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Transport of electrons in semiconductor nano-structures exhibits many features that are a
consequence of quantum confinement and Coulomb blockade. A quantum dot coupled to a
metal-oxide-semiconductor transistor’s channel region is one example of such a structure
with utility as a dense semiconductor memory. The memory state of this unit cell is a function
of the number of electrons stored in the quantum dot and is sensed by the conduction in
the channel. We describe a kinetic approach, based on a master equation, for modelling the
injection and ejection of electrons into and from the quantum dot, and compare numerical
results with experimental results for the silicon/silicon dioxide system where such memory
structures have been achieved.
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1. Introduction

When stories are recounted from IBM Research Division’s past, there are often quite a few of the dual role
of Rolf Landauer as a scientist and a manager. Of the former, his early elucidation of concepts of mesoscopic
physics, and of the latter, his role in the move from vacuum technology to solid-state technology and then to
integration are particularly relevant to the present times. Small critical dimensions are bringing together these
two areas of interest to the scientist and the engineer.

In many laboratories, the silicon metal-oxide-semiconductor field effect transistor is rapidly approaching
length scales of≈ 10 nm—a dimension which is of the same order of magnitude as the thickness of inversion
layer, Bohr radius, screening lengths, and mean free paths. Inevitably, quantum effects, and sometimes, single-
electron effects, are important in these devices. Nanocrystal [.1, .2] memories and quantum dot [.3, .4] memories
are two examples of such devices. In the quantum dot memory device a single quantum dot is placed between
the gate and the channel of a field effect transistor. The quantum dot is quantum mechanically coupled to the
transistor channel via a very thin layer of oxide (see Fig..1). Electrons can be stored in the quantum dot and the
memory state of the device is defined by the number of stored electrons. This stored charge electrostatically
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Fig. 1. A geometry showing the coupling of a quantum dot with a gate and a silicon channel through silicon dioxide.
.

influences the flow of electrons in the transistor channel. Changes in the transistor current are a measure of
the number of electrons stored in the quantum dot and, therefore, a way of determining the state of the device.
Electrons can be stored in the quantum dot by lowering the potential energy of the quantum dot below that
of the channel by applying a positive voltage at the gate with respect to the source and drain. The ejection of
the electrons occurs when the channel potential energy is lowered by a positive voltage applied at the source
and drain or when the gate potential energy is raised by a negative voltage applied at the gate. Nano-crystal
memory devices, which historically appeared first, are similar to quantum dot devices, except that, instead of
a single patterned quantum dot, nano-crystal devices have a large number of silicon nano-crystals embedded
in the oxide. These nano-crystals are randomly deposited instead of being patterned through processing.

Both of these memory devices offer the possibility of lower power dissipation and denser memory chips.
The consequence is a decrease of write and erase times and an increase in sensitivity to random charge
fluctuations. Here we present an approach, starting from the density matrix, to obtaining the stationary and
time-dependent responses of these devices and for analysing the charge fluctuations.

2. Quantum kinetic equation

The Hamiltonian for the system can be written using the tunneling Hamiltonian,

H = H2deg+ Hqd + HT , (1)

where

H2deg=
∑

n

(εn + eV)a†
n an,

Hqd =
∑

m

εmb†
mbm + Es(ν),

(2)

and

HT =
∑
n,m

Tnma†
n bm + c.c., (3)

whereH2deg and Hqd are the Hamiltonians for the two-dimensional channel electron gas, and the quantum
dot. HT represents the coupling due to tunneling of electrons between the channel and the quantum dot.eV
is the difference in potential energy between the quantum dot and the channel in the absence of any electrons
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in the quantum dot. It is also equal to the work done by the external voltage source when one electron tunnels
from the channel into the quantum dot.ES(ν) is a function which describes the electrostatic energy of the
system when there areν electrons in the quantum dot. We will elaborate on this later in this paper.

We start with the equation of motion for the complete density matrixP̂H in the Heisenberg representation
as

i h̄
∂ P̂H (t)

∂t
= [H, P̂H (t)]. (4)

Density matrixP̂I (t) in the interaction representation is

P̂I (t) = exp

[
i

h̄

∫ t

t0

H0dt′
]

P̂H (t)exp

[
− i

h̄

∫ t

t0

H0dt′
]
, (5)

whereH0 = H2deg+ Hqd. The equation of motion in the interaction representation then becomes

i h̄
∂ P̂I (t)

∂t
= [HT (t), P̂I (t)], (6)

where

HT (t) = exp

[
i

h̄

∫ t

t0

H0dt′
]

HT exp

[
− i

h̄

∫ t

t0

H0dt′
]
. (7)

The solution can be written as,

P̂I (t) = P̂I (t0)− i

h̄

∫ t

t0

[HT (t
′), P̂I (t

′)]dt′, (8)

which yields the equation of motion

∂ P̂I (t)

∂t
= − i

h̄
[HT (t), P̂I (t0] +

(
i

h̄

)2 ∫ t

t0

[HT (t), HT (t
′), P̂I (t

′)]dt′.. (9)

Coherence times are usually much smaller than evolution times ofP̂I (t), allowing for substitution ofP̂I (t ′),
in Markoff approximation, byP̂I (t) inside the integral in the above equation.

2.1. Rate equation

Let the many body state of the entire system be described by the quantum state|{nn}, {nm}〉. This state
is characterized by a particular configuration of occupation numbers{nn} and{nm} for the states belonging
to the channel and the quantum dot. Letp({nm})(t) be the probability that the quantum dot is described by
occupation numbers{nm} at timet . p({nm})(t) can be calculated from the density matrixP̂I (t) by taking a
trace over all the quantum states belonging to the electrons in the channel:

p({nm})(t) =
∑
{nn}
〈{nn}, {nm}|P̂I (t)|{nn}, {nm}〉. (10)

p({nm})(t) contains a lot more information than needed to model the system. Usually, one would only be
interested in the probabilitypν(t) that the quantum dot contains a total ofν electrons at timet . This can be
obtained fromp({nm})(t) by summing over all possible configurations with occupation numbers{nm} such
that

∑
m

nm = ν. Thus,

pν(t) =
∑
{nm}

p({nm})(t) δ(
∑

m

nm, ν)

=
∑
{nm}

∑
{nn}
〈{nn}, {nm}|P̂I (t)|{nn}, {nm}〉 δ(

∑
m

nm, ν).. (11)
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Using eqn (.9), and performing the indicated summations in the above equation, we get the master equation

∂pν(t)

∂t
=Wν+1→ν pν+1(t)+Wν−1→ν pν−1(t)

−Wν→ν+1 pν(t)−Wν→ν−1 pν(t).. (12)

Wν→µ are the transition rates for going from the state of the quantum dot withν electrons inside it to the state
where there areµ electrons inside it. These transition rates are:

Wν+1→ν = 2π

h̄

∑
n,m

|Tnm|2δ(εn + Es(ν + 1)+ eV− εm − Es(ν))(1− fF D(εn − Ef )) fν+1(εm),

Wν−1→ν = 2π

h̄

∑
n,m

|Tnm|2δ(εn + Es(ν − 1)+ eV− εm − Es(ν)) fF D(εn − Ef )(1− fν−1(εm)),

Wν→ν+1 = 2π

h̄

∑
n,m

|Tnm|2δ(εn + Es(ν)+ eV− εm − Es(ν + 1)) fF D(εn − Ef )(1− fν(εm)),

and Wν→ν−1 = 2π

h̄

∑
n,m

|Tnm|2δ(εn + Es(ν)+ eV− εm − Es(ν − 1))(1− fF D(εn − Ef )) fν(εm).. (13)

fF D andEf are the Fermi–Dirac distribution function and the quasi-Fermi level for electrons in the channel.
fν(εm) is the probability that the state with energyεm in the quantum dot is occupied given that there are a
total of ν electrons in the quantum dot. Note that the quantum dot is not attached to a particle reservoir in
the sense of ‘grand canonical ensemble.’ Thus, Fermi-Dirac statistics may not be used to describe occupation
statistics of electrons inside the quantum dot. Since the lifetimes of electrons in the quantum dots are expected
to be much larger than the relaxation times, we can computefν(εm) for a canonical ensemble withν electrons

fν(εm) =
∑
{nm′ } exp

(− 1
kT

∑
m′εm′nm′

)
δ(
∑

m′ , νnm′)δ(nm,1)∑
{nm′ } exp

(− 1
kT

∑
m′εm′nm′

)
δ(
∑

m′nm′ , ν)
.. (14)

For a quantum dot with few electrons,fν(εm) can be calculated numerically.

2.2. Coupling constants

The coupling constant,Tmn, between a stateψm(r) in the quantum dot and a stateψn(r) in the two
dimensional electron gas is given by,

Tmn = − h̄2

2mox

∫
[ψ∗m(r)∇∇∇ψn(r)− ψn(r)∇∇∇ψ∗m(r)] · dS, (15)

wheremox is the electron effective mass in the oxide and the surface integral is performed over any surface
separating the quantum dot and the channel and lying inside the oxide barrier. The wavefunction of an electron
belonging to the two-dimensional channel takes the following form in the oxide adjacent to the channel,

ψn,qy,qz(r) ≈
(

2

ALw

)1/2

exp(iqyy+ iqzz)
(β(−tox)/β(x))

1/2qxmox exp
(
− ∫ x
−tox

β(x′)dx′
)

{(mx
Siβ(−tox))

2+ (moxqx)
2}1/2

, . (16)

whereqy andqz are the wavevectors of the electron parallel to the silicon/silicon dioxide interface,Lw is
the approximate depth of the inversion layer, andA is the area of the region over which the wavefunction is
normalized. The wavevectorqx is defined as,

qx =
(

2mx
Si

h̄2 εn

)1/2

. (17)
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The effective massmx
Si in silicon can either be the transverse (mt

Si) or the longitudinal (ml
Si) mass depending

on the valley (of the six equivalent ones) to which the electron belongs. And,

β(x) =
[

2mx
Si

h̄2 (eφo − eEoxx − εn)

]1/2

, (18)

whereEox is the field in the oxide andφo is the barrier height [.5]. For direct tunnelling, such a WKB based
approach provides a description with excellent accuracy.

Quantum dot states can be computed accurately in the Hartree approximation. However, coupling constants
can be determined with reasonable accuracy using the following approximate form for wavefunction inside
the oxide:

ψm,ky,kz(r) ≈
(

8

L yLzLx

)1/2

sin(kyy) sin(kzz)
(α(0)/α(x))1/2kxmox exp

(∫ x
0 α(x

′)dx′
)

[(mx
Siα(0))

2+ (moxkx)
2]

1/2 , . (19)

where

kx =
(

2mx
Si

h̄2 εm

)1/2

. (20)

Lx, L y, andLz are dimensions of the quantum dot, and the extinction coefficientα(x) is

α(x) =
[

2mx
Si

h̄2 (eφo − eEoxx − εm)

]1/2

, (21)

whereεm is the energy associated with motion in thex-direction.
The wavefunctions of eqns (.16) and (.19) lead to the coupling constantT{n,qy,qz},{m,ky,kz}:

T{n,qy,qz},{m,ky,kz} = −
h̄2

2mox

(
16

ALwLx L yLz

)1/2

× (α(0)β(0))1/2kxqxm2
ox

((mx
siβ(−tox))

2+ (moxqx)
2)

1/2
((mx

Siα(0))
2+ (moxkx)

2)
1/2

×
[(

α(−tox/2)

β(−tox/2)

)1/2

+
(
β(−tox/2)

α(−tox/2)

)1/2
]

×exp

[∫ −tox/2

0
α(x′)dx′ +

∫ −tox

−tox/2
β(x′)dx′

]
×
[∫ L y

0
exp(iqyy) sin(kyy)dy

] [∫ Lz

0
exp(iqzz) sin(kzz)dz

]
.. (22)

The coupling constants and the transition rates determined from the equations described above are quite
general, i.e. are valid when the state inside the quantum dot is coupled to a two-dimensional channel (inversion
condition) or a three dimensional continuum (depletion condition). The summations are, however, different
in the expressions for transition ratesW given by eqn. (.13).

2.3. Electrostatic interaction energy and coulomb charging effects

In the Hamiltonian for the quantum dot we introduced a termEs(ν) that accounted for the Coulomb charging
effects associated with the presence of electrons inside the quantum dot. Here, we briefly describe the method
used to computeEs(ν) numerically. The method is different from the capacitance model commonly employed
to analyze single electron devices.
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When an electron tunnels from the channel into the quantum dot (or vice versa) the stored electrostatic
energy in the device changes. In addition, some current flows through the external circuit and thus the external
voltage source performs some work. Both these effects must be taken into account in order to calculate the
final state of the electron after tunneling. The electrostatic energy of the systemEs(ν) can be written as

Es = 1

2

∫
ε(r)E(r)E(r)d3r. (23)

SinceE(r) = −∇∇∇φ(r), we can write

Es = −1

2

∫
ε(r)E(r) · ∇∇∇rφ(r)d3r

= −1

2
∇∇∇.(ε(r)φ(r)E(r)

∫
d3r + 1

2

∫
φ(r)∇∇∇ · (ε(r)E(r))d3r

= 1

2

∑
n

UnQn + 1

2

∫
φ(r)ρ(r)d3r.. (24)

The summation is over all the conducting bodies in the system which are at potentialUn and have a total
charge of magnitudeQn. ρ(r) is the volume charge density in the region between the conducting bodies.

Consider the situation shown in Fig..1 where a silicon quantum dot is placed in an oxide matrix in between
the channel and the gate electrode of a metal-oxide-semiconductor transistor. For simplicity, we may take
the channel to be a metallic electrode at potentialU . This approximation is valid as long as the channel
consists of an inversion or an accumulation layer. The gate electrode is connected to ground. Suppose there
areν electrons in the quantum dot giving rise to a volume charge densityρν(r). The potentialφν(r) can be
calculated by solving the Poisson equation with appropriate boundary conditions and the solution will take
the general form

φν(r) = φ0(r)+
∫

K (r, r′)ρν(r′)d3r′.. (25)

Equation (.24) can then be used to calculateES(ν). However, the important quantity is the change in electrostatic
energy when one electron is added to (or removed from) the quantum dot. Suppose an electron with energyεn

tunnels from the channel into a state inside the quantum dot with energyεm and changes the number of stored
electrons fromν to ν + 1. εn andεm represent energies associated with only kinetic degrees of freedom. We
can write the following energy conserving equation:

εn − εm = {increase in electrostatic energy} − {work done by external voltage source}
=
{

1

2

∫
1φ(r)ρν(r)d3r + 1

2

∫
φν(r)1ρ(r)d3r + 1

2

∫
1φ(r)1ρ(r)d3r

+1

2
UδQ

}
− {U (δQ+ e)}, . (26)

where1φ(r) = φν+1(r)− φν(r), and1ρ(r) = ρν+1(r)− ρν(r).1Q can be calculated from simple electro-
statics as

1Q = − 1

U

∫
φ0(r)δρ(r)d3r. (27)

This equation can be used in eqn (.26), and with eqn (.25), results in

εn + eU = εm +
∫
φν(r)1ρ(r)d3r + 1

2

∫
1φ(r)1ρ(r)d3r. (28)

The last term on the left hand side does not depend upon the number of electrons in the quantum dot and can,
therefore, be absorbed in the definition of the energyεm. It is a renormalization of the energy of an electron
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inside the quantum dot due to image charges on the conducting electrodes. Ignoring this term, above equation
could have been written intuitively since all it says is that total initial energy of the electron is equal to the
total final energy, provided one uses the electrostatic potential prior to the tunneling event. But this statement
cannot be completely correct since the potential changes during the tunneling process. The last term provides
the necessary corrections. This equation can be generalized to treat the channel more realistically and not
simply as a conducting/metal electrode. The termeU on the right hand side is replaced by the average initial
potential energy of the electron eigenstate in the channel plus a small correction term similar to the one just
discussed.

The formalism we have described in this section is ideal for numerical simulations and can be used where
simple capacitance models are not adequate. It also forms a basis for the numerical simulations whose results
are presented in this paper.

2.4. Carrier statistics and charge fluctuations

The master equation (eqn (.12)) can be written in a compact form as

∂P(t)
∂t
=W . P(t), . (29)

where the vectorP(t) = [ p0(t), p1(t), · · · pνmax(t)], and we restrict the number of electrons in the quantum
dot to a maximum ofνmax for computational ease. The transition matrixW is of dimensionνmax× νmax.
Stationary solution of eqn (.29) is found by setting∂P(t)/∂t = 0, and the stationary probabilities forν 6= 0
are

pν =
∏ν

q=1
Wq−1→q

Wq→q−1

1+∑νmax−1
r=1

∏q
r=1

Wr−1→r

Wr→r−1

, . (30)

and forν = 0, it is

p0 =
1

1+∑νmax−1
r=1

∏r
q=1

Wq−1→q

Wq→q−1

.. (31)

The mean and variance of the number of electrons in the quantum dot is

〈ν〉 =
νmax∑
ν=0

ν pν, . (32)

σ 2
ν = 〈ν2〉 − 〈ν〉2 =

νmax∑
ν=0

ν2 pν −
(
νmax∑
ν=0

ν pν

)2

.. (33)

The number fluctuation spectrumSν(ω) can be found from

Sν(ω; to) = 1

2

∫ ∞
0

exp(iω(t − to))(〈ν(t)ν(to)+ ν(to)ν(t)〉 − 2〈ν(to)〉2)d(t − to), . (34)

and

〈ν(t)ν(to)〉 =
νmax,νmax∑
ν=0,µ=0

νµp(ν, t |µ, to) p(µ, to), (35)

where, p(µ, to) is the probability of havingµ electrons in the quantum dot at timeto and p(ν, t |µ, to) is
the conditional probability that the quantum dot will haveν electrons at timet given that it hadµ electrons
at time to. In the Markoff approximation all correlation functions have time invariance, e.g.,〈ν(t)ν(to)〉 =
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〈ν(t + t ′)ν(to + t ′)〉. Therefore, the spectrum is also time invariant. Alsop(ν, t |µ, to) = p(ν, t − to|µ,0),
and for larget ′, p(µ, to + t ′) = pµ. Using these results, eqn (.34) can be cast into the more useful form

Sν(ω) = 1

2

∫ ∞
−∞

exp(iωt)

{
νmax,νmax∑
ν=0,µ=0

νµp(ν, t |µ,0)pµθ(t)

+
νmax,νmax∑
ν=0,µ=0

νµp(ν,0|µ, t) pµθ(−t)− 2

(
νmax∑
ν=0

ν pν

)2
dt.. (36)

p(ν, t |µ,0) and p(ν,0|µ, t) can be calculated from eqn (.12).

3. Discussion

To obtain solutions for eqn (.12), we first solve self-consistently for all the eigenstates in the channel for a
given number of electrons stored in the quantum dot, for all gate voltages. We repeat this for different values
of the number of stored electrons. The transition rates are then determined from eqn (.13). We follow with a
discussion of thenumerical results.

3.1. Threshold voltage shifts and fluctuations

The storage of electrons in the quantum dot results in a shift in the threshold voltage of the metal-oxide-
semiconductor transistor, which, for a single quantum dot device withν electrons in the quantum dot, is
approximately given by,

1VT (ν) ≈ νe

Aεox

(
tqdεox

2εSi
+ tcntl

)
, . (37)

wheretcntl is the control oxide thickness, andtqd is the linear dimension of the quantum dot of cross-section
A.

Figure .2 shows the calculated mean number of electrons in a silicon quantum dot of dimensions
10 nm× 10 nm× 6 nm as a function of the static gate bias. This calculation assumed a tunnel oxide of
thickness 1.5 nm, control oxide of thickness 5.0 nm, substrate doping of 1017 cm−3 p-type with a〈100〉
orientation for the substrate and the quantum dot. The first electron does not appear in the quantum dot until
the gate voltage exceeds the threshold voltageVT O and an inversion layer is formed to supply that electron.
When the quantum dot has one electron, the threshold voltage of the device is shifted up by1VT (ν = 1).
For this device1VT (ν = 1) is about 0.3 V. To place a second electron in the quantum dot the gate voltage
needs to be increased by at least1VT (ν = 1) beyond the voltage needed to place the first electron, which is
approximatelyVT O. The electron already inside the quantum dot tries to occupy the lowest available states,
leaving the higher ones for the second electron. Thus the second electron can be placed in at a gate voltage
which is slightly higher thanVT O+1VT (ν = 1). Placing theν’th electron in the quantum dot requires a gate
voltage of approximatelyVT O +1VT (ν − 1).

Figure.2 shows the variance in electron number in the quantum dot as a function of gate bias. The variance is
1/2 at gate voltages for which the mean number of electrons isinteger+1/2. The actual number of electrons
in the quantum dot can take only integer values. A mean electron number ofinteger+ 1/2 implies that the
actual number of electrons is fluctuating rapidly betweeninteger andinteger+ 1. An analogy with a two
state system is helpful here. Suppose the stationary probabilitiespν are all almost zero for allν < µ and for
all ν > µ+ 1. In this case the rate equations that follow from eqn (.12) are:

∂

∂t

[
pν(t)

pν+1(t)

]
=
[ −z w

z −w
] [

pν(t)
pν+1(t)

]
, (38)
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Fig. 2. Mean number of electrons in a silicon quantum dot (10 nm× 10 nm× 6 nm) as a function of applied gate voltage and the
variance in electron number. Calculation is limited to a maximum of 3 electrons in the quantum dot.

.

wherez andw are the ratesWν→ν+1 andWν+1→ν . The solutions to the above equation are:

p(ν, t |µ,0) = w

z+ w + exp[−(z+ w)t ]
[

z

z+ wδ(µ, ν)−
w

z+ wδ(µ, ν + 1)

]
, . (39)

and

p(ν + 1, t |µ,0) = z

z+ w − exp[−(z+ w)t ]
[

z

z+ wδ(µ, ν)−
w

z+ wδ(µ, ν + 1)

]
.. (40)

For large times,t →∞,

p(ν, t |µ,0)→ pν =
w

z+ w, . (41)
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and

p(ν + 1, t |µ,0)→ pν+1 =
z

z+ w.. (42)

The mean number of electrons in the quantum dot is

〈ν〉 = w

z+ wν +
z

z+ w(ν + 1) = ν + z

z+ w. (43)

When the transition rates are nearly identical (i.e.,z = w) and the mean isν + 1/2, the variance in electron
number becomes

σ 2
ν = 〈ν2〉 − 〈ν〉2 = zw

(z+ w)2 =
1

2
. (44)

The spectrum of number fluctuations can be found using equation (.36),

Sν(ω) = z+ w
ω2+ (z+ w)2σ

2
ν .. (45)

The spectrum has a Lorentzian shape with a width directly related to the sum of the transition rates charac-
terizing the system.

3.2. Channel current fluctuations

Fluctuations in number of electrons in the quantum dot can be related to the fluctuations in channel current
which can be directly observed. At small values of drain to source bias, the channel current of the device can
be approximated [.6] by

I DS = K (VGS− VT )VDS (46)

whereK is a constant factor, andVGS is the gate-to-source bias. The mean value of channel current is

〈I DS〉 = K (VGS− 〈VT 〉)VDS, (47)

where, for a single quantum dot device,

〈VT 〉 = VT O + 〈ν〉e
Aεox

(
tqdεox

2εSi
+ tcntl

)
.. (48)

The variance of fluctuations in current,σI DS, can be related to the variance of fluctuations in the threshold
voltage,σVT , by

σ 2
I DS
= K 2 σ 2

VT
V2

DS, (49)

and, for a single quantum dot device,

σ 2
VT
= σ 2

ν

(
e

Aεox

)2( tqdεox

2εSi
+ tcntl

)2

.. (50)

The spectrum of current fluctuations for a single quantum dot device can also be found as

SI DS(ω) = K 2 SVT (ω)V2
DS, . (51)

and

SVT (ω) = Sν(ω)

(
e

Aεox

)2( tqdεox

2εSi
+ tcntl

)2

.. (52)

The case of nanocrystal memory device is more complex and a complete analysis even for small drain to
source voltages is beyond the scope of this paper. In a nano-crystal device there are regions of the channel,
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located just underneath each charged nanocrystal, where the local threshold voltage is higher and, therefore,
the carrier density is lower. During current flow positive and negative charges pile up around each such region
to form electric dipoles. Charges on these dipoles are imaged on the gate electrode and also on the drain and
source. The total current flowing through the device is a function of the device size, nanocrystal density and
the spatial distribution of nanocrystals. Only in the case where,

1. the device is large enough so that effective medium theories become applicable and a very small fraction
of dipoles are imaged on the source and drain, and

2. the nanocrystal density is small enough so that the device operates far away from the percolation
threshold,

can one write versions of Equations.48, .50 and.52 which hold approximately for nanocrystal devices:

〈VT 〉 = VT O + nqd〈ν〉e
εox

(
tqdεox

2εSi
+ tcntl

)
, (53)

σ 2
VT
= nqdσ

2
ν

A

(
e

εox

)2( tqdεox

2εSi
+ tcntl

)2

, (54)

andSVT (ω) =
nqdSν(ω)

A

(
e

εox

)2( tqdεox

2εSi
+ tcntl

)2

, (55)

wherenqd is the average density of nanocrystals andA is the total area of the device. We see that in this case
the fluctuations in threshold voltage and current will get scaled with the area of the device.

3.3. Time evolution of charging and discharging processes

So far we have limited our analysis to the case where static voltages had been applied to the quantum dot
device. However, in practice a voltage pulse is usually applied to change the state of a memory cell. It is
important to understand the time dependent behavior of quantum dot memory cells since this provides the
write and erase times for this memory. The method based upon master equation can also be used to study the
time dependent behavior. If a square voltage pulse of time durationT is applied to the gate at timet = 0, then
eqn (.12) can be solved with appropriate boundary conditions to yield the time dependent probabilitiespν(t).
If the quantum dot at timet = 0 was empty then boundary conditions arep0(t = 0) = 1, andpν(t = 0) = 0
for ν 6= 0. The time dependent mean number of electrons〈ν〉(t) in the quantum dot is

〈ν〉(t) =
νmax∑
ν=0

νpν(t). (56)

The threshold voltage shift at the end of the pulse is1VT (ν = 〈ν〉(t = T)). In general, therefore, the threshold
voltage shifts depends upon the magnitude and also the duration of the pulse.

Figure.3 shows the number of electrons in a quantum dot as a function of time for three different values of
the magnitude of the applied voltage pulse. A general feature is that larger the number of electrons already
inside the quantum dot the longer it takes to add one more electron to the quantum dot. The initial state has
no electrons in the quantum dot. Consequently, the potential drop across the injecting oxide is large, and the
electric field in the tunneling oxide is also large, resulting in a large coupling constant. Electrons are injected
into high energy states of the quantum dot where density of states is also large. These states are also empty.
All these factors lead to a large injection rate. As the quantum dot gets filled up with electrons, the potential
drop across the injecting oxide becomes smaller with a corresponding reduction in the coupling constant.
Injection now takes place in relatively lower energy states of the quantum dot, where density of states is also
smaller, and these states now have a finite occupation probability for electrons. The presence of electrons in
the quantum dot also changes the threshold voltage of the device which results in less electrons available in
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Fig. 3. The evolution of mean number of electrons in a silicon quantum dot (10 nm× 10 nm× 6 nm) for four different values of the
gate bias. The initial number of electrons in each case is assumed to be zero.
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the channel that can tunnel into the quantum dot. All these factors contribute to a gradual reduction in the rate
of electron injection into the quantum dot.

Figure .4 shows the numerical results when a negative voltage pulses are applied to the gate to eject the
stored electrons into the substrate. The results are shown for three different initial number of stored electrons.
The rate of discharge is higher for an initial condition with larger number of electrons in the quantum dot,
a condition where there is a higher electric field across the tunneling oxide and hence a corollary to the low
electron condition of the injection process. The behavior does not have as detailed features as the injection
process; the injection process reveals more of the details of states being tunneled into.
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Table 1: Extrapolated time-constants
for measured structures with comparable
nanocrystal density.

Oxide Write 1VT

thickness condition

1.6 nm 200 ns, 3 V ≈ 0.65 V
2.1 nm 400 ns, 3 V ≈ 0.48 V
3.0 nm 1µs, 3 V ≈ 0.55 V
3.6 nm 5µs, 4 V ≈ 0.50 V
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Fig. 5. Power required for injecting a single electron into the silicon dot as a function of the write speed.
.

The quantum dot can be charged with one electron with a 3.0 V pulse in 20 ns. But, discharging the quantum
dot with a−3.0 V requires a pulse with time duration of 2µs. Write times are, therefore, much smaller than
erase times.

We can currently compare theoretical calculations with experimental results obtained on only nanocrystal
memories. We have already mentioned the difficulties in analyzing the behavior of nanocrystal memory
devices as compared to single quantum dot memory devices. But, rough comparisons can still be made for
order of magnitude comparisons. Table 1 shows the injection time constants for devices, with different oxide
thickness, and with approximately comparable nanocrystal density. The nanocrystal density and the observed
threshold voltage shift in device corresponds to an average of 2–3 electrons per nanocrystal quantum dot.
Although, in this case the smallest oxide thickness is greater than that simulated, time constants are roughly
in the same range.

The interaction of the confinement and operating voltages in the time constants can be summarized in the
power-delay figure shown in Fig..5 for the write process. With the practical considerations of noise-margin
taken into account through storage of a large number of electrons, the figure points to large advantages in
power density that accrue through limiting the charge, but at the expense of speed.

4. Conclusions

We have outlined a density matrix approach for analyzing electron tunneling processes in quantum dots
coupled to channel of a metal-oxide semiconductor transistor, i.e. to the two-dimensional inversion layer and
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to unconfined substrate. We have also modeled the time dependent charging and discharging processes and
calculated write and erase times. These calculations show that write times can be of the order of tens of
nanoseconds whereas erase times can be as large as tens of micro-seconds, reasonably in good agreement
with experimental results on nanocrystal memory devices.
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