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Fast exciton annihilation by capture of electrons or holes by defects via Auger scattering
in monolayer metal dichalcogenides
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The strong Coulomb interactions and the small exciton radii in two-dimensional metal dichalcogenides can
result in very fast capture of electrons and holes of excitons by mid-gap defects from Auger processes. In the
Auger processes considered here, an exciton is annihilated at a defect site with the capture of the electron (or
the hole) by the defect and the hole (or the electron) is scattered to a high energy. In the case of excitons, the
probability of finding an electron and a hole near each other is enhanced many folds compared to the case of
free uncorrelated electrons and holes. Consequently, the rate of carrier capture by defects from Auger scattering
for excitons in metal dichalcogenides can be 100–1000 times larger than for uncorrelated electrons and holes for
carrier densities in the 1011–1012 cm−2 range. We calculate the capture times of electrons and holes by defects
and show that the capture times can be in the subpicosecond to a few picoseconds range. The capture rates
exhibit linear as well as quadratic dependence on the exciton density. These fast time scales agree well with the
recent experimental observations and point to the importance of controlling defects in metal dichalcogenides for
optoelectronic applications.
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I. INTRODUCTION

Many body interactions play an important role in deter-
mining the electronic and optoelectronic properties of two-
dimensional (2D) transition metal dichalcogenides (TMDs).
The exciton binding energies in 2D chalcogenides are almost
an order of magnitude larger compared to other bulk semi-
conductors [1–5]. The strong Coulomb interactions and small
exciton radii in 2D-TMDs result in large optical oscillator
strengths [3,6,7] and short radiative lifetimes [8]. In this paper
we show that the same factors also result in very fast capture
of electrons and holes of excitons by defects from Auger
processes leading to fast nonradiative recombination rates.
The basic idea can be understood as follows. Consider the
Auger process in which a hole (in the valence band) scatters
off an electron (in the conduction band) and is captured by
a mid-gap defect level and the electron (in the conduction
band) takes the energy released in the hole capture process.
In the case of uncorrelated electrons and holes, the rate for
this process is proportional to the product of the hole density
p and the probability of finding an electron near the hole,
which is proportional to the electron density n. But in the case
of tightly bound excitons, an electron is present near the hole
with a very high probability proportional to |φ(�r = 0)|2, where
φ(�r) is related to the exciton wave function (see the discussion
below). Therefore, the rate for a hole (or an electron) in a tightly
bound exciton to get captured by a defect is proportional to the
exciton density times |φ(�r = 0)|2. Generally speaking, Auger
rates in semiconductors are considered to be important only
at large carrier densities [9]. But given the small exciton radii
in 2D-TMDs (in the 7–10 Å range), |φ(�r = 0)|2, which is
inversely proportional to the square of the exciton radius, can
be extremely large and, consequently, Auger capture rates in
2D-TMDs can be very fast. Compared to the rates for direct
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electron-hole recombination via interband Auger scattering,
which can be limited by the orthogonality of the conduction
and valence band Bloch states, the rates for the capture of
electrons and holes of excitons by defects can be very fast
when the defect states have a good overlap with the conduction
or valence band Bloch states.

Quantum efficiencies of TMD light emitters and detectors
that have been reported are extremely poor; in the 0.0001–0.01
range [10–14]. Similar quantum efficiencies for TMDs have
been observed in photoluminescence experiments [1,15,16].
Therefore, most of the electrons and holes injected electrically
or optically in TMDs recombine nonradiatively. Given that
the average radiative lifetimes of excitons in TMDs are in the
range of hundreds of picoseconds to a few nanoseconds [8],
the nonradiative recombination or capture times in TMDs are
expected to be of the order of a few picoseconds. Several
experimental results on the ultrafast carrier dynamics in
photoexcited monolayer MoS2 do indeed point to nonradiative
recombinaton and/or capture times in the few picoseconds
range [15,17–19]. The mechanisms by which electrons and
holes recombine nonradiatively and/or are captured by defects,
and the associated time scales, remain to be clarified. The
results in this paper show that electrons and holes of excitons
in TMDs can get captured by defects on very short times scales
that are in the subpicosecond to a few picoseconds range
resulting in exciton annihilation. The capture rates exhibit
linear as well as quadratic dependence on the exciton density
(defect-assisted exciton-exciton annihilation). The quadratic
dependence of the exciton annihilation rate on the exciton
density is generally considered to be an exclusive characteristic
of exciton-exciton annihilation processes via direct interband
Auger scattering. Although the discussion in this paper focuses
on monolayer MoS2, the analysis and the results presented here
are expected to be relevant to all 2D-TMDs, and are expected
to be useful in designing metal dichalcogenide optoelectronic
devices as well as in helping to understand and interpret
experimental data [15,17–19].
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FIG. 1. (Color online) Two basic Auger processes for the capture
of an electron (a) or a hole (b) of an exciton by a defect state are
depicted [9,20].

II. THEORETICAL MODEL

A. Introduction

The two basic Auger processes for the capture of an electron
(a) or a hole (b) of an exciton by a defect state are depicted in
Fig. 1. Proper partitioning of the Hamiltonian is important in
order to compute the rates of these processes. We discuss the
terms in the Hamiltonian describing various processes below.

B. The noninteracting Hamiltonian

The crystal structure of a monolayer of group-VI dichalco-
genides MX2 (e.g., M = Mo,W and X = S,Se) consist of
X-M-X layers, and within each layer the M atoms (or the
X atoms) form a 2D hexagonal lattice. Each M atom is
surrounded by six nearest neighbor X atoms in a trigonal
prismatic geometry with D1

3h symmetry. The valence band
maxima and conduction band minima occur at the K and
K ′ points in the Brillouin zone. Most of the weight in the
conduction and valence band Bloch states near the K and
K ′ points resides on the d orbitals of M atoms [4,21,22].
The spin-up and -down valence bands are split near the K

and K ′ points by 0.1–0.2 eV due to the spin-orbit coupling
[4,21–23]. In comparison, the spin-orbit-coupling effects in
the conduction band are much smaller [23]. Assuming only
d orbitals for the conduction and valence band states, and
including spin-orbit coupling, one obtains the following simple
spin-dependent tight-binding Hamiltonian (in matrix form)
near the K(K ′) points [21],[

�/2 �vk−
�vk+ −�/2 + λτσ

]
. (1)

Here, � is related to the material bandgap, σ = ±1 stands for
the electron spin, τ = ±1 stands for the K and K ′ valleys, 2λ

is the splitting of the valence band due to spin-orbit coupling,
k± = τkx ± iky , and the velocity parameter v is related to the
coupling between the orbitals on neighboring M atoms. From
density functional theories [22,24], v ≈ 5 − 6 × 105 m/s. The
wave vectors are measured from the K(K ′) points. The d
orbital basis used in writing the above Hamiltonian are |dz2〉
and (|dx2−y2〉 + iτ |dxy〉)/

√
2 [21]. We will use the symbol s

for the combined valley (τ ) and spin (σ ) degrees of freedom.
Defining �s as � − λτσ , the energies and eigenvectors of the

conduction and valence bands are [21,25]

E c

v
,s(�k) = λτσ

2
+ γ

√
(�s/2)2 + (�vk)2, (2)

|v c

v
,�k,s〉 =

[
cos(θγ,�k,s/2)e−iτφ�k/2

τγ sin(θγ,�k,s/2)eiτφ�k/2

]
. (3)

Here, γ = 1 (or −1) stands for the conduction (or the valence)
band, φ�k is the phase of the wave vector �k, and

cos(θγ,�k,s) = γ
�s

2
√

(�s/2)2 + (�vk)2
. (4)

Near the conduction band minima and valence band maxima,
the band energy dispersion is parabolic with well-defined
effective masses, me and mh, for electrons and holes, respec-
tively.

The Hamiltonian describing electron states in the conduc-
tion band, valence band, and a mid-gap defect state is

Ho =
∑
�k,s

Ec,s(�k)c†�k,s
c�k,s +

∑
�k,s

Ev,s(�k)b†�k,s
b�k,s

+
∑

σ

Edd
†
σ dσ . (5)

Here, c�k,s , b�k,s , and dσ are the destruction operators for the
conduction band, valence band, and defect states, respectively.
The bandgap is Egs,s′ = Ec,s(�k = 0) − Ev,s ′ (�k = 0). Since
only the smallest bandgap will be relevant in the discussion
that follows, we will drop the spin/valley indices from Egs,s′
for simplicity.

C. Electron-hole interaction and exciton states

The Coulomb interaction between the electrons and holes
can be included by adding the following term to the Hamilto-
nian,

Heh = 1

A

∑
�k,�k′,�q,s,s ′

V (�q)Fs,s ′ (�k,�k′,�q)c†�k+�q,s
b
†
�k′−�q,s ′b�k′,s ′c�k,s . (6)

V (�q) is the 2D Coulomb potential and equals e2/2εoε(�q)q. The
wave-vector-dependent dielectric constant ε(�q) for monolayer
MoS2 is given by Zhang et al. [3] and Berkelbach et al. [4].
Fs,s ′ (�k,�k′,�q) is [25]

Fs,s ′ (�k,�k′,�q) = 〈vc,�k+�q,s |vc,�k,s〉 〈vv,�k′−�q,s ′ |vv,�k′,s ′ 〉. (7)

Near the conduction band minima, where �vk � �s ,
cos(θγ,�k,s) ≈ 1, and sin(θγ,�k,s) � 1. Similarly, near the valence
band maxima, sin(θγ,�k,s) ≈ 1 and cos(θγ,�k,s) � 1. Therefore,
for wave vectors near the band extrema one can make the
approximation [25],

Fs,s ′ (�k,�k′,�q) = ei(τφ�k+�q−τφ�k+τ ′φ�k′ −τ ′φ�k′−�q )/2. (8)

Exciton states are approximate eigenstates of the Hamiltonian
Ho + Heh. Assuming that the ground state of the semiconduc-
tor is |ψo〉, which consists of a filled valence band and an empty
conduction band, an exciton state with in-plane momentum �Q
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can be constructed from the ground state as follows [3,25],

|ψs,s ′,α( �Q)〉 = 1√
A

∑
�k

ψα, �Q(�k)c†�k+ me
mex

�Q,s
b�k− mh

mex
�Q,s ′ |ψo〉. (9)

The exciton wave function is ψα, �Q(�k). The electron and hole
effective masses are me and mh, respectively. The exciton mass
is mex = me + mh, and the reduced electron-hole mass is mr .
If one writes the exciton wave function as

ψα, �Q(�k) = φα(�k)ei(τφ�k+(me/mex ) �Q+τ ′φ�k′−(mh/mex ) �Q)/2
, (10)

then the exciton wave function φα(�k) satisfies the standard
exciton eigenvalue equation [3,4],

[Ēc(�k) − Ēv(�k)]φα(�k) − 1

A

∑
�q

V (�q)φα(�k − �q)

= Eα( �Q)φα(�k), (11)

with an eigenvalue Eα( �Q) given by

Eα( �Q) = Eg − Eα + �
2Q2

2mex

, (12)

where Eα is the exciton binding energy. The energy Eα( �Q) is
measured with respect to the energy of the ground state |ψo〉.
Note that the phase factors cancel out and do not appear in
the exciton eigenvalue equation. The exciton wave functions
are orthonormal and complete in the sense [26],∫

d2�k
(2π )2

φ∗
α(�k)φβ(�k) = δα,β, (13)

∑
α

φα(�k)φ∗
α(�k′) = (2π )2δ2(�k − �k′). (14)

The sum over α above includes all the discrete bound exciton
states as well as the continuum of ionized exciton states.

Finally, the probability of finding an electron and a hole at
a distance �r in the exciton state |ψα, �Q(�k)〉 can be computed
by destroying an electron and a hole using the real-space
field destruction operators and then taking the overlap of the
resulting state with the ground state |ψo〉. The result is |φα(�r)|2
where φα(�r) is the Fourier transform of φα(�k). Note that φα(�r)
is not the Fourier transform of ψα, �Q(�k), which also includes
extra phase factors [see (10)].

D. Exciton basis

In what follows, we will use the exciton basis. The exciton
creation operator B

†
s,s ′,α( �Q) can be defined as

B
†
s,s ′,α( �Q) = 1√

A

∑
�k

ψα, �Q(�k)c†�k+ me
mex

�Q,s
b�k− mh

mex
�Q,s ′ . (15)

Using the completeness and the orthogonality of the exciton
wave functions given in (14) and (13), we get

c
†
�k,s

b�k′,s ′ = 1√
A

∑
α

ψ∗
α, �Q(�kr )B†

s,s ′,α( �Q). (16)

Here, �kr and �Q equal (mh/mex)�k + (me/mex)�k′ and �k − �k′ on
the left-hand side, respectively. Products of electron and hole

creation and destruction operators can thus be expressed in
terms of the exciton operators.

E. Defect states

TMDs (MX2), and in particular monolayer MoS2, are
known to have several different kinds of point defects, such
as M and X vacancies and interstitials, impurity atoms, in
addition to grain boundaries and dislocations [27–35]. The
goal in this section is not to give a detailed description of
different defect states in TMDs, something well beyond the
scope of this paper, but to capture the essential physics in a way
that would enable us to obtain capture rates for electrons and
holes and present the main ideas associated with the capture
processes.

Since the Bloch states form a complete set, the wave
function ψd (�r) of the electron in the defect state can be
expanded in terms of the Bloch states from all the bands [9].
In most cases of practical interest, only Bloch states in the
vicinity of certain points �Ks in the Brillouin zone, such as �,
M , K , and K ′ in the case of 2D-TMDs, need to be included in
the expansion and therefore one may write

ψd (�r) = 1√
A

∑
n,�k,s

cn,s(�k)
ei( �Ks+�k).�r

√
A

un,�k,s(�r). (17)

In the expression above, un,�k,s(�r) are the periodic parts of the
Bloch functions. The sum over n runs over all the energy bands.
Whereas shallow defect levels can usually be described well by
limiting the summation above to a single band, deep mid-gap
defect levels generally have contributions from multiple bands
[9,20]. The above expression can usually be cast in much
simpler forms for specific defect states.

As an example, we consider the case of the deep point
defect in MoS2 due to a sulfur atom vacancy. A sulfur atom
vacancy is a common defect in MoS2 monolayers and can have
a small formation energy [31–33]. The three states within the
bandgap associated with a sulfur vacancy have been obtained
previously using ab initio techniques [31–33]. These defect
states consist of (i) a single A1 state, made up of mostly
the dxz and dyz orbitals of the Mo atoms adjacent to the
missing S atom, with an energy a few tenths of an eV above
the valence band maxima, and (ii) two degenerate E states,
made up of mostly the dz2 , dx2−y2 , and dxy orbitals of the
Mo atoms adjacent to the missing S atom, with an energy
1.4–1.6 eV above the valence band maxima. All the defect
states are spin degenerate and correspond to the one- (A1) and
two-dimensional (E) representations of the trigonal symmetry
group C3v . The computed orbitals of these states are shown
in Fig. 2 (from Noh et al. [32]). A defect state can be an
efficient center for nonradiative recombination due to Auger
scattering only if it has good overlaps with the Bloch states
of both the conduction and the valence bands. The E states fit
this criterion. The E states can be described well by limiting
the summation in the expression above to the Bloch states
of the conduction and the valence band extrema at the K

and K ′ points. Since all the orbitals forming the E states
have weights almost entirely on the Mo atoms adjacent to the
missing S atom, one may write c c

v
,s(�k) ≈ χd (�k)eiγ τφ�k/2b c

v
,s .

Since eiγ τφ�k/2u c

v
,�k,s(�r) does not vary much with �k near the
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FIG. 2. (Color online) The computed orbitals of the defect states
in a MoS2 monolayer corresponding to a sulfur vacancy are shown
(from Noh et al. [32]). (a) and (b) The A1 state and the two degenerate
E states, respectively.

band extrema, the sum in (17) can be rearranged to give

ψd (�r) = χd (�r)
∑
n=c,v

s

bn,se
i �Ks.�reiγ τφ�k/2un,�k,s(�r). (18)

Here, the line under �k means that any wave vector near the
band extrema can be chosen. The function χd (�r) is expected to
be localized at the defect, becoming very small at the second
nearest Mo atom near the defect site.

F. Hamiltonian for the capture of holes and electrons

Consider process (b) in Fig. 1 in which a hole scatters off
an electron and is captured by a defect and the electron is
scattered to a higher energy. The relevant term in the Coulomb
interaction Hamiltonian that describes the hole capture process
in Fig. 1(b) can be written as

Hhc = 1

A

∑
�k,�k′,�q,s,s ′

V (�q)Ms,s ′ (�k,�k′,�q)c†�k+�q,s
b
†
�k′,s ′dσ ′c�k,s + H.c.

(19)
The overlap factor Ms,s ′ (�k,�k′,�q) equals

Ms,s ′ (�k,�k′,�q) = 〈vc,�k+�q,s |vc,�k,s〉
×

∑
n=c,v

bn,s ′eiγ τ ′φ�k/2〈vv,�k′,s ′ |vn,�k,s ′ 〉

× 1√
A

∫
d2�r χd (�r) e−i(�k′+�q).�r

≈ ei(τφ�k+�q−τφ�k−τ ′φ�k′ )/2 bv,s ′√
A

χd (�k′ + �q). (20)

Similarly, the electron capture process [Fig. 1(a)] is described
by the Hamiltonian,

Hec = 1

A

∑
�k,�k′,�q,s,s ′

V (�q)Ls,s ′ (�k,�k′,�q)d†
σ b

†
�k′,s ′b�k′+�q,s ′c�k,s + H.c.,

(21)
where the overlap factor Ls,s ′ (�k,�k′,�q) equals

Ls,s ′ (�k,�k′,�q) ≈ ei(τ ′φ�k′+�q−τ ′φ�k′−τφ�k)/2 b∗
c,s√
A

χ∗
d (�k + �q). (22)

The potential of the defect does not appear in the Hamiltonian
above. The reason for this is that it has already been taken
into account in defining the noninteracting Hamiltonian, and
its eigenstates, in Sec. II B.

III. ELECTRON AND HOLE CAPTURE RATES
FOR EXCITONS

We assume an initial state described by the density
operator ρi in which the exciton occupation ns,s ′,α( �Q), defect
occupation fd , and conduction and valence band occupations
are given by

〈d†
σ dσ ′ 〉 = fd δσ,σ ′ ,

〈c†�k,s
c�k′,s ′ 〉 = fc,s(�k)δs,s ′δ�k,�k′ ,

〈b†�k,s
b�k′,s ′ 〉 = fv,s(�k)δs,s ′δ�k,�k′ ,

〈B†
s,s ′,α( �Q)Bs,s ′,α( �Q)〉 = ns,s ′,α( �Q)

+ 1

A

∑
�k

|φα(�k)|2fc,s

(
�k + me

mex

�Q
)

×
[

1 − fv,s ′

(
�k − mh

mex

�Q
)]

. (23)

The angled brackets stand for ensemble averaging with respect
to the the density operator ρi . Since the excitons are not exact
bosons, the value of 〈B†

s,s ′,α( �Q)Bs,s ′,α( �Q)〉 is not just equal to

the exciton occupation ns,s ′,α( �Q). Using the cluster expansion
to evaluate 〈B†

s,s ′,α( �Q)Bs,s ′,α( �Q)〉 results in the additional
Hartree-Fock term shown above [36,37]. The same extra
term also shows up in the luminescence spectra of excitons
[26], and, as discussed below, this term results in a quadratic
dependence of the capture rate on the exciton density at large
exciton densities.

We assume that the electron and hole densities for different
spins/valleys (including both free carriers and bound excitons)
are ns and ps ′ , respectively, and the defect density is nd .
The initial ensemble consists of states that are approximate
eigenstates of Ho + Heh but not of Ho + Heh + Hhc + Hec.
Therefore, we consider Hhc and Hec as perturbations.

A. Electron capture rate

We first consider process Fig. 1(a) in which the electron
is captured by a defect. The average electron capture rate Rec

(units, per unit area per second) can be calculated from the first-
order perturbation theory using the exciton basis described in
Sec. II D and the average values given in (23). The details of
the calculations are given in the appendix. The final result is

Rec ≈ 2π

�
nd (1 − fd )

∑
s,s ′,α

Dv,s ′ (qα)|χd (qα)|2|bc,s |2

×
∣∣∣∣∣∣

1

A

∑
�kr

V (qαx̂ − �kr )φα(�kr )

∣∣∣∣∣∣
2

×
⎡
⎣ns,s ′,α + 1

A2

∑
�k, �Q

|φα(�k)|2fc,s

(
�k + me

mex

�Q
)

×
[

1 − fv,s ′

(
�k − mh

mex

�Q
)]⎤

⎦ . (24)
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Here, Dv,s ′ is the valence band density of states (per valley
per spin) evaluated at the energy of the scattered hole whose
wave vector is qα . qα is approximately given by the relation,
Ev,s ′ (0) − Ev,s ′ (qα) = Eg − Eα − Ed . Note that none of the
phase factors appear in the above result. The exciton density
ns,s ′,α is

ns,s ′,α =
∫

d2 �Q
(2π )2

ns,s ′,α( �Q). (25)

If qα 
 kr for all values of kr for which φα(�kr ) is significant,
then the above expression reduces to

Rec = 2π

�
nd (1 − fd )

∑
s,s ′,α

Dv,s ′ (qα)|V (qα)|2|χd (qα)|2

×|bc,s |2[|φα(�r = 0)|2ns,s ′,α + Gαnsps ′ ]. (26)

The expression for Gα is given in the appendix. Gα is
significant for only the lowest few exciton states.

B. Hole capture rate

The rate for process [Fig. 1(b)] in which the hole is captured
by a defect can be calculated in the same way. The result is

Rhc ≈ 2π

�
ndfd

∑
s,s ′,α

Dc,s(qα)|χd (qα)|2|bv,s ′ |2

×
∣∣∣∣∣∣

1

A

∑
�kr

V (qαx̂ − �kr )φα(�kr )

∣∣∣∣∣∣
2

×
[
ns,s ′,α + 1

A2

∑
�k, �Q

|φα(�k)|2fc,s

(
�k + me

mex

�Q
)

×
[

1 − fv,s ′ (�k − mh

mex

�Q)

]]
, (27)

where now qα is approximately given by the relation
Ec,s(qα) − Ec,s(0) = Ed − Eα . And, as before, if qα 
 kr for
all values of kr for which φα(�kr ) is significant, then the above
expression reduces to

Rhc = 2π

�
ndfd

∑
s,s ′,α

Dc,s(qα)|V (qα)|2|χd (qα)|2

×|bv,s ′ |2[|φα(�r = 0)|2ns,s ′,α + Gαnsps ′ ]. (28)

C. Coulomb correlations and enhancement of the
Auger capture rates

Equation (26) for the electron capture rate can also be
written as

Rec = 2π

�
nd (1 − fd )

∑
s,s ′,α

Dv,s ′ (qα)|V (qα)|2|χd (qα)|2

×|bc,s |2nsps ′ [Gα + gs,s ′,α(�r = 0)], (29)

where gs,s ′,α(�r = 0) = |φα(�r = 0)|2ns,s ′,α/(nsps ′). The quan-
tity inside the square brackets in (29), Gα + gs,s ′,α(�r = 0),
describes the enhancement in the probability of finding an
electron and a hole close to each other as a result of the
attractive Coulomb interactions. It is interesting to compare the

electron capture rate in (29) with the result obtained assuming
no electron-hole attractive interaction (i.e., Heh = 0),

Rec = 2π

�
nd (1 − fd )

×s
∑
s,s ′

Dv,s ′ (qo)|V (qo)|2|χd (qo)|2|bc,s |2nsps ′ , (30)

where qo is approximately given by the relation Ev,s ′ (0) −
Ev,s ′ (qo) = Eg − Ed . It can be seen that the capture rate in
(29) is larger by the same enhancement factor. Assuming
all the electrons and holes are in the lowest (α = 1) bound
exciton state, values of Dv,s ′ and |bc,s | are independent of
the valley/spin indices, and the exciton density is nex =∑

s,s ′ ns,s ′,α=1, the comparison between (29) and (30) shows
that the enhancement of the electron capture rate in the
case of excitons is roughly proportional to Gα=1 + |φα=1(�r =
0)|2/nex . Given that the radius of the lowest exciton state in
monolayer MoS2 is in the 7–10 Å range [3], the enhancement,
assuming an exciton density of 1012 cm−2, is in the 72–138
range, and in the 644–1308 range if the exciton density
is assumed to be 1011 cm−2. Therefore, the correlations in
the positions of the electrons and the holes as a result of
the attractive Coulomb interaction make electrons and holes
in tightly bound excitons in TMDs far more susceptible to
capture by defects compared to uncorrelated free carriers.
Interestingly, even when the exciton density ns,s ′,α is zero the
capture rate in (29) is enhanced by the factors Gα compared to
the rate in (30) for uncorrelated electrons and holes. Therefore,
Coulomb correlations in the positions of electrons and holes
due to the attractive interaction between them enhances the
Auger scattering rates even at the Hartree-Fock level.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Carrier capture times at low exciton densities

For numerical computations, we consider monolayer MoS2

on a quartz substrate, as is the case in many experiments.
We first assume that the exciton density is small enough
(�1012 cm−2) to allow one to ignore phase-space filling effects
[3]. We use the wave-vector-dependent dielectric constant ε(�q)
for monolayer MoS2 on quartz given by Zhang et al. [3]. The
defect state wave function is given in (18). The values of |bc,s |2
and |bv,s |2 are assumed to be independent of the valley/spin
indices. This is a good approximation for many important
cases. For example, in the case of the sulfur vacancy in MoS2

discussed earlier, the E states have a total weight of ∼0.25 on
the dz2 orbitals of the Mo atoms adjacent to the missing sulfur
atom [38]. Since the conduction band Bloch states of both K

and K ′ valleys are made up of mostly the dz2 orbitals of Mo
atoms, |bc,s |2 is the same for both the valleys. We approximate
the envelope χd (�r) of the defect state wave function in (18)
by a Gaussian, χd (�r) =

√
2/(πa2

d )e−r2/a2
d , where ad ≈ 3 Å

(see Fig. 2). Note that the in-plane S-Mo bound length in
MoS2 is ∼1.83 Å. Figure 3 plots the computed capture times
of electrons (τec) and holes (τhc) of excitons assuming that
all the excitons are in the lowest state (α = 1). In the low
exciton density limit considered here these capture times are
independent of the exciton density. The defect density nd is
assumed to be 2 × 1011 cm−2. The capture times for electrons
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FIG. 3. (Color online) The capture times of electrons (τec) and
holes (τhc) of excitons by defects in monolayer MoS2 on quartz are
plotted as a function of the defect energy within the bandgap. The
exciton binding energy Eα=1 is 0.4 eV and the material bandgap is
2.3 eV [3]. The plotted capture times for electrons and holes have
been normalized by multiplying them by |bc|2 and |bv|2, respectively.
The defect density nd is 2 × 1011 cm−2.

and holes shown in Fig. 3 have been normalized by multiplying
them by |bc|2 and |bv|2, respectively, given the uncertainty in
the exact values of these parameters. In the calculation of the
electron capture times the defect state is assumed to be empty
(fd = 0), and in the calculation of the hole capture times the
defect state is assumed to be full (fd = 1).

The curves shown in Fig. 3 can provide results in different
situations. For example, in the case of the E states associated
with a sulfur vacancy, if |bc|2 is assumed to be ∼0.25 [38],
then the electron capture time curve in Fig. 3 would need to
be multiplied by 4 in order to get the actual electron capture
times. If the E state energy is assumed to ∼1.5 eV above the
valence band edge [32], then the electron capture time comes
out to be ∼2.4 ps. Since the capture times decrease inversely
with the defect density nd , the capture times shown in Fig. 3
can be interpolated for different values of the defect density.
For example, a defect density of 8 × 1011 cm−2 would result
in an electron capture time of 0.6 ps for the E state of a sulfur
vacancy (under the same assumptions as stated above).

Figure 3 shows that shallower traps have much shorter
capture times than deeper traps. This can be understood
as follows. Energy conservation requires that the scattered
electron (hole), in a hole (electron) capture process, takes
away most of the energy. The deeper the trap the more
the final energy of the scattered particle. Also, momentum
conservation requires that the momentum of the scattered
particle be provided by the relevant Fourier component of
the defect state wave function. Therefore, the deeper the trap
the larger the momentum transfer. Since in Fourier space the
defect state wave function is χd (�q) =

√
2πa2

de
−q2a2

d /4, larger
momentum transfers result in smaller capture rates. Note that
this result is largely independent of the exact assumed form
of the defect state wave function. In addition, the Coulomb
potential V (�q) also decreases for larger momentum transfers.
Although the final density of states available to the scattered
particle increases with the particle energy (for nonparabolic

energy band dispersions in 2D), this increase is not enough
to offset the reduction in the capture rates due to the factors
mentioned above.

Since the energy width of the valence and conduction bands
in MoS2 are less than 1.2 eV and 0.6 eV [24,39], respectively,
the limited horizontal extents of the curves in Fig. 3 ensure
that the electron (hole) scattered to a high energy in the
hole (electron) capture process is scattered within the same
band consistent with the assumptions made in this work. It
is, however, possible for the scattered particle to go into a
different band. For example, slightly away from the K (K ′)
points, the next higher conduction band has Bloch states with
a large weight on the dz2 orbitals of Mo atoms and these Bloch
states will have large overlap with the Bloch states near the
conduction band bottom [40]. It should also be noted that the
weights |bc|2 and |bv|2 for defects could be very small or zero.
For example, in the case of sulfur vacancy A1 states both |bc|2
and |bv|2 are expected to be very small [32,33,38].

B. Carrier capture times at high exciton densities

At large exciton densities (typically larger than 1012 cm−2,
but smaller than 1013 cm−2, for 2D-TMDs [3]), phase-space
filling effects cannot be ignored in the description of the
exciton states. We use the formalism developed by Kira and
Koch [26,36]. When phase-space filling is taken into account,
the exciton eigenvalue equation in the relative coordinates
becomes non-Hermitian (see the appendix) and its solutions
are expressed in terms of the left and the right eigenfunctions,
φL

α,s,s ′ (�k, �Q) and φR
α,s,s ′ (�k, �Q), respectively. These eigenfunc-

tions are also a function of the center-of-mass momentum �Q,
and are related as follows [26,36],

φR
s,s ′,α(�k, �Q) = φL

s,s ′,α(�k, �Q)

[
fv,s ′

(
�k − mh

mex

�Q
)

− fc,s

(
�k + me

mex

�Q
)]

, (31)

and obey the orthogonality relation,∫
d2�k

(2π )2

[
φL

s,s ′,α(�k, �Q)
]∗

φR
s,s ′,β(�k, �Q) = δα,β . (32)

In terms of these eigenfunctions, the expression for the electron
capture rate becomes

Rec ≈ 2π

�
nd (1 − fd )

1

A

∑
s,s ′,α, �Q

Dv,s ′ (qα)|χd (qα)|2|bc,s |2

×
∣∣∣∣∣∣

1

A

∑
�kr

V (qαx̂ − �kr )φR
s,s ′,α(�kr , �Q)

∣∣∣∣∣∣
2 ⎡
⎣ns,s ′,α( �Q)

+ 1

A

∑
�k

|φL
s,s ′,α(�k, �Q)|2fc,s

(
�k + me

mex

�Q
)

×
[

1 − fv,s ′

(
�k − mh

mex

�Q
)]⎤

⎦ . (33)

The expression for the capture rate of holes in the high exciton
density case follows similarly from (27). When all electrons
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and holes exist as excitons, self-consistency requires that the
distribution functions are given by [26]

fc,s(�k) = 1

A

∑
s ′,α, �Q

[
φL

s,s ′,α(�k, �Q)
]∗

φR
s,s ′,α(�k, �Q)ns,s ′,α( �Q),

1 − fv,s ′ (�k) = 1

A

∑
s,α, �Q

[
φL

s,s ′,α(�k, �Q)
]∗

φR
s,s ′,α(�k, �Q)ns,s ′,α( �Q).

(34)

Equations (33) and (34) show that the capture rate Rec

has terms that go linearly as well as quadratically with the
exciton density. The quadratic dependence comes from the
Hartree-Fock term in the evaluation of 〈B†

s,s ′,α( �Q)Bs,s ′,α( �Q)〉
[see Eq. (23)]. It can be understood as coming from the Auger
scattering between the electron of one exciton and the hole of
another exciton (defect-assisted exciton-exciton annihilation).
Recall from the discussion in Sec. III C that even at the
Hartree-Fock level Auger scattering between electrons and
holes is enhanced due to the Coulomb correlations compared
to uncorrelated electrons and holes.

For numerical computations, we again consider monolayer
MoS2 on a quartz substrate, as in Sec. IV A. We solve the
exciton eigenvalue equation for different exciton densities and
obtain the exciton radii and the exciton binding energies [3].
For simplicity, we consider the case when all the electrons and
holes are in the lowest (α = 1) bound exciton state. Figure 4
plots the inverse capture time (τ−1

ec ) of the electron of an exciton
in monolayer MoS2 on quartz as a function of the exciton
density. The plotted capture time has been normalized by
multiplying it by |bc|2. The defect density nd is 2 × 1011 cm−2

and the defect energy Ed is assumed to be 1.5 eV above
the valence band edge. The inverse capture time increases

FIG. 4. (Color online) The inverse capture time (τ−1
ec ) for the

electron of an exciton in monolayer MoS2 on quartz is plotted
as a function of the exciton density. The plotted capture time has
been normalized by multiplying it by |bc|2. The defect density nd is
2 × 1011 cm−2 and the defect energy Ed is assumed to be 1.5 eV
above the valence band edge. The inverse capture time increases with
the exciton density nex roughly as τ−1

ec ∼ A + Bnex (A and B are
constants).

with the exciton density nex roughly as, τ−1
ec ∼ A + Bnex (A

and B are constants), indicating that the capture rate Rec has
both linear and quadratic dependence on the exciton density
(Rec ∼ Anex + Bn2

ex). The term quadratic in the exciton
density in Rec becomes significant at exciton densities higher
than ∼1012 cm−2. When interpreting experimental data, this
quadratic increase of the carrier capture rate with the exciton
density can make exciton annihilation via carrier capture
by defects (defect-assisted exciton-exciton annihilation) in-
distinguishable from exciton-exciton annihilation via direct
interband Auger scattering, the rate of which is also expected
to go quadratically with the exciton density.

V. COMMENTS AND CONCLUSION

The results presented in this paper show that the capture
times for electrons and holes of excitons in TMDs can be
very short—from less than a picosecond to a few picoseconds.
These numbers agree well with the recently reported experi-
mental results on the ultrafast carrier dynamics in photoexcited
monolayer MoS2 where fast relaxation times in the few
picoseconds range were observed [15,17–19]. In addition, the
results in Figs. 3 and 4 are largely independent of the carrier
temperature which is also consistent with the experimental
observations [15,18].

The expressions given in this work could overestimate
(underestimate) the capture rates (times). The reasons are as
follows. The magnitude of the intraband overlap integrals
for Bloch states was assumed to equal unity in Sec. II F
and only phase differences were taken into account. At
energies much different from the band edge energies, the
Bloch states are different from the band edge Bloch states, and
consequently the magnitude of the overlap integrals are smaller
than unity. For example, the two-band k.p model in Sec. II B
shows that at wave vector �k the conduction (valence) band
Bloch states have contributions from the valence (conduction)
band Bloch states at �k = 0 with a weight given by 0.5–0.5
(�s/2)/

√
(�s/2)2 + (�vk)2. This implies a 15% weight at

energies in the band that are ∼0.5 eV away from the band
edge. In addition, both the conduction and valence band Bloch
states are expected to get contributions from other lower and
higher bands at large wave vectors [22]. However, we don’t
expect the essential physics to change significantly or the rates
to change by more than a factor of unity when these sources of
error are removed. We should also point out that the rates for
carrier capture by defects in 2D-TMDs can vary from sample
to sample as the nature of defects is expected to depend on the
method of sample preparation.
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APPENDIX

1. Details on the electron capture rate

In this section, we derive the expression for the electron
capture rate given in (24). The derivation of the hole capture
rate is similar. We assume an initial state described by the
density matrix ρi in which the exciton occupation is ns,s ′,α( �Q),
the defect density is nd , the defect occupation is fd , and
the electron and hole densities (including both free carriers
and bound excitons) are ns and ps ′ , respectively. The average
values of various operators are as given in (23). The rate of
change of the total electron density is

ṅ = dn

dt
= d

dt

⎛
⎝ 1

A

∑
s,�k

c
†
�k,s

c�k,s

⎞
⎠ . (A1)

Defining the interaction representation for the time develop-
ment of operators as

OI (t) = e
i
�

(Ho+Heh)tOe− i
�

(Ho+Heh)t , (A2)

the rate Rec for the electron capture by the defect can be found
by picking the appropriate term from the expression obtained

using the first-order perturbation theory,

〈
dn

dt

〉
= lim

η→0

i

�
And

∫ t

−∞
dt ′ eηt ′ Tr

{
ρi

[
HI

ec(t ′),ṅI (t)
]}

.

(A3)

Since the exciton states are approximate eigenstates of the
Hamiltonian Ho + Heh we have

e
i
�

(Ho+Heh)tBs,s ′,α( �Q)e− i
�

(Ho+Heh)t ≈ Bs,s ′,α( �Q)e−i
Eα ( �Q)

�
t .

(A4)
It is therefore convenient to express the conduction and valence
band creation and destruction operators appearing in Hec using
the exciton basis described in Sec. II D. We also point out here
that the ensemble average of a product of operators of the form,

〈
e

i
�

(Ho+Heh)t c
†
�k1,s1

b�k′
1,s

′
1
b
†
�k′

2,s
′
2
c�k2,s2

e− i
�

(Ho+Heh)t
〉
, (A5)

needs to be evaluated using the cluster expansion and keeping
the correlation terms as well as the Hartree-Fock term [36,37].
The final result is

Rec = 2π

�
nd (1 − fd )

1

A4

∑
s,s ′,�kr ,�k′

r

�Q,�q,α

|bc,s |2V ∗(�q − �k′
r )V (�q − �kr )|χd (�q + (me/mex) �Q)|2φ∗

α(�k′
r )φα(�kr )

⎡
⎣ns,s ′,α( �Q) + 1

A

∑
�k

|φα(�k)|2

×fc,s

(
�k + me

mex

�Q
) [

1 − fv,s ′

(
�k − mh

mex

�Q
)]⎤

⎦ δ

(
Eg − Eα + �

2Q2

2mex

− Ed − Ev,s ′ (0) + Ev,s ′

(
�q − mh

mex

�Q
))

. (A6)

Note that all the phase factors have canceled out. The exciton center-of-mass kinetic energy, �
2Q2/2mex , is expected to be much

smaller than the energy difference Eg − Eα − Ed . The former is expected to be in the few tens of meV range and the latter
in the hundreds of meV range. The energy conserving delta function then enforces q to the value determined by the condition
Ev,s ′ (0) − Ev,s ′ (qα) = Eg − Eα − Ed . Once the magnitude of �q has been fixed in this way, it is easy to see that Rec does not
depend on the angle of �q. So one may assume q ≈ qαx̂ and obtain

Rec ≈ 2π

�
nd (1 − fd )

∑
s,s ′,α

Dv,s ′ (qα)|χd (qα)|2|bc,s |2
∣∣∣∣∣∣

1

A

∑
�kr

V (qαx̂ − �kr )φα(�kr )

∣∣∣∣∣∣
2 ⎡
⎣ns,s ′,α + 1

A2

∑
�k, �Q

|φα(�k)|2

× fc,s(�k + me

mex

�Q)

[
1 − fv,s ′

(
�k − mh

mex

�Q
)] ⎤

⎦ . (A7)

Here, Dv,s ′ is the valence band density of states (per valley per
spin) evaluated at the energy of the scattered hole whose wave
vector is qα . The exciton density ns,s ′,α is

ns,s ′,α =
∫

d2 �Q
(2π )2

ns,s ′,α( �Q). (A8)

If qα 
 kr for all values of kr for which φα(�kr ) is significant,
then the above expression reduces to

Rec = 2π

�
nd (1 − fd )

∑
s,s ′,α

Dv,s ′ (qα)|V (qα)|2|χd (qα)|2

×|bc,s |2[|φα(�r = 0)|2ns,s ′,α + Gαnsps ′ ]. (A9)

Equation (A9) contains the exciton density ns,s ′,α as well as
the electron and hole densities (including both free carriers
and bound excitons) ns and ps ′ , respectively. The latter appear
as a result of the Hartree-Fock term in the cluster expansion
[36,37]. Gα is

Gα = |φα(�r = 0)|2
nsps ′ A2

∑
�k, �Q

|φα(�k)|2fc,s

(
�k + me

mex

�Q
)

×
[

1 − fv,s ′

(
�k − mh

mex

�Q
)]

. (A10)

Gα is expected to be significant for only the lowest few exciton
states.
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If all the electrons and holes are assumed to be in the lowest (α = 1) bound exciton state then self-consistency requires that
the distribution functions are given by [26]

fc,s(�k) = |φα=1(�k)|2ns,
(A11)

1 − fv,s ′ (�k) = |φα=1(�k)|2ps ′ .

Here, ns = ∑
s ′ ns,s ′,α=1 and ps ′ = ∑

s ns,s ′,α=1. One then obtains

G1 = |φα=1(�r = 0)|2 1

A2

∑
�k, �Q

∣∣∣∣φα=1

(
�k + me

mex

�Q
)∣∣∣∣

2

|φα=1(�k)|2
∣∣∣∣φα=1

(
�k − mh

mex

�Q
)∣∣∣∣

2

. (A12)

Assuming the standard 2D exciton wave function [3], G1 equals 128/(5π ) ≈ 8.15.

2. Description of excitons states in the high exciton density limit

In the high exciton density case, phase filling effects cannot be ignored in the description of the exciton states [3,26]. The
exciton wave functions, φL

α,s,s ′ (�k, �Q) and φR
α,s,s ′ (�k, �Q) satisfy the eigenvalue equations [26],

[Ec,s(�k + (me/mex) �Q) − Ev,s ′ (�k − (mh/mex) �Q)]φL
α,s,s ′ (�k, �Q)

− 1

A

∑
�k′

V (�k − �k′)φL
α,s,s ′ (�k′, �Q)

[
fv,s ′

(
�k′ − mh

mex

�Q
)

− fc,s

(
�k′ + me

mex

�Q
)]

= Es,s ′,α( �Q)φL
s,s ′,α(�k, �Q). (A13)

[Ec,s(�k + (me/mex) �Q) − Ev,s ′ (�k − (mh/mex) �Q)]φR
α,s,s ′ (�k, �Q) −

[
fv,s ′ (�k − mh

mex

�Q) − fc,s(�k + me

mex

�Q)

]

× 1

A

∑
�k′

V (�k − �k′)φR
α,s,s ′ (�k′, �Q)

= Es,s ′,α( �Q)φR
s,s ′,α(�k, �Q). (A14)

The exciton wave functions satisfy the orthogonality and completeness relations,

∫
d2�k

(2π )2

[
φL

s,s ′,α(�k, �Q)
]∗

φR
s,s ′,β(�k, �Q) = δα,β (A15)

∑
α

φL
s,s ′,α(�k, �Q)

[
φR

s,s ′,α(�k′, �Q)
]∗ = (2π )2δ2(�k − �k′). (A16)

We also define

ψ
L/R

s,s ′,α(�k, �Q) = φ
L/R

s,s ′,α(�k, �Q)ei(τφ�k+(me/mex ) �Q+τ ′φ�k′−(mh/mex ) �Q)/2
. (A17)

The exciton creation operator B
†
s,s ′,α( �Q) is defined as

B
†
s,s ′,α( �Q) = 1√

A

∑
�k

ψL
s,s ′,α(�k, �Q)c†�k+ me

mex
�Q,s

b�k− mh
mex

�Q,s ′ . (A18)

Using the completeness and the orthogonality of the exciton wave functions given in (A16) and (A15), we get

c
†
�k,s

b�k′,s ′ = 1√
A

∑
α

ψR
s,s ′,α(�kr , �Q)B†

s,s ′,α( �Q), (A19)

where �kr and �Q equal (mh/mex)�k + (me/mex)�k′ and �k − �k′ on the left-hand side, respectively.
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