
IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 44, NO. 5, MAY 2008 435

Subwavelength Nanopatch Cavities for
Semiconductor Plasmon Lasers

Christina Manolatou and Farhan Rana

Abstract—We propose and analyze a family of nanoscale cavi-
ties for electrically pumped surface-emitting semiconductor lasers
that use surface plasmons to provide optical mode confinement in
cavities which have dimensions in the 100–300-nm range. The pro-
posed laser cavities are in many ways nanoscale optical versions
of micropatch antennas that are commonly used at microwave/RF
frequencies. Surface plasmons are not only used for mode confine-
ment but also for output beam shaping to realize single-lobe far-
field radiation patterns with narrow beam waists from subwave-
length size cavities. We identify the cavity modes with the largest
quality factors and modal gain, and show that in the near-IR wave-
length range (1.0–1.6 m) cavity losses (including surface plasmon
losses) can be compensated by the strong mode confinement in
the gain region provided by the surface plasmons themselves and
the required material threshold gain values can be smaller than
700 cm 1.

Index Terms—Integrated optoelectronics, nanotechnology, plas-
mons, semiconductor lasers.

I. INTRODUCTION

ELECTRICALLY pumped semiconductor lasers with
nanometer scale optical cavities could be important for

applications that benefit from ultrasmall coherent light sources,
such as on-chip optical interconnects, dense photonic VLSI
circuits, and biological or chemical sensors for microsystems
and nanosystems. Two questions that are interesting in this
context are: 1) what are the smallest achievable dimensions of
an electrically pumped semiconductor laser consistent with the
current material and fabrication constrains and 2) what is the
quality of output beams shapes obtainable from subwavelength
laser cavities.

In the past few years, much progress has been made in tightly
confining light in high quality factor optical microcavities and
in defects in 1-D and 2-D photonic crystals [1]–[3]. Modal
volumes close to the diffraction limit of (where is
the mode wavelength and is the refractive index seen by the
mode) have been achieved in some of these structures [1]–[3].
Optically and electrically pumped photonic crystal defect lasers
with modal volumes few times the diffraction limit have also
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been demonstrated [4]–[6]. Feedback structures, such as Bragg
reflectors and photonic crystals, needed to achieve such small
modal volumes made the overall size of the laser structure
several times larger than the wavelength since at least a few
periods of the feedback structure were required for adequate
mode confinement [1]–[6]. Plasmonic structures for photonic
applications have been extensively studied in the last few years
[8]–[18]. The large wavevector values of plasmon-polaritons
near the surface plasmon resonance frequency have been used
to achieve subwavelength device dimensions. Surface plasmon
confined optical modes in waveguides have exhibited modal loss
values ranging from 0.3 to 30 dB m in the visible-to-near-IR
wavelength range [14], [15]. While large wavevector values,
and small device sizes (compared to the free-space wave-
length), are possible for frequencies near the surface plasmon
resonance frequency (which corresponds to wavelengths in the
0.4–0.6- m range for most important metals, such as Silver
and Gold), the losses are also higher at frequencies close to the
surface plasmon resonance frequency [9], [10]. In the near-IR
1.0–1.6 m wavelength range, although the losses are smaller,
the wavevector values of plasmon-polaritons are also smaller
[9], [10]. Plasmon propagation in waveguides coupled to gain
media has also been studied theoretically and values between
500 and 5000 cm for the material gain required for lossless
propagation have been reported [13], [19]. An advantage of
operating at frequencies much smaller than the surface plasmon
resonance frequency is that the plasmon fields are not strongly
confined near the surface of the metal and can therefore have
significant overlap with an external gain medium. For realizing
lasing in surface plasmon confined nanoscale optical cavities,
the gain needs to not only compensate for intrinsic cavity losses
(including surface plasmon losses) but also for losses due to
external radiation. In addition, the output radiation patterns
need to be well behaved for practical applications. In the midIR
and far-IR wavelength range, where surface plasmon losses are
considerably smaller compared to those at visible and near-IR
wavelengths, surface plasmon mode confinement in dual-metal
waveguides has been used to achieve lasing in quantum cascade
devices [20]–[22]. However, these laser structures did not have
subwavelength sizes in all three dimensions.

In this paper, we propose and analyze a family of nanoscale
optical cavities for electrically pumped surface-emitting
near-IR semiconductor lasers—semiconductor nanopatch
lasers (SNLs)—that have dimensions in the few hundred
nanometer range and cavity volumes (not just modal volumes)
approaching [23]. Surface plasmons are used not
only for mode confinement but also for output beam shaping
to realize single-lobe far-field output radiation patterns with
narrow beam waists. The lasers discussed here are in many
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(a) (b) (c)

Fig. 1. Examples of nanopatch laser structures. (a) Circular nanopatch laser. (b) Rectangular nanopatch laser. (c) Hexagonal nanopatch laser. The structures are
not drawn to scale.

ways nanoscale optical versions of micropatch antennas (or
microstrip patch antennas) that are commonly used at mi-
crowave/RF frequencies [24]. We show that in the near-IR
wavelength region (1.0—1.6 m) cavity losses in nanopatch
lasers (including surface plasmon losses) can be compen-
sated by gain from conventional III–V materials because
surface plasmons can themselves be used to provide large
overlap of the cavity mode with the gain region. The material
threshold gain values needed to achieve lasing can be smaller
than 700 cm . Despite surface plasmon losses, the external
radiation efficiencies are between 10%–30%. Compared to
all-dielectric microcavity semiconductor lasers reported in the
literature [4]–[7], the proposed nanopatch lasers have much
smaller cavity volumes and well behaved output beam shapes.

In Section II we discuss the basic structure of nanopatch
laser cavities. Section III describes the general characteristics
of the modes most favorable for achieving lasing in subwave-
length nanopatch cavities. Section IV is the main section of
this paper and presents simulation results for cavity modes and
corresponding radiation fields. The focus is mainly on circular
nanopatch cavities as they are the easiest to analyze computa-
tionally and the main characteristics of other nanopatch laser
cavities are similar. Simulation results for the threshold material
gain and threshold current values required for achieving lasing
are presented in Section V. Finally, the challenges related to
the fabrication of nanopatch laser cavities are discussed in
Section VI.

II. NANOPATCH LASER STRUCTURES

Few examples of nanopatch laser structures are shown in
Fig. 1. The basic nanopatch laser structure consists of a bulk
semiconductor gain medium in the form of a p-i-n heterostruc-
ture sandwiched on both sides by metal layers that confine the
lasing optical mode via surface plasmons and also serve as elec-
trical contacts for current injection. The light is radiated out
from the sides of the cavity. The bottom metal layer acts like an
antenna reflector and directs the light radiated out from the sides
of the cavity in the upward direction thereby contributing to
the surface emission characteristics of nanopatch lasers. Ground
planes in micropatch antennas used at microwave/RF frequen-
cies perform similar functions [24]. The radii of the nanopatch
lasers are between 100 and 300 nm and the heights of the dielec-
tric part of the cavity are between 100 and 250 nm. The metal

layers are assumed to be thick enough to prohibit light trans-
mission. In the next Section, we discuss the optical modes most
suitable for achieving lasing in nanopatch cavities.

III. OPTICAL MODES IN NANOPATCH CAVITIES: DISCUSSION

The focus in this paper will be only on those modes sup-
ported by nanopatch cavities that exhibit the smallest surface
plasmon and radiation losses for subwavelength cavity dimen-
sions, require the smallest cavity dimensions for a given lasing
frequency, and have the largest overlaps with the gain region.
Numerical simulations (to be discussed below) show that in all
the nanopatch cavities discussed in this paper the most favorable
modes with respect to the above figures of merit are similar in
shape and profile. Below, we discuss these modes in more detail
in the context of circular nanopatch lasers.

A. Optical Modes in Circular Nanopatch Cavities

Circular nanopatch cavities are the easiest to analyze both
computationally and analytically. The continuous angular sym-
metry implies that the angular dependence of the modal field
amplitude can be written as where is an integer.
For there are two degenerate modes for each value of

corresponding to positive and negative values of the sign in
the exponential. Equivalently, the angular dependence of the
modes can be assumed to be or instead of

. With reference to the vertical direction, the modes
can be further classified as quasi-TM or quasi-TE [24]. The TE
modes do not couple well with the surface plasmons and re-
quire larger cavity dimensions for the same mode wavelength
compared to the TM modes. Therefore, TE modes will not be
considered in this paper. The TM modes of circular nanopatch
cavities bear a close resemblance to the modes of cir-
cular micropatch antennas which inside the cavity can be written
as [24]

(1)

(2)

(3)

where is the height of the cavity, ,
is the cavity resonance frequency, and is the dielec-

tric constant of the medium inside the cavity. Although the
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Fig. 2. Fields lines for (a)TM , (b)TM , and (c)TM modes of a circular nanopatch cavity. The figures on the top show the side view for the fields lines
and the figures on the bottom show the top view in the z = h=2 plane.

(a) (b)

Fig. 3. (a) Experimental data (solid with circles) of [26] for the real and imaginary parts of the dielectric constant of Silver and the fit (dashed) using the model
plasma dispersion in the 1.0–1.8 �m wavelength range are shown. (b) Propagation loss of free plasmons on Silver, and the plasmon field penetration depth in the
metal, are shown as a function of the wavelength. The metal is assumed to be surrounded by a material of refractive index 3.3 corresponding to the contact/cladding
material (InGaAsP) in nanopatch lasers.

above expressions are not exact for the TM modes of circular
nanopatch cavities, they capture the approximate profiles and
symmetries of the actual nanopatch cavity modes at near-IR
wavelengths that are not close to the surface plasmon fre-
quency. The mode is the mode of choice in circular
micropatch antennas at RF/microwave frequencies. This mode
has a constant electric field component in the vertical direction
and a very small radiation- . The small radiation- makes it
suitable for antenna applications but not for achieving lasing.
The electric field lines for the and modes of a
nanopatch cavity are also depicted in Fig. 2. For these modes,
the horizontal component of the electric field is symmetric
with respect to a horizontal plane passing through the middle
of the cavity and the vertical component of the electric field is
antisymmetric with respect to the same plane. These properties
of the modes facilitate large mode overlap with the gain region
and also result in reduced radiation losses. The reduced radia-
tion losses are due to the partial cancellation of the outgoing
radiation as a result of the up-down antisymmetry of the ver-
tical component of the electric field at the edges of the cavity.
For a given frequency, the mode results in smaller
cavity dimensions and larger overlap of the mode with the gain
region. Higher order TM modes, and in particular TM modes

with (whispering gallery modes), do exhibit reduced
radiation losses but also require larger cavity dimensions and
will therefore not be considered in this work. mode
is therefore the most suitable mode for achieving lasing in
subwavelength circular nanopatch cavities. As discussed later,
the modes most suitable for achieving lasing in other nanopatch
cavities with subwavelength dimensions resemble the
mode of a circular nanopatch cavity. In the following Section,
we present simulation results for the -like cavity modes
of nanopatch lasers.

IV. OPTICAL MODES IN NANOPATCH CAVITIES:
SIMULATION RESULTS

A. Simulation Methods and Techniques

For numerical simulations a 3-D full-vector complex eigen-
mode solver, with reflectionless perfectly matched layer (PML)
boundary conditions for outgoing radiation, is used. A 3-D
full-vector finite-difference time-domain (FDTD) simulator
with PML boundary conditions is also used [25]. A nonuniform
computational mesh is employed and the minimum separation
between adjacent mesh points in the metal is 4 nm, which
is much smaller than the expected penetration depth of the
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plasmon field in the metal layers (see Fig. 3). The refractive
index of the semiconductor gain region is assumed to be 3.5 and
corresponds to the (approximately wavelength independent)
refractive index of InGaAsP gain region in the 1.1–1.6 m
wavelength range [27]. The refractive index of the con-
tact/cladding layers is assumed to be 3.3 and also wavelength
independent (in the 1.0–1.6- m wavelength range a refractive
index value of 3.3 can always be obtained for an InGaAsP layer
by adjusting the composition [27]). The material loss due to
free carriers is assumed to be 30 cm per 10 cm carrier
density for holes and 5 cm per 10 cm carrier density
for electrons [28]. The n- and p-doped contact/cladding layers
on each side of the gain region are both assumed to have carrier
densities of 4 10 cm .

In all the simulations, the metal is assumed to be Silver and
the experimentally measured wavelength dependent plasma dis-
persion of Silver reported by Johnson and Christy [26] is incor-
porated in the simulations. In the FDTD method, the plasma
dispersion is included by fitting the experimentally measured
dispersion with the model plasma dispersion relation

(4)

and then adding to the FDTD equations an additional equation
for the material polarization current density according to the
model plasma dispersion, as described in [25]. The values of ,

, and that best fit the experimental data in the 1.0–1.8 m
wavelength range are 1.0, 1.38 10 , and 33 fs, respec-
tively. The quality of the fit is shown in Fig. 3. Fig. 3 also
shows the propagation loss of free plasmons on Silver, and the
plasmon field penetration depth in the metal, as a function of
wavelength and obtained using the model plasmon dispersion
relation. These results will be used in the discussion that fol-
lows. In the case of the eigenmode solver, the eigenequation that
needs to be solved numerically is

(5)

Since the dielectric constant also depends on the mode fre-
quency, an iterative scheme is implemented in which the value
of the dielectric constant is updated in every iteration until
convergence is obtained. With PML boundary conditions, the
eigenmode solver gives a complex mode frequency where the

imaginary part is related to the photon lifetime in the cavity. In
the FDTD method, the photon lifetime is obtained directly by
observing the decay of the field inside the cavity with time. The
photon lifetime is related to the cavity quality factor by,

, where is the mode frequency. The photon lifetime
can be written as

(6)

where and represent the intrinsic cavity loss and the radi-
ation loss, respectively. The value of is found by calculating
the total power radiated by the cavity (in the far-field) and di-
viding it by the total energy stored in the cavity, shown in (7)
at the bottom of the page. It needs to be pointed out here that a
slightly different expression for the electromagnetic energy den-
sity in a dispersive and lossy material is given in [17]. However,
for the parameter values chosen for the dielectric dispersion the
difference is negligible. The integral for the total power is per-
formed over a hemispherical surface of radius sufficiently large
that the result is not affected by the near-fields of the cavity. The
volume integral for the energy stored in the cavity is performed
over a region slightly larger than just the dielectric and the metal
regions of the cavity to include the fringing fields in the air re-
gion as well. We have found that in all the cases considered in
this paper more than 90% of the field energy is stored in the di-
electric and the metal regions of the cavity. Once is found,
is obtained using (6). The external radiation efficiency of
the laser is defined as

Radiation Loss
Total Loss

(8)

Finally, the fraction of the cavity energy in the gain region is
calculated as

Real

Real
(9)

The results obtained from the FDTD and the eigensolution tech-
niques were compared for several different cavities and the max-
imum difference in the calculated mode frequencies and photon
lifetimes was found to be less than 2%. The numerical error in
the simulation results is expected to be of the same order.

(7)
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(a) (b) (c)

Fig. 4. Computed (a) z-component(top view), (b) z-component(side view), and (c) x-component(side view) of the electric field for theTM mode of a circular
nanopatch cavity of height 220 nm and radius 160 nm are shown. The z-component (top view) is shown in a horizontal plane just below the top metal. The z- and
the x-components (side view) are shown in a vertical plane passing through the center of the cavity. The contrast has been reduced to show the weak fringing fields
in the air region.

B. Simulation Results for Circular Nanopatch Cavities

In this Section we present simulation results for the
modes of circular nanopatch cavities. In the simulations the
cavity height and the radius are varied. The thickness of the
top and bottom contact/cladding layers is kept fixed and equal to
30 nm each. The contact/cladding layers need to be thick enough
to incorporate the depletion regions (without getting fully de-
pleted) at the interface with the smaller bandgap gain medium
and also the dipole layers at the interface with the metal layers.
The assumed large doping level of 4 10 1/cm for both
the n- and p-type contact/cladding layers is therefore necessary.
The thickness of the gain region is the cavity height minus the
thickness of the two contact/cladding layers. The thickness of
the top metal layer is assumed to be 100 nm. The computed
fields for the mode are shown in Fig. 4 and show the
large confinement of the horizontal component of the field in the
gain region. Fig. 5 shows the wavelengths of the modes
as a function of the cavity radius for different cavity heights.
Modes with wavelengths in the entire 1.0–1.6- m range are
possible with the cavity dimensions presented in Fig. 5. In the
1.0–1.8- m wavelength range the interaction between the sur-
face plasmons and the confined optical mode is weak and the
mode shape does not deviate significantly from the one given
by (1)–(3). Consequently, a semi-analytical expression for the
wavelength of the modes can be obtained using the ap-
proximate boundary condition that the radial component of the
electric field must vanish at the periphery of the cavity (i.e., at

). If the th root of the derivative of the th Bessel func-
tion is , then the wavelength of the mode can
be written approximately as

(10)

Here, is the average dielectric constant of the cavity and
is the penetration depth of the field in the top and bottom

metal layers. Fig. 3 indicates that the penetration depth is in the

19–21-nm range for free plasmons in the 1.0–1.8- m wave-
length range. Simulations confirm these numbers in the case of
nanopatch cavities as well. Assuming a constant wavelength
independent penetration depth of 20 nm, an average cavity
index of 3.45, the analytically calculated mode wavelengths
(DASHED lines) for the modes are compared with
the numerical simulation results (SOLID lines) in Fig. 5. The
agreement is good except for small radii when the energy in
the fringing fields is not small. Fig. 5 also displays the fraction

of the cavity electromagnetic energy confined in the gain
region as a function of the cavity radius for different cavity
heights and shows that between 55%–85% of the mode energy
is confined in the gain region.

In plotting the simulated characteristics of the cavity modes
one can choose to plot them as a function of the cavity radius
or the mode wavelength since there is one-to-one correspon-
dence between the two, as shown in Fig. 5. In the plots discussed
below, we have chosen the former scheme. The corresponding
mode wavelengths can be referenced from Fig. 5. Fig. 6 shows
the cavity photon lifetimes and the cavity quality factors
for the mode. The resonances visible in Fig. 6 appear
when the diameter of the cavity is slightly smaller than (
is the mode wavelength). Fig. 7 shows the external radiation ef-
ficiency . For small cavity radii and larger cavity heights the
radiative losses dominate, and for large cavity radii the intrinsic
losses dominate. In order to obtain decent external efficiencies
the radiative losses cannot be much smaller than the intrinsic
losses. Therefore, there is little to gained in terms of laser perfor-
mance by reducing the radiative losses much below the intrinsic
losses. An interesting aspect of the nanopatch cavities is their
small cavity size. Fig. 7 shows the cavity volume (not the mode
volume) in units of as a function of the cavity radius. For
comparison, the diffraction limit for the mode volume
is also indicated in the figure (using an average index value of
3.45 for the dielectric part of the cavity). Although the smallest
achievable cavity volume using plasmon confinement is neither
related to, nor constrained by, the diffraction limit , the
diffraction limit has become a useful standard for measuring
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(a) (b)

Fig. 5. (a) Computed wavelengths for the TM mode of a circular nanopatch cavity are plotted as a function of the cavity radius for different cavity heights.
The SOLID lines are the results from numerical simulations and the DASHED lines correspond to the analytical expression in (10). (b) Fraction � of the cavity
electromagnetic energy in the gain region for the TM mode is plotted as a function of the cavity radius for different cavity heights. The cavity heights are 140,
170, 200, 220, and 240 nm in each case.

(a) (b)

Fig. 6. (a) Computed cavity photon lifetimes and (b) cavity quality factors for TM modes of circular nanopatch cavities are plotted as a function of the cavity
radius for different cavity heights. The cavity heights are 140, 170, 200, 220, and 240 nm. The corresponding mode wavelengths are given in Fig. 5.

light confinement in small cavities [29]. Fig. 7 shows that the
cavity volume approaches values close to the diffraction limit
for small radii.

C. Far-Field Radiation Patterns of Circular Nanopatch
Cavities

A useful property of the proposed nanopatch lasers is their
surface-normal emission characteristics. Nanopatch lasers can
emit in the surface normal direction with a single-lobe far-field
radiation pattern and a relatively narrow beam waist. The radi-
ation pattern is defined as

(11)

where is the Poynting vector. In simulations, the ra-
diation pattern is found by finding the Poynting vector from the
calculated fields over a hemispherical surface of radius large

enough such that cavity near-fields do not affect the results. Typ-
ically, a value of radius between 4–6 m is an adequate com-
promise between accuracy and limited computational resources.
For a circular nanopatch cavity, the radiation pattern will not
have a -dependence if the modes are assumed to vary with
as . On the other hand, if the -dependence of the
modes is assumed to be or then the radiation
pattern will also exhibit a -dependence. The radiation pattern

for modes can be obtained by averaging the
radiation pattern for or modes over .
Fig. 8 shows the far-field radiation pattern for the mode
of a 160 nm radius and 220 nm cavity height circular nanopatch
cavity. The angular dependence of the -component of the field
is assumed to be proportional to rather than to
show the -dependence of the pattern. The radiation is emitted
out from the sides of the cavity but interferes constructively in
the upward direction. This is also shown explicitly in Fig. 9. A
weak surface plasmon wave is also emitted along the bottom
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(a) (b)

Fig. 7. (a) Computed external radiation efficiency � and (b) the cavity volume (in units of � ) for the TM modes of circular nanopatch cavities are plotted
as a function of the cavity radius for different cavity heights. The cavity heights are 140, 170, 200, 220, and 240 nm. The corresponding mode wavelengths are
given in Fig. 5. The cavity volume approaches close to the diffraction limit for small cavity radii.

(a) (b)

Fig. 8. (a) Circular nanopatch laser and (b) the computed far-field radiation pattern for the TM mode of a 160-nm radius and 220-nm cavity height laser are
shown. The angular dependence of the z-component of the field is assumed to be proportional to cos(�) rather than exp(�i�). A weak surface plasmon wave
emitted along the bottom metal layer is also visible in the radiation pattern.

(a) (b)

Fig. 9. (a) Computed x-component and (b) the z-component of the radiated field for the TM mode of a circular nanopatch cavity of radius 160 nm and height
220 nm are shown. The angular dependence of the z-component of the field is assumed to be proportional to cos(�) rather than exp(�i�). The radiation fields
are shown in the E-plane (� = 0). The contrast in the figures has been greatly reduced to show the radiated fields compared to the much stronger fields inside the
cavity.

metal layer. The surface wave decays as it propagates and its
power would have made no contribution to the radiation pattern

if the radiation pattern were computed over a hemispherical sur-
face of much larger radius.
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(a) (b) (c)

Fig. 10. (a) Components of the equivalent magnetic surface current density and their images are depicted for the TM mode of a circular nanopatch cavity.
(b)–(c) Simulated (solid) and the analytically calculated (dashed) radiation patterns p(�; �) for the TM mode of a circular nanopatch cavity are shown in the
H-plane (� = 90-deg) and in the E-plane (� = 0). The cavity height is 220 nm and the cavity radius is 160 nm. The �-dependence of the z-component of the field
is assumed to be cos(�). The error for � close to 90-deg in the E-plane is due to the fact that surface plasmon waves are not adequately described by the analytical
model based on equivalent magnetic current densities.

D. Analytical Model for the Far-Field Radiation Patterns of
Nanopatch Cavities

The radiation patterns, and the surface-normal emission of
radiation in particular, can be understood and estimated from
considerations similar to those used in the analysis of aperture
antennas at RF/microwave frequencies [24]. The sides of the
nanopatch cavities can be considered as apertures from which
radiation takes place. In order to calculate the radiated fields,
equivalent electric and magnetic surface current densities,
and , respectively, given by

(12)

(13)

can be assumed to exist at the surface of the cavity and the radi-
ated fields can be assumed to be generated by these current den-
sities [24]. Here, is a unit vector perpendicular to the surface
of the cavity. Since the tangential magnetic fields at the sides of
the nanopatch cavities are very small [and equal to zero from
(1)–(3)], the electric current density can be ignored for sim-
plicity. Unlike at RF/microwave frequencies, the metal layers
at near-IR frequencies cannot be considered as perfectly con-
ducting since the real part of the dielectric constant dom-
inates at near-IR frequencies, as shown in Fig. 3. However, the
large negative values of at near-IR frequencies imply that
the boundary condition of zero tangential electric field at the sur-
face of the metal holds approximately. Therefore, the magnetic
surface current density will have its image in the bottom
metal layer. For the mode of a circular nanopatch cavity,
the components of the magnetic surface current density and their
images are depicted in Fig. 10. The surface normal emission of
radiation by nanopatch cavities can be understood as the radia-
tion emitted by the equivalent magnetic surface current density
and its image. In the far-field, if the electric field is represented
by a vector potential using the expression

(14)

then the vector potential corresponding to the magnetic surface
current density can be written as

(15)
Using the expressions for the field components of the TM modes
of a circular nanopatch cavity given in (1)–(3), the far-field ra-
diation pattern for the mode can be calculated
analytically and the approximate result is

(16)

where , , is the cavity height,
and . In deriving the above expression, the -de-
pendence of the -component of the field is assumed to be

. The actual mode is not exactly symmetric with
respect to a horizontal plane passing through the center of the
cavity, as assumed in (1)–(3). The value of the dimensionless
constant is chosen to model this asymmetry and numerical
simulations show that the value of is in the 0.05 to 0.2
range. The simulated and the analytically calculated (using the
expression above) radiation patterns for the mode of
a circular nanopatch cavity are shown in Fig. 10. The cavity
height is 220 nm, the cavity radius is 160 nm, and the value of

is 0.15. The agreement in both the H-plane ( -deg)
and E-plane is good except for values of close to
90-deg in the E-plane. The error for values of close to 90-deg
in the E-plane is due to the fact that surface plasmon waves
on the bottom metal layer that are emitted in the E-plane are
not adequately described by the analytical model based on the
equivalent magnetic current densities.

Fig. 11 shows the computed far-field radiation patterns
for the modes of circular nanopatch cavities of height
220 nm for different cavity radii. The -dependence of the
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Fig. 11. Simulated far-field radiation patterns p(�) for the TM modes of circular nanopatch cavities of height 220 nm and different radii are shown as a
function of the angle �. The �-dependence of the modes is assumed to be exp(�i�) and therefore the radiation patterns depend only on the angle �.

modes is assumed to be for simplicity. It can be
seen that the radiation patterns depend sensitively on the cavity
dimensions. In the surface normal direction the radiation is en-
tirely due to the -component of the magnetic current density.
For small cavity radii nm , the radiation is dominated
by the -component of the magnetic current density. For larger
cavity radii nm , the -component of the magnetic
current density also contributes strongly to the radiation.

E. Modes, Degeneracies, and Far-Field Radiation Patterns in
Square and Hexagonal Nanopatch Cavities

In actual fabricated circular nanopatch cavities the angular
symmetry is expected to be broken unintentionally and the
modes are expected to have or dependence
rather than dependence. The angular symmetry
can be intentionally broken using the square and hexagonal
nanopatch cavities that also support modes that resemble the

modes of circular nanopatch cavities. These modes have
a horizontal field component that is symmetric with respect to
a horizontal plane passing through the center of the cavity and
a vertical field component that is antisymmetric with respect to
the same plane. The antisymmetry of the vertical component
of the field at the cavity edges helps in reducing the radiation
losses and the horizontal field component enjoys a large overlap
with the gain region.

The calculated fields for a square nanopatch cavity of height
220 nm and side 280 nm and a hexagonal nanopatch cavity of
height 220 nm and side 200 nm are shown in Figs. 12 and 13,
respectively. The mode wavelength and the cavity- for the
square cavity are 1.30 and 196 m, respectively, and 1.41 and
242 m, respectively, for the hexagonal cavity. These cavity-
values are comparable to those of circular nanopatch cavities.
The continuous angular symmetry in circular nanopatch cavities

implies that the two modes with the same angular index (for
) are degenerate. The symmetries in case of square and

hexagonal nanopatch cavities are discrete, and correspond to the
and point groups, respectively [30]. The character ta-

bles of the and point groups are given in Appendix A.
The modes for the square and hexagonal nanopatch cavities
shown in Figs. 12 and 13 correspond to the two-dimensional

and representations of the and point groups,
respectively, and are therefore each doubly degenerate. Most
of the properties of square and hexagonal nanopatch cavities
are not too different from those of circular nanopatch cavities.
The far-field radiation patterns for a square nanopatch cavity
of height 220 nm and side 280 nm and a hexagonal nanopatch
cavity of height 220 nm and side 200 nm are shown in Fig. 14,
and resemble the radiation patterns of circular nanopatch cavi-
ties (see Fig. 8).

V. THRESHOLD GAIN AND THRESHOLD CURRENT OF

NANOPATCH LASERS

A. Threshold Gain

In a semiconductor laser the material threshold gain , the
mode energy gain confinement factor , the gain medium re-
fractive index , and the photon lifetime are related as [28]

(17)

where is the speed of light in free space. The strong mode con-
finement in the gain region provided by the surface plasmons in
nanopatch cavities results in large modal gain values that are
needed to compensate for the large cavity losses. The photon
lifetimes and the mode energy gain confinement factors in con-
ventional edge-emitting semiconductor lasers typically range
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(a) (b) (c)

Fig. 12. (a) Computed z-component (top view), (b) z-component (side view) (middle), and (b) the x-component (side view) of the electric field for theTM -like
mode of a square nanopatch cavity of side 280 nm and height 220 nm are shown. The z-component (top view) is shown in a horizontal plane just below the top
metal. The contrast has been adjusted to show the weak fringing fields.

(a) (b) (c)

Fig. 13. (a) Computed z-component (top view), (b) z-component (side view), and (c) the x-component (side view) of the electric field for the TM -like mode
of a hexagonal nanopatch cavity of height 220 nm and side 200 nm are shown. The z-component (top view) is shown in a horizontal plane just below the top metal.
The contrast has been adjusted to show the weak fringing fields.

from 1 to 4 ps and 0.04% to 0.08%, respectively [28]. The re-
sults presented in Section IV-B show that the photon lifetimes
in nanopatch cavities are almost ten times smaller than in con-
ventional semiconductor lasers but the mode energy gain con-
finement factors are almost ten times larger compared to their
values in conventional semiconductor lasers. Therefore, the ma-
terial threshold gain values in nanopatch lasers are not expected
to be much different than in conventional semiconductor lasers.
Although (17) can be used to find the material threshold gain
values from the calculated values of and , this procedure
does not take into account modification of the mode profile in
the presence of material gain. A more accurate method to obtain
the threshold gain is to calculate the complex mode frequency
in the presence of the material gain using the techniques dis-
cussed in Section IV-A and then iteratively adjust the value of
the material gain until the imaginary part of the complex mode
frequency becomes zero (or sufficiently small). This procedure
has been used this paper and the results for the threshold gain of
circular nanopatch lasers are shown in Fig. 15. The lasing mode
is assumed to be . The threshold gain values are less than
1000 cm for cavity radii larger than 175 nm and cavity heights

larger than 170 nm. In the 1.5–1.6- m wavelength range, gain
values smaller than 700 cm are achievable. III–V semicon-
ductor materials, such as InGaAsP and InGaAlAs, can easily
provide material gain values in the 1200–1600 cm range in
the 1.2–1.6- m wavelength range and are therefore suitable for
nanopatch lasers [28].

B. Threshold Current

In this Section, estimates of the threshold currents in semi-
conductor nanopatch lasers are presented. The threshold carrier
density can be estimated from the expression for the mate-
rial gain as a function of the carrier density [28]

(18)

The threshold current can be related to the electron–hole
recombination rate in the active region at threshold

(19)
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(a) b)

Fig. 14. Computed far-field radiation patterns for (a) the TM -like modes of a square and (b) hexagonal nanopatch cavities are shown. The cavity dimensions
are the same as in Figs. 12 and 13.

(a) (b)

Fig. 15. (a) Computed material threshold gain g for theTM mode of a circular nanopatch laser for different cavity heights are shown. (b) Threshold current
I for a circular nanopatch laser are shown as a function of the cavity radius for different cavity heights. The cavity heights are 140, 170, 200, and 240 nm. The
top and bottom contact/cladding layers are 30 nm thick each. The values of various parameters used in the calculations are listed in Table I.

Here, is the electron charge and is the volume of the active
region. The carrier density dependent recombination rate
(units: cm s ) is assumed to have dominant contributions
from surface recombination, spontaneous emission, and Auger
scattering. Surface recombination is expected to become more
important as the cavity radius decreases and the surface area to
volume ratio of the active region increases. The net recombina-
tion rate can be written as

(20)

where is the speed of light, is the index of the active region,
is the spontaneous emission factor, is the mode volume

and is approximately equal to the cavity volume for nanopatch
lasers, is the Auger coefficient, and is the surface recom-
bination velocity and equals 10 cm/s for passivated InGaAsP
active layers [31]. (A/V) is the surface area to volume ratio
for the active region and equals for a circular nanopatch

TABLE I
LASER PARAMETER VALUES USED IN CALCULATION OF THRESHOLD

CURRENTS [28]

laser of radius . Given the small cavity size, the spontaneous
emission is assumed to occur only in the lasing mode. Using
the parameter values given in Table I, the calculated threshold
currents of circular nanopatch lasers are shown in Fig. 15 as a
function of the cavity radius for different cavity heights. The
parameter values are assumed to be constant whereas in re-
ality they will change slightly as the composition of the gain



446 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 44, NO. 5, MAY 2008

medium is changed. The parameter values shown in Table I cor-
respond to bulk InGaAsP active medium lattice matched to InP
and with a bandgap corresponding to 1.3- m wavelength [28].
The threshold currents are large for very small radii because the
photon lifetimes are small. For large cavity radii the threshold
currents are again large because the active region volumes are
large. Therefore, there is an optimum value of the cavity ra-
dius that results in the minimum value of the threshold cur-
rent. The minimum values of the threshold current are in the
3–5- A range and correspond to threshold current densities in
the 2–3-kA/cm range.

VI. CONCLUSION

Challenges associated with the fabrication of nanopatch
lasers are not expected to be impossible to meet. Substrate
removal techniques used in the fabrication of dual-metal-wave-
guide semiconductor far-IR lasers can be employed for the
realization of the dual-metal nanopatch laser structures [32].
However, in the case of nanopatch lasers the semiconductor
films obtained after substrate removal would be much thinner
and would require more care. The metal used for the top
and bottom layers must make good ohmic contacts to the
contact/cladding layers, must not react with or diffuse into
the semiconductor, and must also have small surface plasmon
losses. Silver seems to be the ideal choice. The work function
of Silver is very close to that of titanium and titanium/gold
ohmic contacts are commonly used for both n- and p-type
III–V semiconductors [33]. Good quality silver ohmic contacts,
which do not require post-deposition rapid thermal anneal, to
moderately doped InP have been demonstrated [34]. Electrical
contact leads to the top metal layer would need to be micro-
fabricated since the laser structure is too small to be contacted
directly with electrical probes. Finally, the exposed side walls
of the cavity would need to be passivated to reduce surface
recombination. Quantum-well gain media can also be used
in place of bulk gain media in nanopatch lasers. Quantum
wells can generally provide larger material gain compared to
bulk for the same carrier density due to the reduced density of
states [28]. However, a quantum well gain medium would have
smaller overlap with the cavity mode and the material gain
would also be polarization dependent. The effect of interface
roughness on the cavity quality factors has not been considered
in this work. In nanoscale lasers, the surface area to volume
ratio increases as the cavity dimensions shrink and therefore
interface roughness will likely play an important role.

The ideas presented in this paper show that in the 1.0–1.6- m
wavelength range surface plasmons can be used to confine light
in nanoscale optical cavities. At these longer wavelengths since
the surface plasmon fields are not strongly confined to the sur-
face of the metal, they can have significant overlap with an ex-
ternal gain medium. In fact, surface plasmon confinement in the
1.0–1.6- m wavelength range can be used to obtain mode gain
confinement factors that are substantially larger than in conven-
tional semiconductor lasers thereby providing large modal gain
values necessary to achieve lasing.

The benefits of nanopatch laser structures are not expected to
be limited to just reduced dimensions. The small photon life-
times in nanopatch lasers compared to conventional semicon-

TABLE II
CHARACTER TABLES FOR C AND C POINT GROUPS

ductor lasers could enable ultrawide bandwidths ( 100 GHz)
for direct current modulation. The dual-metal layer structure of
nanopatch lasers could enable them to be used as functional el-
ements and placed on desired substrates, such as Silicon mi-
crochips, to provide lasers on demand capabilities for multi-
functional microsystems and nanosystems.

APPENDIX A
CHARACTER TABLES FOR THE AND POINT GROUPS

The character tables for and point groups are shown
in Table II. The notations for the group symmetry operations are
according to [30].

The modes discussed in this paper in square and hexagonal
nanopatch cavities correspond to the 2-D and represen-
tations of the and point groups, respectively, and are
therefore each doubly degenerate.
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