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Radiative and nonradiative exciton energy transfer in monolayers of two-dimensional group-VI
transition metal dichalcogenides
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We present results on the rates of interlayer energy transfer between excitons in monolayers of two-dimensional
group-VI transition metal dichalcogenides (TMDs). We consider both radiative (mediated by real photons) and
nonradiative (mediated by virtual photons) mechanisms of energy transfer using a unified Green’s function
approach that takes into account modification of the exciton energy dispersions as a result of interactions. The
large optical oscillator strengths associated with excitons in TMDs result in very fast energy transfer rates. The
energy transfer times depend on the exciton momentum, exciton linewidth, and the interlayer separation and
can range from values less than 100 femtoseconds to more than tens of picoseconds. Whereas inside the light
cone the energy transfer rates of longitudinal and transverse excitons are comparable, outside the light cone the
energy transfer rates of longitudinal excitons far exceed those of transverse excitons. Average energy transfer
times for a thermal ensemble of longitudinal and transverse excitons is temperature dependent and can be smaller
than a picosecond at room temperature for interlayer separations smaller than 10 nm. Energy transfer times of
localized excitons range from values less than a picosecond to several tens of picoseconds. When the exciton
scattering and dephasing rates are small, energy transfer dynamics exhibit coherent oscillations. Our results show
that electromagnetic interlayer energy transfer can be an efficient mechanism for energy exchange between TMD
monolayers.
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I. INTRODUCTION

The optoelectronic properties of 2D transition metal
dichalcogenide (TMD) monolayers are dominated by excitons
[1–3]. Distinguishing features of the excitons in 2D metal
dichalcogenides are the large exciton binding energies and
the strong exciton-photon interactions [1–7]. Recently, exciton
polaritons have been also studied experimentally and theoret-
ically in these materials [7–11]. The strong exciton-photon
coupling results in spontaneous emission radiative lifetimes
in the hundreds of femtoseconds range [7,12–14]. The strong
exciton-photon coupling suggests that the rates for interlayer
energy transfer between excitons in parallel TMD monolayers
would also be fast.

In electronically coupled 2D TMD monolayers, ultrafast
energy transfer via interlayer charge transfer has been observed
[15–17]. In this paper, we study the rate of transfer of energy
between excitons in parallel (electronically decoupled) TMD
monolayers as a result of electromagnetic coupling. The
mechanism for this energy exchange could be both radiative
(mediated by propagating photons for exciton states within
the light cone [7]) or nonradiative (mediated by evanescent
photons that are bound to the exciton states outside the light
cone in an isolated TMD layer as exciton polaritons but can
mediate energy exchange between two TMD layers if the
two TMD layers are close enough). The latter mechanism
is the same as the well known Forster resonance energy trans-
fer (FRET) mechanism due to dipole-dipole coupling [18].
However, the use of the standard FRET dipole-dipole energy
exchange formulas in the present case gives erroneous results
since it ignores the retarded nature of the exciton interlayer
interaction [19,20]. The quantum electrodynamic Green’s
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function approach used here treats both these mechanisms
on equal footing while taking into account the corrections to
the longitudinal and the transverse exciton energy dispersion
relations due to coupling with the radiation.

The energy transfer times depend on the exciton momen-
tum, exciton intralayer scattering rates, and the interlayer sepa-
ration. Our results show that the large exciton optical oscillator
strengths in TMD monolayers result in energy transfer times
shorter than 100 fs for longitudinal excitons for interlayer
spacings smaller than 10 nm. Average energy transfer times
for a thermal ensemble of longitudinal and transverse excitons
can be smaller than a picosecond. We also consider localized
excitons and find that localized longitudinal excitons can
also have energy transfer times shorter than a picosecond
for interlayer spacings smaller than 10 nm. If the exciton
scattering rates are fast, energy transfer involves a simple decay
of energy from one layer to the other. If the exciton scattering
rates are slow, energy transfer dynamics can exhibit coherent
oscillations. Conditions for observing such oscillations are
discussed in this paper. Our results show that electromagnetic
interlayer energy transfer can be an efficient mechanism
for energy exchange between electronically uncoupled TMD
monolayers and can even compete with the interlayer charge
transfer mechanism in the case of electronically coupled TMD
layers.

Section II discusses exciton states in TMDs, longitudinal
and transverse excitons in TMDs, and the Hamiltonian terms
that describe exciton-photon interaction in TMDs. Sections III
and IV present the main results of this paper on the energy
transfer rates between two TMD layers. Section V presents
numerical results for energy transfer rates between two MoS2

layers. Section VI considers the case where the exciton
intralayer scattering and dephasing rates are small and energy
transfer dynamics exhibit coherent oscillations. Sections VII
and VIII discuss some special cases, including that of
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localized excitons and energy transfer between excitons and
free electron-hole pairs in TMD heterolayers. The Appendix
discusses exciton self-energies and energy dispersions in TMD
monolayers in the presence of exciton-photon interaction.
Although most of the numerical results presented in this paper
are for MoS2 monolayers, the analysis and the results presented
are expected to be relevant to all TMDs and are expected
to be useful in realizing new kinds of metal dichalcogenide
optoelectronic devices based on energy transfer.

II. PRELIMINARIES

A. Energy bands in TMDs

The conduction and valence bands in monolayer TMDs
near the K and K ′ points in the Brillouin zone are described
by the Hamiltonian [21],[

�/2 �vk−
�vk+ −�/2 + λτσ

]
. (1)

Here, � is related to the material band gap, σ = ±1 stands for
the electron spin, τ = ±1 stands for the K and K ′ valleys, 2λ

is the splitting of the valence band due to spin-orbit coupling,
k± = τkx ± iky , and the velocity parameter v is related to the
coupling between the orbitals on neighboring M atoms. From
density functional theories [22,23], v ≈ 5 − 6 × 105 m/s. The
wave vectors are measured from the K(K ′) points. The d-
orbital basis used in writing the above Hamiltonian are |dz2〉
and (|dx2−y2〉 + iτ |dxy〉)/

√
2 [21]. We will use the symbol s for

the combined valley (τ ) and spin (σ ) degrees of freedom. The
intravalley momentum matrix element between the conduction
and valence band states near K(K ′) points follows from the
above Hamiltonian,

�Pvc,s(�k′,�k)

= 〈vv,�k′,s | �̂P |vc,�k,s〉
= mov [(x̂ + iτ ŷ) cos(θ�k′,s/2) cos(θ�k,s/2)e−iτ (φ�k′ +φ�k )/2

−(x̂ − iτ ŷ) sin(θ�k′,s/2) sin(θ�k,s/2)eiτ (φ�k′ +φ�k )/2]. (2)

Here, mo is the free electron mass, φ�k is the phase of the
wavevector �k, and

cos(θ�k,s) = �s

2
√

(�s/2)2 + (�vk)2
. (3)

Near the band extrema, cos(θ�k,s) → 1 and �Pvc,s(�k′,�k) →
mov (x̂ + iτ ŷ)e−iτ (φ�k′+φ�k )/2.

B. Exciton states in TMDs

Exciton states in TMDs have been discussed in detail in
several published works [4–7,24]. We assume an undoped
intrinsic TMD layer. The creation operator for an exciton state
with center-of-mass momentum �Q is defined as [7,24],

B
†
�Q,s,α

= 1√
A

∑
�k

ψ �Q,s,α(�k)c†�k+λe
�Q,s

b�k−λh
�Q,s. (4)

c�k,s and b�k,s are the destruction operators for the conduction

band and valence band electron states, respectively, ψ �Q,s,α(�k)

is the exciton relative wave function, and A is the area of
the TMD monolayer. λe = me/mex , λe = mh/mex , mex =
me + mh, where me, mh, and mex are the effective masses of
electrons, holes, and excitons, respectively [7]. The subscript
α corresponds to the different bound exciton levels. Only
optically active exciton levels (whose relative wave function
have a nonzero amplitude at zero relative distance) will be
considered here. The exciton Hamiltonian can be written
approximately as,

Hex =
∑
�Q,α,s

Eex,α( �Q) B
†
�Q,s,α

B �Q,s,α. (5)

Here, Eex,α( �Q) is the exciton energy measured with respect
to the ground state consisting of a filled valence band and an
empty conduction band.

C. Exciton-photon interaction in TMDs: Exciton-polaritons

The quantized radiation field is [25,26]

�A(�r) =
∑
�q,j

√
�

2εoωq

[n̂�q,j a�q,j + n̂∗
−�q,j a

†
−�q,j

]
ei �q.�r
√

V

=
∑
�q,j

√
�

2εoωq

�R�q,j

ei �q.�r
√

V
. (6)

Here, n̂�q,j for j = 1,2 are the field polarization vectors and
a�q,j is the field destruction operator for a mode with wave
vector �q and frequency ωq . We assume a TMD monolayer
occupying the x-y plane located at z along the z axis. The
interaction between the electrons and photons is given by the
Hamiltonian,

Hint =
∑
j,s

H+
j,s + H−

j,s (7)

where,

H−
j,s = e

mo

∑
�q,�k‖,α

√
�

2V Aεoωq

e−iqzz

× �R−�q,j · �Pvc,s(�k‖ − λh �q‖,�k‖ + λe �q‖)ψ�q‖,s,α(�k‖)B�q‖,s,α

(8)

and H+
j,s = [H−

j,s]
†. We have expressed the field wave vector

�q in terms of the in-plane component �q‖ and the out-of-plane
component qzẑ.

1. Transformation to decoupled longitudinal
and transverse exciton basis

Excitons belonging to a particular valley (K or K ′) are
not the eigenstates in the presence of long-range dipole-dipole
interactions [7]. It is therefore convenient to switch excitons
basis. Transverse and longitudinal exciton states, which are
superpositions of exciton states belonging to the two valleys,
are a much better choice. Transverse exciton exciton states
couple with only TE polarized (or s-polarized) radiation and
longitudinal exciton states couple with only TM polarized (or
p-polarized) radiation [7]. We define creation operators for
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transverse (T ) and longitudinal (L) exciton states as follows,

B
†
�q‖,L,α

= 1√
2

[e−iφ�q‖ B
†
�q‖,τ=1,α

+ e
iφ�q‖ B

†
�q‖,τ=−1,α

]

B
†
�q‖,T ,α

= i√
2

[e−iφ�q‖ B
†
�q‖,τ=1,α

− e
iφ�q‖ B

†
�q‖,τ=−1,α

]. (9)

We also define exciton operator C�q‖,L/T ,α and photon operator
R�q,L/T as

C�q‖,L/T ,α = B�q‖,L/T ,α + B
†
−�q‖,L/T ,α

R�q,L/T = a�q,L/T + a
†
−�q,L/T

. (10)

The optical matrix element can be expressed in terms of
χex,α(�r,�q‖),

χex,α(�r,�q‖)

=
∫

d2�k‖
(2π )2

�Pvc,s(�k‖ − λh �q‖,�k‖ + λe �q‖).x̂ψ�q‖,s,α(�k‖)ei�k‖.�r .

(11)

Using these definitions, the exciton-photon Hamiltonian be-
comes

Hint = HL + HT (12)

where,

HL = e

mo

∑
�q,α

√
A�

V εoωq

e−iqzz

×χex,α(�r = 0,�q‖)
|qz|
q

R−�q,L C�q‖,L,α

HT = e

mo

∑
�q,α

√
A�

V εoωq

e−iqzz

×χex,α(�r = 0,�q‖)R−�q,T C�q‖,T ,α. (13)

The basis transformation decouples the longitudinal and
transverse exciton polaritons. In what follows we will assume
that χex,α(0,�q‖) is real. If it had a phase, it could be absorbed
in φ�q‖ used to define the operators B�q‖,L/T ,α above.

2. Accounting for the twist angle of the TMD monolayers

The two TMD monolayers shown in Fig. 1 can be
twisted with respect to each other. Suppose the second TMD
monolayer is twisted at an angle θo with respect to the first
layer. The optical matrix elements of the second layer acquire
constant phase factors which can be absorbed in the definitions
of the longitudinal and transverse exciton states given in
Eq. (9) by letting φ�q‖ go to φ�q‖ − θo in Eq. (9). The resulting
exciton-photon Hamiltonian for the twisted layer will then
have the same form as given in Eq. (13). The exciton energy
transfer rates will therefore not depend on the twist angle
between the two monolayers. This result is not surprising
since exciton optical absorption in a TMD monolayer does
not depend on the direction of the in-plane light polarization.

3. The quadratic part of the interaction Hamiltonian

The interaction Hamiltonian used above ignores the
quadratic vector potential terms [7,27]. Following Girlanda

FIG. 1. Exciton energy transfer between two parallel TMD layers
separated by a distance d along the z axis. A MX2 TMD monolayer
consists of three layers of atoms: a layer of transition metal M atoms
sandwiched on both sides with layers of X atoms.

et al. [27], the form of these extra term is found to be,

Ĥ ′
int = Ĥ ′

L + Ĥ ′
T

Ĥ ′
L =

∑
�Q,α

Eex,α( �Q)

×
⎡
⎣ e

mo

∑
�q

δ�q‖, �Q

√
A�

V εoωq

eiqzz
|χex(0,�q‖)|
Eex,α(�q‖)

|qz|
q

R�q,L

⎤
⎦

×
⎡
⎣ e

mo

∑
�k

δ�k‖, �Q

√
A�

V εoωk

e−ikzz
|χex(0,�k‖)|
Eex,α(�k‖)

|kz|
k

R−�k,L

⎤
⎦

Ĥ ′
T =

∑
�Q,α

Eex,α( �Q)

×
⎡
⎣ e

mo

∑
�q

δ�q‖, �Q

√
A�

V εoωq

eiqzz
|χex(0,�q‖)|
Eex,α(�q‖)

R�q,T

⎤
⎦

×
⎡
⎣ e

mo

∑
�k

δ�k‖, �Q

√
A�

V εoωk

e−ikzz
|χex(0,�k‖)|
Eex,α(�k‖)

R−�k,T

⎤
⎦.

(14)

These terms must be added to the interaction Hamiltonian
when expressions for the exciton self-energies are calculated
[7].

D. Exciton spectral density functions

We define the exciton Green’s function G<
�Q,L/T ,α

(t − t ′) as
follows [28],

G<
�Q,L/T ,α

(t − t ′) = − i

�
〈B†

�Q,L/T ,α
(t ′)B �Q,L/T ,α(t)〉. (15)

The angular brackets indicate averaging with respect to an
ensemble of excitons. In the frequency domain,

G<
�Q,L/T ,α

(ω) = − i

�
A �Q,L/T ,α(ω)nB

�Q,L/T ,α
(ω). (16)
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Here, A �Q,L/T ,α(ω) is the exciton spectral density function
and nB

�Q,L/T ,α
(ω) is the exciton occupation factor and equals

the Bose-Einstein factor in thermal equilibrium. Most other
exciton Green’s functions can be obtained from the spec-
tral density function [28], which incorporates effects due
to exciton-photon interaction as well as intra-layer exciton
scattering. The average exciton number is

〈n �Q,L/T ,α〉 = 〈B†
�Q,L/T ,α

B �Q,L/T ,α〉

=
∫

dω

2π
i� G<

�Q,L/T ,α
(ω). (17)

The spectral density functions satisfy the sum rule,∫
dω

2π
A �Q,L/T ,α(ω) = 1. (18)

The energy dispersions Eex,L/T ,α( �Q) and the spectral density
functions of the transverse and longitudinal excitons in the
presence of exciton-photon interaction can be found from
the corresponding retarded Green’s functions [7], as shown
in the Appendix. A convenient phenomenological choice for
A �Q,L/T ,α(ω) is a Lorentzian,

A �Q,L/T ,α(ω) = 2�� �Q,L/T ,α

(�ω − Eex,L/T ,α( �Q))2 + �2
�Q,L/T ,α

. (19)

The FWHM exciton linewidth is 2� �Q,L/T ,α . The one instance
where the above simple Lorentzian form does not work well
is in the case of the transverse excitons right when the spectral
weight shifts between the two branches of the polariton
dispersion when moving from inside the light cone to outside
the light cone (see the Appendix).

III. RATES OF EXCITON ENERGY TRANSFER

We consider two parallel (not necessarily identical) elec-
tronically decoupled (but electromagnetically coupled) TMD
monolayers, labeled a and b, located at z = 0 and z = d,
respectively, as shown in Fig. 1. We assume that the exciton
intralayer scattering and dephasing rates are fast so that energy
transfer dynamics can be described as a simple decay. The
case where exciton scattering and dephasing rates are slow
and coherent dynamics are important is discussed later in this
paper in Sec. VI. We calculate the average of the rate of change
of the number of excitons with in-plane momentum �Q in layer
a as a result of electromagnetic coupling to layer b. The desired
Heisenberg operator is

ṅ �Q,L/T ,a,α =
d B

†
�Q,L/T ,a,α

B �Q,L/T ,a,α

dt

= − i

�
[n �Q,L/T ,a,α,Hint + H ′

int]. (20)

Note that the layer index (a or b) is added to the subscripts.
We calculate the average of the operator ṅ �Q,L/T ,a,α using the
nonequilibrium Green’s function technique [28],

〈ṅ �Q,L/T ,a,α(t)〉
= 〈

Tc

[
e− i

�

∫
c (Hint(t ′)+H ′

int(t
′))dt ′ ṅ �Q,L/T ,a,α(t)

]〉
. (21)

FIG. 2. Feynman diagrams representing the transfer of energy
between an exciton in layer a and an exciton in layer b by photon
exchange. Green’s functions of excitons (straight lines) and photons
(wavy lines) are shown in the figure. The subscripts a and b stand
for layer a and layer b, respectively. Internal variables, qz and kz, are
integrated over. (Left) Processes involving bare Green’s functions.
(Right) Dressed Green’s functions.

Here, Tc stands for operator contour ordering along the
Keldysh contour c that runs from time −∞ to +∞ and back
[28]. The angled brackets stand for averaging with respect
to the initial density matrix at time −∞ [28]. The above
expression can be evaluated in terms of Green’s functions
using standard perturbation techniques [28]. The lowest order
nonzero terms in the perturbative expansion above give the
rate of decrease of the exciton number due to spontaneous
emission into free-space, as discussed by Wang et al. [7].
The terms relevant to the present discussion correspond to
the Feynman diagrams depicted in Fig. 2 which represent
energy transfer between the excitons in the two layers. The
bare exciton Green’s functions of each layer in Fig. 2 are
dressed from, (i) intralayer photon interactions (or intralayer
long-range dipole-dipole interactions), as discussed by Wang
et al. [7], and from (ii) intralayer interactions responsible for
exciton scattering assuming these interactions are included in
the Hamiltonian.

The final result for the energy transfer rate RE can be written
in terms of the spectral density functions of the excitons in the
two layers. For the transverse excitons we get

RE = 〈ṅ �Q,T ,a,α(t)〉

= − 1

�2

∑
β

∫
dω

2π
A �Q,T ,a,α(ω)A �Q,T ,b,β (ω)

×
∣∣∣∣ηo

e2

m2
o

χex,a,α(0, �Q)χex,b,β (0, �Q)

∣∣∣∣
2 |ei

√
ω2−Q2c2d/c|2

|ω2 − Q2c2|
× [

nB
�Q,T ,a,α

(ω) − nB
�Q,T ,b,β

(ω)
]

(22)

and for the longitudinal excitons we obtain,

RE = 〈ṅ �Q,L,a,α(t)〉

= − 1

�2

∑
β

∫
dω

2π
A �Q,L,a,α(ω)A �Q,L,b,β (ω)

×
∣∣∣∣ηo

e2

m2
o

χex,a,α(0, �Q)χex,b,β (0, �Q)

∣∣∣∣
2

|ei
√

ω2−Q2c2d/c|2

× |ω2 − Q2c2|
ω4

[
nB

�Q,L,a,α
(ω) − nB

�Q,L,b,β
(ω)

]
. (23)

Note that the expressions above are valid for ω > Qc (radia-
tive transfer) as well as for ω < Qc (nonradiative transfer)
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provided in the latter case the replacement
√

ω2 − Q2c2 →
i
√

Q2c2 − ω2 is made. The above expressions represent the
main results of this paper.

IV. REMARKS ON THE ENERGY TRANSFER RATES

The following points regarding the expressions above need
to be noted:

(1) The rate of energy transfer depends on the overlap of
the spectral density functions of the excitons in the two layers.

(2) Outside the light cone, when ω < Qc, the energy
transfer is mediated via evanescent fields and the rate of
transfer decreases exponentially with interlayer separation d

as ∼e−2
√

Q2c2−ω2d/c.
(3) The energy transfer rates depend inversely on the exci-

ton linewidth (and, therefore, the exciton intralayer scattering
rates) via the exciton spectral density functions.

(4) The energy transfer rates depend on the dielectric
constants (or the refractive indices) of the media surrounding
the two monolayers. In the simple case when the media on
either side of the layers and also in between the layers have
the same dispersionless refractive index n, the impedance ηo

and the speed of light c in the above expressions get replaced
by ηo/n and c/n, respectively.

(5) Since the exciton state belonging to one valley can
be considered a superposition of transverse and longitudinal
exciton states, its energy transfer rate will be the average of
the energy transfer rates for the transverse and longitudinal
excitons.

(6) In the static limit, Qc  ω, the expressions for the en-
ergy transfer rates obtained for the longitudinal excitons have
the same form as those obtained previously for quantum well
excitons using the static dipole-dipole interaction Hamiltonian
[20], which is to be expected.

V. NUMERICAL RESULTS FOR THE EXCITON ENERGY
TRANSFER TIMES BETWEEN TWO MoS2 MONOLAYERS

For numerical evaluations of the results, we assume
two identical and parallel MoS2 layers at a distance d.
The electronic and optical parameter values used for MoS2

monolayers are the same as those given previously [6,7,24].
We first calculate the energy dispersions for the lowest energy
1s longitudinal and transverse excitons (as described in the
Appendix), and then use these to compute the energy transfer
rates. In numerical calculations, a momentum-independent
scattering-limited FWHM exciton linewidth of ∼30 meV is
assumed. Figure 3 shows the calculated energy transfer times
for both longitudinal and transverse excitons as a function
of the exciton in-plane momentum Q for different values of
the interlayer separation d (d = 5, 10, 25, and 50 nm). The
value of the momentum Qo, defined by �Qoc = Eex,1s(Qo), is
∼9.6 1/μm (see the Appendix). For Q � Qo (inside the light
cone), the energy transfer is via the radiative mechanism and
the energy transfer time is almost independent of Q. When
Q ∼ Qo, the cusps in the energy transfer times follow the
trends in the radiative lifetimes and the optical conductivities of
longitudinal and transverse excitons (see the Appendix). When
Q > Qo (outside the light cone), the energy transfer is via the
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FIG. 3. The calculated energy transfer times for the lowest energy
1s longitudinal (red dashed) and transverse (blue solid) excitons in
two parallel MoS2 monolayers are plotted as a function of the exciton
in-plane momentum Q for different values of the interlayer separation
d (d = 5, 10, 25, and 50 nm). The value of the momentum Qo, defined
by �Qoc = Eex,1s(Qo), is ∼9.6 1/μm (see the Appendix). A FWHM
exciton linewidth of ∼30 meV is assumed.

nonradiative mechanism (via evanescent waves). In the case
of the transverse excitons, the energy transfer rate decreases
(and the energy transfer time increases) exponentially with the
product ∼Qd (for large Q). In the case of the longitudinal
excitons, the energy transfer time first decreases with Q

because the in-plane component of the evanescent radiation
also increases with Q, and then the energy transfer time
increases exponentially with the product ∼Qd (for large Q).
Note that for interlayer separations d less than 10 nm, the
energy transfer times for the longitudinal excitons can be in the
hundreds of femtoseconds range or even smaller. These results
show the efficacy of the exciton energy transfer mechanism in
TMD monolayers.

Simple expressions for the energy transfer times τE, �Q,L/T ,α

can be found for two identical TMD layers when Q < Qo

and Q > Qo (i.e., away from Q = Qo) assuming Lorentzian
spectral density functions,

1

τE, �Q,T ,α

≈ �

2γ

(
2ηo

e2

m2
o

|χex,α(0, �Q)|2
)2

e
2i
√

f �Q,T ,αd/�c

|f �Q,T ,α| (24)

1

τE, �Q,L,α

≈ �

2γ

(
2ηo

e2

m2
o

|χex,α(0, �Q)|2
)2

× e
2i
√

f �Q,L,αd/�c
|f �Q,L,α|

E4
ex,L,α( �Q)

(25)

where γ = (� �Q,L/T ,a,α + � �Q,L/T ,b,α), f �Q,L/T ,α =
(E2

ex,L/T ,α( �Q) − �
2Q2c2), and

√
f �Q,L/T ,α = i

√
|f �Q,L/T ,α|

when f �Q,L/T ,α < 0 outside the light cone. For Q < Qo

(radiative energy transfer) the above expressions can be
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FIG. 4. The calculated average energy transfer times for a thermal
ensemble of (1s) longitudinal and transverse excitons in two parallel
MoS2 monolayers are plotted as a function of the exciton temperature
for different for different values of the interlayer separation d (d = 5,
10, 25, and 50 nm). The exciton FWHM linewidth is assumed to be
30 meV.

written as,

1

τE, �Q,L/T ,α

≈ �

2γ

(
1

τsp, �Q,L/T ,α

)2

. (26)

Here, τsp, �Q,L/T ,α is the spontaneous emission radiative lifetime
of excitons in a single TMD layer [7] (see the Appendix). In the
case of two MoS2 monolayers, τsp, �Q≈0,L/T ,1s is around 200 fs
(for 1s excitons) [7]. Assuming FWHM exciton linewidths of
∼30 meV [6,29] and ∼10 meV, the radiative energy transfer
times are ∼3.6 ps and ∼1.2 ps, respectively. Although these
times seem short, the radiative energy transfer process will
not be very efficient (efficiency less than ∼15%) because the
spontaneous emission time is also very short and only a small
fraction of the photons emitted from one layer get absorbed by
the other layer.

Despite the fast energy transfer rates for the longitudinal
excitons when Q > Qo, their contribution to the energy
transfer process is expected to be limited by the relatively small
density of the longitudinal excitons in a thermal ensemble
of excitons since Eex,L,1s( �Q) > Eex,T ,1s( �Q) for Q > Qo (see
the Appendix). Figure 4 shows the calculated average energy
transfer times for a thermal ensemble of (1s) longitudinal
and transverse excitons as a function of the exciton temper-
ature. The exciton density is assumed to be dilute enough
such that the exciton chemical potential is less than the lowest
exciton energy level by at least several KT . The exciton
FWHM linewidth is assumed to be momentum independent
and equal to 30 meV. The results show that when the interlayer
separation is small then as the temperature increases, and the
density of the longitudinal excitons also increases relative
to the transverse excitons, the average energy transfer time
decreases. However, when the interlayer separation is large,
and the energy transfer is by excitons with only small momenta
(Q < 1/d), an increase of the temperature results in an
increase of the energy transfer time because the exciton thermal

distribution spills to larger momenta. Since the average exciton
energy transfer time of a thermal ensemble scales with the
average exciton FWHM linewidth, the average energy transfer
time can be shorter than a picosecond for interlayer separations
smaller than 10 nm and average exciton linewidths narrower
than 10 meV.

VI. COHERENT ENERGY TRANSFER DYNAMICS

In the previous section we assumed that the intralayer
exciton scattering and dephasing rates are slow and energy
transfer dynamics can be described as a simple decay. Here
we quantify this notion and also discuss coherent interlayer
energy transfer dynamics. First, we evaluate corrections to
the exciton dispersions as a result of interlayer radiative and
nonradiative interactions.

We consider two parallel and identical electronically de-
coupled (but electromagnetically coupled) TMD monolayers,
labeled a and b, located at z = 0 and z = d, respectively,
as shown earlier in Fig. 1. The analysis is greatly simplified
if we define operators for the in-phase (‘+’ exciton) and
out-of-phase (‘−’ exciton) excitons in the two layers as follows
[30],

B�q‖,L/T ,±,α = B�q‖,L/T ,a,α ± B�q‖,L/T ,b,α√
2

. (27)

The ‘+’ and ‘−’ excitons have their dipole moments in-phase
and out-of-phase, respectively. The retarded Green’s functions
and self-energies for the ‘+’ and ‘−’ excitons can be found
using the methods described in the Appendix,

GR
�q‖,L/T ,±,α(ω)

=
2Eex,α(�q‖)

[
1 − 2 �oR

�q‖,L/T ,±,α
(ω)/Eex,α(�q‖)

]
(�ω)2 − Eex,α(�q‖)2 − 2 (�ω)2

Eex,α(�q‖)�
oR
�q‖,L/T ,±,α

(ω)

≈ 2Eex,α(�q‖)

(�ω)2 − Eex,α(�q‖)2 − 2 (�ω)2

Eex,α(�q‖)�
oR
�q‖,L/T ,±,α

(ω)
. (28)

Here,

�oR
�q‖,L/T ,±,α(ω) = �oR

�q‖,L/T ,α(ω)[1 ± ei
√

ω2−q2
‖ c2d/c]. (29)

�oR
�q‖,L/T ,α

(ω) is the retarded self-energy for excitons in a single
TMD layer and its expression was given previously [7] (also
see the Appendix). The expression above is valid for ω >

q‖c as well as for ω < q‖c provided in the latter case the

replacement
√

ω2 − q2
‖c

2 → i
√

q2
‖c

2 − ω2 is made. It is clear
from the above expression for the self-energy that in the limit
d → 0 the out-of-phase ‘−’ excitons do not radiate whereas
the radiative rates of the in-phase ‘+’ excitons are twice as
fast as those of excitons in a single TMD layer. The energy
splitting between the ‘+’ and ‘−’ excitons due to interlayer
interactions can be estimated as

��q‖,L/T ,α

= Real
[
2�oR

�q‖,L/T ,α(ω)ei
√

ω2−q2
‖ c2d/c

]
�ω=Eex,L/T ,α (�q‖). (30)

Since an exciton state in any one of the two TMD layers
can be considered a superposition of the in-phase and the
out-of-phase exciton states, if the energy splitting ��q‖,L/T ,α
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FIG. 5. Calculated energy splittings between the ‘+’ and ‘−’
excitons are plotted for the transverse (blue-solid) and longitudinal
(red-dashed) excitons for the lowest energy (1s) exciton state in two
suspended MoS2 monolayers as a function of the in-plane momentum
Q for different values of the interlayer spacing d . The value of the
momentum Qo, defined by �Qoc = Eex,1s(Qo), is ∼9.6 1/μm.

due to interlayer interactions is much larger than the exciton
linewidth due to intralayer scattering and dephasing then
coherent energy oscillations between exciton states in the two
layers are expected at the frequency ��q‖,L/T ,α/�, and energy
transfer between the layers cannot be described as a simple
decay of energy from one layer to the other.

The calculated energy splittings between the ‘+’ and ‘−’
excitons are plotted in Fig. 5 for the lowest energy (1s) exciton
state in two suspended MoS2 monolayers as a function of the
in-plane momentum Q for different values of the interlayer
spacing d (d = 5, 10, 25, and 50 nm). Inside the light cone,
the energy splittings are small (less than 1–2 meV) for all
values of d considered. The energy splittings are smaller than
the natural linewidth of excitons in a single MoS2 layer due
to radiative decay. Consequently, coherent energy oscillations
are not expected for excitons inside the light cone. Outside the
light cone, the energy splittings for the longitudinal excitons
become large reaching values larger than ∼25 meV for d less
than 5 nm. However, these large energy splittings occur at
large values of the exciton momenta where exciton intralayer
scattering is also expected to be fast and the condition for
coherent oscillations might be difficult to meet. If, outside the
light cone, exciton scattering rates are small then the coherent
dynamics of the average exciton layer number 〈n �Q,L/T ,a/b,α〉
can be modeled by the following equation similar to that of a
damped simple harmonic oscillator,[

d2

dt2
+ γ

�

d

dt
+

�2
�Q,L/T ,α

�2

]
〈n �Q,L/T ,a/b,α(t)〉 = 1

2

�2
�Q,L/T ,α

�2

(31)

Here, γ = (� �Q,L/T ,a,α + � �Q,L/T ,b,α) is related to the exciton
scattering and dephasing rate and the appropriate boundary
conditions are

n �Q,L/T ,a,α(t = 0) = 1

n �Q,L/T ,b,α(t = 0) = 0. (32)

If � �Q,L/T ,α > γ/2, then the above equation predicts damped
oscillations at the frequency � �Q,L/T ,α/�. On the other hand,
if � �Q,L/T ,α � γ /2, then the above equation gives a simple
exponential decay of energy from layer a to layer b at the
rate �2

�Q,L/T ,α
/(2�γ ). This latter result is almost exactly what

was obtained earlier in Eqs. (24) and (25). In the absence of
quantitative models or experimental data for exciton scattering
in TMDs it is difficult to say if coherent energy oscillations are
possible in TMDs. In the case of localized excitons, discussed
next, momentum spread due to localization also contributes to
the decoherence of the oscillations.

VII. ENERGY TRANSFER RATES
FOR LOCALIZED EXCITONS

A. Energy transfer rates for a localized exciton in layer a and
free excitons in layer b

The analysis in the previous sections shows that the
longitudinal excitons with momenta Q in the Qo < Q < 1/d

range have the shortest energy transfer times, but the density of
such excitons is relatively small in a thermal ensemble at low
temperatures thus limiting the average energy transfer rates.
Localized excitons, whose wave function is a superposition
of exciton states of different momenta, could overcome these
limitations and exhibit fast energy transfer rates even at low
temperatures. We consider an initial exciton state in layer a

that is localized in space in a region of size Lc. We assume that
the exciton wave function for the center of mass coordinate in
real and Fourier spaces is

ψcom( �R) = 1√
πL2

c

e−R2/2L2
c

ψcom( �Q) =
√

4πL2
ce

−Q2L2
c/2. (33)

A localized exciton state can be constructed from the ground
state |ψo〉, corresponding to a filled valence band and an empty
conduction band, as follows [7],

|ψL/T,a,α〉ex = 1√
A

∑
�Q

ψcom( �Q)B†
�Q,L/T ,a,α

|ψo〉. (34)

Assuming the above localized state as the initial state, with a
spectral density function AL/T,a,α(ω) with HWHM linewidth
of �L/T,a,α and centered at the energy Eex,L/T ,a,α , the rate of
energy transfer to free excitons in layer b for the transverse
case is found to be,

RE = − 1

�2

∑
β

∫
d2 �Q
(2π )2

|ψcom( �Q)|2

×
∫

dω

2π
AT,a,α(ω)A �Q,T ,b,β (ω)

×
∣∣∣∣ηo

e2

m2
o

χex,a,α(0, �Q)χex,b,β (0, �Q)

∣∣∣∣
2 |ei

√
ω2−Q2c2d/c|2

|ω2 − Q2c2|
× [

nB
T,a,α(ω) − nB

�Q,T ,b,β
(ω)

]
(35)
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and for the longitudinal case we obtain,

RE = − 1

�2

∑
β

∫
d2 �Q
(2π )2

|ψcom( �Q)|2

×
∫

dω

2π
AL,a,α(ω)A �Q,L,b,β (ω)

×
∣∣∣∣ηo

e2

m2
o

χex,a,α(0, �Q)χex,b,β (0, �Q)

∣∣∣∣
2

|ei
√

ω2−Q2c2d/c|2

×|ω2 − Q2c2|
ω4

[
nB

L,a,α(ω) − nB
�Q,L,b,β

(ω)
]
. (36)

Again note that the expressions above are valid for
ω < Qc (nonradiative transfer) provided the replacement√

ω2 − Q2c2 → i
√

Q2c2 − ω2 is made.
Simpler expressions can be obtained in some special

cases. Suppose there exists an exciton state β with momen-
tum Q∗ and a corresponding energy E∗ in layer b which
satisfies the energy conservation relation Eex,L/T ,b,β (Q∗) =
Eex,L/T ,b,β (Q = 0) + E∗ = Eex.L/T ,a,α . If the exciton in layer
a is strongly localized such that the energy spread of the free
excitons in layer b corresponding to the momentum spread
of the localized exciton in layer a is much greater than
γ = (�L/T,a,α + � �Q,L/T ,b,α), coherent oscillations will not be
possible. If Q∗ < Qo and Q∗ > Qo (i.e., away from Q∗ = Qo)
then, assuming Lorentzian spectral density functions, the
energy transfer times can be written as,

1

τE,T ,α

≈ π�

2
gex,T ,b,β (E∗)|ψcom(Q∗)|2

×
(

2ηo

e2

m2
o

|χex,a,α(0, �Q∗)χex,b,β (0, �Q∗)|
)2

× e2i
√

fT,a,αd/�c

|fT,a,α| (37)

1

τE,L,α

≈ π�

2
gex,L,b,β (E∗)|ψcom(Q∗)|2

×
(

2ηo

e2

m2
o

|χex,a,α(0, �Q∗)χex,b,β (0, �Q∗)|
)2

× e2i
√

fL,a,αd/�c |fL,a,α|
E4

ex,L,a,α

(38)

where fL/T,a,α = (E2
ex,L/T ,a,α − �

2Q2c2), and
√

fL/T,a,α =
i
√|fL/T,a,α| when fL/T,a,α < 0 outside the light cone. Here,

gex,L/T ,b,β (E) is the density of states of free excitons in layer b.
Note that in this case the energy transfer times do not depend on
the scattering/dephasing rate given by γ . Assuming α = β, the
expressions above differ from the corresponding expressions
for free excitons, given earlier in Eqs. (24) and (25), by
a multiplicative factor of πγgex,L/T ,b,α(E∗)|ψcom(Q∗)|2. For
strongly localized excitons, this factor is of the order of unity
and therefore energy transfer times for strongly localized 1s

excitons in MoS2, when plotted as a function of Q∗, are
expected to be similar to those appearing in Fig. (3).

B. Energy transfer rates for a localized exciton in layer a and a
localized exciton in layer b

We now consider the case in which the final exciton
state in layer b is also localized. The center of mass wave
functions of the excitons in layer a and b in real space are
centered at the in-plane vectors �ρa and �ρb, respectively, and in
momentum space these wave functions are ψcom,a(�q‖)e−i �q‖. �ρa

and ψcom,b(�q‖)e−i �q‖. �ρb , respectively, where ψcom,a/b(�q‖) are as
given earlier in Eq. (33). The vector �r connects the center of the
exciton states, �r = ( �ρb − �ρa) + dẑ. The rate of energy transfer
for the transverse case is found to be,

RE = − 1

�2

∑
β

∫
dω

2π
AT,a,α(ω)AT,b,β (ω)

×
∣∣∣∣∣
∫

d3 �q
(2π )3

ψ∗
com,b(�q‖)ψcom,a(�q‖) ei �q.�r 2c

ω2 − ω2
q + iη

× ηo

e2

m2
o

χex,a,α(0,�q‖)χex,b,β (0,�q‖)

∣∣∣∣
2

× [
nB

T,a,α(ω) − nB
T,b,β (ω)

]
(39)

and for the longitudinal case we get,

RE = − 1

�2

∑
β

∫
dω

2π
AL,a,α(ω)AL,b,β (ω)

×
∣∣∣∣∣
∫

d3 �q
(2π )3

ψ∗
com,b(�q‖)ψcom,a(�q‖) ei �q.�r 2c

ω2 − ω2
q + iη

×
(

1 − q2
‖

ω2/c2

)
ηo

e2

m2
o

χex,a,α(0,�q‖)χex,b,β (0,�q‖)

∣∣∣∣∣
2

× [
nB

L,a,α(ω) − nB
L,b,β (ω)

]
. (40)

An interesting case is that of extremely localized excitons
for which Lc � �c/Eex,L/T ,a/b and Lc � d. Assuming wave-
vector independent values of χex,a/b,α/β (0,�q‖) and using the
results,∫

d3 �q
(2π )3

ei �q.�r 1

ω2 − ω2
q + iη

= − ei ω
c
r

4πrc2

∫
d3 �q

(2π )3
ei �q.�r

(
1 − q2

‖
ω2/c2

)
ω2 − ω2

q + iη
= − ei ω

c
r

4πr3ω2

(
1 − i

ω

c
r

)
,

(41)

the above expressions for RE , in the limit (ω/c)r � 1, give a
1/r2 dependence of the energy transfer rate for the transverse
case and a 1/r6 dependence for the longitudinal case. It
is satisfying to note that the former result corresponds to
the classical inverse square law for radiative energy transfer
and the latter corresponds to the standard Forster’s result
for nonradiative energy transfer via dipole-dipole interaction
[18,31]. In the longitudinal case, if one integrates the energy
transfer rate over the in-plane position �ρb of the final exciton
state, then the total energy transfer rate will scale as 1/d4 with
the interlayer separation.
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VIII. ENERGY TRANSFER RATES FOR AN EXCITON IN
LAYER a AND FREE ELECTRON-HOLE PAIRS IN LAYER b

In many cases of practical interest where the optical band
gaps and/or the exciton binding energies in two different TMD
monolayers are very different, the energy transfer can be from
the excitons in the wider band-gap TMD layer to the free
electron-hole pairs in the narrower band-gap TMD layer. For
example, this could be the case in two parallel monolayers of
MoS2 and MoTe2 [32].

We assume that an exciton in layer a with momentum �Q
decays into a free electron-hole pair in layer b. We assume
that the energy emission and absorption remains close to the
conduction and valence band edges at K and K ′ valleys so that
the standard optical selection rules are not violated. Since a
free electron-hole pair can be considered an unbound exciton,
the expressions for the rate of energy transfer between excitons
given in the main text are also valid for energy transfer between

excitons in layer a and free electron-hole pairs in layer b

provided the relative exciton wave function in layer b is
assumed to be a plane wave, the exciton energy dispersion
in layer b is replaced by that of a free electron-hole pair, and
the summation over the final exciton states (i.e., over β) in
layer b is replaced by a phase space integral over the relative
wave vector.

We assume that the free electron-hole pair in layer b is
described by the spectral density function A�k, �Q,b(ω) with

HWHM linewidth ��k, �Q,b. Here, �k is the relative momentum

of the electron-hole pair and �Q is the center of mass
momentum and the spectral density function is centered at the
energy Eg,b + �

2k2/2mr,b + �
2Q2/2mex,b. mr,b is the reduced

electron-hole mass in layer b, mex,b is the exciton mass in layer
b, and Eg,b is the band gap of layer b.

For the case of the transverse excitons in layer a

we get,

RE = 〈ṅ �Q,T ,a,α(t)〉 = − 1

�2

∫
d2�k

(2π )2

∫
dω

2π
A �Q,T ,a,α(ω)A�k, �Q,b(ω)

∣∣∣∣ηo

e2

m2
o

χex,a,α(0, �Q)χ�k,b( �Q)

∣∣∣∣
2 |ei

√
ω2−Q2c2d/c|2

|ω2 − Q2c2|
× {

nB
�Q,T ,a,α

(ω)[fv(�k − λh,b
�Q) − fc(�k + λe,b

�Q)] − fc(�k + λe,b
�Q)[1 − fv(�k − λh,b

�Q)]
}

(42)

and for the longitudinal excitons we obtain,

RE = 〈ṅ �Q,L,a,α(t)〉 = − 1

�2

∫
d2�k

(2π )2

∫
dω

2π
A �Q,L,a,α(ω)A�k, �Q,b(ω)

∣∣∣∣ηo

e2

m2
o

χex,a,α(0, �Q)χ�k,b( �Q)

∣∣∣∣
2

|ei
√

ω2−Q2c2d/c|2

×|ω2 − Q2c2|
ω4

{
nB

�Q,L,a,α
(ω)[fv(�k − λh,b

�Q) − fc(�k+λe,b
�Q)]−fc(�k+λe,b

�Q)[1−fv(�k−λh,b
�Q)]

}
. (43)

fc/v are the layer b conduction and valence band electron occupation factors, and χ�k,b( �Q) is related to the interband momentum
matrix element in layer b by the expression,

χ�k,b( �Q) = �Pvc,s(�k − λh
�Q,�k + λe

�Q).x̂e
i[τφ�k+λe �Q+τφ�k−λh

�Q]
. (44)

We define the momentum k∗ and the energy E∗ by the energy conservation relations, Eex,L/T ,a,α(Q) = Eg,b + E∗ + �
2Q2/2mex,b

and E∗ = �
2(k∗)2/2mr,b. Given the number of possible final states (corresponding to different values of �k) and the fast electron

and hole scattering rates in TMDs, we don’t expect coherent oscillations. Assuming that the narrower band-gap material is in the
ground state with a full valence band and an empty conduction band, the energy transfer times can be expressed as,

1

τE,T ,α

≈ π�

2
gfree,b(E∗)

(
2ηo

e2

m2
o

|χex,a,α(0, �Q)χ�k∗,b( �Q)|
)2

e
2i
√

f �Q,T ,a,αd/�c

|f �Q,T ,a,α| (45)

1

τE,L,α

≈ π�

2
gfree,b(E∗)

(
2ηo

e2

m2
o

|χex,a,α(0, �Q)χ�k∗,b( �Q)|
)2

e
2i
√

f �Q,L,a,αd/�c
|f �Q,L,a,α|

E4
ex,L,a,α( �Q)

(46)

where f �Q,L/T ,a,α = (E2
ex,L/T ,a,α( �Q) − �

2Q2c2), and√
f �Q,L/T ,a,α = i

√
|f �Q,L/T ,a,α| when f �Q,L/T ,a,α < 0 outside

the light cone. Here, gfree,b(E) is the joint density of states
for the creation of free electron-hole pairs (per valley/spin)
in layer b. Again note that the energy transfer times do not
depend on the scattering/dephasing rate. The expressions
above differ from the corresponding expressions for free
excitons, given earlier in Eqs. (24) and (25), by a multiplicative
factor of πγgfree,b(E∗)|χ�k∗,b( �Q)/χex,a,α(0, �Q)|2. This factor is
expected to be much smaller than unity for most TMD pairs.
Still, the energy transfer times for longitudinal excitons in

layer a can range from a picosecond to tens of picoseconds
(depending on the initial exciton momentum �Q and the
magnitude of the joint density of states for free electron-hole
pair creation in layer b) for interlayer spacings smaller than
10 nm.

As an example, we consider the case of MoS2 and MoTe2

layers. The exciton optical absorption energy in MoS2 is
∼1.9 eV and the quasiparticle bandgap Eg,b of MoTe2 is
∼1.7 eV. Assuming an exciton FWHM of 30 meV in MoS2

and parameters of MoTe2 as given in the literature [32], the
value of πγgf ee,b(E∗)|χ�k∗,b( �Q)/χex,a,1s(0, �Q)|2 is found to be
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in the 0.07–0.08 range (for different momenta of the initial
exciton state in MoS2). Therefore, the energy transfer times
between (1s) excitons in MoS2 and free electron-hole pairs
in MoTe2 will be approximately 12–14 times those given
in Fig. 3 for the case of 1s excitons in two identical MoS2

layers.

IX. CONCLUDING REMARKS

In this paper we presented results on the energy transfer
rates between excitons in 2D TMD monolayers. The results
show that the energy transfer rates can be very fast. Exciton
energy transfer can potentially be used to design novel
optoelectronic devices with TMD monolayers.

The results presented in this paper can be tested exper-
imentally. For example, the energy transfer rate from the
lowest energy (1s) excitons in one monolayer to higher
energy excitons or to free electron-hole pairs in another (and
different) monolayer can be determined by measuring the
photoluminescence efficiency and/or the photoluminescence
lifetime of the lowest energy (1s) excitons as a function of
the separation between the two monolayers. It might also
be possible to observe energy transfer more directly. Since
excitons in TMD monolayers can be generated (detected)
electrically via electron-hole injection (separation) in metal-
semiconductor junctions or in-plane pn-junctions [33,34],
exciton energy transfer rates between two identical TMD
monolayers can be studied as a function of the interlayer
separation by using one TMD layer as the source and the
other as the drain in the energy transfer process. Preliminary
experimental results using the former scheme have recently
been reported by Kozawa et al. [35].

The theory presented in this paper has certain limitations
and care needs to exercised when interpreting the results and
comparing these results with experiments:

(1) The technique used in this paper is valid provided the
exciton optical conductivity [6,29] σα(ω) satisfies |ηoσα(ω)| �
1, which is typically the case in TMDs [6,29]. If |ηoσα(ω)| � 1,
the vacuum field in the vicinity of the TMD layers will get
modified and the expression for the field given in Eq. (6) will
no longer be valid. The field would then need to be quantized
in the presence of the TMD layers [36], a task beyond the
scope of this paper.

(2) In plotting all the results, a momentum-independent
exciton FWHM linewidth was used. Exciton intralayer scatter-
ing and dephasing rates are expected to depend on the exciton
momentum. Since the exciton energy transfer rates depend,
in most cases, on the exciton scattering rates, a quantitative
theory or experimental data for momentum-dependent exciton
scattering rate in TMDs is needed for a better understanding
of the dependence of the energy transfer rates on exciton
momenta.

(3) It is well known that radiation emission and absorption
rates are affected by the presence of dielectric interfaces [37].
Most experiments on TMD layers are performed with the
layers placed on dielectric substrates. The influence of nearby
dielectrics would need to be taken into account in comparing
theory with experiments.
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APPENDIX A: EXCITON SELF-ENERGIES
IN A SINGLE TMD LAYER

In this section, we calculate the exciton self-energy in TMD
monolayers. For the sake of simplicity we will assume that
there is only one significant exciton level labeled by α. The
noninteracting (bare) retarded Green’s function for the exciton
field is [28]

GoR
�Q,L/T ,α

(t−t ′) = − i

�
θ (t−t ′)〈[C �Q,L/T ,α(t),C− �Q,L/T ,α(t ′)]〉.

(A1)

The exciton operator C �Q,L/T ,α was defined earlier in Eq. (10).
In the Fourier domain the Green’s function is

GoR
�Q,L/T ,α

(ω) = 2Eex,α( �Q)

(�ω)2 − Eex,α( �Q)2 + iη
. (A2)

The noninteracting (bare) retarded radiation Green’s function
is defined as,

DoR
�q,L/T (t − t ′) = − i

�
θ (t − t ′) 〈[R�q,L/T (t),R−�q,L/T (t ′)]〉

DoR
�q,L/T (ω) = 2�ωq

(�ω)2 − (�ωq)2 + iη
. (A3)

First, we dress the radiation Green’s function with term H ′
int

in the exciton-photon interaction Hamiltonian that is quadratic
in the vector potential (see Sec. II C 3. The resulting dressed
Green’s functions DR

�q,L/T
(ω) can be expressed in a form that

will be useful later,

∫
dqz

2π

�

εoωq

DR
�q,T (ω)

=
∫

dqz

2π
�

εoωq
DoR

�q,T
(ω)

1 − 2 e2

m2
o

|χex (0,�q‖)|2
Eex,α(�q‖)

∫
dqz

2π
�

εoωq
DoR

�q,T
(ω)

(A4)

∫
dqz

2π

�

εoωq

|qz|2
q2

DR
�q,L(ω)

=
∫

dqz

2π
�

εoωq

|qz|2
q2 DoR

�q,L
(ω)

1 − 2 e2

m2
o

|χex (0,�q‖)|2
Eex,α (�q‖)

∫
dqz

2π
�

εoωq

|qz|2
q2 DoR

�q,L
(ω)

. (A5)

The denominator on the right hand side in the above equations
is generally small and may be neglected. But it plays an
important role when off-shell exciton self-energies are desired,
as shown below. The Green’s functions for the radiation field
are gauge-dependent. It is convenient to choose the temporal
gauge in which the scalar potential is set equal to zero (and
need not be taken into account separately) [38]. Henceforth,
all results will be given for the temporal gauge. The Dyson
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equation for the exciton Green’s function is

GR
�q‖,L/T ,α(ω)

= GoR
�q‖,L/T ,α(ω)

[
1 + �R

�q‖,L/T ,α(ω) · GR
�q‖,L/T ,α(ω)

]
, (A6)

where the retarded self-energies are found to be,

�R
�q‖,T ,α(ω) = e2

m2
o

|χex(0,�q‖)|2
∫

dqz

2π

�

εoωq

DR
�q,T (ω)

�R
�q‖,L,α(ω) = e2

m2
o

|χex(0,�q‖)|2

×
∫

dqz

2π

�

εoωq

(ω2 − q2
‖c

2)

ω2
DR

�q,L(ω). (A7)

The dressed exciton Green’s functions become,

GR
�q‖,L/T ,α(ω)

= 2Eex,α(�q‖)

(�ω)2 − Eex,α(�q‖)2 − 2Eex,α(�q‖)�R
�q‖,L/T ,α

(ω)

=
2Eex,α(�q‖)

[
1 − 2 �oR

�q‖,L/T ,α
(ω)/Eex,α(�q‖)

]
(�ω)2 − Eex,α(�q‖)2 − 2 (�ω)2

Eex,α(�q‖)�
oR
�q‖,L/T ,α

(ω)

≈ 2Eex,α(�q‖)

(�ω)2 − Eex,α(�q‖)2 − 2 (�ω)2

Eex,α(�q‖)�
oR
�q‖,L/T ,α

(ω)
. (A8)

Here, �oR
�q‖,L/T ,α

(ω) is the same as �R
�q‖,L/T ,α

(ω) given in
Eq. (A7) above except that the bare radiation Green’s function
DoR

�q,L/T
(ω) is used in place of DR

�q,L/T
(ω). Finally the exciton

spectral density function A�q‖,L/T ,α(ω) can be related to the
retarded Green’s function as follows,

−2� Imag
{
GR

�q‖,L/T ,α(ω)
} = A�q‖,L/T ,α(ω) − A�q‖,L/T ,α(−ω).

(A9)

When ω > q‖c (inside the light cone), both the self-energies
�R

�q‖,L/T ,α
(ω) have a vanishingly small real part and a large

magnitude of the imaginary part. The latter corresponds to
the radiative lifetime of the exciton. The situation is reversed
when ω < q‖c and then the magnitude of the real part of the
self-energy becomes large and the imaginary part vanishes.
Therefore, when Eex,α(�q‖) > �q‖c (inside the light cone) one
can ignore corrections to the exciton dispersion, and the
radiative lifetime of the exciton can be related to the imaginary
part of the self-energy evaluated on the shell,

1

τsp,�q‖,L/T ,α

= −2

�
Imag

{
�R

�q‖,L/T ,α(ω)
}

�ω=Eex,α ( �Q) (A10)

and, we get [7,10],

1

τsp,�q‖,T ,α

= 2ηoe
2

m2
o

|χex(0,�q‖)|2 1√
E2

ex,α(�q‖) − (�q‖c)2

1

τsp,�q‖,L,α

= 2ηoe
2

m2
o

|χex(0,�q‖)|2
√

E2
ex,α(�q‖) − (�q‖c)2

E2
ex,α(�q‖)

.

(A11)

When ω < q‖c and the self-energies are real, we get [7,10],

�R
�q‖,T ,α(ω) = −ηo�

2e2

m2
o

|χex(0,�q‖)|2
E2

ex,α(�q‖)

ω2√
(q‖c)2 − ω2

�R
�q‖,L,α(ω) = ηo�

2e2

m2
o

|χex(0,�q‖)|2
E2

ex,α(�q‖)

√
(q‖c)2 − ω2. (A12)

Note that the corrections obtained from H ′
int, which was

quadratic in the vector potential, are important for obtaining the
correct expressions for the exciton self-energies far off-shell
[26].

APPENDIX B: EXCITON ENERGY DISPERSIONS
IN A SINGLE TMD LAYER

The exciton self-energy expressions given above can be
used to obtain energy dispersions, Eex,L/T ,α(�q‖), for the

FIG. 6. Calculated transverse and longitudinal exciton energy
dispersions for the lowest energy (1s) exciton state in a suspended
MoS2 monolayer are plotted as a function of the in-plane momentum
Q. Also shown are the photon and the bare exciton dispersion relations
(dashed lines). (a) The transverse exciton energy dispersion consists
of two curves. The upper curve has all the spectral weight for Q � Qo

and the lower curve gets all the weight when Q  Qo, and the spectral
weight shifts from the upper curve to the lower curve around Q ≈ Qo.
(b) The dispersion for the longitudinal exciton consists of only a single
curve and the energy dispersion is linear in Q for Q  Qo.
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longitudinal and transverse excitons. The results are shown
in Fig. 6 for the lowest energy (1s) exciton state in a
suspended MoS2 monolayer. We define Qo by the equation
Eex,1s(Qo) = �Qoc. The dispersion for the transverse exciton
consists of two curves (corresponding to the distinct poles of
the Green’s function). The upper curve has all the spectral
weight for Q � Qo and the lower curve gets all the weight
when Q  Qo, and the spectral weight shifts from the upper

curve to the lower curve around Q ≈ Qo. The dispersion for
the longitudinal exciton consists of only a single curve and the
energy dispersion is linear in Q for Q  Qo. For Q > Qo,
Eex,L,1s( �Q) > Eex,T ,1s( �Q). Therefore, in a thermal ensemble
of excitons, transverse exciton density is expected to exceed
the longitudinal exciton density. Note that there are negligibly
small corrections to the exciton dispersion within the light
cone for both the transverse and longitudinal excitons.
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