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Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2:
Experiments and theory
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We measure the optical-absorption spectra and optical conductivities of excitons and trions in monolayers
of metal dichalcogenide MoS2 and compare the results with theoretical models. Our results show that the
Wannier-Mott model for excitons with modifications to account for small exciton radii and large exciton relative
wave function spread in momentum space, phase space blocking due to Pauli exclusion in doped materials, and
wave-vector-dependent dielectric constant gives results that agree well with experiments. The measured exciton
optical-absorption spectra are used to obtain experimental estimates for the exciton radii that fall in the 7–10 Å
range and agree well with theory. The measured trion optical-absorption spectra are used to obtain values for
the trion radii that also agree well with theory. The measured values of the exciton and trion radii correspond to
binding energies that are in good agreement with values obtained from first-principles calculations.
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I. INTRODUCTION

Two dimensional (2D) metal dichalcogenides have emerged
as important materials for a variety of different applications
in electronics and optoelectronics [1–7]. Particularly distin-
guishing features of 2D metal dichalcogenides are the large
exciton and trion binding energies in these materials. The
exciton and trion binding energies in 2D chalcogenides are
almost an order of magnitude larger compared to other bulk
semiconductors [1,3,4]. The large exciton and trion binding
energies imply that many-body interactions play an important
role in determining the electronic and optical properties of
these materials. Energy band structures, including exciton
wave functions and binding energies, and optical-absorption
spectra for these materials have been obtained using a
variety of different theoretical techniques including ab initio
calculations [8–10]. The question that remains to be answered
is how well the calculated exciton and trion binding energies
and wave functions agree with experiments and what essential
physics has to be included in the models to obtain good
quantitative agreements with measurements. The goal of this
paper is to contribute to the answer to this question.

In this work, we measure the absorption spectra of excitons
and trions (in transmission configuration) in monolayers of
a dichalcogenide (MoS2) and use it to extract information
about the exciton and trion radii, optical oscillator strengths,
and binding energies. Our work shows that the traditional
Wannier-Mott exciton model [11], with a few modifications, is
able to describe the exciton fairly well in 2D dichalcogenides.
The modifications involve using accurate band structures
of conduction and valence bands for large wave vectors,
incorporating phase space blocking due to Pauli exclusion
in doped samples, and using a wave-vector-dependent di-
electric constant that takes into account the finite thickness
of dichalcogenide monolayers. Accurate band structures are
required for large wave vectors because exciton and trion
radii in dichalcogenides are of the order of ∼10 Å and,
therefore, the exciton and trion relative wave functions in
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the wave vector (or momentum) space spread out to large
wave vectors. The small exciton and trion radii also imply that
just the band-edge optical matrix elements cannot be used to
obtain accurate exciton and trion optical-absorption spectra,
and matrix elements for large wave vectors are required.
We show that with these modifications the measured exciton
and trion optical-absorption spectra (and optical conductivity
values) agree well with the theory. Measurement of the
optical-absorption spectra and oscillator strengths can be used
to estimate the exciton and trion radii and this paper reports
experimental estimates for the exciton and trion radii in a
dichalcogenide. Our work also shows that the exciton and
trion binding energies that follow from the experimentally
determined exciton and trion radii agree well with the results
obtained previously from first-principles calculations. The
results presented in this paper are expected to contribute to
the field of metal dichalcogenide optoelectronics.

Section II discusses the basic band structure and optical
properties of metal dichalcogenides. Section III discusses the
theoretical model for excitons, derives expressions for the
exciton optical conductivity and absorption spectra, presents
experimental results, and compares them to the theory.
Section IV discusses the theoretical model for trions and
compares the experimental results to the theory.

II. BAND STRUCTURE AND OPTICAL PROPERTIES

The crystal structure of a monolayer of group-VI dichalco-
genides MX2 (e.g., M = Mo,W and X = S,Se) consist of
X-M-X layers, and within each layer the M atoms (or the
X atoms) form a 2D hexagonal lattice. Each M atom is
surrounded by six nearest-neighbor X atoms in a trigonal
prismatic geometry with D1

3h symmetry, as shown in Fig. 1.
The valence-band maxima and conduction-band minima occur
at the K and K ′ points in the Brillouin zone. Symmetry
can dictate the form of the Bloch functions near the K(K ′)
points. Calculations based on first principles have shown that
near the band extrema most of the weight in the Bloch states
resides on the d orbitals of M atoms [8–10,12–16]. Assuming
only d orbitals for the conduction- and valence-band states,
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FIG. 1. (Color online) (a) A unit cell of MX2. (b) MX2 mono-
layer, top view. (c) A MX2 monolayer sandwiched between two
dielectrics.

and including spin-orbit coupling, one obtains the following
simple spin-dependent tight-binding Hamiltonian (in matrix
form) near the K(K ′) points [15],[

�/2, �vk−
�vk+, −�/2 + λτσ

]
. (1)

Here, � is related to the material band gap, σ = ±1 stands for
the electron spin, τ = ±1 stands for the K and K ′ valleys,
2λ is the splitting of the valence band due to spin-orbit
coupling, k± = τkx ± iky , and the velocity parameter v is
related to the coupling between the orbitals on neighboring
M atoms. From density functional theories [8,16], v ≈ 5–6 ×
105 m/s. The wave vectors are measured from the
K(K ′) points. The momentum matrix element between the
conduction- and valence-band states near K(K ′) points follows
from the above Hamiltonian,

�Pvc(�k ≈ 0) = mov(τ x̂ + iŷ). (2)

Here, mo is the free-electron mass. The Hamiltonian and the
optical (momentum) matrix element given above are accurate
only near the band edges. Later in this paper, we will need to
modify the Hamiltonian and obtain results that are accurate
for large wave vectors.

III. ABSORPTION OF LIGHT BY EXCITONS

A. Exciton states

We assume that the initial state |ψi〉 of the semiconductor
consists of a completely filled valence band and a conduction
band with an electron density ne distributed according to the
Fermi-Dirac distribution fc(�k). The initial state thus belongs
to a thermal ensemble and the (average) energy of the ground
state is Ei . Without losing generality, we restrict ourselves to
the valley τ = 1 where the top most valence band is occupied
by spin-up (σ = 1) electrons. Only excitons with zero in-plane
momentum are created by normally incident radiation. An
exciton state with zero in-plane momentum can be constructed
from the initial state as follows:

|ψex〉 = 1√
A

∑
�k

φ(�k)

Nex(�k)
c
†
�k,↑b�k,↑|ψi〉. (3)

In the above equation, c�k,↑ and b�k,↑ are the destruction
operators for the spin-up conduction and valence-band states,
respectively, with momentum �k. A is the area of the monolayer.
The above state is that of a Wannier exciton and we are
assuming that the Wannier exciton theory is valid for MX2

materials. The normalization factor Nex(�k), which equals√
1 − fc(�k), will prove useful later. The exciton state is

normalized such that {〈ψex |ψex〉}th = 1, where the curly
brackets represent averaging with respect to the thermal
ensemble. This normalization gives

∫
d2�k

(2π )2
|φ(�k)|2 = 1. (4)

The state in Eq. (3) is an exact eigenstate of the interacting
Hamiltonian only when the electron density ne is zero.
Since ne 
= 0, we assume that the state in Eq. (3) is a
variational state and the parameter φ(�k) can be varied to
minimize the expectation value of the energy, {〈ψex |Ĥ |ψex〉}th,
subject to the normalization constraint. This results in the
following eigenvalue equation that resembles the traditional
Beth-Saltpeter equation for excitons [11]:

[Ēc(�k) − Ēv(�k)]φ(�k) −
√

1 − fc(�k)

A

×
∑

�q
V (�q)φ(�k − �q)

√
1 − fc(�k − �q) = (Eex − Ei)φ(�k).

(5)

Here, Eex is the (average) energy of the state |ψex〉 and Eex −
Ei = Eg − Eexb, where Eexb is the exciton binding energy.
V (�q) is the 2D Coulomb potential and equals e2/2εoε(�q)q,
and Ēc(�k) and Ēv(�k) are the conduction- and valence-band
dispersions, respectively, including exchange corrections [11].
The same eigenvalue equation is obtained using Green’s func-
tions and summing the ladder diagrams under the assumption
that ne 
= 0 [17]. The choice of the appropriate dielectric
constant ε(�q) is discussed in Appendix A. The eigenvalue
equation obtained above is Hermitian and the eigenfunctions
are orthogonal in the sense

∫
d2�k

(2π )2
φ∗

m(�k)φp(�k) = δm,p. (6)

Obtaining a Hermitian eigenvalue equation was the motivation
in using the particular normalization factor Nex(�k) in Eq. (3).
Solutions of the above equation represent bound electron-hole
pairs (excitons) as well as electron-hole scattering states. The
latter are excluded from the discussion that follows since their
inclusion leads to modification in the absorption spectrum near
the band edge far from the fundamental exciton line [11,18].
Since the eigenvalue equation is Hermitian, a variational
approach can be used to obtain an approximate solution for
the lowest exciton state. Following Schmitt-Rink et al. [19],
we assume the following variational solution:

φ(�k) =
√

8πa

[1 + (ka)2]3/2
→ φ(�r) =

√
2

π

1

a
e−r/a. (7)
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The solution corresponds to the exact exciton wave function
when ne = 0 and screening is local [ε(�q) is independent of �q].
The radius parameter a can be varied to estimate the eigenvalue
Eex − Ei .

B. Exciton optical conductivity

We assume light of frequency ω and intensity Io (units:
W cm−2) incident normally on the MX2 monolayer. We
assume linearly polarized light. In the plane of the mono-
layer, the vector potential describing the incident light is
n̂Aocos(ωt), where n̂ is the polarization vector. It follows that
Io = ω2A2

o/2ηo, where ηo is the free space impedance. The
interaction between the spin-up electrons in the valley τ = 1
and light is given by the time-dependent Hamiltonian,

Hint(t) = H+e−iωt + H−eiωt

= eAo

2mo

∑
�k

�Pcv(�k) · n̂e−iωt c
†
�k,↑b�k,↑ + H.c. (8)

The rate Rex (units: s−1 cm2) at which excitons are generated
by the absorption of light can be found using Fermi’s “golden
rule” assuming a finite broadening,

Rex = 2π

�

1

A
{|〈ψex |H+|ψi〉|2}th ex/π

(Eex − Ei − �ω)2 + 2
ex

= 2π

�

(
eAo

2mo

)2

|χex(�r = 0)|2 ex/π

(Eex − Ei − �ω)2 + 2
ex

.

(9)

Here,

χex(�r) =
∫

d2�k
(2π )2

�Pcv(�k) · n̂ φ(�k)
√

1 − fc(�k)ei�k·�r . (10)

χex(�r) incorporates the reduction in the exciton oscillator
strength due to Pauli blocking. Effects due to Pauli blocking

come about due to the presence of the factor
√

1 − fc(�k) in
the expression above and also from the modification of the
function φ(�k). The total-energy absorption rate from both
K and K ′ valleys, 2�ωRex , can be written in terms of the
exciton contribution σex(ω) to the optical conductivity as
Re{σex(ω)}ηoIo, where

Re{σex(ω)}

= e2

4�

{
8�

m2
oω

|χ (�r = 0)|2 ex

(Eex − Ei − �ω)2 + 2
ex

}
. (11)

Scattering processes as well as inhomogeneous broadening are
both expected to contribute to the absorption width ex [20].

C. Experimental results and discussion: Exciton absorption
in MoS2 monolayers

Optical-absorption experiments on MoS2 monolayer flakes
were performed at different temperatures in the transmis-
sion configuration. The MoS2 flakes were exfoliated from
bulk MoS2 crystals and transferred onto quartz substrates.
Typical flake sizes were 10–15 μm. All experiments were
performed using a confocal microscope setup with a 100×

objective. MoS2 monolayer samples were identified by in-
spection under an optical microscope and confirmed by Raman
spectroscopy [21]. The samples were annealed in vacuum at
360 K for 8 h. The samples were found to be n doped. The
electron density was estimated from Raman measurements to
be in the 2–4×1012 1/cm2 range [22]. Electrical measurements
on similar samples on oxide-coated doped silicon substrates
(with electrostatic gating) yielded intrinsic electron densities
in the same range. The samples were placed in a helium-flow
cryostat and measurements were done in the temperature range
5–363 K. Sample transmission spectrum was obtained by
dividing the spectrum T (ω) of the transmitted light through
the sample and the quartz substrate by the reference spectrum
Tref(ω) obtained for just the quartz substrate. Absorption
spectrum A(ω) was calculated by subtracting the sample trans-
mission spectrum from unity. A typical broadband absorption
spectrum of MoS2 monolayers obtained at 5 K is shown
in Fig. 2(a). Two large exciton resonances, labeled A and
B, are visible at ∼1.9 and ∼2.1 eV, respectively [1,3,23].
These are attributed to excitons involving the conduction band
and the two valence bands (which are split due to spin-orbit
coupling) near the K(K ′) points. A smaller absorption peak,
labeled A−, is also visible near the A peak and is attributed
to trion absorption [3]. Figure 2(b) shows absorption spectra
for a MoS2 monolayer near the A and A− peaks for different
temperatures in the 5–363-K temperature range. Distinct A
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FIG. 2. (Color online) (a) Measured broadband absorption spec-
trum A(ω) of a MoS2 monolayer at T = 5 K is plotted. Two main
absorption resonances, A and B, attributed to excitons are visible
together with a smaller A− attributed to trions. The inset shows the A

and A− peaks in greater detail. (b) Measured absorption spectrum of
a MoS2 monolayer near the A and A− peaks is plotted for different
temperatures. The curves for different temperatures are given offsets
in the vertical direction for clarity. The A−-trion absorption peak
is clearly visible and distinguishable from the A-exciton absorption
peak for all temperatures below 230 K. The dashed lines are guides
to eyes showing the evolution of the exciton (A) and trion (A−) peaks
as a function of temperature.
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FIG. 3. (Color online) Extracted contributions of A excitons
(blue) and A− trions (green) to the measured absorption spectra
(black) at 5 K (a) and at 90 K (b) are shown together with the
data (black) and the quality of the fit (red-dashed). The extracted
contribution of B excitons (gray) is also visible in the figure.

and A− absorption peaks are visible at all temperatures below
230 K. Both the exciton and trion peak positions redshift
as the temperature increases. We attribute this redshift to
the temperature dependence of the material band gap [24].
The A and A− peaks broaden as the temperature increases
and become almost indistinguishable above 230 K. The
temperature-dependent broadening is attributed to increase
in the scattering rates with temperature. The splitting in the
exciton and trion absorption peaks is ∼34 meV at 5 K and
does not change much as the temperature is increased to 230
K. Since exciton and trion peak splitting is a function of the
carrier density [3] (also see the discussion in Sec. IV C), the
electron density in our samples does not change significantly in
the 5–230-K temperature range and this was confirmed using
measurements described above [22]. The measured absorption
spectrum for normal incident light can be expressed in terms
of the optical conductivity,

A(ω) = 1 − T (ω)

Tref
≈ 2Re{σ (ω)}ηo

1 + nsub
, (12)

where nsub is the refractive index of the quartz substrate. In gen-
eral, the optical conductivity has contributions from excitons,
trions, and from other correlated electron-hole states [11]. In
this section, we will focus on the exciton absorption resonance
(A peak). Equation (11) for the exciton optical conductivity
and Eq. (26) for the trion optical conductivity (discussed later
in this paper) were used to fit the measured absorption spectra
and extract the contributions of excitons and trions. Figure 3(a)
shows the extracted contributions from A excitons and A−
trions along with the measured absorption data at 5 and 90
K. The figure shows that the theoretical spectra fit the data
well, and that individual contributions from excitons and trions
can be reliably extracted from this fitting procedure. Figure 4
shows that the product of the peak absorption A(ω)|max and
the width 2ex of the extracted A-exciton absorption spectrum
varies little with temperature in the 5–150-K range (there is
in fact a ∼11% decrease going from 5 to 150 K). In the same
temperature range, 2ex varies from 45 meV at 5 K to 60 meV
at 150 K [Fig. 4(b)].

1. Exciton radius

Ignoring Pauli blocking and using the simple wave-vector-
independent expression for the momentum matrix element

FIG. 4. (Color online) (a) The product of the peak absorption
A(ω)|max and the width 2ex of the extracted A-exciton absorption
spectrum is plotted as a function of the temperature. (b) The full width
2ex of the extracted A-exciton absorption spectrum is plotted as a
function of temperature.

given in Eq. (2), the exciton optical conductivity and the
product A(ω)|max2ex are found to be

Re{σex(ω)} = 2e2v2

ω

(
2

πa2

)
ex

(Eex − Ei − �ω)2 + 2
ex

,

(13)

A(ω)|max2ex = 16ηo

1 + nsub

e2v2

πω

(
1

a2

)
. (14)

It is tempting to use the result in Eq. (14) to extract the value
of the exciton radius a. Using the data shown in Fig. 4(a),
the exciton radius is found to be ∼16.8 Å. The small exciton
radius implies that the exciton wave function occupies an
area in momentum space of radius at least a few nm−1 and,
therefore, the use of a wave-vector-independent expression
for the momentum matrix element is not justified. In addition,
the reduction in the phase space due to Pauli blocking cannot
be ignored in the case of doped samples such as the ones
used in this work. Accurate energy dispersions and momentum
matrix elements are needed for large wave vectors (at least a
few nm−1) in order to accurately describe exciton oscillator
strengths. Following Kormanyos et al. [16], we use Lowdin
approximation to a four-band model. This procedure adds the
following matrix to the Hamiltonian given earlier in (1):[

αk2, κk2
+ − η

2 k2k−
κk2

− − η

2 k2k+, βk2

]
. (15)

The values of the parameters α, β, κ and η that best fit

density functional theory (DFT) results are 1.72 eVÅ
2
, −0.13

eVÅ
2
, −1.02 eVÅ

2
, and 8.52 eVÅ

3
, respectively [16]. These

values results in me ∼ 0.5mo and mh ∼ 0.6mo near the band
edges. The resulting angle-averaged interband momentum
matrix elements, normalized to mov, for linearly and circularly
polarized light are plotted as a function of the wave vector in
Fig. 5 and show that the reduction in the matrix elements with
the wave vector are significant. Figure 6(a) plots the ratio of
the exciton oscillator strengths with and without the effects
of the wave-vector-dependent momentum matrix element and
Pauli blocking as a function of the exciton radius for different
electron densities (ne = 0,2,4,6,8,10 × 1012 cm−2 and T =
5 K). When the radius is very small, the oscillator strength is
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FIG. 5. (Color online) The angle-averaged interband momentum
matrix elements 〈 �Pvc.n̂〉, normalized to mov, for linear and the
two circular polarizations are plotted as a function of the wave
vector [measured from the K(K ′) points] for the case of the simple
Hamiltonian given in (1) (dashed) and including the corrections given
in (15) (solid).

small because the exciton wave function spreads more in the
momentum space and the matrix element is smaller for larger
momenta. When the radius is very large, the oscillator strength
is again small because the exciton wave function is localized
near the K(K ′) points in momentum space where, in doped
samples, Pauli blocking is larger. Taking into account the
wave-vector dependence of the momentum matrix elements
and Pauli blocking, one obtains

A(ω)|max2ex = 16ηo

1 + nsub

e2

2m2
oω

|χ (�r = 0)|2. (16)

The above equation can be used to extract the exciton
radius more reliably, provided the electron density is known.
Figure 6(b) shows the extracted values of the exciton radius
from the absorption data [Fig. 4(a)] for different assumed
values of the electron density. The dashed lines in the
figure indicate the range for the measured electron densities
in our samples (Sec. III C). The extracted values of the
exciton radius come out to be in the 9.3–8.5 Å range for
carrier densities in the 2–4×1012 1/cm2 range, in excellent
agreement with theoretical estimates based on first-principles
approaches [9,10]. Note that the values of the product of

FIG. 6. (Color online) (a) The ratio of the exciton oscillator
strengths with and without the effects of the wave-vector-dependent
momentum matrix element and Pauli blocking is plotted as a
function of the exciton radius for different electron densities (ne =
0,2,4,6,8,10 × 1012 cm−2). T = 5 K. (b) The exciton radius extracted
from the measurements is plotted as a function of assumed values
for the electron density. The dashed lines indicate the range for the
measured electron densities in our samples.

the Fermi wave vector and the exciton radius kF a for these
radii and densities are in the 0.23–0.30 range, indicating a
small, but not insignificant, phase space filling in our doped
samples. Also as a result of Pauli blocking, our model predicts
a reduction in the exciton oscillator strength by 10.5–12.5%
with the increase in temperature from 5 to 150 K for the same
carrier densities, also in very good agreement with the data
shown in Fig. 4(a).

2. Exciton binding energy

To find the binding energy of the excitons, we need to solve
Eq. (5) using the variational solution in Eq. (7). Since the
radius of the excitons has already been estimated from light
absorption measurements, the only parameter that is available
to fit the data is the dielectric constant.

We assume a MoS2 monolayer of thickness d and effective
dielectric constant ε2 sandwiched between materials with
dielectric constants ε1 and ε3, as shown in Fig. 1(c). For
this geometry, the dielectric constant ε(�q), which describes
the Coulomb interaction between electrons and holes, is
wave-vector dependent [25] (see Appendix A for details).
In our work, ε3 is 4.0 (quartz substrate) and ε1 is 1.0 (free
space). The value of ε2 is used as an adjustable parameter. In
a MoS2 monolayer, the distance between the top and bottom
sulfur atoms is ∼3.17 Å. We assume an effective monolayer
thickness of 6 Å (d ≈ 6 Å). Figure 7 shows the values of the
exciton radius and the exciton binding energy calculated using
Eq. (5) for different electron densities and for different values
of the MoS2 layer dielectric constant ε2. Note that a rather large
value of ε2 (∼12) is needed to match the calculated exciton
radii to the measured values, 9.3–8.5 Å (for electron densities
2–4×1012 1/cm2). Interestingly, this extracted value of ε2

matches well with the theoretical estimates for the bulk MoS2

dielectric constant (see Appendix A for details). Following
the work of Berkelbach et al. [10] and Cudazzo et al. [26],
one can find the value of the screening length parameter ro,
which is related to the in-plane polarizability of the MoS2

monolayer, from the extracted value of the dielectric constant
ε2. The resulting value of ro is ∼36 Å and is in excellent
agreement with first-principles calculations of Berkelbach
et al. [10] who obtained values for ro in the 30–40 Å range
for a MoS2 monolayer using different ab initio techniques (see
Appendix A for details).

FIG. 7. (Color online) (a) The calculated exciton radius is plotted
as a function of the electron density for different values of the MoS2

dielectric constant ε2. T = 5 K. (b) The calculated exciton binding
energy is plotted as a function of the electron density for different
values of the MoS2 dielectric constant ε2. T = 5 K.
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The values of the exciton binding energy that correspond
to the extracted values of the exciton radius are in the
0.28–0.33-eV range. Figure 7 shows that a nonzero electron
density can significantly modify the exciton radius and binding
energy and that knowledge of the carrier density is necessary
when comparing theory with experiments. The decrease in
the exciton radius with the electron density given by theory
can be explained as follows. The variational approach used
in this work minimizes the energy. When the electron density
increases then, as a result of Pauli blocking, the phase space
available to the electron, which is interacting with the hole
via the Coulomb potential, is reduced for small momenta.
Energy can be minimized better if the exciton wave function
spreads to larger momenta that are unoccupied. Consequently,
the exciton radius decreases in real space. The price paid
in this trade-off is that the kinetic energy associated with
the relative electron-hole motion increases when the exciton
radius decreases and, therefore, the exciton binding energy also
decreases. The calculated values of the exciton binding energy
in the limit of zero electron density agree well with the values
calculated theoretically from first-principles techniques [9,10].
Next, we discuss the trion absorption spectra.

IV. ABSORPTION OF LIGHT BY TRIONS

A. Singlet trion states

A trion state can be a spin singlet or a triplet. Bound states
for triplet trions have not been observed in two dimensions in
either simulations [27] (for the case me ≈ mh relevant for MX2

monolayers) or in experiments in the absence of a magnetic
field [28], and therefore in this paper we consider only singlet
trions. A trion is formed when a photoexcited electron-hole

pair binds with an electron (or a hole) to form a negatively
(or a positively) charged complex. Without losing generality,
we restrict ourselves to negatively charged trions (relevant
to n-doped samples). We also restrict ourselves to the case
τ = 1 where the top most valence band is occupied by spin-up
(σ = 1) electrons. We define the trion mass as mtr = 2me +
mh and the exciton mass as mex = me + mh. As before, we
assume that the initial state |ψi〉 of the semiconductor consists
of a completely filled valence band and a conduction band with
an electron density ne distributed according to the Fermi-Dirac
distribution. A singlet trion state with momentum �Q can be
constructed from this initial state as follows:

|ψtr ( �Q)〉 = 1

A

∑
�k1,�k2

φ(�k1,�k2, �Q)

Ntr ( �k1, �k2, �Q)

×c
†
�k1,↓c

†
�k2,↑b�k1+�k2−(mh/mtr ) �Q,↑c �Q,↓|ψi〉. (17)

Here, the line under a vector, �k, stands for �k + (me/mtr ) �Q. The
function φ(�k1,�k2, �Q) is symmetric in its first two arguments.
The normalization factor Ntr ( �k1, �k2, �Q) equals

√
fc( �Q)[1 − fc(�k2)][1 − fc(�k1)]. (18)

Since ne 
= 0, we again assume that the state in Eq. (17) is a
variational solution and φ(�k1,�k2, �Q) can be varied to minimize
the expectation value of the energy, {〈ψtr |Ĥ |ψtr〉}th, subject
to the normalization constraint. This results in a Hermitian
eigenvalue equation for the trion wave function φ(�k1,�k2, �Q)
and the trion energy Etr ( �Q),

[
Ēc( �k1) + Ēc( �k2) − Ēc( �Q) − Ēv

(
�k1 + �k2 − mh

mtr

�Q
)]

φ(�k1,�k2, �Q)

+
√

1 − fc(�k1)
√

1 − fc(�k2)

A

∑
�q

[V (�q)φ( �k1 − �q, �k2 + �q, �Q)
√

1 − fc(�k1 − �q)
√

1 − fc(�k2 + �q)]

−
√

1 − fc(�k1)

A

∑
�q

[V (�q) φ( �k1 − �q, �k2, �Q)
√

1 − fc(�k1 − �q)] −
√

1 − fc(�k2)

A

∑
�q

[V (�q) φ( �k1, �k2 − �q, �Q)
√

1 − fc(�k2 − �q)]

= [Etr ( �Q) − Ei]φ(�k1,�k2, �Q). (19)

Here,

Etr ( �Q) − Ei = Eg − Eexb − Etrb − �
2Q2

2me

(
mex

mtr

)
, (20)

where Etrb is the trion binding energy. The trion wave
functions are orthogonal and normalized such that∫

d2 �k1

(2π )2

d2 �k2

(2π )2
φ∗

m(�k1,�k2, �Q)φp(�k1,�k2, �Q) = δm,p. (21)

Solutions of the above equation represent bound trion states as
well as exciton-electron scattering states that correspond to a
free electron interacting with a bound electron-hole pair. The
latter are excluded from the discussion below for the sake of

simplicity. Since the trion eigenvalue equation is Hermitian, a
variational approach can be used to obtain an approximate
solution for the lowest trion state. We use the variational
solution proposed by Suris et al. [29],

φ(�k1,�k2, �Q)

≈ 1√
2

[
1 + 16

b2c2

(b + c)4

]−1/2

×
{ √

8πb

[1 + (k1b)2]3/2

√
8πc

[1 + (k2c)2]3/2
+

( �k1 → �k2
�k2 → �k1

)}
,

(22)
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which in real space corresponds to

φ(�r1,�r2, �Q) ≈
√

2

πbc

[
1 + 16

b2c2

(b + c)4

]−1/2

×
[
e−|�r1|/b−|�r2|/c +

( �r1 → �r2

�r2 → �r1

)]
. (23)

The values of the radii, b and c, which depend weakly on the
trion momentum �Q as a result of Pauli blocking, can be varied
to minimize the energy. If b � c or b � c, the trion can be
thought of as an electron weakly bound to an exciton. On the

other hand, if b ≈ c, the trion ought to be considered a strongly
bonded triplet of two electrons and a hole.

B. Trion optical conductivity

We assume linearly polarized light of frequency ω and
intensity Io incident normally on the MX2 monolayer. We
assume the same interaction Hamiltonian as given in Eq. (8) for
the electrons in the valley τ = 1. The rate Rtr (units: s−1 cm2)
at which trions are generated by the absorption of light can
be found using Fermi’s “golden rule” assuming a finite trion
lifetime,

Rtr = 2 × 2π

�

1

A

∑
�Q

{|〈ψtr ( �Q)|H+|ψi( �Q)〉|2}th tr/π

[Etr ( �Q) − Ei − �ω]2 + 2
tr

= 2 × 2π

�

(
eAo

2mo

)2 ∫
d2 �Q
(2π )2

fc( �Q)

∣∣∣∣
∫

d2�r1χtr (�r1,�r2 = 0, �Q)e−i(mex/mtr ) �Q·�r1

∣∣∣∣
2

tr/π

[Etr ( �Q) − Ei − �ω]2 + 2
tr

. (24)

Here, the factor of 2 in the front accounts for the fact that the
additional electron binding with the photogenerated electron-
hole pair to form a trion can belong to any one of the two
valleys, and

χtr ( �r1, �r2, �Q) =
∫

d2 �k1

(2π )2

∫
d2 �k2

(2π )2
�Pcv( �k2) · n̂

×φ( �k1, �k2, �Q)
√

1 − fc( �k2) ei �k1· �r1+i �k2· �r2. (25)

χtr ( �r1, �r2, �Q) incorporates the reduction in the trion oscillator
strength due to Pauli blocking. Finally, The total-energy
absorption rate from both K and K ′ valleys can be written
in terms of the trion contribution σtr (ω) to the optical
conductivity,

Re{σtr (ω)} = e2

4�

{
16�

m2
oω

∫
d2 �Q
(2π )2

fc( �Q)

×
∣∣∣∣
∫

d2�r1χtr (�r1,�r2 = 0, �Q)e−i(mex/mtr ) �Q·�r1

∣∣∣∣
2

× tr

[Etr ( �Q) − Ei − �ω]2 + 2
tr

}
. (26)

C. Experimental results and discussion: Trion absorption
in MoS2 monolayers

Figure 3 shows the extracted contributions from A−-
trions at 5 and 90 K. Figure 8 shows that the product of
the peak absorption A(ω)|max and the full width at half
maximum (FWHM) of the extracted A−-trion absorption
spectrum vary little with temperature in the 5–150-K range.
The trion absorption spectrum can be related to the trion
optical conductivity using Eq. (12). Ignoring Pauli blocking
and using the simple wave-vector-independent expression for
the momentum matrix element in (2), an analytical expression
for the trion optical conductivity can be found in the limit
of small electron density when the Fermi energy EF and the

Fermi wave vector kF satisfy KT < EF ,tr and kF b,kF c < 1,

Re{σtr (ω)} = e2v2

ω

(
ne

EF

G(c/b)

)
mtr

mex

[
tan−1

( mex

mtr
EF − �E

tr

)

+ tan−1

(
�E

tr

)]
. (27)

Here, �E = Etr ( �Q = 0) − Ei − �ω. The function G(x) =
G(1/x) depends on the ratio of the two radii, c/b, and equals

G(x) = 8

[
1 + 16

x2

(1 + x)4

]−1(1 + x2

x

)2

. (28)

The above expression shows that when EF � tr the peak
trion conductivity increases linearly with the electron density
and its spectral shape is almost a Lorentzian that peaks when
�ω equals Etr ( �Q = 0) − Ei − 0.5(mex/mtr )EF and has a
FWHM equal to 2

√
2

tr + [0.5(mex/mtr )EF ]2. The expression
in Eq. (27) overestimates the trion conductivity significantly.

FIG. 8. (Color online) (a) The product of the peak absorption
A(ω)|max and the FWHM width of the extracted A−-trion absorption
spectrum is plotted as a function of temperature. (b) The measured
positions of the A-exciton peak and the A−-trion peak are plotted as
a function of temperature. The separation between the peaks does not
change much with temperature.
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1. Trion radii

For simulations, we use the more accurate expression for
the trion conductivity given in (26) that takes into account
the decrease in the trion oscillator strength from wave-vector-
dependent momentum matrix element and Pauli blocking. The
dependence of the trion binding energy Etrb on the trion
momentum �Q was ignored. Unlike in the case of excitons,
the measured trion absorption spectrum cannot be used to
extract both the trion radii, b and c, reliably since, as shown
in Eq. (27), the trion conductivity is sensitive to the ratio
c/b. However, if b (or c) is known, then the ratio c/b can be
determined from the measured absorption spectra. We assume
that one of the trion radii, b, is approximately equal to the
exciton radius that was determined earlier using the measured
exciton absorption spectra. This assumption is justified in the
next section using the results obtained by solving the trion
eigenvalue equation (19) and happens to be consistent with
the picture of a trion as an electron bound to an exciton. As
discussed earlier, the electron density in our samples is in the
2–4×1012-cm−2 range. If we assume that ne = 2 × 1012 cm−2

then, using Fig. 6(b), we choose b = 9.3 Å. The resulting
value of the ratio c/b that best fits the experimental data
in Fig. 8(a) is found to be ∼1.9 (⇒ c ≈ 17.7 Å). And if
we assume that ne = 4 × 1012 cm−2 and b = 8.3 Å, then
c/b is found to be ∼1.3. For the smaller electron density
assumption, the extracted value (∼1.9) of the ratio c/b is in
good agreement with the variational solution of Berkelbach
et al. [10], who obtained a value of ∼2.4 for c/b but did not
include effects due to Pauli blocking in the trion eigenvalue
equation. The extracted value (∼1.9) of the ratio c/b is also in
good agreement with results obtained from the trion eigenvalue
equation (see the next section). The good agreement between
theory and measurements suggests that the trion oscillator
strength, as given by the trion optical conductivity in (26),
captures the essential physics. Theoretical predictions for the
trion radii that result from the eigenvalue equation (19) using
the variational solution (22) are discussed below.

2. Trion binding energy

Figure 8(b) shows the measured positions of the A-exciton
peak and the A−-trion peak as a function of the temperature.
The separation between the peaks is ∼34 meV and does not
change much with temperature in the 5–150-K range. As
discussed above, the trion binding energy can be estimated
by subtracting 0.5(mex/mtr )EF from the separation between
the two peaks. This gives ∼32 and ∼30 meV for the trion
binding energy assuming ne = 2 × 1012 cm−2 and ne = 4 ×
1012 cm−2, respectively. These values for the trion binding
energy, although larger than the values measured by Fai
et al. [3], are in good agreement with the theoretical values
reported for MoS2 by Berkelbach et al. [10], who obtained ∼26
and ∼32 meV using DFT and GW techniques, respectively.
Using a variational solution similar to the one in (22), Suris
et al. obtained the result Etrb ≈ 0.1Eexb when me ≈ mh [29].
Using this result, and the exciton binding energies from Fig. 7,
the trion binding energy comes out to be ∼33 and ∼28 meV for
ne = 2 × 1012 and ne = 4 × 1012, respectively, again in good
agreement with our measurements. The previous theoretical
works mentioned here did not take into account Pauli blocking

when solving for the trion wave function variationally. Pauli
blocking is included in the trion eigenvalue equation (19). So-
lution of the trion eigenvalue equation (19) is computationally
prohibitive, especially since the binding energy depends on
the trion momentum �Q as a result of Pauli blocking, and a
complete analysis is beyond the scope of this paper. Assuming
ne = 2 × 1012, we solved (19) using the variational solution
in (22) for �Q = 0. The radii, b and c, that minimized the trion
binding energy were found to be 9.0 and 18.9 Å, respectively,
and the ratio c/b came out to be 2.1 in good (but not perfect)
agreement with the value (∼1.9) extracted from trion absorp-
tion measurements. The trion binding energy Etrb was found
to be ∼26 meV, which is slightly smaller than the measured
value of ∼32 meV. For ne = 4 × 1012, the solution of the trion
eigenvalue equation gave b = 8.4 Å, c = 17.6 Å, c/b = 2.09,
and Etrb = 22.5 meV. The results in this section and in the
previous section show that if the electron density is assumed
to have the smallest value within the range of uncertainty in the
experimentally measured values then the extracted values of
the trion parameters from optical measurements are in better
agreement with the theoretical model. Trion optical absorption
can potentially be used as a sensitive probe for the carrier
density in metal dichalcogenide monolayers. We also point
out that since the exact trion binding energy is expected to
be larger than the value obtained from a variational solution,
the difference between the calculated (∼26 meV) and the
measured (∼32 meV) trion binding energies could be due to
the inaccuracy of the assumed trion variational solution in (22).

V. CONCLUSION

In this work, we presented theoretical models for optical
absorption by excitons and trions in 2D metal dichalcogenides.
The models presented were based on the Wannier-Mott picture
of an exciton and took into account the large spread of the
exciton and trion wave functions in momentum space as
a result of the small exciton and trion radii. Wave-vector
dependence of the optical matrix elements and phase space
blocking due to Pauli exclusion were also incorporated in the
models. The experimental optical-absorption results for MoS2

monolayers showed very good agreement between theory and
measurements, and enabled estimations of the exciton and trion
radii. The results presented in this paper show that the optical
properties (specifically, optical conductivities) of excitons and
trions in 2D metal dichalcogenides are adequately described by
the models presented here. It should be noted here that unbound
electron-hole and exciton-electron scattering states have been
ignored in this paper. In general, these correlated states can
contribute significantly to the absorption spectrum, especially
near the tails of the exciton and trion absorption peaks and
near the band edges [18]. Our work suggests that near the
exciton and trion absorption peaks the contribution from these
correlated states is small enough to be ignored. However,
more work is needed to fully understand their contribution
in strongly interacting dichalcogenide monolayers.
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APPENDIX: DIELECTRIC CONSTANT

The dielectric constant ε(�q,ω) used to obtain the Coulomb
potential in Eqs. (5) and (19) is in general wave-vector and
frequency dependent. The exciton binding energy determines
the frequency of relative motion of the electron and the hole
in an exciton. Free carriers, if present, will be effective in
screening the Coulomb potential if the exciton binding energy
is much smaller than the relevant plasmon energies [20,30].
The measured exciton energies in 2D metal dichalcogenides,
and in particular in MoS2, are relatively large and in the few
tenths of eV range [1,3]. In electron-doped 2D materials, the
plasmon frequency depends on the electron density ne and the
wave vector q as ωp(�q) ∝ √

ne q [11,17]. The relevant wave
vectors are those for which qa < 1, where a is the exciton
radius [see Eq. (7)]. Therefore, if the relevant plasmon energy
�ωp(q = 1/a) is much smaller than the exciton binding energy
then the free electrons will not be able to screen the Coulomb
potential effectively. This condition is met for the carrier
densities considered in this work. Therefore, it is appropriate
to use the unscreened dielectric constant. For large carrier
densities, when ne � 0.1/a2, a screened dielectric constant is
a better choice [19]. The finite thickness and polarizability
of the MX2 monolayer makes the dielectric constant wave
vector dependent. MX2 monolayers consist of three atomic
layers and the conduction- and valence-band electrons reside
predominantly on the d orbitals of metal atoms in the center
layer. Consider a MX2 monolayer of thickness d and dielectric
constant ε2 sandwiched between materials with dielectric
constants ε1 and ε3 (see Fig. 1). Within the layer of metal
atoms the effective dielectric constant is

ε(�q) = ε2

1 − (1−ε2/ε1)(1−ε2/ε3)
(1+ε2/ε1)(1+ε2/ε3)e

−2qd[
1 − (1−ε2/ε1)

(1+ε2/ε1)e
−qd

][
1 − (1−ε2/ε3)

(1+ε2/ε3)e
−qd

] . (A1)

We have used the above expression in our calculations, and
this expression also follows from the result obtained by
Keldysh [25]. In this approximation, the polarizability of the
MX2 monolayer is described by an effective dielectric constant
ε2. If the polarizability of the MX2 monolayer is anisotropic
then it can be shown that ε2 = √

ε⊥ε‖ where ε⊥ and ε‖ are the
effective dielectric constants for fields polarized perpendicular
and parallel to the plane of the layer, respectively, and the
effective layer thickness d entering the above expression
equals the actual thickness times a factor equal to

√
ε‖/ε⊥.

TABLE I. Dielectric constant of bulk MoS2.

Method ε⊥ ε‖
√

ε⊥ε‖

LDA [31] 15.4 7.43 10.7
GW [10] 14.29 6.87 9.9
GW [8] 13.5 8.5 10.7
GoWo [32] 14.5

For small wave vectors (q � 1/d) ε(�q) given above
approaches (ε1 + ε3)/2, and for large wave vectors (q � 1/d)
ε(�q) approaches ε2. In monolayer MX2 materials, since the
layer thickness d and the exciton radius a are comparable,
the wave vector dependence of the dielectric constant cannot
be ignored [10]. In our work, ε3 is 4.0 (quartz substrate)
and ε1 is 1.0 (free space), and the value of ε2 is used as an
adjustable parameter and its value is determined to best fit the
measurements (see Sec. III C 2). Theoretically obtained values
for ε2 for bulk MoS2 are presented in the Table I. Note that in
bulk MoS2, ε⊥ and ε‖ are different.

When qd < 1, the above expression for ε(�q) becomes

ε(�q) = ε1 + ε3

2

[
1 + 2ε2

2 − (
ε2

1 + ε3
3

)
2ε2(ε1 + ε3)

qd

]
. (A2)

In the limit qd < 1, the expression for ε(�q) matches the
one derived by Cudazzo et al. [26] assuming a strictly two-
dimensional material (of negligible thickness) and polarizable
only in the plane of the material provided the screening length
parameter ro, which is related to the in-plane polarizability of
the two-dimensional material, is taken to be

ro = 2ε2
2 − (

ε2
1 + ε3

3

)
2ε2(ε1 + ε3)

d. (A3)

In the case of a MoS2 monolayer surrounded by free space
on both sides, the value of ro has been obtained from first
principles (DFT-RPA, GW-RPA) by Berkelbach et al. [10] and
was found to be in the 30–40 Å range. For a MoS2 monolayer
surrounded by free space on both sides, the above expression
for ro becomes

ro = ε2
2 − 1

2ε2
d. (A4)

Using the value (∼12) of ε2 obtained in our work from fitting
the optical-absorption data (see Sec. III C 2), and assuming
d ≈ 6 Å, the value of ro using the above expression comes
out to be ∼36 Å in excellent agreement with first-principles
calculations of Berkelbach et al. [10].
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