequency fluctuations. The
eigenfunction expansion for the operator in (24) can be
written as [2], [3], [16],

(32)

where the contribution from the third and higher order eigen-
functions has been separated. The expansion in (32) has been
widely used in the literature [2], [3], [16], and the operators

, and have been identified with the
pulse photon number, phase, timing, and frequency fluctuations,
respectively. The drawback with the expansion in (32) is that
when the eigenfunctions are not orthogonal then the perturba-
tions given by the higher order eigenfunctions are not orthog-
onal to the perturbations given by the first two eigenfunctions.
Consequently, the operators for the pulse photon number, phase,
timing, and frequency fluctuations as defined in (32) are not
valid and do not correspond to the quantities measured in ex-
periments [17]–[19]. Below, operators are constructed that de-
scribe the pulse photon number, phase, timing, and frequency
fluctuations when the eigenfunctions of the operator are
not orthogonal. In Section VII, it is shown that the operators
defined below correspond to the quantities measured in experi-
ments.

The total number of photons in the pulse at time is given
by the operator

(33)

The operator for the fluctuations in the pulse photon
number can be obtained by using (22) in (33) and keeping only
the term’s first order in as

(34)

The operator for the pulse phase fluctuations, which is
also conjugate to , is

(35)

The correct commutation relation between and
follow from the commutation relation between and

:

(36)

The operator for the pulse position in time is

(37)

It follows that the operator for the fluctuations in the
pulse timing is

(38)

The operator for the pulse frequency fluctuations, which
is also conjugate to , is,

(39)

The commutation relation between and is

(40)



RANA et al.: QUANTUM NOISE OF ACTIVELY MODE-LOCKED LASERS WITH DISPERSION AND AMPLITUDE/PHASE MODULATION 45

Using the eigenfunction expansion for , the expressions
for the pulse fluctuation operators become

(41)

(42)

(43)

(44)

Equations (41)–(44) show that the noise in all the higher
order eigenfunctions contribute to the pulse photon number,
phase, timing, and frequency fluctuations. If the expansions
in (41)–(44) are limited to only the first two eigenfunctions,
then the expressions for , and ,
respectively, are obtained. In the sections that follow, the noise
in pulse photon number, phase, timing, and frequency are
discussed in detail.

IV. PULSE TIMING AND FREQUENCY NOISE

The operators and for the pulse timing and
frequency noise, respectively, contain noise contributions from
all the odd-numbered eigenfunctions. The excess noise and the
correlation in the noise in different eigenfunctions significantly
affect the pulse timing and frequency noise. The operators

and contain noise contribution from only the
second eigenfunction and exhibit the excess noise in the second
eigenfunction. The mean square value of can be obtained
using (29) and (30) to yield

(45)

The mean square value of can be obtained from the mean
square value of as

(46)

The factor in (45) and (46) is
the excess noise.

The mean square value of can be calculated using (29),
(30), and (43) to yield

Fig. 2. Mean square timing noise h�t̂ (T )i calculated using (47), normalized
to the value of h�t̂ (T )i in (45), is plotted as a function of the number N
of eigenfunctions used in the expansion. The perturbative expansion diverges
exponentially when the pulse chirp j�j becomes larger than 1=

p
3 � 0:577.

The steps appear because only the odd-numbered eigenfunctions contribute to
the timing noise.

(47)

The first nonzero term of the series in (47) equals
given in (45). Fig. 2 shows calculated using

(47) as a function of the number of eigenfunctions used
in the expansion [i.e., when only terms with are
included in the summation in (47)]. When the magnitude of the
pulse chirp is larger than , the series in (47) di-
verges exponentially. The perturbative expansion for the pulse
frequency noise also diverges in the same way. The di-
vergence of the perturbative expansion is analyzed in detail in
Appendix II, and it is shown that, in general, a series of the fol-
llowing form:

(48)

(where decays only algebraically as become
large) does not converge when . The divergence oc-
curs because the eigenfunctions are highly nonorthogonal when

and are not a suitable basis to describe the pulse
noise. This divergence is related to the divergence observed in
[21] in the general context of functional expansions using com-
plex Hermite–Gaussians. The divergence can be removed by
an appropriate change of the basis. In Appendix II, the min-
imum-error expansion of [21] is used to establish the following
result:

(49)
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Fig. 3. Mean square timing noise h�t̂ (T )i, calculated using (50) and
normalized to the expression given in (51), is plotted as a function of the
number N of eigenfunctions used in the perturbative expansion. The series
in (50) converges for all values of the pulse chirp.

The series on the right-hand side in the above equation con-
verges for all values of the pulse chirp as becomes large.
The relation in (49) will be used throughout this paper. Using
(47) and (49), we obtain

(50)

The series above converges to a value which may be approxi-
mated (with less than 5% error) by the expression

(51)

The convergence of the expansion in (50) is shown in Fig. 3,
where , normalized to the approximate expres-
sion given in (51), is plotted as a function of for

. Comparing (45) and (51), it is seen that the
dominant effect of the noise contribution from the higher order
eigenfunctions on the mean square value of the timing noise

is the reduction of the excess noise from to
. The reduction in the noise is due to the correlations

in the noise in different eigenfunctions.
It needs to be emphasized here that the excess noise in the

pulse would not have disappeared if an orthogonal basis were
used to expand the operator in (24) instead of the eigen-
function basis. The excess noise is a result of the nonnormality
of the operator governing the time evolution of the pulse
noise and is independent of the basis set used. If a basis con-
sisting of orthogonal functions is used, then the noise in dif-
ferent functions would be coupled since these functions would
not be the eigenfunctions of the operator , and the excess
noise would then appear as a result of these couplings. The de-
scription of noise dynamics in terms of the eigenfunction basis
is the simplest.

Pulse stability with respect to timing perturbations require
that . Using (13), it can be shown that this

Fig. 4. Mean square timing noise h�t̂ (T )i, normalized to � (see (53), is
plotted as a function of the ratio D=B for different values of the ratio p =a .
The corresponding curves for negative values of p =a are reflections of the
curves shown about the vertical axis.

Fig. 5. Pulse chirp � is plotted as a function of the ratio D=B for different
values of the ratio p =a . The corresponding curves for negative values
of p =a are reflections of the curves shown about the vertical axis and
horizontal axis.

stability condition is always satisfied for all values of and
. The expression in (51) can be written as

(52)

where is given by the expression

(53)

and is the mean square timing noise in the absence of group ve-
locity dispersion and phase modulation. Fig. 4 shows ,
normalized to , plotted as a function of the ratio for dif-
ferent values of the ratio . The corresponding values of
the pulse chirp are shown in Fig. 5.

The mean square timing noise is minimum when the disper-
sion is such that

(54)
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Fig. 6. Mean square timing noise h�t̂ (T )i, normalized to � [see (56)], is
plotted as a function of the ratio D=B when pure phase modulation is used.

In the presence of phase modulation, the minimum timing noise
always occurs for a nonzero value of the pulse chirp, as shown
in Figs. 4 and 5.

When pure phase modulation is used (i.e., when ), the
pulse can be at the crest or trough of the sinusoidal modulation
signal where the phase modulation has opposite signs. Using
(11) with (16), and assuming , it can be shown that when

the threshold gain is lower if the pulse is at the
crest (trough), and therefore only one solution will be stable.
Pulse stability with respect to timing perturbations requires that

which, using (13), can be shown to be satisfied for all
values of . For pure phase modulation, (51) can be written
as

(55)

where is

(56)

Fig. 6 shows , normalized to , plotted as a function
of the ratio . The corresponding values of the pulse chirp
are shown in Fig. 7. Assuming a fixed value of , the mean
square timing noise is minimum when the group velocity dis-
persion is such that (and ).

The mean square value of the pulse frequency noise
can be from the mean square value of the timing noise
as follows:

(57)

As in the case of the pulse timing noise, the noise contribution
from the higher order eigenfunctions reduces the excess noise
in the mean square pulse frequency noise from to

.

Fig. 7. Pulse chirp � is plotted as a function of the ratioD=B when pure phase
modulation is used.

A. Spectral Densities of the Timing and Frequency Noise

The pulse timing and frequency noise spectral densities can
be determined by solving (27) in the frequency domain. The
spectral density of the noise operator follows from
(139) of Appendix V-A:

(58)

(59)

As a result of the coupling between and in the
presence of dispersion and/or active phase modulation [2], [3],
the frequency dependence of the spectral density is that
of a second-order linear system with the damping constant equal
to and the square of the resonant frequency equal to

. The factor in (59) is the excess noise factor.
The spectral density of the operator equals

.
The spectral density of the timing noise can

be found using (43) and (139). The resulting series does not con-
verge and the relation in (49) can be used to obtain the following
convergent expansion for :

(60)

Fig. 8 shows the timing noise spectral densities and
, both normalized to the value ,

for and . The excess noise contributes
to , a constant factor . Since the noise in dif-
ferent eigenfunctions is correlated, the inclusion of noise contri-
butions from the higher order eigenfunctions in reduces



48 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 1, JANUARY 2004

Fig. 8. Timing noise spectral densitiesS (
) (dash–dotted line) andS (
)
(solid line) are shown for � = 2:0 and p =a = 2:0. The dashed line shows
S (
)=(1+� ) . The spectral densities in the figure have been normalized
w.r.t. the valueS (
 = 0)=(1+� ) . The frequency
 has been normalized
w.r.t. the value j2� j.

the low-frequency noise and partially compensates for the ex-
cess noise. At high frequencies, when , the series in
(60) can be summed exactly and we obtain

(61)

The above equation shows that the excess noise in the pulse
timing noise spectrum is absent at high frequencies. This is also
shown in Fig. 8. The excess noise is therefore present only at fre-
quencies lower than the smallest (in magnitude) nonzero eigen-
value of the operator . The spectral density of the
frequency noise is simply . In the
next section, it is shown that the excess noise in the pulse photon
number and phase are also present only at low frequencies.

V. PHOTON NUMBER AND PHASE FLUCTUATIONS

Carrier number fluctuations (or gain fluctuations) must be
included in the model to determine the pulse photon number
and phase fluctuations. Here we assume a semiconductor gain
medium. Carrier number noise introduces an additional
term

(62)

on the left-hand side of the master equation (2). The parameter
relates the change in the imaginary part of the gain to the change
in the real part of the gain and models the refractive index fluctu-
ations which accompany gain fluctuations [20]. Carrier number
fluctuations affect only the dynamical equation of as

(63)

where is the carrier stimulated emission lifetime

(64)

When the nonradiative recombination time of the carriers
is much shorter than the pulse round-trip time —a condition
true for most semiconductor and fiber mode-locked lasers—the
dynamical equation for the carrier number fluctuations is

(65)

The first term on the right-hand side of the above equation is the
increase in the carrier recombination rate due to an increase in
the carrier number. The second term is the increase in the carrier
recombination rate due to an increase in the number of photons
in the pulse. The third term describes the noise associated with
spontaneous emission and vacuum fluctuations. models
the noise in carrier nonradiative recombination, and
models the noise in the pumping process. If the pumping process
has shot noise, then

(66)

is the average rate at which carriers are pumped into the
upper level. The correlation function of is

(67)

is the average carrier recombination rate. It can be shown
that (63) and (65), together with (27), preserve the commutation
relations for the operators given in (25).

A. Photon Number Fluctuations

The spectral density of the pulse photon number fluctuations
can be found by solving (63) and (65) in the frequency domain.
The modulation response of the laser is defined as [20]

(68)

where the laser relaxation oscillation frequency and the
damping constant are

(69)

(70)

Equation (65) for the carrier number fluctuations is valid only
if and are much smaller than . Recall from the dis-
cussion in Section III-C that is an approximation to the
pulse photon number fluctuation operator and is ob-
tained by restricting the eigenfunction expansion to only the first
two eigenfunctions. The spectral density of the operator

can be obtained by replacing with in (65)
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and keeping only the term in the summation. This proce-
dure preserves the commutator , and the resulting

is

(71)

The first term is the contribution from the nonradiative carrier
recombination noise and the noise in the laser pump. The second
term is the noise contribution from the gain medium and vacuum
field fluctuations. The term is the excess noise factor
and equals . The spectral density of
the operator can be determined by solving (27), (63),
and (65), and using the relation in (49) to yield

(72)

Expressions for the functions and are given in
Appendix III. The two series in (72) can be summed exactly
when , and we obtain

(73)

Analytical expression for can also be obtained when
as follows:

(74)

The expression in (74) is similar to that in (71) but without the
excess noise factor. Thus, like the pulse timing and frequency
noise, the photon number noise also does not exhibit excess
noise at frequencies much higher than . Fig. 9 shows the
spectral densities and normalized to the ex-

Fig. 9. Photon number noise spectral densities S (
) (dash–dotted
line) and S (
) are shown for � = 2:0 and p =a = �3:0 for
an actively mode-locked semiconductor laser. The dashed line shows
S (
)=(1 + � ) . The values of the laser parameters are given in Table I.
R and R are both assumed to be zero. The spectral densities in the
figure have been normalized w.r.t. the value S (
 = 0)=(1 + � ) . The
frequency 
 has been normalized w.r.t. the value j4� j. The resonance peak is
due to the laser relaxation oscillations.

pression in (71) without the excess noise factor for a semi-
conductor mode-locked laser. The values of the laser param-
eters are given in Table I. and are both assumed
to be zero. In semiconductor mode-locked lasers, the values
of the relaxation oscillation frequency and the modulation
damping constant are usually much larger than the value of

(see Table I). The excess noise factor increases the low-
frequency noise in by [see (71)]. The inclu-
sion of the noise contributions from the higher order eigen-
functions in reduces the low-frequency photon number
noise and partially compensates for the excess noise [see (73)].
At high frequencies , the excess noise is absent. In
actual semiconductor lasers, and cannot be assumed
to be zero. and may contribute more to the pulse
photon number noise than spontaneous emission and vacuum
fluctuations, in which case the features in Fig. 9 due to the ex-
cess noise may be difficult to observe in experiments.

B. Phase Fluctuations

The equation for the operator can be obtained from
(63) as

(75)

The spectral density of can be found from (65)
and (75) as

(76)
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TABLE I
LASER PARAMETERS USED IN FIG. 9 FROM [15]

The factor in the above equation is the excess
noise factor and equals . The spectral density

of the pulse phase noise can be obtained by
solving (27), (63), and (65) and using the relation in (49) to
yield

(77)

The expressions for the functions and are given
in Appendix IV. Simple analytical expressions for can
be obtained in two cases. For frequencies much lower than
and the laser relaxation oscillation frequency , we obtain

(78)

Unlike pulse timing, frequency, and photon number fluctua-
tions, pulse phase fluctuations at low frequencies exhibit the full
excess noise even when the noise contribution from the higher
order eigenfunctions is included. This is because the pulse phase
noise at low frequencies is dominated by the noise con-
tribution from the first eigenfunction, and this noise contribu-
tion is not damped and executes a random walk. From (78), it
follows that the pulse phase diffusion at large time scales can be
expressed in the time domain as

(79)

Fig. 10. The phase noise spectral densities S (
) (dash–dotted line) and
S (
) (solid line) are shown for � = 2:0; p =a = �3:0, and � =
3:0 for an actively mode-locked semiconductor laser. The dashed line shows
S (
)=(1+� ) . The laser parameters are given in Table I.R andR
are both assumed to be zero. The spectral densities in the figure have been
normalized w.r.t. the value S (
 = j4� j)=(1 + � ) . The frequency 

has been normalized w.r.t the value j4� j.

When , a result similar to (76) is obtained but without
the excess noise factor, shown as follows:

(80)

Thus, the excess noise is absent at high frequencies. Fig. 10
shows the phase noise spectral densities and ,
both normalized to the expression in (76) without the excess
noise factor, for , and .
shows the full excess noise factor at low frequencies.
At frequencies higher than , the excess noise disappears.

VI. NOISE IN THE PULSES OUTSIDE THE LASER CAVITY

The master equation (2) describes the temporal evolution of
a single pulse inside the laser cavity. The noise in the pulses
coming out of the laser cavity is not the same as the noise in the
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pulse inside the laser cavity. The noise in the pulses outside the
cavity is affected by the reflected vacuum fluctuations [23].

The rate of photon loss in the laser cavity can be expressed in
the form

(81)

where represents the rate of photon loss from the output cou-
pler, and describes the rate of photon loss due to other mecha-
nisms inside the cavity. The noise operator for the vacuum fluc-
tuations in the master equation (2) can be written as

(82)

Assuming that , the only nonzero correlations of the
noise operators and are

(83)

(84)

The delta function in (84) implies that the noise added
to the pulse in different round trips is uncorrelated. Therefore,
the correlation function in (84) for equal times must be inter-
preted as

(85)

The pulses coming out of the laser cavity are more appropri-
ately described by labeling them with a discrete index. A brief
review of the discrete time Fourier transforms and the associ-
ated noise spectral densities is given in Appendix V.B. The field
operator of the th pulse which comes out of the laser at time

is assumed to be and is related to as

(86)

The second term on the right hand side represents the reflected
vacuum fluctuations. obeys the commutation relation

(87)

can also be expanded in terms of the functions as
follows:

(88)

where the average number of photons in the output pulses
equals . Equations (87) and (88) give the commu-
tation relations for the operators as follows:

(89)

Equations (86) and (88) give

(90)

The expression above satisfies the commutation relation for
given in (89). The operators for the noise in the output

pulses can be expressed in terms of if the substitutions
and are made in (41)–(44). It should

be noted that the operators , and
for the noise in the output pulses are functions of the

discrete index , and the corresponding noise spectral densities
, and are peri-

odic functions of with a period (see Appendix V-B).

A. Timing and Frequency Fluctuations in the Output Pulses

The spectral density of the timing noise
in the output pulses can be determined using the methods de-
scribed in Section IV, and we obtain

(91)

where the function is

(92)

and is given by the expression in (60). The last two
terms on the right-hand side in (91) are due to the reflected
vacuum fluctuations. The mean square value of the
timing noise is

(93)

From the value of given in (51), it follows that the
reflected vacuum fluctuations make a negligible contribution
to the mean square timing noise in the output pulses when

. The spectral density and the
mean square value of the pulse frequency fluctua-
tions are related to those of the pulse timing fluctuations by a
constant factor .

B. Photon Number and Phase Fluctuations in the Output
Pulses

The spectral density of the photon number
noise in the output pulses can be determined using the
methods described in Section V, and we obtain

(94)
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where is given in (72). It follows from the expres-
sion above that the mean square value of the photon
number fluctuations in the output pulses is

(95)

The second term on the right-hand side is due to the reflected
vacuum fluctuations.

The spectral density of the pulse phase noise
is

(96)

where is given by the expression in (77). The last term
on the right-hand side in (96) is due to the reflected vacuum
fluctuations.

VII. PULSE FLUCTUATION OPERATORS AND NOISE

MEASUREMENTS

A widely used technique for characterizing the photon
number and timing fluctuations of pulses from mode-locked
lasers is measuring the spectral density of the photodetector
current noise [17]–[19], [25]. Here, it is shown that the pho-
todetector current noise spectral density is directly related to
the spectral densities and of the pulse
photon number and timing noise operators and ,
respectively, as defined in this paper. The operator for the
photodetector current is

(97)

where is the electron charge and is the field operator
for the th output pulse from the laser. The photodetector is
assumed to have a unit quantum efficiency and a response time
much faster than the frequencies of interest. If necessary, the
frequency response of the detector can be taken into account by
multiplying the spectral density of the current by the detector
frequency response function [26]. Equation (97) can be written
as

(98)

The second term in the above equation is the current noise
. The spectral density of the current noise is

defined in terms of the symmetric time averaged correlation
function (see Appendix V-A) as

(99)

After some algebra, (99) yields

(100)

The spectral density is the discrete time Fourier
transform of the symmetric cross-correlation function between

and . At small frequencies, is propor-
tional to the spectral density of the pulse photon
number fluctuations. Assuming no correlation between the
pulse photon number noise and timing noise, the pulse timing
noise spectral density can be obtained by measuring
the current noise spectral density near a large harmonic of the
pulse repetition frequency where the photon number noise is
negligible. The timing noise spectral density can
be obtained more reliably by mixing the photodetector current
with a signal from the same RF oscillator that provides the
active modulation for the mode-locked laser. In this case, the
timing noise is measured relative to the timing (or phase) noise
of the RF oscillator. By appropriately adjusting the phase of
the signal before mixing it with the photodetector current, the
contribution from the pulse photon number fluctuations can be
removed [17]–[19], [26].

VIII. CONCLUSION

A quantum theory for the noise of optical pulses in actively
mode-locked lasers with phase modulation and/or group
velocity dispersion was presented. Quantum operators were
constructed for the pulse photon number, phase, timing, and
frequency noise. It was shown that when the linear operator
that describes the time evolution of the pulse fluctuations inside
the laser cavity is not normal (or Hermitian) the pulse photon
number, phase, timing, and frequency fluctuations exhibit
excess noise. The excess noise was found to appear only at
low frequencies in the spectral densities of the pulse photon
number, phase, timing, and frequency noise operators. Finally,
a connection was made with experiments that measure pulse
noise by measuring the noise in the photodetector current.
It was shown that the fluctuations described by the quantum
operators constructed in Section III-C are measured in these
experiments.

The model for the actively mode-locked laser discussed in
this paper is linear. Future work in this direction needs to address
the effect of nonlinearities, such as dynamic gain or loss satu-
ration and dynamic self-phase modulation, on the pulse noise.
These dynamic nonlinearities can make the operator that de-
scribes the time evolution of the pulse fluctuations non-Hermi-
tian. Finally, it is not clear if the minimum-error expansion used
to establish the result in (49) is optimum in the sense that it gives
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the fastest rate of convergence. The authors believe that a suit-
able orthonormal expansion may provide faster convergence,
but this remains to be explored.

APPENDIX I
PROPERTIES OF COMPLEX HERMITE–GAUSSIANS

The complex Hermite–Gaussians are defined as

(101)

where is a normalization constant and is the th
Hermite polynomial [24]. If is normalized such that

, then is

(102)

where is the th Legendre polynomial [24]. The fol-
lowing integrals have been used in this paper:

(103)

(104)

where is the associated Legendre function with
the following properties:

(105)

(106)

APPENDIX II
DIVERGENCE OF THE CONVENTIONAL PERTURBATIVE

EXPANSION AND THE MINIMUM ERROR EXPANSION

In Section IV, it was mentioned that a series of the form

(107)

(where decays only algebraically as become
large) does not converge when only a finite number of terms are
included in the summation. The divergence is best illustrated
by assuming . In this case, the series can be summed
exactly using the completeness relation for the eigenfunctions
in (21) as

(108)

Fig. 11 shows the result when and only terms in which
are included in the summation in (108)). When

Fig. 11. The result obtained when p = 1 and only terms in which k; q <
N are included in the summation in (108). The series diverges when j�j is
larger than � = 1=

p
3. The steps appear because when p is odd only those

terms in which both k; q are odd contribute to the result.

is small, the series converges to unity. When is large,
the series diverges exponentially as increases. The largest
terms in the series are the diagonal terms. From the
properties of the eigenfunctions in Appendix I the ratio
of two successive diagonal terms can be calculated as

(109)

The series diverges when , where the critical value
is determined by setting equal to unity. This
yields . This critical value was found in
[21] in the general context of series expansions using complex
Hermite–Gaussians. Numerical calculations confirm the value
of for . Since the exact sum is not infinite, it follows
that, when is infinitely large, the off-diagonal
terms in the series suppress the divergence coming from the di-
agonal terms.

The physical significance of this result is that, when the mag-
nitude of the pulse chirp is larger than , although the noise
in the eigenfunctions is large, the noise in different eigenfunc-
tions is highly correlated. These noise correlations suppress the
divergence in the perturbative expansion for the pulse noise pro-
vided an infinite number of eigenfunctions are included in the
perturbative expansion. The divergence is not physical and ap-
pears only because the eigenfunction basis is not a suitable basis
for studying the pulse noise when . Below, a technique
to obtain a convergent expansion for series of the form (107) is
presented.

A. Minimum-Error Series Expansion

Since the complex Hermite–Gaussians form a com-
plete set, an arbitrary complex function can be expanded
in a series of the form

(110)
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The values of the coefficients can be obtained by projecting
the function onto using the functions as

(111)

However, there is no guarantee that a series obtained this way
converges in finite steps for all functions . In [21], it was
pointed out that when equals the series fails to con-
verge when the magnitude of the chirp parameter is larger than

. In [21], it was also shown that the series obtained
by choosing the values of such that the mean square error

(112)

is minimized converges even when . This minimum-
error expansion is used here to obtain a convergent expansion
for series of the type (107). We define as

(113)

(114)

The expansion for given by (110) has been used in (114).
If it is assumed that is such that

(115)

then a series of the form (107) is generated when is evalu-
ated. The function can also be expanded using the complete
set formed by the eigenfunctions of the adjoint operator

(116)

Using the expansion above, the following expression for is
simple:

(117)

We need to find optimal values of the coefficients when the
series expansion in (116) is restricted to only terms. If
the value of is finite, the resulting series can only be ap-
proximate, and this approximation will be considered good if
the series converges as becomes large. For a given ,
we choose to minimize the mean square error

(118)

which gives

(119)

(120)

Fig. 12. Result obtained when p = 1 and F = 1 in the series on the
right-hand side in (126) for different values of N . The series converges for
all values of �. The steps appear because when p is odd only those terms in
which both k; q are odd contribute to the result.

Inverting the matrix relation in the above equation gives the fol-
lowing desired result:

(121)

Using (114), (115), (117), and (121), we obtain

(122)

(123)

(124)

(125)

Thus, one obtains the following relation:

(126)

The series on the right-hand side of the above equation con-
verges when . Fig. 12 shows the result when and

. As increases, the series converges to the exact
value of unity [see (108)].
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APPENDIX III
DEFINITIONS OF AND

The functions and can be expressed in terms
of and where

(127)

(128)

(129)

(130)

(131)

(132)

APPENDIX IV
DEFINITIONS OF AND

The functions and can be expressed in terms
of the functions and where

(133)

(134)

and

(135)

(136)

APPENDIX V
FOURIER TRANSFORMS AND NOISE SPECTRAL DENSITIES

The properties of the continuous time and discrete time
Fourier transforms and the corresponding noise spectral densi-
ties are briefly reviewed here.

A. Continuous Time Fourier Transform and Noise Spectral
Densities

The Fourier transform of a zero mean noise operator
is defined as

(137)

The inverse Fourier transform is

(138)

The spectral density of is defined as the Fourier
transforms of the symmetric correlation function

(139)

It is assumed in the definition above that the correlation function
is stationary and, therefore, independent of the time variable .
It follows from the definition of that the mean square
value of the fluctuations is

(140)

B. Discrete-Time Fourier Transforms and Noise Spectral
Densities

The discrete-time Fourier transform of a zero mean
noise operator , which is a function of the discrete index

, is defined as

(141)

is periodic in with a period . The inverse
Fourier transform is

(142)

The spectral density of is defined as the dis-
crete-time Fourier transform of the symmetric correlation func-
tion

(143)

It is assumed in the definition above that the correlation function
is stationary and, therefore, independent of . The spectral den-
sity is periodic in with a period . It follows
from the definition of that the mean square value

of the fluctuations is

(144)
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